
J Autom Reasoning (2008) 41:1–31
DOI 10.1007/s10817-008-9099-0

Formal Verification of a C-like Memory Model
and Its Uses for Verifying Program Transformations

Xavier Leroy · Sandrine Blazy

Received: 26 September 2007 / Accepted: 13 February 2008 / Published online: 14 March 2008
© Springer Science + Business Media B.V. 2008

Abstract This article presents the formal verification, using the Coq proof assistant,
of a memory model for low-level imperative languages such as C and compiler
intermediate languages. Beyond giving semantics to pointer-based programs, this
model supports reasoning over transformations of such programs. We show how the
properties of the memory model are used to prove semantic preservation for three
passes of the Compcert verified compiler.

Keywords Memory model · C · Program verification · Compilation ·
Compiler correctness · The Coq proof assistant

1 Introduction

A prerequisite to the formal verification of computer programs—by model checking,
program proof, static analysis, or any other means—is to formalize the semantics
of the programming language in which the program is written, in a way that is
exploitable by the verification tools used. In the case of program proofs, these formal
semantics are often presented in operational or axiomatic styles, e.g. Hoare logic.
The need for formal semantics is even higher when the program being verified
itself operates over programs: compilers, program analyzers, etc. In the case of a
compiler, for instance, no less than three formal semantics are required: one for the
implementation language of the compiler, one for the source language, and one for

X. Leroy (B)
INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay, France
e-mail: Xavier.Leroy@inria.fr

S. Blazy
ENSIIE, 1 square de la Résistance, 91025 Evry cedex, France
e-mail: Sandrine.Blazy@ensiie.fr

2 X. Leroy, S. Blazy

the target language. More generally speaking, formal semantics “on machine” (that
is, presented in a form that can be exploited by verification tools) are an important
aspect of formal methods.

Formal semantics are relatively straightforward in the case of declarative pro-
gramming languages. However, many programs that require formal verification are
written in imperative languages featuring pointers (or references) and in-place mod-
ification of data structures. Giving semantics to these imperative constructs requires
the development of an adequate memory model, that is, a formal description of the
memory store and operations over it. The memory model is often a delicate part of a
formal semantics for an imperative programming language. A very concrete memory
model (e.g. representing the memory as a single array of bytes) can fail to validate
algebraic laws over loads and stores that are actually valid in the programming
language, making program proofs more difficult. An excessively abstract memory
model can fail to account for e.g. aliasing or partial overlap between memory areas,
thus causing the semantics to be incorrect.

This article reports on the formalization and verification, using the Coq proof as-
sistant, of a memory model for C-like imperative languages. C and related languages
are challenging from the standpoint of the memory model, because they feature
both pointers and pointer arithmetic, on the one hand, and isolation and freshness
guarantees on the other. For instance, pointer arithmetic can result in aliasing or
partial overlap between the memory areas referenced by two pointers; yet, it is
guaranteed that the memory areas corresponding to two distinct variables or two
successive calls to malloc are disjoint. This stands in contrast with both higher-
level imperative languages such as Java, where two distinct references always refer
to disjoint areas, and lower-level languages such as machine code, where unrestricted
address arithmetic invalidates all isolation guarantees.

The memory model presented here is used in the formal verification of the
Compcert compiler [3, 15], a moderately-optimizing compiler that translates the
Clight subset of the C programming language down to PowerPC assembly code.
The memory model is used by the formal semantics of all languages manipulated by
the compiler: the source language, the target language, and 7 intermediate languages
that bridge the semantic gap between source and target. Certain passes of the
compiler perform non-trivial transformations on memory allocations and accesses:
for instance, local variables of a Clight function, initially mapped to individually-
allocated memory blocks, are at some point mapped to sub-blocks of a single
stack-allocated activation record, which at a later point is extended to make room
for storing spilled temporaries. Proving the correctness (semantic preservation) of
these transformations requires extensive reasoning over memory states, using the
properties of the memory model given further in the paper.

The remainder of this article is organized as follows. Section 2 axiomatizes the
values that are stored in memory states and the associated memory data types.
Section 3 specifies an abstract memory model and illustrates its use for reasoning
over programs. Section 4 defines the concrete implementation of the memory model
used in Compcert and shows that it satisfies both the abstract specification and
additional useful properties. Section 5 describes the transformations over memory
states performed by three passes of the Compcert compiler. It then defines the
memory invariants and proves the simulation results between memory operations
that play a crucial role in proving semantics preservation for these three passes.

Formal verification of a C-like memory model... 3

Section 6 briefly comments on the Coq mechanization of these results. Related work
is discussed in Section 7, followed by conclusions and perspectives in Section 8.

All results presented in this article have been mechanically verified using
the Coq proof assistant [2, 8]. The complete Coq development is available on-
line at http://gallium.inria.fr/∼xleroy/memory-model/. Consequently, the paper only
sketches the proofs of some of its results; the reader is referred to the Coq develop-
ment for the full proofs.

2 Values and Data Types

We assume given a set val of values, ranged over by v, used in the dynamic
semantics of the languages to represent the results of calculations. In the Compcert
development, val is defined as the discriminated union of 32-bit integers int(n),
64-bit double-precision floating-point numbers float(f), memory locations
ptr(b , i) where b is a memory block reference b and i a byte offset within this
block, and the constant undef representing an undefined value such as the value
of an uninitialized variable.

We also assume given a set memtype of memory data types, ranged over by τ .
Every memory access (load or store operation) takes as argument a memory data
type, serving two purposes: (1) to indicate the size and natural alignment of the data
being accessed, and (2) to enforce compatibility guarantees between the type with
which a data was stored and the type with which it is read back. For a semantics for
C, we can use C type expressions from the source language as memory data types.
For the Compcert intermediate languages, we use the following set of memory data
types, corresponding to the data that the target processor can access in one load or
store instruction:

τ :: = int8signed | int8unsigned 8-bit integers
| int16signed | int16unsigned 16-bit integers
| int32 32-bit integers or pointers
| float32 32-bit, single-precision floats
| float64 64-bit, double-precision floats

The first role of a memory data type τ is to determine the size |τ | in bytes that
a data of type τ occupies in memory, as well as the natural alignment 〈τ 〉 for data
of this type. The alignment 〈τ 〉 models the address alignment constraints that many
processors impose, e.g., the address of a 32-bit integer must be a multiple of 4. Both
size and alignment are positive integers.1,2

(A1) |τ | > 0 and 〈τ 〉 > 0

1In this article, we write A for axioms, that is, assertions that we will not prove; S for specifications,
that is, expected properties of the abstract memory model which the concrete model, as well as any
other implementation, satisfies; D for derived properties, provable from the specifications; and P for
properties of the concrete memory model.
2Throughout this article, variables occurring free in mathematical statements are implicitly univer-
sally quantified at the beginning of the statement.

http://gallium.inria.fr/~xleroy/memory-model/

4 X. Leroy, S. Blazy

To reason about some memory transformations, it is useful to assume that there
exists a maximal alignment max_alignment that is a multiple of all possible
alignment values:

(A2) 〈τ 〉 divides max_alignment

For the semantics of C, |τ | is the size of the type τ as returned by the sizeof
operator of C. A possible choice for 〈τ 〉 is the size of the largest scalar type occurring
in τ . For the Compcert intermediate languages, we take:

|int8signed| = |int8unsigned| = 1
|int16signed| = |int16unsigned| = 2
|int32| = |float32| = 4
|float64| = 8

Concerning alignments, Compcert takes 〈τ 〉 = 1 and max_alignment = 1, since
the target architecture (PowerPC) has no alignment constraints. To model a target
architecture with alignment constraints such as the Sparc, we would take 〈τ 〉 = |τ |
and max_alignment = 8.

We now turn to the second role of memory data types, namely a form of dynamic
type-checking. For a strongly-typed language, a memory state is simply a partial
mapping from memory locations to values: either the language is statically typed,
guaranteeing at compile-time that a value written with type τ is always read back with
type τ ; or the language is dynamically typed, in which case the generated machine
code contains enough run-time type tests to enforce this property. However, the C
language and most compiler intermediate languages are weakly typed. Consider a C
“union” variable:

union { int i; float f; } u;

It is possible to assign an integer to u.i, then read it back as a float via u.f. This
will not be detected at compile-time, and the C compiler will not generate code to
prevent this. Yet, the C standard [13] specifies that this code has undefined behavior.
More generally, after writing a data of type τ to a memory location, this location
can only be read back with the same type τ or a compatible type; the behavior is
undefined otherwise [13, Section 6.5, items 6 and 7]. To capture this behavior in
a formal semantics for C, the memory state associates type-value pairs (τ, v), and
not just values, to locations. Every load with type τ ′ at this location will check
compatibility between the actual type τ of the location and the expected type τ ′,
and fail if they are not compatible.

We abstract this notion of compatibility as a relation τ ∼ τ ′ between types. We
assume that a type is always compatible with itself, and that compatible types have
the same size and the same alignment:

(A3) τ ∼ τ

(A4) If τ1 ∼ τ2, then |τ1| = |τ2| and 〈τ1〉 = 〈τ2〉
Several definitions of the ∼ relation are possible, leading to different instantiations
of our memory model. In the strictest instantiation„ τ ∼ τ ′ holds only if τ = τ ′; that
is, no implicit casts are allowed during a store-load sequence. The C standard

Formal verification of a C-like memory model... 5

actually permits some such casts [13, Section 6.5, item 7]. For example, an integer n
can be stored as an unsigned char, then reliably read back as a signed char,
with result (signed char) n. This can be captured in our framework by stating
that unsigned char ∼ signed char. For the Compcert intermediate languages,
we go one step further and define τ1 ∼ τ2 as |τ1| = |τ2|.

To interpret implicit casts in a store-load sequence, we need a function
convert : val× memtype → val that performs these casts. More precisely, writ-
ing a value v with type τ , then reading it back with a compatible type τ ′ re-
sults in value convert(v, τ ′). For the strict instantiation of the model, we take
convert(v, τ ′) = v. For the interpretation closest to the C standard, we need
convert(v, τ ′) = (τ ′) v, where the right-hand side denotes a C type cast. Finally,
for the Compcert intermediate languages, convert is defined as:

convert(int(n),int8unsigned) = int(8-bit zero extension of n)

convert(int(n),int8signed) = int(8-bit sign extension of n)

convert(int(n),int16unsigned) = int(16-bit zero extension of n)

convert(int(n),int16signed) = int(16-bit sign extension of n)

convert(int(n),int32) = int(n)

convert(ptr(b , i),int32) = ptr(b , i)

convert(float(f),float32) = float(f normalized to single precision)

convert(float(f),float64) = float(f)

convert(v, τ) = undef in all other cases

Note that this definition of convert, along with the fact that τ1 �∼ τ2 if |τ1| �= |τ2|,
ensures that low-level implementation details such as the memory endianness or
the bit-level representation of floats cannot be observed by Compcert intermediate
programs. For instance, writing a float f with type float32 and reading it back with
compatible type int32 results in the undefined value undef and not in the integer
corresponding to the bit-pattern for f .

3 Abstract Memory Model

We now give an abstract, incomplete specification of a memory model that attempts
to formalize the memory-related aspects of C and related languages. We have an
abstract type block of references to memory blocks, and an abstract type mem of
memory states. Intuitively, we view the memory state as a collection of separated
blocks, identified by block references b . Each block behaves like an array of bytes,
and is addressed using byte offsets i ∈ �. A memory location is therefore a pair (b , i)
of a block reference b and an offset i within this block. The constant empty : mem

6 X. Leroy, S. Blazy

represents the initial memory state. Four operations over memory states are provided
as total functions:

alloc : mem×�×�→ option(block× mem)

free : mem× block → option mem

load : memtype× mem× block×�→ option val

store : memtype× mem× block×�× val → option mem

Option types are used to represent potential failures. A value of type option t
is either ε (pronounced “none”), denoting failure, or 	x
 (pronounced “some x”),
denoting success with result x : t.

Allocation of a fresh memory block is written alloc(m, l, h), where m is the initial
memory state, and l ∈ � and h ∈ � are the low and high bounds for the fresh block.
The allocated block has size h − l bytes and can be accessed at byte offsets l, l +
1, . . . , h − 2, h − 1. In other terms, the low bound l is inclusive but the high bound
h is exclusive. Allocation can fail and return ε if not enough memory is available.
Otherwise, 	b , m′
 is returned, where b is the reference to the new block and m′ the
updated memory state.

Conversely, free(m, b) deallocates block b in memory m. It can fail if e.g., b was
already deallocated. In case of success, an updated memory state is returned.

Reading from memory is written load(τ, m, b , i). A data of type τ is read from
block b of memory state m at byte offset i. If successful, the value thus read is
returned. The memory state is unchanged.

Symmetrically, store(τ, m, b , i, v) writes value v at offset i in block b of m. If
successful, the updated memory state is returned.

We now axiomatize the expected properties of these operations. The properties
are labeled S to emphasize that they are specifications that any implementation of
the model must satisfy. The first hypotheses are “good variable” properties defining
the behavior of a load following an alloc, free or store operation.

(S5) If alloc(m,l,h)=	b , m′
 and b ′ �=b , then load(τ, m′, b ′, i)=load(τ,m, b ′, i)
(S6) If free(m, b) = 	m′
 and b ′ �= b , then load(τ, m′, b ′, i) = load(τ, m, b ′, i)
(S7) If store(τ, m, b , i, v)=	m′
 and τ ∼τ ′, then load(τ ′, m′, b , i) =

convert(v, τ ′)
(S8) If store(τ, m, b , i, v) = 	m′
 and b ′ �= b ∨ i′ + |τ ′| ≤ i ∨ i + |τ | ≤ i′, then

load(τ ′, m′, b ′, i′) = load(τ ′, m, b ′, i′)

Hypotheses S5 and S6 state that allocating a block b or freeing a block b preserves
loads performed in any other block b ′ �= b . Hypothesis S7 states that after writing
value v with type τ at offset i in block b , reading from the same location with a
compatible type τ ′ succeeds and returns the value convert(v, τ ′). Hypothesis S8
states that storing a value of type τ in block b at offset i commutes with loading a
value of type τ ′ in block b ′ at offset i′, provided the memory areas corresponding
to the store and the load are separate: either b ′ �= b , or the range [i, i + |τ |) of
byte offsets modified by the store is disjoint from the range [i′, i′ + |τ ′|) read by the
load.

Note that the properties above do not fully specify the load operation: nothing
can be proved about the result of loading from a freshly allocated block, or freshly

Formal verification of a C-like memory model... 7

deallocated block, or just after a store with a type and location that do not fall in the
S7 and S8 case. This under-specification is intentional and follows the C standard.
The concrete memory model of Section 4 will fully specify these behaviors.

The “good variable” properties use hypotheses b ′ �= b , that is, separation prop-
erties between blocks. To establish such properties, we axiomatize the relation
m |= b , meaning that the block reference b is valid in memory m. Intuitively, a block
reference is valid if it was previously allocated but not yet deallocated; this is how the
m |= b relation will be defined in Section 4.

(S9) If alloc(m, l, h) = 	b , m′
, then ¬(m |= b).
(S10) If alloc(m, l, h) = 	b , m′
, then m′ |= b ′ ⇔ b ′ = b ∨ m |= b ′
(S11) If store(τ, m, b , i, v) = 	m′
, then m′ |= b ′ ⇔ m |= b ′
(S12) If free(m, b) = 	m′
 and b ′ �= b , then m′ |= b ′ ⇔ m |= b ′
(S13) If m |= b , then there exists m′ such that free(m, b) = 	m′
.

Hypothesis S9 says that the block returned by alloc is fresh, i.e., distinct from any
other block that was valid in the initial memory state. Hypothesis S10 says that the
newly allocated block is valid in the final memory state, as well as all blocks that were
valid in the initial state. Block validity is preserved by store operations (S11). After
a free(m, b) operation, all initially valid blocks other than b remain valid, but it is
unspecified whether the deallocated block b is valid or not (S12). Finally, the free
operation is guaranteed to succeed when applied to a valid block (S13).

The next group of hypotheses axiomatizes the function B(m, b) that associates
low and high bounds l, h to a block b in memory state m. We write B(m, b) = [l, h)

to emphasize the meaning of bounds as semi-open intervals of allowed byte offsets
within block b .

(S14) If alloc(m, l, h) = 	b , m′
, then B(m′, b) = [l, h).
(S15) If alloc(m, l, h) = 	b , m′
 and b ′ �= b , then B(m′, b ′) = B(m, b ′).
(S16) If store(τ, m, b , i, v) = 	m′
, then B(m′, b ′) = B(m, b ′).
(S17) If free(m, b) = 	m′
 and b ′ �= b , then B(m′, b ′) = B(m, b ′).

A freshly allocated block has the bounds that were given as argument to the alloc
function (S14). The bounds of a block b ′ are preserved by an alloc, store or free
operation, provided b ′ is not the block being allocated or deallocated.

For convenience, we write L(m, b) and H(m, b) for the low and high bounds
attached to b , respectively, so that B(m, b) = [L(m, b),H(m, b)).

Combining block validity with bound information, we define the “valid access”
relation m |= τ @ b , i, meaning that in state m, it is valid to write with type τ in block
b at offset i.

m |= τ @ b , i def= m |= b ∧ 〈τ 〉 divides i ∧ L(m, b) ≤ i ∧ i + |τ | ≤ H(m, b)

In other words, b is a valid block, the range [i, i + |τ |) of byte offsets being accessed
is included in the bounds of b , and the offset i is an integer multiple of the alignment
〈τ 〉. If these conditions hold, we impose that the corresponding store operation
succeeds.

(S18) If m |= τ @ b , i then there exists m′ such that store(τ, m, b , i, v) = 	m′
.

8 X. Leroy, S. Blazy

Here are some derived properties of the valid access relation, easily provable from
the hypotheses above.

(D19) If alloc(m, l, h) = 	b , m′
 and 〈τ 〉 divides i and l ≤ i and i + |τ | ≤ h, then
m′ |= τ @ b , i.

(D20) If alloc(m, l, h) = 	b , m′
 and m |= τ @ b ′, i, then m′ |= τ @ b ′, i.
(D21) If store(τ, m, b , i, v) = 	m′
, then m′ |= τ @ b ′, i ⇔ m |= τ @ b ′, i.
(D22) If free(m, b) = 	m′
 and b ′ �= b , then m′ |= τ @ b ′, i ⇔ m |= τ @ b ′, i.

Proof D19 follows from S10 and S14. D20 follows from S10 and S15, noticing that
b ′ �= b by S9. D21 follows from S11 and S16, and D22 from S12 and S17. ��

To finish this section, we show by way of an example that the properties axioma-
tized above are sufficient to reason over the behavior of a C pointer program using
axiomatic semantics. Consider the following C code fragment:

int * x = malloc(2 * sizeof(int));
int * y = malloc(sizeof(int));
x[0] = 0;
x[1] = 1;

*y = x[0];
x[0] = x[1];
x[1] = *y;

We would like to show that in the final state, x[0] is 1 and x[1] is 0. Assuming that
errors are automatically propagated using a monadic interpretation, we can represent
the code fragment above as follows, using the operations of the memory model to
make explicit memory operations. The variable m holds the current memory state.
We also annotate the code with logical assertions expressed in terms of the memory
model. The notation � stands for the three conditions x �= y, m |= x, m |= y.

(x, m) = alloc(m, 0, 8);
/* m |= x */

(y, m) = alloc(m, 0, 4);
/* � */

m = store(int, x, 0, 0);
/* �, load(m,x,0) = 	0
 */

m = store(int, x, 4, 1);
/* �, load(m,x,0) = 	0
, load(m,x,4) = 	1
 */

t = load(int, x, 0);
/* �, load(m,x,0) = 	0
, load(m,x,4) = 	1
, t = 0 */

m = store(int, y, 0, t);
/* �, load(m,x,0) = 	0
, load(m,x,4) = 	1
,

load(m,y,0) = 	0
 */
t = load(int, x, 4);

/* �, load(m,x,0) = 	0
, load(m,x,4) = 	1
,
load(m,y,0) = 	0
, t = 1 */

m = store(int, x, 0, t);
/* �, load(m,x,0) = 	1
, load(m,x,4) = 	1
,

load(m,y,0) = 	0
 */

Formal verification of a C-like memory model... 9

t = load(int, y, 0);
/* �, load(m,x,0) = 	1
, load(m,x,4) = 	1
,

load(m,y,0) = 	0
, t = 0 */
m = store(int, x, 4, t);

/* �, load(m,x,0) = 	1
, load(m,x,4) = 	0
,
load(m,y,0) = 	0
 */

Every postcondition can be proved from its precondition using the hypotheses
listed in this section. The validity of blocks x and y, as well as the inequality x �= y,
follow from S9, S10 and S11. The assertions over the results of load operations and
over the value of the temporary t follow from the good variable properties S7 and
S8. Additionally, we can show that the store operations do not fail using S18
and the additional invariants m |= int @ x, 0 and m |= int @ x, 4 and m |= int @
y, 0, which follow from D19, D20 and D21.

4 Concrete Memory Model

We now develop a concrete implementation of a memory model that satisfies
the axiomatization in Section 3. The type block of memory block references is
implemented by the type � of nonnegative integers. Memory states (type mem) are
quadruples (N, B, F, C), where

– N : block is the first block not yet allocated;
– B : block → �×� associates bounds to each block reference;
– F : block → boolean says, for each block, whether it has been deallocated

(true) or not (false);
– C : block → �→ option (memtype× val) associates a content to each

block b and each byte offset i. A content is either ε, meaning “invalid”, or 	τ, v
,
meaning that a value v was stored at this location with type τ .

We define block validity m |= b , where m = (N, B, F, C), as b < N ∧ F(b) =
false, that is, b was previously allocated (b < N) but not previously deallocated
(F(b) = false). Similarly, the bounds B(m, b) are defined as B(b).

The definitions of the constant empty and the operations alloc, free, load and
store follow. We write m = (N, B, F, C) for the initial memory state.

empty =
(0, λb . [0, 0), λb . false, λb .λi. ε)

alloc(m, l, h) =
if can_allocate(m, h − l) then 	b , m′
 else ε

where b = N
and m′ = (N + 1, B{b ← [l, h)}, F{b ← false}, C{b ← λi. ε})

free(m, b) =
if not m |= b then ε

else 	N, B{b ← [0, 0)}, F{b ← true}, C

store(τ, m, b , i, v) =

if not m |= τ @ b , i then ε

else 	N, B, F, C{b ← c′}

where c′ = C(b){i ← 	τ, v
, i + 1 ← ε, . . . , i + |τ | − 1 ← ε}

10 X. Leroy, S. Blazy

load(τ, m, b , i) =
if not m |= τ @ b , i then ε

else if C(b)(i) = 	τ ′, v
 and τ ′ ∼ τ

and C(b)(i + j) = ε for j = 1, . . . , |τ | − 1
then 	convert(v, τ)

else 	undef

Allocation is performed by incrementing linearly the N component of the memory
state. Block identifiers are never reused, which greatly facilitates reasoning over
“dangling pointers” (references to blocks previously deallocated). The new block
is given bounds [l, h), deallocated status false, and invalid contents λi. ε.3 An un-
specified, boolean-valued can_allocate function is used to model the possibility
of failure if the request (h − l bytes) exceeds the available memory. In the Compcert
development, can_allocate always returns true, therefore modeling an infinite
memory.

Freeing a block simply sets its deallocated status to true, rendering this block
invalid, and its bounds to [0, 0), reflecting the fact that this block no longer occupies
any memory space.

A memory store first checks block and bounds validity using the m |= τ @ b , i
predicate, which is decidable. The contents C(b) of block b are set to 	τ, v
 at offset
i, recording the store done at this offset, and to ε at offsets i + 1, . . . , i + |τ | − 1,
invalidating whatever data was previously stored at these addresses.

A memory load checks several conditions: first, that the block and offset being
addressed are valid and within bounds; second, that block b at offset i contains a
valid data 	v, τ ′
; third, that the type τ ′ of this data is compatible with the requested
type τ ; fourth, that the contents of offsets i + 1 to i + |τ | − 1 in block b are invalid,
ensuring that the data previously stored at i in b was not partially overwritten by a
store at an overlapping offset.

It is easy to show that this implementation satisfies the specifications given in
Section 3.

Lemma 1 Properties S5 to S18 are satisfied.

Proof Most properties follow immediately from the definitions of alloc, free,
load and store given above. For the “good variable” property S7, the store
assigned contents 	τ, v
, ε, . . . , ε to offsets i, . . . , i + |τ | − 1, respectively. Since
|τ ′| = |τ | by A1, the checks performed by load succeed. For the other “good
variable” property, S8, the assignments performed by the store over C(b) at offsets
i, . . . , i + |τ | − 1 have no effect over the values of offsets i′, . . . , i′ + |τ ′| − 1 in C(b ′),
given the separation hypothesis (b ′ �= b ∨ i′ + |τ ′| ≤ i ∨ i + |τ | ≤ i′). ��

Moreover, the implementation also enjoys a number of properties that we now
state. In the following sections, we will only use these properties along with those

3Since blocks are never reused, the freshly-allocated block b already has deallocated status false
and contents λi. ε in the initial memory state (N, B, F, C). Therefore, in the definition of alloc, the
updates F{b ← false} and C{b ← λi. ε} are not strictly necessary. However, they allow for simpler
reasoning over the alloc function, making it unnecessary to prove the invariants F(b) = false
and C(b) = λi. ε for all b ≥ N.

Formal verification of a C-like memory model... 11

of Section 3, but not the precise definitions of the memory operations. The first two
properties state that a store or a load succeeds if and only if the corresponding
memory reference is valid.

(P24) m |= τ @ b , i ⇔ ∃m′,store(τ, m, b , i, v) = 	m′

(P25) m |= τ @ b , i ⇔ ∃v,load(τ, m, b , i) = 	v

Then come additional properties capturing the behavior of a load following an
alloc or a store. In circumstances where the “good variable” properties of the
abstract memory model leave unspecified the result of the load, these “not-so-good
variable” properties guarantee that the load predictably returns 	undef
.

(P26) If alloc(m, l, h) = 	b , m′
 and load(τ, m′, b , i) = 	v
, then v = undef.
(P27) If store(τ, m, b , i, v) = 	m′
 and τ �∼ τ ′ and load(τ ′, m′, b , i) = 	v′
, then

v′ = undef.
(P28) If store(τ, m, b , i, v) = 	m′
 and i′ �= i and i′ + |τ ′| > i and i + |τ | > i′ and

load(τ ′, m′, b , i′) = 	v′
, then v′ = undef.

Proof For P26, the contents of m′ at b , i are ε and therefore not of the form 	τ, v
.
For P27, the test τ ∼ τ ′ in the definition of load fails. For P28, consider the contents
c of block b in m′. If i < i′, the store set c(i′) = ε. If i > i′, the store set c(i′ + j) =
	τ, v
 for some j ∈ [1, |τ ′|). In both cases, one of the checks in the definition of load
fails. ��

Combining properties S7, S8, P25, P27 and P28, we obtain a complete character-
ization of the behavior of a load that follows a store. (See Fig. 1 for a graphical
illustration of the cases.)

(D29) If store(τ, m, b , i, v) = 	m′
 and m |= τ ′ @ b ′, i′, then one and only one of
the following four cases holds:

– Compatible: b ′ = b and i′ = i and τ ∼ τ ′, in which case load(τ ′, m′,
b ′, i′) = 	convert(v, τ ′)
.

– Incompatible: b ′ = b and i′ = i and τ �∼ τ ′, in which case load(τ ′, m′,
b ′, i′) = 	undef
.

– Disjoint: b ′ �= b or i′ + |τ ′| ≤ i or i + |τ | ≤ i′, in which case load(τ ′, m′,
b ′, i′) = load(τ ′, m, b ′, i′).

– Overlapping: b ′ = b and i′ �= i and i′ + |τ ′| > i and i + |τ | > i′, in which
case load(τ ′, m′, b ′, i′) = 	undef
.

Fig. 1 A store followed by a
load in the same block: the
four cases of property D29

12 X. Leroy, S. Blazy

As previously mentioned, an interesting property of the concrete memory model is
that alloc never reuses block identifiers, even if some blocks have been deallocated
before. To account for this feature, we define the relation m # b , pronounced “block
b is fresh in memory m”, and defined as b ≥ N if m = (N, B, F, C). This relation
enjoys the following properties:

(P30) m # b and m |= b are mutually exclusive.
(P31) If alloc(m, l, h) = 	b , m′
, then m # b .
(P32) If alloc(m, l, h) = 	b , m′
, then m′ # b ′ ⇔ b ′ �= b ∧ m # b ′.
(P33) If store(τ, m, b , i, v) = 	m′
, then m′ # b ′ ⇔ m # b ′.
(P34) If free(m, b) = 	m′
, then m′ # b ′ ⇔ m # b ′.

Using the freshness relation, we say that two memory states m1 and m2 have the
same domain, and write Dom(m1) = Dom(m2), if ∀b , (m1 # b ⇔ m2 # b). In our
concrete implementation, two memory states have the same domain if and only if
their N components are equal. Therefore, alloc is deterministic with respect to
the domain of the current memory state: alloc chooses the same free block when
applied twice to memory states that have the same domain, but may differ in block
contents.

(P35) If alloc(m1, l, h)=	b 1, m′
1
 and alloc(m2, l, h)=	b 2, m′

2
 and Dom(m1)=
Dom(m2), then b 1 = b 2 and Dom(m′

1) = Dom(m′
2).

The last property of the concrete implementation used in the remainder of this
paper is the following: a block b that has been deallocated is both invalid and empty,
in the sense that its low and high bounds are equal.

(P36) If free(m, b) = 	m′
, then ¬(m′ |= b).
(P37) If free(m, b) = 	m′
, then L(m′, b) = H(m′, b).

5 Memory Transformations

We now study the use of the concrete memory model to prove the correctness
of program transformations as performed by compiler passes. Most passes of the
Compcert compiler preserve the memory behavior of the program: some modify the
flow of control, others modify the flow of data not stored in memory, but the memory
states before and after program transformation match at every step of the program
execution. The correctness proofs for these passes exploit none of the properties of
the memory model. However, three passes of the Compcert compiler change the
memory behavior of the program, and necessitate extensive reasoning over memory
states to be proved correct. We now outline the transformations performed by these
three passes.

The first pass that modifies the memory behavior is the translation from the source
language Clight to the intermediate language Cminor. In Clight, all variables are
allocated in memory: the evaluation environment maps variables to references of
memory blocks that contain the current values of the variables. This is consistent with
the C specification and the fact that the address of any variable can be taken and used
as a memory pointer using the & operator. However, this feature renders register
allocation and most other optimizations very difficult, because aliasing between a
pointer and a variable is always possible.

Formal verification of a C-like memory model... 13

Therefore, the Clight to Cminor translation detects scalar local variables whose
address is never taken with the & operator, and “pulls them out of memory”: they
become Cminor local variables, whose current values are recorded in an environment
separate from the memory state, and whose address cannot be taken. Other Clight
local variables remain memory-allocated, but are grouped as sub-areas of a single
memory block, the Cminor stack block, which is automatically allocated at function
entry and deallocated at function exit. (See Fig. 2, left.)

Consequently, the memory behavior of the source Clight program and the trans-
formed Cminor program differ greatly: when the Clight program allocates N fresh
blocks at function entry for its N local variables, the Cminor program allocates only
one; the load and store operations performed by the Clight semantics every time
a local variable is accessed either disappear in Cminor or becomes load and store
in sub-areas of the Cminor stack block.

The second pass that affects memory behavior is register allocation. In RTL, the
source language for this translation, local variables and temporaries are initialized
to the undef value on function entry. (This initialization agrees with the semantics
of Clight, where reading an uninitialized local variable amounts to loading from
a freshly allocated block.) After register allocation, some of these RTL variables
and temporaries are mapped to global hardware registers, which are not initialized
to the undef value on function entry, but instead keep whatever value they had
in the caller function at point of call. This does not change the semantics of well-
defined RTL programs, since the RTL semantics goes wrong whenever an undef
value is involved in an arithmetic operation or conditional test. Therefore, values of
uninitialized RTL variables do not participate in the computations performed by the
program, and can be changed from undef to any other value without changing the
semantics of the program. However, the original RTL program could have stored
these values of uninitialized variables in memory locations. Therefore, the memory
states before and after register allocation have the same shapes, but the contents of
some memory locations can change from undef to any value, as pictured in Fig. 2,
center.

The third and last pass where memory states differ between the original and
transformed codes is the spilling pass performed after register allocation. Variables
and temporaries that could not be allocated to hardware registers must be “spilled”
to memory, that is, stored in locations within the stack frame of the current function.
Additional stack frame space is also needed to save the values of callee-save registers

Fig. 2 Transformations over memory states in the Compcert compiler

14 X. Leroy, S. Blazy

on function entry. Therefore, the spilling pass needs to enlarge the stack frame that
was laid out at the time of Cminor generation, to make room for spilled variables
and saved registers. The memory state after spilling therefore differs from the state
before spilling: stack frame blocks are larger, and the transformed program performs
additional load and store operations to access spilled variables. (See Fig. 2, right.)

In the three examples of program transformations outlined above, we need to
formalize an invariant that relates the memory states at every point of the executions
of the original and transformed programs, and prove appropriate simulation results
between the memory operations performed by the two programs. Three such rela-
tions between memory states are studied in the remainder of this section: memory
extensions in Section 5.2, corresponding to the spilling pass; refinement of stored
values in Section 5.3, corresponding to the register allocation pass; and memory
injections in Section 5.4, corresponding to the Cminor generation pass. These three
relations share a common basis, the notion of memory embeddings, defined and
studied first in Section 5.1.

5.1 Generic Memory Embeddings

An embedding E is a function of type block → option(block×�) that estab-
lishes a correspondence between blocks of a memory state m1 of the original program
and blocks of a memory state m2 of the transformed program. Let b 1 be a block
reference in m1. If E(b 1) = ε, this block corresponds to no block in m2: it has been
eliminated by the transformation. If E(b 1) = 	b 2, δ
, the block b 1 in m1 corresponds
to the block b 2 in m2, or a sub-block thereof, with offsets being shifted by δ. That is,
the memory location (b 1, i) in m1 is associated to the location (b 2, i + δ) in m2. We
say that a block b of m1 is unmapped in m2 if E(b) = ε, and mapped otherwise.

We assume we are given a relation E � v1 ↪→ v2 between values v1 of the original
program and values v2 of the transformed program, possibly parametrized by E.
(Sections 5.2, 5.3 and 5.4 will particularize this relation).

We say that E embeds memory state m1 in memory state m2, and write E � m1 ↪→
m2, if every successful load from a mapped block of m1 is simulated by a successful
load from the corresponding sub-block in m2, in the following sense:

E(b 1) = 	b 2, δ
 ∧ load(τ, m1, b 1, i) = 	v1

⇒ ∃v2,load(τ, m2, b 2, i + δ) = 	v2
 ∧ E � v1 ↪→ v2

We now state and prove commutation and simulation properties between the
memory embedding relation and the operations of the concrete memory model. First,
validity of accesses is preserved, in the following sense.

Lemma 2 If E(b 1) = 	b 2, δ
 and E � m1 ↪→ m2, then m1 |= τ @ b 1, i implies m2 |=
τ @ b 2, i + δ.

Proof By property P25, there exists v1 such that load(τ, m1, b 1, i) = 	v1
. By hy-
pothesis E � m1 ↪→ m2, there exists v2 such that load(τ, m2, b 2, i + δ) = 	v2
. The
result follows from property P25. ��

When is the memory embedding relation preserved by memory stores? There
are three cases to consider, depicted in Fig. 3. In the leftmost case, the original

Formal verification of a C-like memory model... 15

Fig. 3 The three simulation lemmas for memory stores. The grayed areas represent the locations
of the stores. v1 is a value stored by the original program and v2 a value stored by the transformed
program

program performs a store in memory m1 within a block that is not mapped, while
the transformed program performs no store, keeping its memory m2 unchanged.

Lemma 3 If E(b 1) = ε and E � m1 ↪→ m2 and store(τ, m1, b 1, i, v) = 	m′
1
, then

E � m′
1 ↪→ m2.

Proof Consider a load in m′
1 from a mapped block: E(b ′

1) = 	b ′
2, δ
 and

load(τ ′, m′
1, b ′

1, i′) = 	v1
. By hypothesis E(b 1) = ε, we have b ′
1 �= b 1. By S8, it fol-

lows that load(τ ′, m1, b ′
1, i′) = load(τ ′, m′

1, b ′
1, i′) = 	v1
. The result follows from

hypothesis E � m1 ↪→ m2. ��

In the second case (Fig. 3, center), the original program performs no store in its
memory m1, but the transformed program stores some data in an area of its memory
m2 that is disjoint from the images of the blocks of m1.

Lemma 4 Let b 2, i, τ be a memory reference in m2 such that

∀b 1, δ, E(b 1) = 	b 2, δ
 ⇒ H(m1, b 1) + δ ≤ i ∨ i + |τ | ≤ L(m1, b 1) + δ

If E � m1 ↪→ m2 and store(τ, m2, b 2, i, v) = 	m′
2
, then E � m1 ↪→ m′

2.

Proof Consider a load in m1 from a mapped block: E(b 1) = 	b ′
2, δ
 and

load(τ ′, m1, b 1, i′) = 	v1
. By P25, this load is within bounds: L(m1, b 1) ≤ i′
and i′ + |τ ′| ≤ H(m1, b 1). By hypothesis E � m1 ↪→ m2, there exists v2 such that
load(τ, m2, b ′

2, i′ + δ) = 	v2
 and E � v1 ↪→ v2. We check that the separation con-
dition of S8 holds. This is obvious if b ′

2 �= b 2. Otherwise, by hypothesis on b 2,
either H(m1, b 1) + δ ≤ i or i + |τ | ≤ L(m1, b 1) + δ. In the first case, i′ + δ + |τ ′| ≤
H(m1, b 1) + δ ≤ i, and in the second case, i + |τ | ≤ L(m1, b 1) + δ ≤ i′ + δ. There-
fore, load(τ ′, m′

2, b ′
2, i′ + δ) = load(τ ′, m2, b ′

2, i′ + δ) = 	v2
, and the desired result
follows. ��

In the third case (Fig. 3, right), the original program stores a value v1 in a mapped
block of m1, while in parallel the transformed program stores a matching value v2

at the corresponding location in m2. For this operation to preserve the memory
embedding relation, it is necessary that the embedding E is nonaliasing. We say that

16 X. Leroy, S. Blazy

an embedding E is nonaliasing in a memory state m if distinct blocks are mapped to
disjoint sub-blocks:

b 1 �= b 2 ∧ E(b 1) = 	b ′
1, δ1
 ∧ E(b 2) = 	b ′

2, δ2

⇒ b ′

1 �= b ′
2

∨ [L(m, b 1) + δ1,H(m, b 1) + δ1) ∩ [L(m, b 2) + δ2,H(m, b 2) + δ2) = ∅

The disjointness condition between the two intervals can be decomposed as follows:
either L(m, b 1) ≥ H(m, b 1) (block b 1 is empty), or L(m, b 2) ≥ H(m, b 2) (block b 2

is empty), or H(m, b 1) + δ1 ≤ L(m, b 2) + δ2, or H(m, b 2) + δ2 ≤ L(m, b 1) + δ1.

Lemma 5 Assume E � undef ↪→ undef. Let v1, v2 be two values and τ a type such
that v1 embeds in v2 after conversion to any type τ ′ compatible with τ :

∀τ ′, τ ∼ τ ′ ⇒ E � convert(v1, τ
′) ↪→ convert(v2, τ

′)

If E � m1 ↪→ m2 and E is nonaliasing in the memory state m1 and E(b 1) = 	b 2, δ

and store(τ, m1, b 1, i, v1) = 	m′

1
, then there exists a memory state m′
2 such that

store(τ, m2, b 2, i + δ, v2) = 	m′
2
 and moreover E � m′

1 ↪→ m′
2.

Proof The existence of m′
2 follows from Lemma 2 and property P24. Consider a

load in m′
1 from a mapped block: E(b ′

1) = 	b ′
2, δ

′
 and load(τ ′, m′
1, b ′

1, i′) = 	v′
1
.

By property D29, there are four cases to consider.

– Compatible: b ′
1 = b 1 and i′ = i and τ ∼ τ ′. In this case, v′

1 = convert(v1, τ
′).

By S7, we have load(τ ′, m′
2, b ′

2, i′ + δ′) = load(τ ′, m′
2, b 2, i + δ) =

	convert(v2, τ
′)
. The result E � v′

1 ↪→ convert(v2, τ
′) follows from the

hypothesis over v1 and v2.
– Incompatible: b ′

1 = b 1 and i′ = i and τ �∼ τ ′. In this case, v′
1 = undef. By P27

and P25, we have load(τ ′, m′
2, b ′

2, i′ + δ′) = load(τ ′, m′
2, b 2, i + δ) = 	undef
.

The result follows from the hypothesis E � undef ↪→ undef.
– Disjoint: b ′

1 �= b 1 or i′ + |τ ′| ≤ i or i + |τ | ≤ i′. In this case, load(τ ′, m1, b ′
1, i′) =

	v′
1
. By hypothesis E � m1 ↪→ m2, there exists v′

2 such that load(τ ′, m2, b ′
2, i′ +

δ′) = 	v′
2
 and E � v′

1 ↪→ v′
2. Exploiting the nonaliasing hypothesis over E and

m1, we show that the separation hypotheses of property S8 hold, which entails
load(τ ′, m′

2, b ′
2, i′ + δ′) = 	v′

2
 and the expected result.
– Overlapping: b ′

1 = b 1 and i′ �= i and i′ + |τ ′| > i and i + |τ | > i′. In this case v′
1 =

undef. We show load(τ ′, m′
2, b ′

2, i′ + δ′) = 	undef
 using P28, and conclude
using the hypothesis E � undef ↪→ undef. ��

We now turn to relating allocations with memory embeddings, starting with the
case where two allocations are performed in parallel, one in the original program,
the other in the transformed program.

Lemma 6 Assume E � undef ↪→ undef. If E � m1 ↪→ m2 and alloc(m1, l1, h1)=
	b 1, m′

1
 and alloc(m2, l2, h2) = 	b 2, m′
2
 and E(b 1) = 	b 2, δ
 and l2 ≤ l1 + δ and

h1 + δ ≤ h2 and max_alignment divides δ, then E � m′
1 ↪→ m′

2.

Formal verification of a C-like memory model... 17

Proof Consider a load in m′
1 from a mapped block: E(b ′

1) = 	b ′
2, δ
 and

load(τ, m′
1, b ′

1, i) = 	v1
. If b ′
1 �= b 1, we have load(τ, m1, b ′

1, i) = 	v1
 by S5, and
there exists v2 such that load(τ, m2, b ′

2, i + δ) = 	v2
 and E � v1 ↪→ v2. It must be
the case that b ′

2 �= b 2, otherwise the latter load would have failed (by S9 and P25).
The expected result load(τ, m′

2, b ′
2, i + δ) = 	v2
 follows from S5.

If b ′
1 = b 1, we have load(τ, m′

1, b 1, i) = 	undef
 by P26, and l1 ≤ i, i + |τ | ≤ h1

and |τ | divides i by P25 and P26. It follows that m′
2 |= τ @ b 2, i + δ, and therefore

load(τ, m′
2, b 2, i + δ) = 	undef
 by P25 and P26. This is the expected result since

E � undef ↪→ undef. ��

To complement Lemma 6, we also consider the cases where allocations are
performed either in the original program or in the transformed program, but not
necessarily in both. (See Fig. 4.) We omit the proof sketches, as they are similar to
that of Lemma 6.

Lemma 7 If E � m1 ↪→ m2 and alloc(m2, l, h) = 	b 2, m′
2
, then E � m1 ↪→ m′

2.

Lemma 8 If E � m1 ↪→ m2 and alloc(m1, l, h) = 	b 1, m′
1
 and E(b 1) = ε, then

E � m′
1 ↪→ m2.

Lemma 9 Assume E � undef ↪→ v for all values v. If E � m1 ↪→m2 and alloc(m1,

l, h) = 	b 1, m′
1
 and E(b 1) = 	b 2, δ
 and m2 |= b 2 and L(m2, b 2) ≤ l + δ and h + δ ≤

H(m2, b 2) and max_alignment divides δ, then E � m′
1 ↪→ m2.

Finally, we consider the interaction between free operations and memory em-
beddings. Deallocating a block in the original program always preserves embedding.

Lemma 10 If E � m1 ↪→ m2 and free(m1, b 1) = 	m′
1
, then E � m′

1 ↪→ m2.

Proof If load(τ, m′
1, b ′

1, i) = 	v1
, it must be that b ′
1 �= b 1 by P25 and P36. We then

have load(τ, m1, b ′
1, i) = 	v1
 by S6 and conclude by hypothesis E � m1 ↪→ m2. ��

Deallocating a block in the transformed program preserves embedding if no valid
block of the original program is mapped to the deallocated block.

Fig. 4 The three simulation lemmas for memory allocations. The grayed areas represent the freshly
allocated blocks

18 X. Leroy, S. Blazy

Lemma 11 Assume ∀b 1, δ, E(b 1) = 	b 2, δ
 ⇒ ¬(m1 |= b 1). If E � m1 ↪→ m2 and
free(m2, b 2) = 	m′

2
, then E � m1 ↪→ m′
2.

Proof Assume E(b 1) = 	b ′
2, δ
 and load(τ, m1, b 1, i) = 	v1
. It must be the case

that b ′
2 �= b 2, otherwise m1 |= b 1 would not hold, contradicting P25. The result

follows from the hypothesis E � m1 ↪→ m2 and property S6. ��

Combining Lemmas 10 and 11, we see that embedding is preserved by freeing a
block b 1 in the original program and in parallel freeing a block b 2 in the transformed
program, provided that no block other than b 1 maps to b 2.

Lemma 12 Assume ∀b , δ, E(b)=	b 2, δ
 ⇒ b =b 1. If E � m1 ↪→ m2 and free(m1,

b 1) = 	m′
1
 and free(m2, b 2) = 	m′

2
, then E � m′
1 ↪→ m′

2.

Finally, it is useful to notice that the nonaliasing property of embeddings is
preserved by free operations.

Lemma 13 If E is nonaliasing in m1, and free(m1, b) = 	m′
1
, then E is nonaliasing

in m′
1.

Proof The block b becomes empty in m′
1: by P37, L(m′

1, b) = H(m′
1, b). The result

follows from the definition of nonaliasing embeddings. ��

5.2 Memory Extensions

We now instantiate the generic framework of Section 5.1 to account for the memory
transformations performed by the spilling pass: the transformed program allocates
larger blocks than the original program, and uses the extra space to store data of its
own (right part of Fig. 2).

Figure 5 illustrates the effect of this transformation on the memory operations
performed by the original and transformed programs. Each alloc in the original
program becomes an alloc operation with possibly larger bounds. Each store,
load and free in the original program corresponds to an identical operation in
the transformed program, with the same arguments and results. The transformed
program contains additional store and load operations, corresponding to spills

Fig. 5 Example of insertion of spill code. Left: original program, right: transformed program. The
variable x was spilled to the stack location at offset −4. The variable y was not spilled

Formal verification of a C-like memory model... 19

and reloads of variables, operating on memory areas that were not accessible in the
original program (here, the word at offset −4 in the block sp).

To prove that this transformation preserves semantics, we need a relation between
the memory states of the original and transformed programs that (1) guarantees that
matching pairs of load operations return the same value, and (2) is preserved by
alloc, store and free operations.

In this section, we consider a fixed embedding Eid that is the identity function:
Eid(b) = 	b , 0
 for all blocks b . Likewise, we define embedding between values as
equality between these values: Eid � v1 ↪→ v2 if and only if v1 = v2.

We say that a transformed memory state m2 extends an original memory state m1,
and write m1 ⊆ m2, if Eid embeds m1 in m2, and both memory states have the same
domain:

m1 ⊆ m2
def= Eid � m1 ↪→ m2 ∧ Dom(m1) = Dom(m2)

The ⊆ relation over memory states is reflexive and transitive. It implies the desired
equality between the results of a load performed by the initial program and the
corresponding load after transformation.

Lemma 14 If m1 ⊆ m2 and load(τ, m1, b , i) = 	v
, then load(τ, m2, b , i) = 	v
.

Proof Since Eid � m1 ↪→ m2 holds, and Eid(b) = 	b , 0
, there exists a value v′ such
that load(τ, m2, b , i) = 	v′
 and Eid � v ↪→ v′. The latter entails v′ = v and the
expected result. ��

We now show that any alloc, store or free operation over m1 is simulated by
a similar memory operation over m2, preserving the memory extension relation.

Lemma 15 Assume alloc(m1, l1, h1) = 	b 1, m′
1
 and alloc(m2, l2, h2) = 	b 2, m′

2
.
If m1 ⊆ m2 and l2 ≤ l1 and h1 ≤ h2, then b 1 = b 2 and m′

1 ⊆ m′
2.

Proof The equality b 1 = b 2 follows from P35. The embedding Eid � m′
1 ↪→ m′

2 fol-
lows from Lemma 6. The domain equality Dom(m′

1) = Dom(m′
2) follows from P32.

��

Lemma 16 Assume free(m1, b) = 	m′
1
 and free(m2, b) = 	m′

2
. If m1 ⊆ m2, then
m′

1 ⊆ m′
2.

Proof Follows from Lemma 12 and property P34. ��

Lemma 17 If m1 ⊆ m2 and store(τ, m1, b , i, v) = 	m′
1
, then there exists m′

2 such
that store(τ, m2, b , i, v) = 	m′

2
 and m′
1 ⊆ m′

2.

Proof Follows from Lemma 5 and property P33. By construction, the embedding Eid

is nonaliasing for any memory state. ��

Finally, the transformed program can also perform additional stores, provided
they fall outside the memory bounds of the original program. (These stores take place
when a variable is spilled to memory.) Such stores preserve the extension relation.

20 X. Leroy, S. Blazy

Lemma 18 Assume m1 ⊆ m2 and store(τ, m2, b , i, v) = 	m′
2
. If i + |τ | ≤ L(m1, b)

or H(m1, b) ≤ i, then m1 ⊆ m′
2.

Proof Follows from Lemma 4 and property P33. ��

5.3 Refinement of Stored Values

In this section, we consider the case where the original and transformed programs
allocate identically-sized blocks in lockstep, but some of the undef values produced
and stored by the original program can be replaced by more defined values in the
transformed program. This situation, depicted in the center of Fig. 2, occurs when
verifying the register allocation pass of Compcert. Figure 6 outlines an example of
this transformation.

We say that a value v1 is refined by a value v2, and we write v1 ≤ v2, if either
v1 = undef or v1 = v2. We assume that the convert function is compatible with
refinements: v1 ≤ v2 ⇒ convert(v1, τ) ≤ convert(v2, τ). (This is clearly the case
for the examples of convert functions given at the end of Section 2.)

We instantiate again the generic framework of Section 5.1, using the identity
embedding Eid = λb . 	b , 0
 and the value embedding

Eid � v1 ↪→ v2
def= v1 ≤ v2.

We say that a transformed memory state m2 refines an original memory state m1,
and write m1 ≤ m2, if Eid embeds m1 in m2, and both memory states have the same
domain:

m1 ≤ m2
def= Eid � m1 ↪→ m2 ∧ Dom(m1) = Dom(m2)

The ≤ relation over memory states is reflexive and transitive.
The following simulation properties are immediate consequences of the results

from Section 5.1.

Lemma 19 Assume alloc(m1, l, h) = 	b 1, m′
1
 and alloc(m2, l, h) = 	b 2, m′

2
. If
m1 ≤ m2, then b 1 = b 2 and m′

1 ≤ m′
2.

Lemma 20 Assume free(m1, b) = 	m′
1
 and free(m2, b) = 	m′

2
. If m1 ≤ m2, then
m′

1 ≤ m′
2.

Proof Follows from Lemma 12 and property P34. ��

Fig. 6 Example of register allocation. Left: original code, right: transformed code. Variables x and y
have been allocated to registers R1 and R2, respectively

Formal verification of a C-like memory model... 21

Lemma 21 If m1 ≤ m2 and load(τ, m1, b , i) = 	v1
, then there exists a value v2 such
that load(τ, m2, b , i) = 	v2
 and v1 ≤ v2.

Lemma 22 If m1 ≤ m2 and store(τ, m1, b , i, v1) = 	m′
1
 and v1 ≤ v2, then there

exists m′
2 such that store(τ, m2, b , i, v2) = 	m′

2
 and m′
1 ≤ m′

2.

5.4 Memory Injections

We now consider the most difficult memory transformation encountered in the
Compcert development, during the translation from Clight to Cminor: the removal
of some memory allocations performed by the Clight semantics and the coalescing of
other memory allocations into sub-areas of a single block (see Fig. 2, left).

The pseudocode in Fig. 7 illustrates the effect of this transformation on the
memory behavior of the program. Here, the transformation elected to “pull x out of
memory”, using a local variable x in the transformed program to hold the contents
of the block pointed by x in the original program. It also merged the blocks pointed
by y and z into a single block pointed by sp, with y corresponding to the sub-block
at offsets [0, 8) and z to the sub-block at offsets [8, 10).

To relate the memory states in the original and transformed programs at any given
point, we will again reuse the results on generic memory embeddings established
in Section 5.1. However, unlike in Sections 5.2 and 5.3, we cannot work with a
fixed embedding E, but need to build it incrementally during the proof of semantic
preservation.

In the Compcert development, we use the following relation between values v1 of
the original Clight program and v2 of the generated Cminor program, parametrized
by an embedding E:

E � undef ↪→ v2 E � int(n) ↪→ int(n) E � float(n) ↪→ float(n)

E(b 1) = 	b 2, δ
 i2 = i1 + δ

E � ptr(b 1, i1) ↪→ ptr(b 2, i2)

Fig. 7 Example of the Clight to Cminor translation. Left: original program, right: transformed
program. Block x in the original program is pulled out of memory; its contents are stored in the
local variable x in the transformed program. Blocks y and z become sub-blocks of sp, at offsets 0
and 8 respectively

22 X. Leroy, S. Blazy

In other words, undef Clight values can be refined by any Cminor value; integers
and floating-point numbers must not change; and pointers are relocated as prescribed
by the embedding E. Notice in particular that if E(b) = ε, there is no Cminor value
v such that E � ptr(b , i) ↪→ v. This means that the source Clight program is not
allowed to manipulate a pointer value pointing to a memory block that we have
decided to remove during the translation.

We assume that the E � v1 ↪→ v2 relation is compatible with the convert func-
tion: E � v1 ↪→ v2 implies E � convert(v1, τ) ↪→ convert(v2, τ). (This clearly
holds for the examples of convert functions given at the end of Section 2.)

We say that an embedding E injects a Clight memory state m1 in a Cminor
memory state m2, and write E � m1 �→ m2, if the following four conditions hold:

E � m1 �→ m2
def= E � m1 ↪→ m2 (1)

∧ ∀b 1, m1 # b 1 ⇒ E(b 1) = ε (2)

∧ ∀b 1, b 2, δ, E(b 1) = 	b 2, δ
 ⇒ ¬(m2 # b 2) (3)

∧ E is nonaliasing for m1 (4)

Condition (1) is the embedding of m1 into m2 in the sense of Section 5.1. Conditions
(2) and (3) ensure that fresh blocks are not mapped, and that images of mapped
blocks are not fresh. Condition (4) ensures that the embedding does not cause sub-
blocks to overlap.

Using this definition, it is easy to show simulation results for the load and store
operations performed by the original program.

Lemma 23 If E � m1 �→ m2 and load(τ, m1, b 1, i) = 	v1
 and E(b 1) = 	b 2, δ
, then
there exists a value v2 such that load(τ, m2, b 2, i + δ) = 	v2
 and E � v1 ↪→ v2.

Proof By (1) and definition of E � m1 ↪→ m2. ��

Lemma 24 If E � m1 �→ m2 and store(τ, m1, b 1, i, v1) = 	m′
1
 and E(b 1) = 	b 2, δ

and E � v1 ↪→ v2, then there exists m′
2 such that store(τ, m2, b 2, i + δ, v2) = 	m′

2

and E � m′

1 �→ m′
2.

Proof Follows from Lemma 5. Conditions (2), (3) and (4) are preserved because of
properties S16 and P33. ��

Lemma 25 If E � m1 �→ m2 and store(τ, m1, b 1, i, v1) = 	m′
1
 and E(b 1) = ε, then

E � m′
1 �→ m′

2.

Proof Follows from Lemma 3 and properties S16 and P33. ��

In the Compcert development, given the algebra of values used (see Section 2),
we can define the following variants loadptr and storeptr of load and store
where the memory location being accessed is given as a pointer value:

loadptr(τ, m, a) =
match a with ptr(b , i) ⇒ load(τ, m, b , i) | _ ⇒ ε

Formal verification of a C-like memory model... 23

storeptr(τ, m, a, v) =
match a with ptr(b , i) ⇒ store(τ, m, b , i, v) | _ ⇒ ε

Lemmas 23 and 24 can then be restated in a more “punchy” way, taking advantage
of the way E � v1 ↪→ v2 is defined over pointer values:

Lemma 26 If E � m1 �→ m2 and loadptr(τ, m1, a1) = 	v1
 and E � a1 ↪→ a2, then
there exists a value v2 such that loadptr(τ, m2, a2) = 	v2
 and E � v1 ↪→ v2.

Lemma 27 If E � m1 �→ m2 and storeptr(τ, m1, b 1, a1, v1) = 	m′
1
 and E � a1 ↪→

a2 and E � v1 ↪→ v2, then there exists m′
2 such that storeptr(τ, m2, b 2, a2, v2) =

	m′
2
 and E � m′

1 �→ m′
2.

We now relate a sequence of deallocations performed in the original program
with a single deallocation performed in the transformed program. (In the example
of Fig. 7, this corresponds to the deallocations of x, y and z on one side and the
deallocation of sp on the other side.) If l is a list of block references, we define the
effect of deallocating these blocks as follows:

freelist(m, l) =
match l with
nil ⇒ 	m

| b :: l′ ⇒ match free(m, b) with ε ⇒ ε | 	m′
 ⇒ freelist(m′, l′)

Lemma 28 Assume freelist(m1, l) = 	m′
1
 and free(m2, b 2) = 	m′

2
. Further as-
sume that E(b 1) = 	b 2, δ
 ⇒ b 1 ∈ l for all b 1, δ; in other words, all blocks mapped
to b 2 are in l and therefore are being deallocated from m1. If E � m1 �→ m2, then
E � m′

1 �→ m′
2.

Proof First, notice that for all b 1 ∈ l, ¬(m′
1 |= b 1), by S13 and P36. Part (1) of

the expected result then follows from Lemmas 10 and 11. Parts (2) and (3) follow
from P34. Part (4) follows by repeated application of Lemma 13. ��

Symmetrically, we now consider a sequence of allocations performed by the orig-
inal program and relate them with a single allocation performed by the transformed
program. (In the example of Fig. 7, this corresponds to the allocations of x, y and
z on one side and the allocation of sp on the other side.) A difficulty is that the
current embedding E needs to be changed to map the blocks allocated by the original
program; however, changing E should not invalidate the mappings for pre-existing
blocks.

We say that an embedding E′ is compatible with an earlier embedding E, and
write E ≤ E′, if, for all blocks b , either E(b) = ε or E′(b) = E(b). In other words,
all blocks that are mapped by E remain mapped to the same target sub-block in
E′. This relation is clearly reflexive and transitive. Moreover, it preserves injections
between values:

Lemma 29 If E � v1 ↪→ v2 and E ≤ E′, then E′ � v1 ↪→ v2.

24 X. Leroy, S. Blazy

We first state and prove simulation lemmas for one allocation, performed either
by the original program or by the transformed program. The latter case is straight-
forward:

Lemma 30 If E � m1 �→ m2 and alloc(m2, l, h) = 	b 2, m′
2
, then E � m1 �→ m′

2.

Proof Follows from Lemma 7 and property P32. ��

For an allocation performed by the original program, we distinguish two cases:
either the new block is unmapped (Lemma 31), or it is mapped to a sub-block of the
transformed program (Lemma 32).

Lemma 31 Assume E � m1 �→ m2 and alloc(m1, l, h) = 	b 1, m′
1
. Write E′ =

E{b 1 ← ε}. Then, E′ � m′
1 �→ m2 and E ≤ E′.

Proof By part (2) of hypothesis E � m1 ↪→ m2 and property P31, it must be the
case that E(b 1) = ε. It follows that E′ = E, and therefore we have E ≤ E′ and
E′ � m1 ↪→ m2. Applying Lemma 8, we obtain part (1) of the expected result
E′ � m′

1 �→ m2. Part (2) follows from P32. Parts (3) and (4) are straightforward. ��

Lemma 32 Assume alloc(m1, l, h) = 	b 1, m′
1
 and m2 |= b 2 and L(m2, b 2) ≤ l + δ

and h + δ ≤ H(m2, b 2) and max_alignment divides δ. Further assume that for all
blocks b ′ and offsets δ′,

E(b ′) = 	b 2, δ
′
 ⇒ H(m1, b ′) + δ′ ≤ l + δ ∨ h + δ ≤ L(m1, b ′) + δ′ (*)

Write E′ = E{b 1 ← 	b 2, δ
}. If E � m1 �→ m2, then E′ � m′
1 �→ m2 and E ≤ E′.

Proof By part (2) of hypothesis E � m1 ↪→ m2 and property P31, it must be the case
that E(b 1) = ε. It follows that E ≤ E′.

We first show that E′ � m1 ↪→ m2. Assume E′(b) = 	b ′, δ′
 and load(τ, m1,

b , i) = 	v
. It must be the case that b �= b 1, since b 1 is not valid in m1. Therefore,
E(b) = 	b ′, δ′
 and the result follows from part (1) of hypothesis E � m1 ↪→ m2 and
from Lemma 29.

Using Lemma 9, we obtain part (1) of the expected result E′ � m′
1 �→ m2. Part (2)

follows from P32. Part (3) follows from the fact that b 2 is not fresh (property P30).
Finally, part (4) follows from hypothesis (*) and property S15. ��

We now define the alloclist function, which, given a list L of (low, high)
bounds, allocates the corresponding blocks and returns both the list B of their refer-
ences and the final memory state. In the example of Fig. 7, the allocation of x, y and
z corresponds to an invocation of alloclist with the list L = (0, 4); (0, 8); (0, 2).

alloclist(m, L) =
match L with
nil ⇒ 	nil, m

| (l, h) :: L′ ⇒
match alloc(m, l, h) with
ε ⇒ ε

Formal verification of a C-like memory model... 25

| 	b , m′
 ⇒
match alloclist(m′, L′) with
ε ⇒ ε

| 	B, m′′
 ⇒ 	b :: B, m′′

Along with the list L = (l1, h1) . . . (ln, hn) of allocation requests to be performed

in the original program, we assume given the bounds (l, h) of a block to be allocated
in the transformed program, and a list P = p1, . . . , pn of elements of type option �,
indicating how these allocated blocks should be mapped in the transformed program.
If pi = ε, the i-th block is unmapped, but if pi = 	δi
, it should be mapped at offset δi.
In the example of Fig. 7, we have l = 0, h = 10, p1 = ε, p2 = 	0
, and p3 = 	8
.

We say that the quadruple (L, P, l, h) is well-formed if the following conditions
hold:

1. L and P have the same length.
2. If pi = 	δi
, then l ≤ li + δi and hi + δi ≤ h and max_alignment divides δi (the

image of the i-th block is within bounds and aligned).
3. If pi = 	δi
 and pj = 	δ j
 and i �= j, then hi + δi ≤ l j + δ j or h j + δ j ≤ li + δi

(blocks are mapped to disjoint sub-blocks).

Lemma 33 Assume that (L, P, l, h) is well-formed. Assume alloclist(m1, L) =
	B, m′

1
 and alloc(m2, l, h) = 	b , m′
2
. If E � m1 �→ m2, there exists an embedding

E′ such that E′ � m′
1 �→ m′

2 and E ≤ E′. Moreover, writing bi for the i-th element of
B and pi for the i-th element of P, we have E′(bi) = ε if pi = ε, and E′(bi) = 	b , δi

if pi = 	δi
.

Proof By Lemma 30, we have E � m1 �→ m′
2. We then show the expected result

by induction over the length of the lists L and P, using an additional induction
hypothesis: for all b ′, δ, i, if E(b ′) = 	b , δ
 and pi = 	δ′
, then hi + δi ≤ L(m1, b ′) + δ

or H(m1, b ′) + δ ≤ li + δi. In other words, the images of mapped blocks that remain
to be allocated are disjoint from the images of the mapped blocks that have already
been allocated. The proof uses Lemmas 31 and 32. We finish by proving the
additional induction hypothesis for the initial state, which is easy since the initial
embedding E does not map any block to a sub-block of the fresh block b . ��

6 Mechanical Verification

We now briefly comment on the Coq mechanization of the results presented
in this article, which can be consulted on-line at http://gallium.inria.fr/∼xleroy/
memory-model/. The Coq development is very close to what is presented here.
Indeed, almost all specifications and statements of theorems given in this article
were transcribed directly from the Coq development. The only exception is the
definition of well-formed multiple allocation requests at the end of Section 5.4, which
is presented as inductive predicates in the Coq development, such predicates being
easier to reason upon inductively than definitions involving i-th elements of lists.
Also, the Coq development proves additional lemmas not shown in this paper: 8
derived properties in the style of properties D19-D22, used to shorten the proofs
of Section 5, and 16 properties of auxiliary functions occurring in the concrete

http://gallium.inria.fr/~xleroy/memory-model/
http://gallium.inria.fr/~xleroy/memory-model/

26 X. Leroy, S. Blazy

implementation of the model, used in the proofs of Section 4, especially that of
Lemma 1.

The mechanized development uses the Coq module system [6] to clearly separate
specifications from implementations. The specification of the abstract memory model
from Section 3, as well as the properties of the concrete memory model from
Section 4, are given as module signatures. The concrete implementation of the
model is a structure that satisfies these two signatures. The derived properties of
Sections 3 and 4, as well as the memory transformations of Section 5, are presented as
functors, i.e., modules parametrized by any implementation of the abstract signature
or concrete signature, respectively. This use of the Coq module system ensures that
the results we proved, especially those of Section 5, do not depend on accidental
features of our concrete implementation, but only on the properties stated earlier.

The Coq module system was effective at enforcing this kind of abstraction.
However, we hit one of its limitations: no constructs are provided to extend a
posteriori a module signature (interface) with additional declarations and logical
properties. The Standard ML and Objective Caml module systems support such
extensions through the open and include constructs, respectively. By lack of such
constructs in Coq, the signature of the abstract memory model must be manually
duplicated in the signature of the concrete memory model, and later changes to the
abstract signature must be manually propagated to the concrete signature. For our
development, this limitation was a minor annoyance, but it is likely to cause serious
problems for developments that involve a large number of refinement steps.

The Coq development represents approximately 1070 non-blank lines of specifi-
cations and statements of theorems, and 970 non-blank lines of proof scripts. Most
of the proofs are conducted manually, since Coq does not provide much support for
proof automation. However, our proofs intensively use the omega tactic, a decision
procedure for Presburger arithmetic that automates reasoning about linear equalities
and inequalities. The eauto (Prolog-style resolution) and congruence (equational
reasoning via the congruence closure algorithm) tactics were also occasionally useful,
but the tauto and firstorder tactics (propositional and first-order automatic rea-
soning, respectively) were either too weak (tauto) or too inefficient (firstorder)
to be useful.

As pointed out by one of the reviewers, our formalization is conducted mostly in
first-order logic: functions are used as data in Sections 4 and 5, but only to implement
finite maps, which admit a simple, first-order axiomatization. A legitimate question
to ask, therefore, is whether our proofs could be entirely automated using a modern
theorem prover for first-order logic. We experimented with this approach using three
automatic theorem provers: Ergo [7], Simplify [10] and Z3 [9]. The Why platform for
program proof [12] was used to administer the tests and to translate automatically
between the input syntaxes of the provers. Most of the Coq development was
translated to Why’s input syntax. (The only part we did not translate is the concrete
implementation of the memory model, because it uses recursive functions that are
difficult to express in this syntax.) Each derived property and lemma was given to the
three provers as a goal, with a time limit of 5 min of CPU time.4

4The test was run on a 2.4 GHz Intel Core 2 Duo processor, with 2 Gb of RAM, running the
MacOS 10.4 operating system. The versions of the provers used are: Ergo 0.7.2, compiled with OCaml
version 3.10.1; Simplify 1.5.5; Z3 1.1, running under CrossOver Mac.

Formal verification of a C-like memory model... 27

Table 1 Experiments with three automated theorem provers

Ergo Simplify Z3 At least one

Derived properties from Sections 3 and 4 15/15 15/15 15/15 15/15
Generic memory embeddings (Section 5.1) 7/12 1/12 6/12 9/12
Memory extensions (Section 5.2) 0/7 1/7 5/7 5/7
Refinement of stored values (Section 5.3) 2/8 3/8 6/8 6/8
Memory injections (Section 5.4) 4/8 4/8 7/8 7/8
Total 28/50 24/50 39/50 42/50

Table 1 summarizes the results of this experiment. A total of 50 goals were given to
the three provers: the derived properties D19-D22 and D29 from Sections 3 and 4, all
lemmas from Section 5, and some auxiliary lemmas present in the Coq development.
Of these 50 goals, 42 were proved by at least one of the three provers. The 8 goals that
all three provers fail to establish within the 5-min time limit correspond to Lemmas 5,
6, 12, 15, 17, 19, 22, and 31 from Section 5. These preliminary results are encouraging:
while interactive proof remains necessary for some of the most difficult theorems,
integration of first-order theorem proving within a proof assistant has great potential
to significantly shorten our proofs.

7 Related Work

Giving semantics to imperative languages and reasoning over pointer programs has
been the subject of much work since the late 1960’s. Reynolds [23] and Tennent and
Ghica [26] review some of the early work in this area. In the following, we mostly
focus on semantics and verifications that have been mechanized.

For the purpose of this discussion, memory models can be roughly classified as
either “high level”, where the model itself provides some guarantees of separation,
enforcement of memory bounds, etc., or “low-level”, where the memory is modeled
essentially as an array of bytes and such guarantees must be enforced through
additional logical assertions.

A paradigmatic example of high-level modeling is the Burstall-Bornat encoding
of records (struct), where each field is viewed as a distinct memory store mapping
addresses to contents [4, 5]. Such a representation captures the fact that distinct
fields of a struct value are separated: it becomes obvious that assigning to one
field though a pointer (p->f = x in C) leaves unchanged the values of any other
field. In turn, this separation guarantee greatly facilitates reasoning over programs
that manipulate linked data structures, as demonstrated by Mehta and Nipkow
[19] and the Caduceus program prover of Filliâtre and Marché [11]. However, this
representation makes it difficult to account for other features of the C language, such
as union types and some casts between pointer types.

Examples of low-level modeling of memory include Norrish’s HOL semantics
for C [21] and the work of Tuch et al. [27]. There, a memory state is essentially a
mapping from addresses to bytes, and allocation, loads and stores are axiomatized
in these terms. The axioms can either leave unspecified all behaviors undefined
in the C standard, or specify additional behaviors arising from popular violations

28 X. Leroy, S. Blazy

of the C standard such as casts between incompatible pointer types. Reasoning
about programs and program transformations is more difficult than with a high-level
memory model; Tuch et al. [27] use separation logic to alleviate these difficulties.

The memory model presented in this article falls half-way between high-level
models and low-level models. It guarantees several useful properties: separation
between blocks obtained by distinct calls to alloc, enforcement of bounds during
memory accesses, and the fact that loads overlapping a prior store operation pre-
dictably return the undef value. These properties play a crucial role in verifying the
program transformations presented in Section 5. In particular, a lower-level memory
model where a load overlapping a previous store could return an unspecified value
would invalidate the simulation lemmas for memory injections (Section 5.4). On
the other hand, the model offers no separation guarantees over accesses performed
within the same memory block. The natural encoding of a struct value as a single
memory block does not, by itself, validate the Burstall-Bornat separation properties;
additional reasoning over field offsets is required.

Separation logic, introduced by O’Hearn et al. [22, 24], and the related spatial
logic of Jia and Walker [14], provide an elegant way to reason over memory
separation properties of pointer programs. Central to these approaches is the sep-
arating conjunction P ∗ Q, which guarantees that the logical assertions P and Q
talk about disjoint areas of the memory state. Examples of use of separation logic
include correctness proofs for memory allocators and garbage collectors [17, 18]. It
is possible, but not very useful, to define a separation logic on top of our memory
model, where in a separating conjunction P ∗ Q, every memory block is wholly
owned by either P or Q but not both. Appel and Blazy [1] develop a finer-grained
separation logic for the Cminor intermediate language of Compcert where disjoint
parts of a given block can be separated.

While intended for sequential programs, the memory model described in this
paper can also be used to describe concurrent executions in a strongly-consistent
shared memory context, where the memory effect of a concurrent program is
equivalent to an interleaving of the load and store operations performed by each
of its threads. Modern multiprocessor systems implement weakly-consistent forms of
shared memory, where the execution of a concurrent program cannot be described
as such interleavings of atomic load and store operations. The computer architecture
community has developed sophisticated hardware memory models to reason about
weakly-consistent memory. For instance, Shen et al. [25] use a term rewriting
system to define a memory model that decomposes load and store operations into
finer-grained operations. This model formalizes the notions of data replication and
instruction reordering. It aims at defining the legal behaviors of a distributed shared-
memory system that relies on execution trace of memory accesses. Another example
of architecture-centric memory model is that of Yang et al. [28].

Going back to memory models for programming languages, features of archi-
tectural models for weakly-consistent shared memory also appear in specifications
of programming languages that support shared-memory concurrency. A famous
example is Java, whose specification of its memory model has gone through several
iterations. Manson et al. [16] describe and formalize the latest version of the Java
memory model. Reasoning over concurrent, lock-free programs in Java or any
other shared-memory, weakly-consistent concurrency model remains challenging.
Reasoning over transformations of such programs is an open problem.

Formal verification of a C-like memory model... 29

Software written in C, especially systems code, often makes assumptions about
the layout of data in memory and the semantics of memory accesses that are left
unspecified by the C standard. Recent work by Nita et al. [20] develops a formal
framework to characterize these violations of the C standard and to automatically
detect the portability issues they raise. Central to their approach is the notion of a
platform, which is an abstract description of the assumptions that non-portable code
makes about concrete data representations. Some aspects of their notion of platform
are captured by our memory model, via the size and alignment functions and the
type compatibility relation from Section 2. However, our model does not account
for many other aspects of platforms, such as the layout and padding algorithm for
struct types.

8 Conclusions

We have presented and formalized a software memory model at a level of abstraction
that is intermediate between the high-level view of memory that underlies the C
standard and the low-level view of memory that is implemented in hardware. This
memory model is adequate for giving semantics and reasoning over intermediate
languages typically found in compilers. In particular, the main features of our model
(separation between blocks, bounds checking, and the undef value resulting from
ill-defined loads) played a crucial role in proving semantics preservation for the
Compcert verified compiler.

This model can also be used to give a concrete semantics for the C language that
specifies the behavior of a few popular violations of the C standard, such as arbitrary
casts between pointers, as well as pointer arithmetic within struct types. However,
many other violations commonly used in systems code or run-time systems for
programming languages (for instance, copying arrays of characters 4 or 8 elements
as a time using integer or floating-point loads and stores) cannot be accounted for
in our model. We have considered several variants of our model that could give
meaning to these idioms, but have not yet found one that would still validate all
simulation properties of Section 5. This remains an important direction for future
work, since such a model would be useful not only to reason over systems C code,
but also to prove that the semantics of such code is preserved during compilation by
the Compcert compiler.

Another direction for future work is to construct and prove correct refinements
from a high-level model such as the Burstall-Bornat model used in Caduceus [11]
to our model, and from our model to a low-level, hardware-oriented memory
model. Such refinements would strengthen the proof of semantic preservation of the
Compcert compiler, which currently uses a single memory model for the source and
target languages.

Acknowledgements Our early explorations of memory models for the Compcert project were
conducted in collaboration with Benjamin Grégoire and François Armand, and benefited from
discussions with Catherine Dubois and Pierre Letouzey. Sylvain Conchon, Jean-Christophe Filliâtre
and Benjamin Monate helped us experiment with automatic theorem provers. We thank the
anonymous reviewers as well as Nikolay Kosmatov for their careful reading of this article and their
helpful suggestions for improvements.

30 X. Leroy, S. Blazy

References

1. Appel, A.W., Blazy, S.: Separation logic for small-step Cminor. In: Theorem Proving in Higher
Order Logics, 20th Int. Conf. TPHOLs 2007, Lecture Notes in Computer Science, vol. 4732,
pp. 5–21. Springer, New York (2007)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development – Coq’Art: The
Calculus of Inductive Constructions. EATCS Texts in Theoretical Computer Science. Springer,
New York (2004)

3. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In: FM 2006: Int.
Symp. on Formal Methods, Lecture Notes in Computer Science, vol. 4085, pp. 460–475. Springer,
New York (2006)

4. Bornat, R.: Proving pointer programs in Hoare logic. In: MPC ’00: Proc. Int. Conf. on Math-
ematics of Program Construction, Lecture Notes in Computer Science, vol. 1837, pp. 102–126.
Springer, New York (2000)

5. Burstall, R.: Some techniques for proving correctness of programs which alter data structures.
Mach. Intell. 7, 23–50 (1972)

6. Chrząszcz, J.: Modules in type theory with generative definitions. Ph.D. thesis, Warsaw
University and University of Paris-Sud (2004)

7. Conchon, S., Contejean, E., Kanig, J.: The Ergo automatic theorem prover. Software and docu-
mentation available at http://ergo.lri.fr/ (2005–2008)

8. Coq development team: The Coq proof assistant. Software and documentation available at
http://coq.inria.fr/ (1989–2008)

9. De Moura, L., Bjørner, N., et al.: Z3: an efficient SMT solver. Software and documentation
available at http://research.microsoft.com/projects/z3 (2006–2008)

10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM
52(3), 365–473 (2005)

11. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: 6th Int. Conf. on Formal
Engineering Methods, ICFEM 2004, Lecture Notes in Computer Science, vol. 3308, pp. 15–29.
Springer, New York (2004)

12. Filliâtre, J.C., Marché, C., Moy, Y., Hubert, T.: The Why software verification platform. Soft-
ware and documentation available at Software and documentation available at http://why.lri.fr/
(2004–2008)

13. ISO: International Standard ISO/IEC 9899:1999, Programming languages – C. ISO, Geneva
(1999)

14. Jia, L., Walker, D.: ILC: a foundation for automated reasoning about pointer programs.
In: Programming Languages and Systems, 15th European Symposium on Programming, ESOP
2006, Lecture Notes in Computer Science, vol. 3924, pp. 131–145. Springer, New York (2006)

15. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof
assistant. In: 33rd Symposium Principles of Programming Languages, pp. 42–54. ACM, New
York (2006)

16. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: 32nd Symposium Principles of
Programming Languages, pp. 378–391. ACM, New York (2005)

17. Marti, N., Affeldt, R., Yonezawa, A.: Formal verification of the heap manager of an operating
system using separation logic. In: Formal Methods and Software Engineering, 8th Int. Conf.
ICFEM 2006, Lecture Notes in Computer Science, vol. 4260, pp. 400–419. Springer, New York
(2006)

18. McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying garbage collectors
and their mutators. In: Programming Language Design and Implementation 2007, pp. 468–479.
ACM, New York (2007)

19. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Inf. Comput. 199(1–2),
200–227 (2005)

20. Nita, M., Grossman, D., Chambers, C.: A theory of platform-dependent low-level software.
In: 35th Symposium Principles of Programming Languages. ACM, New York (2008)

21. Norrish, M.: C formalized in HOL. Technical report UCAM-CL-TR-453. Ph.D. thesis, University
of Cambridge (1998)

22. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data struc-
tures. In: Computer Science Logic, 15th Int. Workshop, CSL 2001, Lecture Notes in Computer
Science, vol. 2142, pp. 1–19. Springer, New York (2001)

http://ergo.lri.fr/
http://coq.inria.fr/
http://research.microsoft.com/projects/z3
http://why.lri.fr/

Formal verification of a C-like memory model... 31

23. Reynolds, J.C.: Intuitionistic reasoning about shared data structures. In: Davies, J., Roscoe, B.,
Woodcock, J. (eds.) Millenial Perspectives in Computer Science, pp. 303–321. Palgrave,
Hampshire (2000)

24. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17th Symposium
on Logic in Computer Science (LICS 2002), pp. 55–74. IEEE Computer Society, Los Alamitos
(2002)

25. Shen, X., Arvind, R.L.: Commit-reconcile & fences (CRF): a new memory model for architects
and compiler writers. In: ISCA ’99: Proc. Int. Symp. on Computer Architecture, pp. 150–161.
IEEE Computer Society, Los Alamitos (1999)

26. Tennent, R.D., Ghica, D.R.: Abstract models of storage. Higher-Order and Symbolic Computa-
tion 13(1–2), 119–129 (2000)

27. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: 34th Symposium Princi-
ples of Programming Languages, pp. 97–108. ACM, New York (2007)

28. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model specification
framework with integrated model checking capability. Concurr. Comput.: Practice and Experi-
ence 17(5–6), 465–487 (2005)

	Formal Verification of a C-like Memory Model and Its Uses for Verifying Program Transformations
	Abstract
	Introduction
	Values and Data Types
	Abstract Memory Model
	Concrete Memory Model
	Memory Transformations
	Generic Memory Embeddings
	Memory Extensions
	Refinement of Stored Values
	Memory Injections

	Mechanical Verification
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

