
The MooDS protocol: a J2ME object-oriented
communication protocol

Romain Pellerin
CNAM-CEDRIC, 292, rue St Martin, 75141 Paris Cedex 03, Tel: +33 1 58 80 85 13 France

GET-INT, 9 rue Charles Fourier, 91011 Evry Cedex, Tel: +33 1 60 76 45 61 France
romain.pellerin@cnam.fr

ABSTRACT
This paper describes MooDS, an object-oriented communi-
cation protocol dedicated to Java 2 Micro Edition (J2ME)
based mobile phones. This protocol is used in GASP, an
open source middleware enabling J2ME multiplayer gaming
interactions. This paper enlightens the difficulty in develop-
ing mutiplayer games in heavily constrained environments,
like the J2ME CLDC platform: small application memory
footprint, lack of object serialization support, network pro-
tocol limitations, small bandwith and lack of client IP ad-
dressing support within cellular phone networks. This pa-
per details how MooDS takes care of these constraints by
providing an efficient object serialization protocol in order
to reduce the amount of transmitted data and to increase
the communication speed. Moreover, MooDS is compared
with the available J2ME SOAP based protocol implementa-
tions, kSOAP2 and JSR172. This paper shows that MooDS
obtains the best results in terms of encoding length, trans-
mission delay, memory allocation and application code size,
thus supplying a proper gaming interaction support, in par-
ticular for time critical multiplayer games.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Application; D.2.3 [Coding
Tools and Techniques]: Object-oriented programming

General Terms
J2ME communication protocol

Keywords
Object-oriented, serialization, communication protocol, mul-
tiplayer games, J2ME mobile phone, MooDS, GASP, OMA

1. INTRODUCTION
The GASP[9][29], GAming Services Platform, middleware is
a common project of CNAM-CEDRIC and GET-INT labo-
ratories. Its objective is to provide an open source Java mid-
dleware for the development of multiplayer games for Java 2

Micro Edition[11] (J2ME) phones based on Connected Lim-
ited Device Configuration[4] (CLDC) profiles, such as Mobile
Information Device Profile[16] (MIDP) and NTTDocomo
Java[6] (Doja). The middleware implements the Open Mo-
bile Alliance Games Services[18] (OMA GS) specifications
v1.0. The client-server communications in GASP is han-
dled by a specific protocol named MooDS, for Mobile opti-
mized object Description and Serialization. The constraints
of J2ME CLDC profiles and current cellular phone net-
works generally impose a particular design for multiplayer
games, compared to PC-based multiplayer games. Further-
more, when dealing with object-oriented message communi-
cations in J2ME multiplayer games, additional constraints
arise: small application memory footprint, lack of serializa-
tion support, limited network bandwidth, pay-per-byte pol-
icy of cellular operator. MooDS covers up these constraints
by providing an efficient object serialization protocol to sup-
port time critical multiplayer games requiring low transmis-
sion delay and bandwidth. Besides, it aims at sympliflying
the development process of the multiplayer game communi-
cation part offering through generated codes: server skele-
ton, message communication model management and per-
sistency services. This paper presents first a brief overview
of communications in GASP middleware. Section 3 enlight-
ens the J2ME and network object serialization constraints
in the context of object-oriented communications. Section
4 gives an overview of the existing object-oriented com-
munication protocols available for J2ME devices. Section
5 presents the MooDS protocol, especially its serialization
mechanism and binary encoding structure. It also describes
the game and persistency services offered by the protocol to
simplify the development of multiplayer games. In Section 6,
MooDS is compared with the available J2ME Simple Object
Access Protocol [21] (SOAP) implementations, kSOAP2 [15]
and JSR172 [14]. The last section concludes and gives an
overview of the future works on MooDS.

2. COMMUNICATIONS IN GASP
MIDDLEWARE

GASP middleware enables the creation of J2ME multiplayer
games running over GPRS (2G), EDGE (2.5G) and UMTS
(3G) cellular networks. The HTTP protocol is the basis of
J2ME client-server communications[29][27]. This is due to
the Socket communication mechanism restrictions imposed
by cellular operators to control their network. Another con-
straint is the lack of mobile phone IP addressing on 2G
and 2.5G networks, which prevents server to client com-
munications. The direct consequences for communications

model are: i) the game events must be stacked on the server
side, ii) clients must do periodic requests to get the stacked
server side events. For these reasons, the GASP middleware
server side is implemented over Apache Tomcat [22] servlet
container to handle HTTP client requests. As depicted in
figure 1, GASP offers communication interfaces for game
client and server logics, named respectively GASPClient and
GASPServer. These interfaces, based on OMA GS specifica-
tions, must be extended by game logics to run on GASP and
provide methods to use game services, such as login, lobby,
game joining and in-game communications. The OMA GS
in-game communications are object-oriented and thus does
require object serialization to send data over the network.
However, object serialization for J2ME CLDC profiles is not
supported.

Figure 1: GASP online architecture

3. CONSTRAINTS OF OBJECT-ORIENTED
COMMUNICATIONS IN J2ME
MULTIPLAYER GAMES

The lack of mobile phone IP addressing support implies a
particular design for client-server communications in J2ME
multiplayer games. However, additional constraints have to
be considered in order to establish object-oriented message
communications: J2ME API restrictions, cellular network
capabilities and multiplayer game needs.
In J2ME CLDC profiles, Java APIs have been reduced and
do not provide support for object serialization, which hin-
ders object-oriented communications. In Doja profile, iAp-
plications are limited to 30 kilobytes in the 1.5 version and
100 kilobytes in the 2.5 release. For MIDP profile based
devices it depends on the mobile phone’s memory. Mem-
ory footprint restrictions have an heavy impact on object-
oriented message communications: in a straightforward im-
plementation, each message type will correspond to a Java
class, requiring at least 800 bytes (size of an empty class).
Thus the more message types used, the less memory foot-
print is available to the game engine.
The network bandwidth of cellular phones networks is quite
low, about 20 kilobytes per seconds in 2G, 59 kilobytes per
seconds in 2.5G and about 384 kilobytes per seconds in 3G.
Consequently, an object-oriented communications approach
must provide an efficient object serialization, particularly
on 2/2.5G networks, to increase communication speed. In
addition, a lightweight serialization is required to limit the
amount of transmitted data as many cellular phone opera-

tors apply a billing system based on a pay-per-byte policy.
Finally, latency and bandwith are the two major issues to
make compelling multiplayer games[31], particularly in time
critical multiplayer games, such as First Person Shooters
(FPS), Real Time Strategy (RTS) and action-based Mas-
sively Multiplayer Online Role Playing Game (MMORPG)
games. The optimization of communications as a lightweight
message oriented protocol is mandatory to decrease commu-
nication delay and to limit the amount of transmitted data.

4. EXISTING J2ME OBJECT-ORIENTED
COMMUNICATION PROTOCOLS

On current J2ME MIDP phones, client-server communica-
tions can be established using SOAP protocol. Two im-
plementations are available: the Sun implementation called
JSR172 and the kSOAP2 implementation used in various
Web Services[23] projects.

4.1 The kSOAP2 API
Due to the lack of web services and XML support in J2ME
in 2001, the kSOAP project has been launched to propose
an API for J2ME phones, enabling Web Services access us-
ing SOAP. kSOAP was born in the context of Enhydra[7],
a project working on open source Java/XML applications,
Web Services and workflow servers. In 2003, kSOAP2, a
complete redesign of the first version of kSOAP, has been
released as an independent project. kSOAP2 offers XML
data parsing, data object serialization and remote Web Ser-
vices invocation. It has a Java-oriented approach to describe
messages that can be transfered through SOAP requests. In
addition, it handles all primitive Java types and supports
the Vector Java class to manage object list. Finally, it en-
ables user defined serializable objects and also allows their
registration to kSOAP2 class map. If a developer wants to
use the kSOAP2 API, which takes up about 41 kilobytes, he
must embed it in the package of the wireless application.

4.2 The Sun JSR172 API
The JSR172 API has been released by Sun in 2004 com-
ing as an optional API of J2ME MIDP v2.0. It is a subset
of the Java API for XML-based RPC [13] (JAX-RPC) 1.1,
a Java 2 Standard Edition[12] (J2SE) API. In fact, in or-
der to ensure a low memory footprint, the functionalities of
the API have been reduced. It only offers the document/li-
teral SOAP encoding style, the literal representation of a
RPC call. It handles the XSD primitive types (same as
Java primitive types), as well as complex types and arrays of
primitive/complex types. However, it does not support some
XSD tag like xsd:choice tag. The JSR172 serialization ap-
proach is the same as JAX-RPC, the user needs: to describe
its Web Services application in the Web Services Definition
Language[24] (WSDL) file, to use a stub/skeleton genera-
tor and to generate the marshalling/unmarshalling classes
corresponding to the described types. Then he must embed
these generated classes in the wireless application package
to enable data object serialization during SOAP calls.

4.3 SOAP protocol limitations
SOAP is a XML based communication protocol, in other
words a text based protocol, which encodes message data
structure descriptions. As a result, such a protocol requests
a lot of communication bandwith, increasing transmission

delays. In the case of time critical applications, such as
real time games, this would lower game responsiveness. On
a financial point of view, the player communication bill is
also affected due to pay-per-byte policy. An object-oriented
communication protocol with a lightweight serialization is
much more appropriate than a XML based protocol to create
compelling J2ME based multiplayer games. This is demon-
strated in section 6 where MooDS, kSOAP2 and JSR172 are
compared in terms of encoding length, marshalling/unmar-
shalling delay, memory allocation and application code size
to confirm this statement.

5. THE MOODS PROTOCOL
MooDS (Mobile optimized objects Description and Serializa-
tion) takes care of the J2ME multiplayer games constraints
by minimizing the binarization of message objects. In this
section we will see how MooDS provides a lightweight object
serialization.

5.1 Principle
In order to use MooDS, the developer has to describe the
messaging data structures chosen for his multiplayer game
using MooDS description syntax (detailed in section 5.2).
Then these descriptions are parsed by the MooDS genera-
tor to obtain a class, which enables data serialization (de-
tailed in section 5.3). The approach is to send game mes-
sage objects by values, thus authorizing only Java primitive
type fields: boolean, byte, short, int, long, String and ar-
ray. During game execution, message objects to be sent are
encoded over the network using the static encoder/decoder
class. When an object is sent, the receiver decodes the bi-
nary stream and gets an object copy of the original message
object. Figure 2 depicts the MooDS message object serial-
ization mechanism.

Figure 2: MooDS serialization mechanism

Figure 3 shows the MooDS binary encoding structure com-
posed of: a short indicating the version of MooDS encoding,
a short matching the number of objects contained in the bi-
nary stream and, for each encoded object, a specific byte
corresponding to the object type followed by the object val-
ues (Java primitive types).

To summarize, there are three distinct steps in the MooDS
approach: firstly data messages are specified in a descrip-
tion file, secondly the stub/skeleton code is generated upon

Figure 3: MooDS binary encoding structure

compilation of the description file and finally the generated
classes are embedded in the wireless application package.
This approach is very close to the one used in Web Services
serialization, presented in the previous section.

5.2 Message object type description
MooDS uses a basic XML Schema[25] syntax to describe
message types to be used. Figure 4 presents an example
showing the description of two different message types: New-
Player containing information about newly connected play-
ers and Update which indicates the player’s avatar position,
speed and inventory. We can see in this example that XSD
primitive types correspond to Java primitive types. The
only mandatory XSD element is the root tag. This tag in-
cludes a choice sequence for each message type tag, in our
example newPlayer and update.

<?xml version=’1.0’ encoding=’ISO-8859-1 ’?>
<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema ’

xmlns:gmr=’http://www.example.com/XML MOODS ’
elementFormDefault=’qualified ’
targetNamespace=’http://www.example.com/XML MOODS ’>

<xsd:element name=’root ’ type=’gmr:Root ’/>
<xsd:element name=’newPlayer ’ type=’gmr:NewPlayer ’/>
<xsd:element name=’update ’ type=’gmr:Update ’/>

<xsd:complexType name=’Root ’>
<xsd:sequence>

<xsd:choice>
<xsd:element ref=’gmr:newPlayer ’/>
<xsd:element ref=’gmr:update ’/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=’NewPlayer ’>
<xsd:attribute name=’id ’ type=’xsd:short ’/>
<xsd:attribute name=’username ’ type=’xsd:string ’/>

</xsd:complexType>

<xsd:complexType name=’Update ’>
<xsd:attribute name=’id ’ type=’xsd:short ’/>
<xsd:attribute name=’x ’ type=’xsd:int ’/>
<xsd:attribute name=’y ’ type=’xsd:int ’/>
<xsd:attribute name=’speedX ’ type=’xsd:int ’/>
<xsd:attribute name=’speedY ’ type=’xsd:int ’/>
<xsd:attribute name=’inventory ’ type=’xsd:string[] ’/>

</xsd:complexType>
</xsd:schema>

Figure 4: MooDS message description

5.3 Object serialization mechanism
Once the message type descriptions are specified, the MooDS
generator parses it and generates an encoding/decoding class,
named CustomTypes, which has two root methods, encode-
Data and decodeData. The encodeData method takes as in-
put the output data stream, as well as a hashtable containing
several objects. Upon invocation, it calls specific methods
to encode each described types. In our example, the process

will generate the methods encodeNewPlayer and encodeUp-
date. These methods encode each object fields on the data
output stream using Java API dedicated methods, such as
the writeByte method. In the same way, the decodeData
method takes as input the input data stream and returns
a hashtable of decoded objects. This hashtable is obtained
via the decodeNewPlayer or decodeUpdate methods, which
decode the data stream. In addition, the MooDS Generator
generates the message type classes, which in the example
are NewPlayer.java and Update.java.

5.4 Message driven code generation
In GASP middleware, MooDS is used as a message driven
code generator. To simplify the multiplayer game develop-
ment, MooDS uses XSD type annotations to generate: the
server game logic skeleton, the communication code to han-
dle specific communication model for each message type and
the services to access persistent object data. In addition, it
proposes several generation modes to reduce the memory
footprint of message classes.
The message annotation approach consists in adding context
information to messages types. These information depend
on the communication model and the persistency mechanism
to be used. Concerning the communication model, the mes-
sage types are annoted with keywords indicating whether
the communications shall be of unicast, multicast or broad-
cast nature. CustomTypes class as well as the game server
logic skeleton class will be generated according to the type
of communication specified. Figure 5 presents this annota-
tion built with gasp:options and gasp:communication tags
to specify that the Update message type is a broadcast mes-
sage.
Another annotation, sql:requests, provides services to store
or retrieve data from a distant server. It enables basic SQL
requests to a distant HTTP persistency server: sql:select,
sql:update, sql:insert and sql:delete annotation tags are avail-
able. The MooDS generator parses type descriptions and
generates two related classes: a servlet that handles per-
sistency requests and a class, named SQLStorageManager,
that executes the SQL requests, specified in the annotations,
on a MySQL[17] database. Figure 5 depicts the annotation
which specifies that a player inventory should be retrieved
from the players table and to be set to the Update inventory
field. The generated persistency service can be used also as
a standalone service.

When using numerous message types, MooDS provides a
compilation mode to compact all types into a unique mes-
sage type class to reduce the communication code size. This
unique class includes all fields of described types and an
identifier field to distinguish the message type being instan-
tiated. KouizMarket [29], a Doja game prototype running
on GASP, uses about ten message types, which represents
about 9 kilobytes of memory footprint. Using this compi-
lation mode, the application code size has been reduced by
8 kilobytes (25 % of the total application code size in Doja
1.5).
However, for gaming applications requiring a lot function-
alities, even the use of one unique class encapsulating all
message types is not sufficient to stay within the application
memory limit imposed by MIDP or Doja profiles. To cir-
cumvent this problem, MooDS proposes a compilation mode
which makes use of Java hashtables to represent the message

<xsd:complexType name=’Update ’>
<xsd:annotation>

<xsd:appinfo>
<gasp:options>

<gasp:communicationModel>
broadcast

</gasp:communicationModel>
</gasp:options>
<sql:requests>

<sql:select>
select inventory as ’Update.inventory’
from players where id=[Update.id];

</sql:select>
<sql:update/> <sql:insert/> <sql:delete/>

<sql:requests>
</xsd:appinfo>

</xsd:annotation>
<xsd:attribute name="id" type="xsd:short"/>
...

</xsd:complexType>

Figure 5: MooDS message annotations

type data structure. For example, in this compilation mode
a NewPlayer object is represented by a Hashtable contain-
ing 3 entry keys: type indicating the object type, followed by
id and username keys corresponding to the original object
fields. Nevertheless, on the server side, object message type
representation can still be used.

6. MOODS VS J2ME SOAP APIS
This section presents a comparision of MooDS, kSOAP2 and
JSR172 performances by measuring: data encoding length,
client memory allocation, total marshalling/unmarshalling
execution delay from the first data object instantiation to
the final server response unmarshalling, and obfuscated client
application code size.

6.1 Test methodology
The tests are a combination of two test suites. The first
test suite is designed to demonstrate the performance of
each protocol in basic conditions for transferring primitive
types and arrays of primitive types: one integer, an array
of 2000 integers, one string of 300 bytes and an array of
200 strings. Each test server handles the client request and
returns the handled data to the latter. Table 1 presents the
data length of each primitive type messages contained in the
client request and the server response.

int int[2000] string string[200]
Total bytes 8 16000 600 120000

Table 1: Primitive message data length

The second test suite is designed to study the protocol per-
formances in multiplayer gaming conditions with representa-
tive message subsets of existing PC games: a message subset
of an open source FPS game named Cube[5], a message sub-
set of Civilization:CallToPower2 [3] (CTP2) RTS game and
a message subset of an open source action-based MMORPG
named PlaneShift [19]. These message subsets will also en-
able the assessment of each protocol, regarding their capac-
ity to represent usual multiplayer game message types. The
chosen message subsets for the tests are depicted in figures
6, 7 and 8.

message Position{
int x, y, z;
int yaw, pitch, roll; //Euler angles
int velocityX, velocityY, velocityZ;

}

message Shoot{
int guntype;
int shooterX, shooterY, shooterZ;
int ennemyX, ennemyY, ennemyZ;

}

message Damage{
int target, damage, sequence;

}

Figure 6: Cube message subset

message TradeOffer{
long id, fromCityId, toCityId;
long offerResource, askingResource;
byte owner, offerType, askingType;

}

message Army{
long id, removeCause;
byte owner, numUnits;
long[] unitIds;
short x, y;

}

message DiplomacyProposal{
long id, owner;
byte senderId, receiverId;
short priority;
ProposalData proposalData;

}

message ProposalData{
byte firstProposalType, secondProposalType, tone;
Argument firstArgument, secondArgument;

}

message Argument{
byte playerId;
long cityId, armyId, agreementId;
long advanceType, unitType, pollution;
long gold, percent;

}

Figure 7: Civilization:CTP2 message subset

In the Cube test, the client sends a Position and a Shoot,
the server returns a Damage. In the CTP2 test, the client
sends an Army and a DiplomacyProposal, the server returns
a TradeOffer. In the PlaneShift test, the client sends a
CraftingInfo and an Inventory, the server returns a Read-
BookText and a WeatherMessage. Client and server imple-
mentations handle non ordered lists of the various messages
appearing in the tested subsets. The table 2 summarizes
the Cube, CTP2 and PlaneShift message subset data length
contained in the client request and the server response.

Subset Cube CTP2 PlaneShift
Total bytes 76 264 261

Table 2: Muliplayer game message data length

6.2 Experimental environment
These tests require various softwares: the Sun Wireless Tool-
kit emulator (WTK) in order to simulate a J2ME MIDP
phone execution environment and its embeded memory mon-

message ReadBookText{
int clientnum, containerId, slotId;
int parentContainerId;
string name, text;
byte canWrite;
long visibility;

}

message CraftingInfo{
int clientnum, count, itemsNum;
int requiredWorkItem;
byte requiredEquipment;
string[] items;

}

message WeatherMessage{
byte type;
int time, downfallDrops, downfallFade;
int fogDensity, fogFade;
int r, g, b;

}

message Inventory{
byte command;
int totalItems, totalEmptiedSlots, maxWeight;
Item[] items;

}

message Item{
string name, iconImage;
int container, slot, weight, size;
byte purifyStatus;

}

Figure 8: PlaneShift message subset

itor, the Apache Tomcat servlet container to execute the
servlet needed during the MooDS test and the Apache Axis2 [1]
Web Services server running over Tomcat needed to handle
SOAP request during the kSOAP2 and JSR172 tests. In ad-
dition, the Sun Java Application Server [10] is used to offer
a concurrent solution to support Web Services. Ethereal [8]
is used to analyse the network. The ProGuard [20] code ob-
fuscator is used to optimize the final wireless package size of
each test client.
Two PCs running Windows XP are used. One is in charge
of each test client execution using WTK and its embedded
memory monitor. The other runs the servlet container, the
Web Services server and the network analyzer.
Test clients are executed on WTK for several reasons: to
avoid application deployment time on real phone, to profit
from all its tweak options like network/memory monitor or
HTTP version and optional APIs selections, to avoid cel-
lular network latency in order to clearly test the isolated
performance of the protocols. Testing on real phones could
be an extension to this work.

6.3 Experimentation feedback
6.3.1 MTU and Nagle algorithm impact on delay
The analysis of first primitive test results shows that long
messages have lower transmission delays than the short ones!
These unexpected results are due to the Nagle TCP algo-
rithm, which causes a delayed ACK, on server side, when the
message data length is under the TCP MSS (MTU - IP/TCP
headers) value. This issue is known as the Short-Initial-
Segment problem[28]. During tests, this delayed ACK in-
curred an additional delay of 180 milliseconds. In Socket
communication, this problem can be solved using the TCP-
NODELAY option. However, despite the fact that HTTP
is implemented over Socket, this option is not available from

J2ME HTTP connection API. Apache Tomcat offers an op-
tion to disable Nagle but it does not seem to work. To
circumvent this drawback, the only solution with HTTP
communication is to adjust the server MTU according to
the length of the minimal transferable message subset.
Figure 9 shows the MTU impact on MooDS delay during
primitive type test suite when decreasing its value. On Eth-
ernet LAN network, the MTU value is by default equal to
1500 bytes. As we can see here, with a MTU value of 500
bytes the integer as well as the string data messages have
higher transmission delays than their array data message
counterparts. This, as mentioned before, is due to a server
acknowlegment which is delayed by approximately 180 mil-
liseconds. With a MSS value smaller than the data length,
this delay is avoided. In fact, with a default MTU value
the string data message (307 bytes) is sent in 200 millisec-
onds, whereas with a MSS value of 300 bytes, it is sent in
20 milliseconds. However, we can see that the integer data
message is also sent in 20 milliseconds with a MSS value of
122 bytes, regardless of the message data length (7 bytes).
This result is due to the HTTP headers length (123 bytes),
which causes packet fragmentations. These fragmentations
circumvent the delayed ACK of the server.

��� ��� ��� ��� ���

����������	
�����

�

��

���

���

���

�
�

���

�����	

���
�����

�����	
����

Figure 9: MTU impact on delay

Consequently, to determine the best value for the server
MTU, the formula shown in figure 10 can be applied. For
these tests, the formula determines a MTU value of 162
bytes. In fact, as the integer test is the smallest transferred
message subset (9 bytes) and the HTTP headers represents
123 bytes, condition (i) is applied. However if the MTU
value is decreased too much, a performance loss is noticed
when long messages are used. This is due to the fact that
these messages are fragmented during transmission. This is
illustrated in figure 9 by the string array data message. In
fact, as from an MTU of 162 bytes, decreasing the MTU
by one byte entails an increase in the transmission delay by
0.27 milliseconds.

lmsg : length of smallest transferable message subset
lhead : minimal length of http headers

MSS =

{

lhead − 1 if lhead > lmsg (i)
lmsg otherwise (ii)

MTU = MSS + 40

Figure 10: Optimal MTU value formula

6.3.2 kSOAP2 vs JSR172
The kSOAP2 API is relatively simple to use, with a com-
prehensive serialization process. Currently, there are a lot of
papers about kSOAP1 but there is lesser litterature about
kSOAP2.
Dealing with the JSR172 API is more difficult because it
requires a solid knowledge about the Web Services domain,
particularly the WSDL language. In fact, the domain suf-
fers of a lack of comprehensive documentation about how
to describe correctly the Web Services features of JSR172
based wireless application. For example, it is very tedious
to find the appropriate encoding style to use, as well as
the XSD tags that have been restricted, such as the use-
ful xsd:choice tag (unordered sequence of tags). Moreover,
there exists some problems with list structure handling dur-
ing unmarshalling of the server response with the JSR172
version embedded in WTK 2.2. The second beta version of
WTK 2.5 fixes the problem.

6.3.3 Axis vs J2EE web service server
A lot of tricky bugs arised during the development of SOAP
based test client using the Axis Web Services server. For in-
stance, during evaluations, the JSR172 client was frequently
crashing unexpectedly. After some painstaking debuggings
the investigations revealed that the crash orignated from the
parsing of an empty SOAP header tag generated by Axis in
its response. The empty header generation has been fixed
by modifying the source code of the Axis SOAP encoding
generation API, Axiom. Finally, through this implemen-
tation experience, some interoperability obstacles regarding
kSOAP2 and the Axis server have also been revealed. For
instance, the Axis Server does not support SOAP array en-
coding, which is heavily used by kSOAP2 to encode list-like
structures. For all these reasons, the Sun Java Application
Server has been used in these tests to support server appli-
cation codes.

6.4 Test results
Figure 11 shows the results in terms of encoding for each
protocols. Regarding the primitive type test results, MooDS
is about 1.3 times longer than the raw data length values
shown in table 1, whereas JSR172 and kSOAP2 are respec-
tively about 29.7 times and 27 times longer. In fact, MooDS
provides a better encoding mechanism, which enables a more
compact representation of big arrays. In the context of mul-
tiplayer gaming, MooDS is about 1.2 times longer than raw
data length values shown in table 2, whereas JSR172 and
kSOAP2 are respectively about 12.2 times and 14 times
longer. These huge encoding length differences between
MooDS and SOAP based protocols enlighten the benefit of
data binarization in the context of heavily constrained em-
bedded environments. The difference between JSR172 and
kSOAP2 in primitive type tests is dependent on the SOAP
encoding, generated to handle lists. In fact in kSOAP2, list-
like structures are represented as SOAP arrays, whereas in
JSR172, list-structures are represented by xsd:sequence tags,
containing both primitive and/or complex type elements.

Figure 12 shows the average execution delay of the mar-
shalling and unmarshalling for each protocol. In primi-
tive type tests, MooDS has the fastest marshalling/unmar-
shalling rates, with a delay of about 20 milliseconds for
normal-sized messages (ranging from 8 to 600 bytes) and

����� ������ 	�
���
��

���

����

�����

������
�
�
��
�

���

������

����	���

�������	��

���

���	

����������

Figure 11: Request data encoding length

a delay of about 130 milliseconds for big array messages
(greater than 16000 bytes). The delay for normal-sized mes-
sages is uniform, regardless of the number of bytes exchanged.
This shows that the MooDS encoding mechanism has an in-
significant impact on transmission delays. We can see in this
case that JSR172 and kSOAP2 are respectively 2 times and
4.2 times slower than MooDS. When considering big array
messages, JSR172 is 6 times slower than MooDS whereas
kSOAP2 is 23 times slower. The difference in delay be-
tween MooDS and JSR172 can be explained by the serial-
ization/deserialization delay of the SOAP encoding. How-
ever, it is important to underline that the large difference
between JSR172 and kSOAP2 delays results from the SOAP
array marshalling/unmarshalling. As it is demonstrated in
the experimentation feedback section, it is necessary to cor-
rectly adjust the server MTU in order to obtain the proper
delays. Here it is set to 162 bytes.

����� ������ 	�
���
��

���

����

�
�

���

������

����	���

�������	��

���

���	

����������

Figure 12: Marshalling/unmarshalling delay

Figure 13 illustrates the results in terms of memory allo-
cation under multiplayer gaming conditions. MooDS uses
less memory than the SOAP based protocols, 73 kilobytes
of used memory, against 83 kilobytes for the JSR172 and
129 kilobytes for kSOAP2. These differences can also be
explained by the memory footprint of XML data represen-
tation during the creation of SOAP messages. Here, we can

notice that JSR172 has a much more efficient management
of XML data representation than kSOAP2.

����� ������ 	�
���
�

�����

�����

�����

�����

������

������

������

������

������

������

�
�
��
�

���	

�
��

���	�����

Figure 13: Memory allocation

Finally, figure 14 shows the code size of each test client pack-
age under multiplayer gaming conditions, obfuscated with
Proguard. We can see also that MooDS outperforms the
two SOAP based protocols, with only a 6 kilobytes code
size, against a 9.6 kilobytes and a 35 kilobytes code size
for the JSR172 and kSOAP2 respectively. The differences
between MooDS test client and the JSR172 test client il-
lustrates the code optimization of the MooDS stub/skele-
ton class CustomTypes in comparison to the JSR172’s one.
kSOAP2 is penalized by the embedding of the kSOAP2 API
into the wireless application package. On the other hand,
the JSR172 API is directly embedded in the phone MIDP
2.0 APIs with no impact on the code size of the application.

����� ������ 	�
���
�

����

�����

�����

�����

�����

�����

�����

�����

�
�
��
�

���	

�
��

���	�����

Figure 14: Client code size obfuscated

6.5 Protocol comparison conclusions
The comparison results demonstrate that the MooDS pro-
tocol is a serious alternative to SOAP based protocols for
handling communication in heavily constrained embedded
environments, such as the J2ME CLDC platform. MooDS
obtains the best results in terms of encoding length, mem-
ory allocation, communication delay and client code size.
Numerous works reveal that Web Services lack of perfor-

mance under heavy load. This results from the SOAP mes-
sage XML encoding, implying heavy parsing process at both
client and server side with huge encoding length, execution
delay and memory allocation (especially in deserialization of
SOAP arrays)[26]. The Fast Web Services is a Sun initiative
started in 2003 to enhance SOAP performance by replacing
XML encoding of SOAP messages by an ASN.1 binary en-
coding[30], but currently there is no implementation avail-
able. As a perspective for MooDS, we can imagine of using
the MooDS binary encoding to replace the SOAP encoding
mechanism in web services by generating a stub/skeleton
class from the WSDL parsing.
As a result, all tested subsets of usual multiplayer game
messages have been successfully described in each protocol.
Finally, MooDS is compatible with all versions of MIDP
and Doja profiles. In opposition, the JSR172 is only com-
patible with MIDP 2.0, whereas kSOAP2 is compatible with
all MIDP versions but not with Doja.

7. CONCLUSIONS
This paper presents MooDS, an object-oriented communi-
cation protocol designed for compelling J2ME multiplayer
games. MooDS takes care of the specific constraints im-
posed by J2ME devices over 2/2.5/3G cellular phone net-
works. Beyond multiplayer games, MooDS protocol can be
used in general apurpose multi-user connected applications.
MooDS is the communication protocol used in the GASP
project, both in online (HTTP) and Bluetooth R©[2] versions
of the middleware. It is available as an Ant task from the
GASP website[9].
This paper compares the performances of MooDS to those
of SOAP based protocols, JSR172 and kSOAP2 APIs, in
both basic and multiplayer gaming conditions. The com-
parison results assert that MooDS delivers much better per-
formances in terms of encoding length, memory allocation,
marshalling/unmarshalling delays and final application code
size. Additionnally, this paper underlines the importance of
server MTU value, which has a direct impact on communica-
tion delays over HTTP, and presents a formula to determine
its optimal value.
The OMA GS works on specifications for the next generation
of mobile-server interactions. According to recent drafts,
OMA GS wants to introduce the SOAP protocol as the root
communication protocol for their future recommended archi-
tecture. Taking in account the lack of performance on part of
SOAP based protocols, this choice may entail highly delayed
communication in the context of resource constrained envi-
ronments like the J2ME platform, particularly to support
time critical multiplayer games. MooDS can be considered
as a serious alternative to handle the communication part
of OMA GS architecture.
In the near future, MooDS will support some forms of lan-
guage heterogeneity by enabling multiplayer gaming inter-
actions between various platforms. Finally, as stated before,
MooDS can be considered as a solution to enable fast Web
services access for J2ME mobile applications by supporting
WSDL parsing to generate efficient stub and skeletons. In
this case, a solution is to integrate MooDS as an interface on
the server-side to enable interaction between J2ME clients
and the usual web services.

8. REFERENCES
All URLs last visited in April 2007.

[1] Axis2 server, http://ws.apache.org/axis2/.

[2] Bluetooth technology, http://www.bluetooth.com.

[3] Civilization:CallToPower2, http://apolyton.net/civ2/.

[4] CLDC, http://java.sun.com/cldc/.

[5] Cube, http://cubeengine.com.

[6] Doja profile, http://www.doja-developer.net.

[7] Enhydra project, http://www.enhydra.org.

[8] Ethereal network analyzer, http://www.ethereal.com.

[9] GASP project, http://gasp.objectweb.org.

[10] J2EE server, http://java.sun.com/j2ee/.

[11] J2ME platform, http://java.sun.com/j2me/.

[12] J2SE, http://java.sun.com/j2se/.

[13] JAX-RPC, http://java.sun.com/webservices/jaxrpc/.

[14] JSR172, http://jcp.org/jsr/detail/172.jsp.

[15] kSOAP2, http://ksoap2.sourceforge.net.

[16] MIDP profile, http://java.sun.com/products/midp/.

[17] MySQL, http://www.mysql.com.

[18] Open Mobile Alliance Gaming Services,
http://www.openmobilealliance.org/tech/wg com-
mittees/gs.html.

[19] PlaneShift, http://www.planeshift.it.

[20] ProGuard, http://proguard.sourceforge.net.

[21] SOAP, http://www.w3.org/tr/soap/.

[22] Tomcat server, http://tomcat.apache.org.

[23] Web Services, http://www.w3.org/2002/ws/.

[24] WSDL, http://www.w3.org/tr/wsdl.

[25] XML Schema, http://www.w3.org/xml/schema/.

[26] K. Chiu, M. Govindaraju, and R. Bramley.
Investigating the limits of soap performance for
scientific computing. In 11th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-11 ’02), pages 246–255, July 2002.

[27] D. Fox. Wireless gaming using the java micro edition.
In Game Programming Gems 3 - Charles River Media,
pages 573–581, 2002.

[28] J. C. Mogul and G. Minshall. Rethinking the tcp
nagle algorithm. ACM SIGCOMM Computer
Communication Review, 31:6–20, January 2001.

[29] R. Pellerin, F. Delpiano, F. Duclos,
E. Gressier-Soudan, and M. Simatic. GASP: an open
source gaming service middleware dedicated to
multiplayer games for j2me based mobile phones. In
7th Int. Conference on Computer Games CGAMES’05
Proceedings, pages 75–82, November 2005.

[30] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi,
M. Hadley, and E. Pelegri-Llopart. Fast web services,
http://java.sun.com/developer/technicalarticles/web-
services/fastws/index.html,
2003.

[31] J. Smed, T. Kaukoranta, and H. Hakonen. Aspect of
networking in multiplayer computer games. In The
International Conference on Application and
Development of Computer Games in the 21stCentury
proceedings, pages 75–82, November 2001.

