
Path resolution for recursive nested modules is
undecidable

Keiko Nakata1,3 and Jacques Garrigue2

1 Kyoto University
2 Nagoya University

3 Cedric

Abstract. The ML module system supports the modular development
of large programs, through decomposition, abstraction and reuse. To
increase its flexibility, much work has been devoted to extending it with
recursion. To keep type normalization terminating in such an extension,
thus to keep type checking decidable, path references must be resolved in
a terminating way. Here paths are a mechanism to refer to components of
modules. In this paper, we show that the termination of path resolution
is undecidable for a ML-like module system with recursive modules and
first-order applicative functors, by encoding any Turing machine. This
demonstrates the need for some restriction.

1 Introduction

The ML module system provides strong support for the modular development
of programs [7, 5]. A programmer can decompose a large program hierarchically
using nested structures. Functors, which are functions over modules, ease code
reuse. Moreover, the programmer can control abstraction of programs with sig-
natures, which represent types of modules. To increase its flexibility, much work
has been devoted to extending the module system with recursion, which is cur-
rently prohibited in ML [1, 8, 3, 6].

In our previous work [6], we have proposed a type system for a module sys-
tem extended with recursion and fully applicative functors. We had to be careful
about the potential existence of cyclic type definitions. In a programming lan-
guage with recursive modules and applicative functors, a programmer might
carelessly write pathologically cyclic type definitions, for which the näıve imple-
mentation of type normalization can diverge and thus for which type checking
can diverge. To keep type checking decidable, we designed a terminating type
normalization by requiring functors not to take functors as arguments or to
access sub-modules of arguments.

The first restriction sounds reasonable: type normalization in the presence
of higher-order applicative functors and recursive modules amounts to normal-
ization of a lambda calculus with recursion, which is clearly undecidable. While
it may seem too strong, the second restriction is also critical; we prove in this
paper that termination of type normalization is still undecidable only with first-
order functors and sub-module access. Our proof works by encoding any Turing

machine into a small calculus featuring paths, where paths are a mechanism to
refer to modules components. To normalize types in ML, we need to resolve path
references (i.e. to find the module that the path refers to). Undecidability of path
resolution hence implies that of type normalization.

The result of this paper is important for us since it justifies the need for
a restriction on nested arguments. Moreover, the encoding itself exposes the
underlying nature of type normalization, which will be useful to find a more
relaxed restriction, hence to make our type system more flexible.

This work is initially motivated by a desire to define a decidable type sys-
tem for recursive modules. Yet the problem we consider is general; we examine
termination of an untyped tiny calculus with recursion and labeled records. We
also believe that our work is potentially useful for guaranteeing safe evaluation of
recursive modules, where we want to ensure the absence of cyclic aliases between
modules.

2 Syntax and Semantics

Below, we define a calculus for our formal study, where m and x are metavariables
for field names and variables, respectively.

Expressions e ::= {m1 = e1 · · ·mn = en } | λx.e | p
Paths p ::= ε | x | p.m | p1(p2)
Program P ::= {m1 = e1 · · ·mn = en }

An expression, ranged over by e, is either a structure, a functor or a path. A
structure {m1 = e1 · · ·mn = en} is a sequence of definitions, that is, a record of
expressions ei labeled with field names mi. A functor λx.e represents a function
over expressions; x is the name of the formal parameter and e is the body.

Paths (ranged over by p) are the most interesting construct of the calculus.
They are built from 1) the root path ε, which refers to the toplevel structure;
2) variables x; 3) the dot notation “p.m”, meaning access to the field named
m of the structure that p refers to; 4) functor application p1(p2), which applies
the expression that p1 refers to to the expression that p2 refers to. As we shall
see in an example later, paths can refer to a field at any level of nesting within
the toplevel structure regardless of definition ordering. Thus paths introduce
recursion to the calculus. A program, ranged over by P , is a toplevel structure.
All occurrences of the root path ε in a program are considered to refer to the
toplevel structure. We assume that any sequence of definitions in a structure
does not bind the same field name twice and that a program does not contain
free variables.

For instance, consider the program:
{ m1 = {n1 = {} n2 = ε.m1.n1 }

m2 = λx.{n1 = {} n2 = x.n2 n3 = ε.m2(x).n1 }
m3 = ε.m2(ε.m1).n2 }

The path ε.m1.n1 refers to the field n1 of the structure m1. Hence, the path ε.m1.n2,
which is an alias for ε.m1.n1, refers to the field n1 of the structure m1, too. A path

can contain functor applications. For instance, the path ε.m2(x).n1 refers to the
field n1 of the body of the functor m2.

Resolution of path references may require more complex computation. For
instance, ε.m2(ε.m1).n2 resolves to ε.m1.n1; by reducing the functor application,
we obtain ε.m1.n2, which resolves to ε.m1.n1, as we have explained above.

2.1 Path rewriting

A program defines a set of rewrite rules on paths. For instance, the previous
example gives rewrite rules:

{ ε.m1.n2 → ε.m1.n1, ε.m2(x).n2 → x.n2,
ε.m2(x).n3 → ε.m2(x).n1, ε.m3 → ε.m2(ε.m1).n2 }

According to these rules, we can induce the reduction steps:
ε.m3 → ε.m2(ε.m1).n2 → ε.m1.n2 → ε.m1.n1

which reflects our previous explanation of path resolution.
We say that a program P is well-founded if the rewrite rules that P defines

do not induce infinite reduction steps. The reader will find formal definitions in
the appendix.

Example 1. The program:
{m1 = ε.m2.m1 m2 = ε.m1}

is not well-founded, since it induces the infinite reduction:
ε.m1 → ε.m2.m1 → ε.m1.m1 → ε.m2.m1.m1 → · · ·

Example 2. The program:
{m1 = λx.x m2 = ε.m1(ε.m2)}

is not well-founded, since it induces infinite reduction:
ε.m2 → ε.m1(ε.m2) → ε.m2 → · · ·

The keen reader may have noticed that when a program does not contain
functors at all, the problem of well-foundedness is reduced to termination of
head-reduction of a string rewriting system, which is known to be decidable [2].
Yet for programs with first-order functors, well-foundedness is undecidable, as
we shall show in the next section.

3 Translation of the Turing Machine

We encode any Turing machine into a first-order fragment of the calculus, de-
fined by the syntax:

Expressions e ::= {m1 = e1 · · ·mn = en } | λx.e | p
Paths p ::= ε | x | ε.m(p) | p.m
Toplevel expression te ::= λx.{m1 = e1 · · ·mn = en }
Program P ::= {m1 = te1 · · ·mn = ten}

The new syntax is restricted in the following two ways to syntactically pre-
clude higher-order functors. 1) Only paths of the form ε.m can appear in functor

positions. 2) A program is a sequence of toplevel expressions, which are lambda
abstraction of structures. Observe that, under these two restrictions, the rewrite
rules of a program cannot yield paths of the forms x(p) or x.m(p).

Let M = (Q,Σ, Γ, δ, q0, b, F) be a Turing machine4, where Q is the set of
states; Σ ⊆ Γ is the set of input symbols; Γ is the set of tape symbols; δ is the
transition function; q0 ∈ Q is the start state; b is the blank symbol, which is in
Γ but not in Σ; F is the set of final states, which we assume to be empty. In
particular, the arguments of δ(q, a) are a state q and a tape symbol a. The value
of δ(q, a), if it is defined, is a triple (q′, a′, D), where q′ is the next state; a′ is
the symbol in Γ to be written in the scanned cell of the tape; D is a direction,
which is either R (for right) or L (for left).

A configuration a1a2 · · · ai−1qaiai+1 · · · an of a Turing machine is represented
by a path

ε.q(ε.ai−1(· · · (ε.a2(ε.a1(ε.b̂(ε)))) · · ·)).ai.ai+1. · · · .an.b̂

The special symbol b̂ is not contained in Q or Γ . The intuition is that we encode
the right hand side of the tape with the dots and the left side with functor
applications. The head part ε.q of the path represents the current state. We put
b̂ at the inner most functor application and the outermost dot to represent the
right and left limits of input symbols on the tape.

Given a Turing machine M , we construct a set of rewrite rules RM , which is
the union of the following sets:

1. {ε.q(x).a → ε.q′(ε.a′(x)) | δ(q, a) = (q′, a′, R)}
2. {ε.q(x).a → x.q′.a′ | δ(q, a) = (q′, a′, L)
3. {ε.q(x).b̂ → ε.q(x).b.b̂ | q ∈ Q}
4. {ε.b̂(x).q → ε.q(ε.b̂(x)).b | q ∈ Q}
5. {ε.a(x).q → ε.q(x).a | a ∈ Γ, a ∈ Q}

Below we observe 1) that we can construct a program PM with RM as the
corresponding set of rewrite rules and 2) that the rewrite rules RM encode the
Turing machine M .

It is easy to see the first condition hold by considering that the left-hand
side of every rewrite rule in RM is of the form ε.q(x).a and that a program
{q = λx.{a = p}} has the set {ε.q(x).a → p} as the corresponding rewrite
rule. Note also that RM does not contain overlapping rules; this is important
to avoid a structure containing duplicate definitions for the same name like
{q = λx.{a = p1 a = p2}}, which breaks the syntactic convention we mentioned
in Section 2.

For instance, the rules from 5 require the toplevel structure of PM to contain
a definition a = λx.{q1 = ε.q1(x).a · · · qn = ε.qn(x).a} when a is a tape symbol
of the Turing machine M and {q1, · · · , qn} is the set of states.

Let’s verify that the second condition holds. The first two sets of rules encode
transitions of M . The rules from third and fourth sets allow us to elongate the
tape, moving the edge by adding a blank symbol to the left or right on demand.

4 We borrow the notations and terminology from [4], to which the reader is referred
for a complete definition.

Finally, the rules from the last set allow commutation between state and tape
symbol. A transition of M can be simulated either by a rule of 1, potentially
followed by a rule of 3, or by a rule of 2 followed by a rule of 4 or 5.

For instance, suppose δ(q, ai) = (q′, a′
i, L); i.e., we have a move

a1 · · · ai−1qaiai+1 · · · an ` a1 · · · ai−2q
′ai−1a

′
iai+1 · · · an

Then we can induce the corresponding reduction of paths by rules ε.q(x).ai →
x.q′.a′

i from 2, and ε.ai(x).q′ → ε.q′(x).ai from 5:
ε.q(ε.ai−1(· · · (ε.a1(ε.b̂(x))) · · ·)).ai.ai+1. · · · .an.b̂

→ ε.ai−1(ε.ai−2(· · · (ε.a1(ε.b̂(x))) · · ·)).q′.a′
i.ai+1. · · · .an.b̂

→ ε.q′(ε.ai−2(· · · (ε.a1(b̂(x))) · · ·)).ai−1.a
′
i.ai+1. · · · .an.b̂

4 Conclusion

We have shown that termination of path resolution for first-order nested re-
cursive modules is undecidable by an encoding of the Turing machine. While
the result justifies a restriction on nested functor arguments, we think that the
current restriction that prohibits all accesses to sub-modules of arguments is
stronger than necessary.

Since path rewrite rules are derived from programs, they are already re-
stricted: 1) there are no overlapping rules; 2) every rule is left-linear; 3) functor-
application positions in the left-hand side of any rewrite rule must be module
variables (e.g. a path like ε.m1(ε.m2) cannot be in the left-hand side, but ε.m1(x)
can). Besides, in ML, functor parameters are explicitly typed, which means that
we can statically know the possible nesting-depth of functor arguments.

A direction for future work would be to exploit these properties to find a
relaxed restriction, thus making our type system stronger.

References

1. K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc. PLDI’99,
pages 50–63, 1999.

2. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Proc. LICS’90, 1990.

3. D. Dreyer. Understanding and Evolving the ML Module System. PhD thesis,
Carnegie Mellon University, 2005.

4. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, chapter 8. Addison-Wesley, 2001.

5. X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

6. K. Nakata and J. Garrigue. Recursive Modules for Programming. In Proc. ICFP’06.
ACM Press, 2006.

7. R.Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
- Revised. The MIT Press, 1997.

8. C. Russo. Recursive Structures for Standard ML. In Proc. ICFP’01, pages 50–61.
ACM Press, 2001.

Rules(p, {m1 = e1 . . . mn = en}) =
∪n

i=1
Rules(p.mi, ei)

Rules(p, p′) = {p → p′}
Rules(p, λx.e) = Rules(p(x), e)

Fig. 1. Path rewrite rules of a program

Appendix

A Definitions

Substitutions, ranged over by σ, are finite mappings from variables to paths. We
write dom(σ) to denote the domain of σ. Application of a substitution σ to a
path p, written σ(p), is defined as:

σ(ε) = ε σ(x) =
{

x when x 6∈ dom(σ)
p when x ∈ dom(σ) and σ(x) = p

σ(p.m) = σ(p).m σ(p1(p2)) = σ(p1)(σ(p2))

Path contexts, ranged over by C[], are define by:

C[] ::= [·] | C[].m | C[](p) | p(C[])

where [·] denotes the empty context. We write C[p] to denote the path obtained
by placing p in the hole of the context C[].

A path rewrite rule is a pair (p, p′) of paths. It will be written p → p′. Let
R = {p1 → p′1, . . . , pn → p′n} be a set of path rewrite rules. A path p rewrites
into p′ with respect to R if there is a substitution σ, a path context C[] and a
rewrite rule pi → p′i ∈ R such that p = C[σ(pi)] and p′ = C[σ(p′i)]. We write
p →R p′ when p rewrites into p′ with respect to R.

Definition 1. A set of path rewrite rules R is well-founded if there is no infinite
sequence {pi}∞i=1 such that, for all i in 1, 2, . . ., pi →R pi+1.

Fig. 1 defines a function Rules for extracting a set of path rewrite rules from
a program. The first argument of Rules, which is a path, records the location
of the second argument, which is an expression, with respect to the toplevel
structure. Rules traverses a given program and builds a rewrite rule p.m = p′

from a definition m = p′ with p being the location of the definition.

Definition 2. A program P is well-founded if Rules(ε, P) is well-founded.

B Correctness of the encoding

By construction, our encoding of any Turing Machine does not introduce over-
lapping rules. Here we see correspondences between moves of a Turing machine
and reductions in the encoding.
Suppose δ(q, ai) = (q′, a′

i, L):

1. When i 6= 1, or i = n and a′
i 6= b, then we have a move

a1 · · · ai−1qaiai+1 · · · an ` a1 · · · ai−2q
′ai−1a

′
iai+1 · · · an

We have reductions
ε.q(ε.ai−1(· · · (ε.a1(ε.b̂(ε))) · · ·)).ai.ai+1. · · · .an.b̂

→ ε.ai−1(ε.ai−2(· · · (ε.a1(ε.b̂(ε))) · · ·)).q′.a′
i.ai+1. · · · .an.b̂

→ ε.q′(ε.ai−2(· · · (ε.a1(ε.b̂(ε))) · · ·)).ai−1.a
′
i.ai+1. · · · .an.b̂

2. When i = 1, then we have a move:
qa1a2 · · · an ` q′ba′

1a2 · · · an

We have reductions
ε.q(ε.b̂(ε)).a1.a2 · · · .an.b̂

→ ε.b̂(ε).q′.a′
1.a2 · · · .an.b̂

→ ε.q′(ε.b̂(ε)).b.a′
1.a2 · · · .an.b̂

3. When i = n and a′
i = b, then we have a move:
a1a2 · · · an−1qan ` a1a2 · · · an−2q

′an−1

We have reductions
ε.q(ε.ai−1(· · · (ε.a1(ε.b̂(ε))) · · ·)).an.b̂

→ ε.ai−1(ε.ai−2(· · · (ε.a1(ε.b̂(ε))) · · ·)).q′.b.b̂
→ ε.q′(ε.ai−2(· · · (ε.a1(ε.b̂(ε))) · · ·)).b.b̂

The case where δ(q, ai) = (q′, a′
i, R) is similar.

