
A Simple Positive Flows Computation Algorithm

for a Large Subclass of Colored Nets

S. Evangelista, C. Pajault, and J.F. Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

{evangeli,christophe.pajault,peyre}@cnam.fr

Abstract. Positive flows provide very useful informations that can be used
to perform efficient analysis of a model. Although algorithms computing (a
generative family of) positive flows in ordinary Petri nets are well known,
computing a generative family of positive flows in colored net remains an
open problem. We propose in this paper a pragmatic approach that allows
us to define an algorithm that computes a generative family of particular but
useful positive flows in a large subclass of colored nets: the simple well-formed
nets.

1 Introduction

One of the principal reasons to use Petri nets to model distributed algorithms is that
one can combine structural techniques (that use only the structure of the net) with
model-checking techniques (that perform exhaustive simulations) in order to analyze
a net and demonstrate properties. Among structural techniques, invariants computa-
tion can be viewed as the most fundamental one : invariants give immediate indication
on the behavior of the model (i.e. without needing to “execute” it) ; invariants are
needed to perform structural reductions (like the implicit place reduction [1], [14],
or efficient transitions agglomeration [10, 17]); places or transitions invariants can
be used to define/classify kind of Petri nets with simplified liveness conditions (e.g.
flexible manufacturing systems) [13], and so on. Among invariants, it is well known
that positive flows (flows that use only positive weights) are the most useful ones and
give accurate information on the net. In ordinary Petri nets, invariants are computed
with the Gauss algorithm when no positive constraint is added or with the Farkas
algorithm when a generative family of positive flows is needed (both algorithms are
described in [4]).

However, in many cases one uses colored Petri nets for modeling algorithms.
Indeed, they allow a more concise description of a problem than ordinary Petri nets.
Furthermore, defining parameterized models permits to study a set of solutions with
a unique model. So, computing invariants in a colored net is an interesting challenge.
However, these calculus raise new problems : we have to manipulate color mapping
instead of integer values, models may be parameterized and then algorithms must
tackle with this additional difficulties. When dealing with flows computation, two
main approaches are used : generalizing Gauss algorithm to take into account color
mapping (in particular with the use of the notion of “generalized inverse”) [15],
[20], [25], [7]; this first approach permits to obtain a generative family (for the last

citation) but requires to fix parameters and computed flows are not easily usable. The
second approach consists in restricting color nets; this lead to different algorithms
that compute parameterized and useful flows in regular nets [16] or ordered and
associative nets [8].

Nevertheless, only one algorithm is known today in the case of colored positive
flows computation [5], and this algorithm works only on very restricted models : unary
regular nets or unary predicate/transitions nets.

We propose in this paper an algorithm that computes particular, but useful,
positive flows in a high level model : the simple well-formed nets. This model is a
restriction of the general well-formed nets [3], but sufficient enough to model Ada
programs [2]. This paper is organized as follow : after some definitions we show, in
section 3, how we can take advantage of both syntactic restrictions used to define nets
and positive flows to obtain a particular “fractal” and “regular” equations system.
Then we propose an algorithm that computes a generative family of simple positive
flows (note that this family does not generate all positive flows). At last we conclude
and propose future possible extensions of this algorithm.

2 Definitions

2.1 Colored Petri nets

Petri nets form a well known formalism used to express and to analyze concurrent
behaviours [21, 23]. However, it is often difficult to model complex problems because
of the “low level” expression power provided by Petri nets. In practice, one uses
colored nets, that are an abbreviation of Petri nets. This abbreviation is based on
the idea to associate to the classical Petri net token a type (also called a color) that
gives it a high level semantic : instead saying “there are three tokens in place p” one
can say for instance “there are the token 1, the token 4 and the token 13 in place p”.
In this way, one can model complex synchronization schemes involving data carried
by processes.

Definition 1 (Multi-sets). A multi-set over a finite and non empty set C is an
application from C to IN. We denote by BagIN(C) (or Bag(C) for short) the set of
multi-sets over C and we represent a multi-set by the formal sum a =

∑

y∈C a(y).y.
If a and b are two multi-sets over C, then a + b is the multi-set over C defined by
a + b =

∑

y∈C(a(y) + b(y)).y and if λ is a natural, then λ.a is the multi-set over C
defined by λ.a =

∑

y∈C(λ.a(x)).x. One say that a is greater or equal than b, denoted
a ≥ b if and only if ∀y ∈ C, a(y) ≥ b(y).

Definition 2. A colored net is a 6-tuple CN = 〈P, T, C, G, W+, W−〉 with :

– P is the non empty and finite set of places
– T is the non empty and finite set of transitions (disjoint with P);
– C is the color mapping from P

⋃

T to ω where ω is a set including the finite and
non empty sets. An item of C(s) is called a color of s and C(s) denotes the color
domain of s.

– G associates each transition t with a boolean application Gt on C(t) called the
guard of t.

– W+ (resp. W−) is the post (resp. pre) incidence mapping that associates to each
transition t and to each place p a color mapping from C(t) to Bag(C(p)) which
defines the tokens that are needed, consumed or produced by the firing of a tran-
sition (see def. 3). We note W = W+ − W− (note that W (t, p) is a mapping
from C(t) to BagZZ(C(p))).

We note ǫ = {•} the color domain reduced to the unique value • (the token); this
allows us to consider ordinary Petri nets as particular colored Petri nets (the unique
and common color domain is ǫ).

Definition 3 (Marking and Firing rule). A marking is a mapping that associates
to each place p a value in Bag(C(p)). We note m0 the initial marking of a net.

A transition t is enabled for an instance ct ∈ C(t) from a marking m (denoted by
m[t, ct〉) if

Gt(ct) = True and ∀p ∈ P, m(p) ≥ W−(t, p)(ct)

The firing of t for ct ∈ C(t) from m leads to the marking m′ (m[t, ct〉m′) defined by

∀p ∈ P, m′(p) = m(p) + W+(t, p)(ct) − W−(t, p)(ct)

A marking m′ is reachable from a marking m if there exists a sequence t1, c1, . . . , tk, ck

such that m[t1, c1〉m1, m1[t2, c2〉m2, . . . , mk−1[tk, ck〉m′. We denote by Acc(CN, m0)
the set of all reachable markings from m0.

Consider the following colored net that models a solution to the dining philoso-
phers paradigm. In this model, X denotes the identity mapping over the finite set D

D = {1..N}

Forks : D<!X>

<!X>

< X >

< X >

< X >

< X >

< X >

< X >

< X >

< X >

< X >

< X >

< X >

< X > < X >

takeL

< X >

end

Att1 : D

takeR

giveL

Ending1 : D

Eating : D

Att2 : D

giveR

Ending2 : D

Chairs : {.}

TakeChairThinking : D

D.All

N−1

D.All

Fig. 1. A colored net for the dining philosophers paradigm

and !X denotes the “successor” mapping over D (i.e. the mapping that associates to
an item x its successor in D that is supposed to be ordered). Semantic of this models
is quite simple : a philosopher x who wants to eat must first take a chair by firing
transition takeChair. Then it has to take in sequence its fork (transition takeL) and
the fork of its right neightbour (transition takeR) to access state (place) Eating; the
chair is released as soon as a philosopher gets its two forks (transition takeR). An
eating philosopher can go back to the Thinking state by firing in sequence transitions
giveL, giveR and end. Possible concurrent defects highlighted by this paradigm are
the deadlock and the starvation problems.

Many analysis techniques have been adapted to colored nets, and in particular,
automatic places invariants computation [19, 24, 20, 25, 26, 16, 7, 6]. Indeed, places in-
variants give rich informations on the behavior of the model without needing its
execution; their definition and their computation involve only the structure of the
model. Within different places invariants, positive flows are those that give the most
usable information; this can be explained by the fact that the positive constraint
added on weights simplify interpretation of these invariants. We recall now the defi-
nition of these places invariants.

Definition 4 (Colored positive flow). Let Cinv be a color domain. A positive
flow F, with color domain Cinv (C(F) = Cinv), is a vector over P , noted as the
formal sum F =

∑

p∈P Fp.p, such that ∀p ∈ P,Fp is a mapping from Bag(C(p)) to

Bag(Cinv) and such that ∀t ∈ T ,
∑

p∈P Fp ◦ W (t, p) = 0 1.

This definition implies that for any positive flow F , and for any reachable marking
m we have that

∑

p∈P Fp(m(p)) =
∑

p∈P Fp(m0(p)). A flow can then be interpreted
as an equations set linking the marking of a subset of places with the original marking
of these places :

∀m ∈ Acc(CN, m0), ∀c ∈ C(F),
∑

p∈P

∑

cp∈C(p)

[Fp(cp)(c)].m(p)(cp) = cst(∈ IN)

Consider again the model of figure 1. In this net there are at least three positive
flows on the color domain D:

– F1 = 〈X〉.Thinking + 〈X〉.Att1 + 〈X〉.Att2 + 〈X〉.Eating + 〈X〉.Ending1 +
〈X〉.Ending2

– F2 = 〈!X〉.Forks + 〈!X〉.Att2 + 〈!X〉.Eating + 〈X〉.Eating + 〈X〉.Ending1
– F3 = 〈.〉.Att1 + 〈.〉.Att2 + 〈1〉Chairs

where 〈X〉 denotes the identity mapping over Bag(D), 〈!X〉 denotes the successor
mapping over Bag(D), 〈1〉 denotes the identity mapping over ǫ, and 〈.〉 the projection
from D to epsilon defined by ∀d ∈ D, .(d) = •. Note that by sake of simplicity we
often do not note 〈1〉.

The first one characterizes the sequential structure of philosophers that can be
in one of the six states Thinking, Att1, Att2, Eating, Ending1, Ending2. Indeed,
its interpretation is 2 : ∀m ∈ Acc(CN, m0), ∀x ∈ D, m(Thinking)(x)+m(Att1)(x)+

1 0 denotes here the null mapping from C(t) to Bag(C(F))
2 Remember that 〈X〉(c)(c′) = 1 if c = c′ and 〈X〉(c)(c′) = 0 otherwise.

m(Att2)(x) + m(Eating)(x) + m(Ending1)(x) + m(Ending2)(x) = 1. The second
one, F2, tells us that, given x ∈ D, the fork !x is either free (place Forks is marked
with !x) or is either owned by philosopher !x that is in state Eating or Att2 or is
used by philosopher x which is in state Eating or Ending.

At last, F3 highlights that chairs are either free (place Chairs is marked) or are
shared by philosophers that are in state Att1 or Att2. Its interpretation is ∀m ∈
Acc(CN, m0),

∑

x∈C m(Att1)(x) +
∑

x∈C m(Att2)(x) + m(Chairs) = N − 1 and,
combined with F2, ensures that place Forks cannot become empty and then, that
no deadlock is possible.

As we can note, positive flows give precious information of the behavior of a model
using only its structure.

However, computing positive flows is a difficult task. Up to now, only one algo-
rithm exists [5] and is restricted to regular net (a sub-class of colored nets) with
an unique color domain. A possible explanation is that most researches focus on a
generative family computation (a family that generate all positive invariants of the
net). This leads to very complex equations systems even if algorithms are defined on
strong restriction of colored nets. We do not propose here to focus on a generative
family but on useful family of positive flows. For doing this we impose a syntactic
restriction on positive flows definition and we associate this restriction to a similar
restriction on colored net definition. We call this kind of net “Simple Well-Formed
nets” and we designed our positive flow as “simple positive flows”.

2.2 Simple well-formed colored nets and simple positive flows

Modeling and verification are two strongly linked activities. A formalism has to define
a good compromise between the simplicity provided for modeling and the richness of
possible automatic tools or techniques that can be used to verify properties on the
model.

In the Petri net domain, general formalisms have been proposed (like colored nets)
but most of theoretical analysis results have been obtained on restrictions of general
models. One can cite the regular nets [16], the ordered nets [8], and a formalism with a
same modeling power as colored nets but with syntactic restrictions, the well-formed
nets [3].

We propose here a slight restriction of this last formalism that we named simple
well-formed nets (or SWF nets for short). This formalism remains sufficient for mod-
eling large and complex problems; in particular we use it to model a large subset of
Ada programs in order to validate them (see for instance models proposed in [12] or
in [11]). As for the original model, we define our formalism by restricting the possible
color mapping and the color domain construction.

Definition 5 (Basic color mapping). Let C be a finite ordered set. The basic
mapping are the identity, denoted by XC , the diffusion (also called global synchro-
nization), denoted by AllC, the successor, denoted by !XC and all constant map-
pings, λc

C , c ∈ C. They are defined from C to Bag(C) by : ∀x ∈ C, XC(x) = x,
AllC(x) =

∑

c∈C c, !XC(x) = successor of x in C and λc
C(x) = c.

Remark 1. It is a common usage to use other literals, X, Y, Z, Ph, . . ., to denote the
identity or successor mapping, and when the context is clear, one often omits the

domain on which operates the mapping (X instead of XC). All classes are considered
to be ordered (in a circular way). So each item has a unique successor in the class
(the successor of the last item is the first one). All these mappings can be extended
to mapping from Bag(C) to Bag(C). When C = ǫ all these mappings coincide.

Definition 6 (Simple color mappings). Let C be a finite ordered set. A simple
color mapping on C is a mapping from C to Bag(C) if either it’s a constant mapping
or if it can be written as a additive composition α.XC + β.AllC + γ.!XC with α, β, γ
integer values such that β ≥ 0, β + α ≥ 0 and β + γ ≥ 0 (and β + α + γ ≥ 0 in the
very case where |C| = 1).

Remark 2. The constraints on α, β and γ ensure that a color mapping defines a
positive value for each color of C (and then belongs to Bag(C)). When C = ǫ all
simple color mappings are reduced to a constant mapping (an integer value).

Definition 7 (Simple color functions). Let C = C1×C2×. . .×Ck be a finite prod-
uct of finite and non empty sets. A mapping f from C To Bag(C) is a simple color
function if it can be written f = 〈f1, f2, . . . , fk〉 with ∀i, fi a simple color mapping
on Ci or an arbitrary unitary 3 application from Ci to Bag(Ci). If 〈c1, . . . , ck〉 ∈ C
then f(c) = 〈f1, f2, . . . , fk〉(〈c1, . . . , ck〉) = 〈f1(c1), f2(c2), . . . , fk(ck)〉.

When useful, we will note 〈f1, f2, . . . , fk〉 as f1.〈f2, . . . , fk〉 and extend by linearity
this notation to weighted sums of tuples.

We are in position to define nets we use to analyze Ada programs in our tool
Quasar.

Definition 8 (Simple Well-Formed nets). A colored net 〈P, T, C, G, W−, W+〉 is
a simple well-formed net if ∀p ∈ P , ∀t ∈ T ,

– W+(t, p) 6= 0 or W−(t, p) 6= 0 implies that C(t) = C(p) × C′
p (C(t) equals or

includes C(p));

– W+(t, p) and W−(t, p) are a composition of a simple color function over C(p)
with a projection from C(t) to C(p) (when color domain of t is ”larger” than the
color domain of p);

– if W+(t, p) uses a constant mapping on a class Ci then an arc between p and an
other transition cannot use the mapping AllCi

.

We say that the net is homogeneous if all color domains are identical (i.e. ∃C1,
. . ., CK such that ∀s ∈ P ∪T , C(s) = C1× . . .×Ck), if all guards are always evaluated
to True (there is no guards) and if all color mappings are only built with X, All and
!X basic mappings (no constants and no arbitrary mappings must appear on arcs).

Remark 3. The third point is used to ensure that we can always homogenize a simple
well-formed net; i.e. construct an equivalent model (or that perform a weak simulation
of the original one) but with a unique color domain for each place and each transition
(see subsection 3.5).

3 fi is an unitary application if ∀c ∈ Ci, |fi(c)| = 1

SWF nets are a restriction of well-formed nets [3]. In particular, we do not allow
guarded functions or additive composition of different instances of the same color
class (e.g. 〈X〉 + 〈Y 〉 is forbidden). However, the expressiveness provided by this
definition remains sufficient for modeling almost all problems. For instance, as said
previously, we use this formalism to model precisely the behavioral semantics of Ada
programs (with possible dynamics task creation) in order to analyze them.

We give now the definition of positive flows we will compute on SWF nets. This
definition restricts the “functional” structure of the flow to a regular one.

Definition 9 (Simple positive flows). A positive flow F on the color domain D
is said to be a simple positive flow if ∀p ∈ P , C(p) = D × C′

p (C(p) “includes” D),
Fp is a composition of a simple color function over C(p) using no constant with a
projection from D to C(p).

These restrictions are not very severe; indeed, the third last flows, presented with
model of figure 1 are simple positive flows. Furthermore, this definition provides two
advantages :

1. their definition uses only simple color mapping, and then, these positive flows can
be very easily interpreted or used by specific tools (like structural reductions):
they can characterize critical section (like F3 in the previous example), they can
also characterize process structure (F1) or the way resources are shared (F2);

2. they can be computed in a systematic way as we will see in the next section.

For more clarity, we use in positive flow notation a dot . to highlight the projection
from C(p) to the color domain of the flow. For instance, if the color domain of a
flow is D = C1 × C3 and the color domain of a place involved in the flow is C =
C1×C2×C1×C3, we will note 〈., ., X ′, Z〉 to denote the composition of the mapping
〈X, Y, X ′, Z〉 with the projection Π from C to D defined by Π(x, y, x′, z) = (x′, z).

Given an homogeneous SWF net we can construct from its incidence matrix W
the integer matrix Wn1,...,nk , indexed by (T ×C1× . . .×Ck) × (P ×C1× . . .×Ck)
and defined by :

Wn1,...,nk(t, c′1, . . . , c
′
k)(p, c1, . . . , ck) = W (t, p)(〈c′1, . . . , c

′
k〉)(〈c1, . . . , ck〉)

This construction consists only in “unfolding” color mapping that constitutes coef-
ficients of the matrix W . In the same way, it is possible to “unfold” a positive flow
F by building the set of integer vectors defined by all possible interpretations of the
colored flow. Indeed, given a positive flow F and an interpretation cinv we can define
the integer vector

−→
F cinv

indexed by (C1 × . . . × Ck × P) and defined by :

−→
F cinv

(c1, . . . , ck, p) = Fp(〈c1, . . . , ck〉)(cinv)

Using these notations we have by definition:

Proposition 1. F is a positive flow if and only if ∀cinv ∈ C, Wn1,...,nk .
−→
F cinv

= 0.

So, computing positive flows of a homogeneous colored net consists in solving the
system Wn1,...,nk .

−→
F cinv

= 0 with, for instance, the Farkas algorithm described in [4].
However, this raises two main drawbacks :

1. this calculation requires to fix the parameters which is then equivalent to unfold
the net and to compute positive flows in the unfolded net that is very inefficient;

2. as computed flows are integer vectors, it is very difficult to ”recolor” them in the
general case and leads to useless invariants.

We will prove that it is possible to solve this system in a parametric way
without unfolding the net. For doing that we first prove that incidence matrix can
be reordered in a “fractal” form.

3 Simple positive flows computation for SWF nets

In this section we propose to show how to compute a generative family of simple
positive flows in a SWF net. Note that the computed set generates all simple positive
flows but not all positive flows.

For this purpose, we first suppose that every considered net is homogeneous (we
provide, in the last subsection, the mechanism used to transform a simple well-formed
net into an homogeneous one). We show then that the constraints on SWF nets
mappings and on simple positive flows definitions lead to a system with a “fractal”
form which can be reduce to a set of non parametric equations.

We adopt the following notations :

– C = C1×C2×. . .×Ck denotes the common color domain of places and transitions;
– n1 = |C1|, n2 = |C2|, . . ., nk = |Ck|,
– Cj =

{

ci
j

}

i=1..nj
;

– ∀p ∈ P, ∀t ∈ T , W (t, p) = 〈w1(t, p), . . . , wk(t, p)〉 with for all i in [1..k], wi(t, p) =
ai(t, p).XCi

+ bi(t, p).AllCi
+ di(t, p).!XCi

– we compute positive flow on domain C; so we fix Cinv = C.
– if F =

∑

p Fp.p is a simple positive flow, we note Fp = 〈fp
1 , . . . , fp

k 〉 and fp
i =

αi.Xi + βi.Alli + γi.(!Xi);

– we note E = (lQ+)
P
;

3.1 Reordering equations

The matrix of an homogeneous SWF net can be defined by a recursive construction,
highlighting a ”fractal” form that can be used to define an efficient algorithm for
simple positive flow computation. In this construction, transitions are organized into
lines (corresponding to the equations of the system) and places into columns (corre-
sponding to the variables of the system). This construction is based on the notion of
block matrix that we recall now.

Definition 10 (Square block matrix). A matrix A = (ai,j) in INK.n×K.m is an
integer square block matrix if each ai,j is a m × n integer matrix or a square block
matrix (in which case, n = k′.n′ and m = k′.m′). We note A(i, j) = ai,j the item on
ith line and jth column.

Definition 11 (Matrix fractal form). A block matrix W = (wi,j) in INK.n×K.m

has a ”Simple Well Formed Net Fractal form” (or has a fractal form for short) if
there exist three matrices A, B, D with the same dimension such that :

1. matrices A, B, D are either three integer matrices or three block matrices with
also a fractal form;

2. items of W satisfy :

∀i, j ∈ 1..K, wi,j =

A + B if i=j
D + B if j=i+1 modulo n
B in other cases

For instance, if A, B, D are three integer matrices with the same dimension then the
following n × n matrix has a fractal form.

W =

(A + B) (D + B) B . . . B

B (A + B) (D + B) . . . B

.
. . .

.

B . . . B (A + B) (D + B)
(D + B) B . . . B (A + B)

Consider now an homogeneous SWF net (W is its incidence matrix). Remember
that k denotes the number of classes of the net and then, the number of different
parameters of the system and that W (t, p) = 〈w1(t, p), . . . , wk(t, p)〉 with for all i in
[1..k], wi(t, p) = ai(t, p).XCi

+ bi(t, p).AllCi
+ di(t, p).!XCi

.

Definition 12 (Extracting a fractal form of a homogeneous SWF net).
Given v ∈ [1..k+1], and three sets IA, IB, ID ⊆ {n1, n2, . . . , nk} we define the integer
or block matrix W IA,IB ,ID

v recursively by :

– if v = k + 1 then W IA,IB ,ID

k+1 = (wt,p) is the T × P integer matrix

wt,p =
∏

i∈IA

ai(t, p).
∏

j∈ID

dj(t, p).
∏

l∈IB

bl(t, p) 4

– if v ≤ k, then W IA,IB ,ID
v = (wi,j) is the nv × nv square block matrix defined by

wi,j =

W
IA∪{v},IB ,ID

v+1 + W
IA,IB∪{v},ID

v+1 if i=j

W
IA,IB ,ID∪{v}
v+1 + W

IA,IB∪{v},ID

v+1 if j=i+1 modulo nv

W
IA,IB∪{v},ID

v+1 in other cases

We note W ′ the square block matrix W ∅,∅,∅
1 and when there is no ambiguity, we

note A = W
{1},∅,∅
2 , B = W

∅,{1},∅
2 and D = W

∅,∅,{1}
2 .

Proposition 2. We have the following results :

1. The two matrices W and W ′ are equivalent for defining a SWF homogenous net;
i.e. ∀p ∈ P, ∀t ∈ T , ∀c = 〈c1, . . . , ck〉 ∈ C, ∀c′ = 〈c′1, . . . , c

′
k〉 ∈ C, we have

W ′(c1, c
′1)(c2, c

′2) . . . (ck, c′k)(t, p) = W (t, p)(c′)(c).
2. The matrix W ′ has a fractal form (as soon as k ≥ 1).

4 In this product we use the convention that a product on the empty set equals 1
(
∏

i∈∅
f(i) = 1)

Proof. Point 2 is a direct consequence of the definition of W ∅,∅,∅
1 . For proving point

1, it sufficient to note that W (t, p)(〈c1, . . . , ck〉) = 〈w1(t, p)(c1), . . . , wk(t, p)(ck)〉 and
that wi(t, p)(ci)(c

′
i) = bi(t, p) + δci,c

′
i
.ai(t, p)+ δci,!c′i

.di(t, p) where δ is the Kronecker
symbol defined by δci,c

′
i
= 0 if ci 6= c′i and δci,ci

= 1; it comes that

W (t, p)(〈c1, . . . , ck〉)(〈c
′
1, . . . , c

′
k〉) = Πi=1..k(bi(t, p) + δci,c

′
i
.ai(t, p) + δci,!c′i

.di(t, p))

Now remark that when cv = c′v we have added v to the set IA, when cv =!c′v we have
added v to the set ID and that we use these sets to compute the integer values of
the latest matrices and we obtain the result.

2

If we consider an homogeneous SWF net with two classes (two parameters), the
incidence matrix can be written :

W =

(A + B) (D + B) B . . . B
B (A + B) (D + B) . . . B

.
. . .

.

B . . . B (A + B) (D + B)
(D + B) B . . . B (A + B)

with

A = W
{1},∅,∅
2

=

(AA + AB) (AD + AB) AB . . . AB
AB (AA + AB) (AD + AB) . . . AB

.
. . .

.

AB . . . AB (AA + AB) (AD + AB)
(AD + AB) AB . . . AB (AA + AB)

B = W
∅,{1},∅
2

=

(BA + BB) (BD + BB) BB . . . BB

BB (BA + BB) (BD + BB) . . . BB

.
. . .

.

BB . . . BB (BA + BB) (BD + BB)
(BD + BB) BB . . . BB (BA + BB)

D = W
∅,∅,{1}
2

=

(DA + DB) (DD + DB) DB . . . DB

DB (DA + DB) (DD + DB) . . . DB

.
. . .

.
DB . . . DB (DA + DB) (DD + DB)

(DD + DB) DB . . . DB (DA + DB)

and with

– AA(t, p) = a1(t, p).a2(t, p), AB(t, p) = a1(t, p).b2(t, p), AD(t, p) = a1(t, p).d2(t, p)
– BA(t, p) = b1(t, p).a2(t, p), BB(t, p) = b1(t, p).b2(t, p), BD(t, p) = b1(t, p).d2(t, p)
– DA(t, p) = d1(t, p).a2(t, p), DB(t, p) = d1(t, p).b2(t, p), DD(t, p) = d1(t, p).d2(t, p)

3.2 Reordering solutions and simplifying equations

First, note that any simple positive flow F can be written in a unique way as a
sum F<> = 〈X1, X2, . . . , Xk〉f1 + 〈X1, X2, . . . , !Xk〉f2 + 〈X1, X2, . . . , Allk〉f3 + . . . +
〈All1, All2, . . . , Allk〉f3k with fi integer vectors over P .

Second, remark that the reorganization performed on the incidence matrix can
also be applied to the solutions of the studied system (and we need to do it).

Indeed, a positive flow F (in a functional form) defines for each value cinv ∈ C a

developed vector
−→
F cinv

in En1×...×nk . Remark also that this vector can be viewed as
a vector of (En2×...×nk)

n1 i.e. a vector of size n1 with each component in En2×...×nk .

−→
F cinv =

−−→
F [1]

cinv

...
−−−→
F [n1]cinv

with ∀i ∈ 1..n1,

−−→
F [i]

cinv
(c2, . . . , ck, p) =

−→
F cinv (ci

1, c2, . . . , ck, p)

As we restrict positive flow computation to simple positive flow computation we can
use the particular form of such vector and write them in a ”parametric” form.

Proposition 3. Given a simple positive flow F and a color interpretation cinv,

then
−→
F cinv

has a unique decomposition :

−→
F cinv =

0
...

0
FX

0
...

0

+

0
...

0
0

F!X

...

0

+

FAll

...

FAll

FAll

FAll

...

FAll

where FX , F!X and FAll are three En2×...×nk vectors depending on the value of
{αp

i }p
for FX , of {γp

i }p
for F!X and of {αp

i , γ
p
i , βp

i }p
for FAll, and such that if,

cinv = 〈ci
1, c2, . . . , ck〉, then FX is on the ith row and F!X is on the (i + 1)

th
row.

Proof. Let cinv = 〈c′i1 , c′2, . . . , c
′
k〉 and j, j′ ∈ 1..n1 both distinct of i and i+1. Suppose

that
−→
V is the vector defined by

−→
V =

−−→
F [j]cinv

−
−−→
F [j′]cinv

. We have ∀p, c2, . . . , ck,
−→
V (p, c2, . . . , ck) =

−→
F cinv

(p, cj
1, c2, . . . , ck) −

−→
F cinv

(p, cj′

1 , c2, . . . , ck).

So,
−→
V (p, c2, . . . , ck) = Fp(〈c

j
1, . . . , ck〉)(cinv) −Fp(〈c

j′

1 , . . . , ck〉)(cinv) that can be

written 〈fp
1 (cj

1, c
i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c′k)〉 − 〈fp

1 (cj′

1 , ci
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c′k)〉.

As j and j′ are both distinct of i and i + 1 it comes that fp
1 (cj

1, c
i
1)− fp

1 (cj′

1 , ci
1) = 0

and then
−→
V =

−→
0 . We note FAll the vector

−−→
F [j]cinv

.

Let then
−→
VX the vector defined by

−→
VX =

−−→
F [i]cinv

−
−−→
F [j]cinv

. Using a same ar-

gumentation it comes that
−→
VX(p, c2, . . . , ck) = 〈fp

1 (ci
1, c

i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c′k)〉

− 〈fp
1 (cj

1, c
i
1), f

p
2 (c2, c

′2), . . . , fp
k (ck, c′k)〉. As fp

1 (ci
1, c

i
1)− fp

1 (cj
1, c

i
1) = αp

i we can note
FX = VX . We can proceed also to the same construction for defining in an unique
way F!X = V!X .

2 2

Now, if we combine the regular fractal form of a SWF homogeneous net with the
particular form of simple positive flows, we can simplify the system that has to be
solved.

Proposition 4. Using previous notations we have that Wn1,...,nk
.
−→
F cinv

= 0 iff :

B.FAll = A.F!X = D.FX = A.FX + D.F!X = B.(FX + F!X) + (A + D).FAll = 0

Proof. The system can be written

(A + B) (D + B) B . . . B

B (A + B) (D + B) . . . B

.
. . .

.

B . . . B (A + B) (D + B)
(D + B) B . . . B (A + B)

.

FAll

...

FAll

FX + FAll

F!X + FAll

...

FAll

= 0

Since simple positive flows are defined only with integer vectors (they don’t use
n1 as coefficient) and since a simple positive flow defines solutions for any value of
n1, it comes that B.FAll = 0. If we develop now equations (and using the fact that
B.FAll = 0), we obtain only four distinct equations :

– (A + D).FAll + B.(FX + F!X) = 0;
– (A + B).FX + (B + D).F!X + (A + D).FAll = 0;
– B.FX + (A + B).F!X + (A + D).FAll = 0;
– (B + D).FX + B.F!X + (A + D).FAll = 0.

By subtracting the first one to the others we obtain the result. Now, if FX , FAll

and F!X fulfill the previous equation it is clear that the vector
−→
F cinv

is solution of
−→
F cinv

= 0 (whatever the positive value of n1 is).
2 2

3.3 Computing simple positive flow in the homogenous case

We are now in position to propose an algorithm for computing simple positive flow
for an homogeneous SWF net. For doing that we need to define two matrices op-
erators : the first one, the ”stacking” operator define how to stack matrices of the
same dimension. The second one, the ”juxtaposition” operator, define how to put
side by side matrices of the same dimension. These two operators differ from classi-
cal ones in the sense that they keep the fractal structure of matrices when stacking
or juxtaposing them.

Definition 13 (Stacking and juxtaposing matrices). Let W 1 = [w1
i,j]i∈[1..n],j∈[1..m],

. . ., W q = [wq
i,j]i∈[1..n],j∈[1..m] q matrices.

1. If W 1, . . . , W q are all integer matrices then
– the stacking of W 1, . . . , W q, noted

[

W 1/ . . . /W q
]

, is the matrix [si,j]i∈[1..q.n],j∈[1..m]

(m columns and q.n lines) with s(q.i)−r,j = wq−r
i,j , r ∈ 0..q − 1.

– the juxtaposition of W 1, . . . , W q, noted
[

W 1| . . . |W q
]

, is the matrix [si,j]i∈[1..n],j∈[1..q.m]

(n lines and q.m columns) with si,(q.j)−r = wq−r
i,j , r ∈ 0..q − 1.

2. If W 1, . . . , W q are all block matrices (their items are others matrices) then
– the stacking of W 1, . . . , W q, noted

[

W 1/ . . . /W q
]

, is the matrix [si,j]i,j∈[1..n]

recursively defined by si,j =
[

w1
i,j/ . . . /wq

i,j

]

– the juxtaposition of W 1, . . . , W q, noted
[

W 1| . . . |W q
]

, is the matrix [si,j]i,j∈[1..n]

recursively defined by si,j =
[

w1
i,j | . . . |w

q
i,j

]

Remark 4. As a vector can be seen as a single column matrix, these two operators
can also be applied to vectors.

Proposition 5. If W 1, . . . , W q are fractal matrices of the same dimension then
[

W 1/ . . . /W q
]

and
[

W 1| . . . |W q
]

are also fractal matrices.

Using these operators, we can rewrite previous system.

Proposition 6. Using previous notations, we have that Wn1,...,nk
.
−→
F cinv

= 0 iff :

[

[0|0|B] / [0|A|0] / [D|0|0] / [A|D|0] / [B|B|A + D]
]

.
[

FX/ F!X/ FAll

]

= 0

Proof. A direct consequence of the operators definition.
2 2

We propose now an algorithm that computes a generative family of simple positive
flows. Input of this algorithm is either an integer matrix and a set Parameters reduced
to the empty set (no parameterized system) or a fractal block matrix with a set
Parameters compatible with W (the size of W has the size n1 × n1 and each items
is either an integer matrix or a fractal one with the size n2 × n2 and so on). The
output is either a set of integer vectors (when Parameters is reduced to the empty
set) or a set of formal sums F<> = 〈X1, X2, . . . , Xk〉f1 + 〈X1, X2, . . . , !Xk〉f2 +
〈X1, X2, . . . , Allk〉f3 + . . . + 〈All1, All2, . . . , Allk〉f3k with fi integer vectors over P
that generate simple positive flows.
Algorithm 1 : Simple Positive Solutions(W, Parameters = {n1, . . . , nk})

If (Parameters = ∅) Then

+ return {X |W.X = 0} – integer vectors computed with the Farkas algorithm

Else
+ Construct the fractal matrix W ′ defined by 5

W ′ =
[

[0|0|B] / [0|A|0] / [D|0|0] / [A|D|0] / [B|B|A + D]
]

+ Compute the set SF of solutions of the system W ′.
[

FX/ F!X/ FAll

]

= 0.
with this algorithm : SF := Simple Positive Flows(W’,{n2, . . . , nk}) 6

+ Return the set of formal sums

{

F = XC1
.FX + AllC1

.FAll+!XC1
.F!X ,

[

FX/ F!X/ FAll

]

∈ SF
}

End if;

Proposition 7. The set computed by the previous algorithm defines a generative
family of simple positive flows (of a SWF net).

Proof. By recurrence on the set Parameters :

1. if Parameters = ∅ then the set computed is a generative family since we use the
Farkas algorithm;

5 as previously, we note A, B and D the blocks of the fractal matrix W
6 if k < 2, then {n2, . . . , nk} = ∅

2. Suppose that given any fractal matrix W ′ and a compatible set {n2, . . . , nk} the
previous algorithm computes a generative family of simple positive flows.
(a) formal sums computed by the algorithm define simple positive flows of net

defined by W . Indeed, recurrence hypothesis combined with proposition 6
ensure that we effectively compute simple positive flows.

(b) the set is generative. Indeed, let F0 be a simple positive flow. Using propo-

sition 3, any interpretation
−→
F0cinv

of F0 can be written with F0X , F0All

and F0!X as defined in this proposition. Using the proposition 6, we ob-
tain that W ′.

[

F0X/ F0!X/ F0All

]

= 0. By recurrence hypothesis, as we

compute a generative family of solutions of W ′.
[

FX/ F!X/ FAll

]

= 0 then
[

F0X/ F0!X/ F0All

]

is generated by this set and then all interpretation of
F0 is generated by the set computed. So, formal sums computed by the pre-
vious algorithm generate all simple positive flows of the SWF net defining by
the fractal matrix W .

2 2

If we note KP×T the complexity of the Farkas algorithm for a net with P places
and T transitions, then the complexity of the previous algorithm is K3k.P×5k.T with
k the number of classes of the net. However, as matrices built by the algorithm are
very sparce, first results we obtained seem to prove that the algorithm behaves as its
complexity was 2k.KP×T which is a good complexity since, even for very complex
models, k remains lower than 5.

3.4 Dealing with non homogeneous SWF nets

Suppose now that the net is not homogeneous. In order to use previous algorithm, we
have to homogenize the net. Two different cases have to be considered : 1) a transition
has a color domain larger than its adjacent places (the contrary is not possible due to
the definition of SWF nets); 2) a color mapping use a constant value or an arbitrary
mapping. In order to make homogeneous the studied net we proceed in two steps :

1. as soon as a constant mapping (of a class C) or an arbitrary mapping appears
on an arc valuation, we replace all mappings on this class by the mapping AllC ;
this replacement leads to a synchronization loosening and then the obtained net
makes a weak simulation of the original one. So, all computed flows in this net are
also flows of the original one 7. Furthermore, as we forbid the mixing of constant
and of the mapping AllC in the simple well-formed net definition, we have not to
fix the parameter size of C (which would be necessary if we need to homogenize
an arc with mapping AllC since it would be replaced by |C|.AllC).

2. compute the lowest common multiple (Clcm) of color domain (by extending clas-
sical multiplication and division to product of classes) and extend color domain of
each place (and of each transition) such that their color domain equals Clcm. Mod-
ify also accordingly the original marking. For instance, the lcm of C1 ×C1 ×C2,
C1 × C2 × C3 and C3 × C3 is C1 × C1 × C2 × C3 × C3. Suppress in each flow
computed the additive color part. As these transformations do not modify the
behavior of the model it is clear that computed positive flows by this manner are
those of the original model.

7 It is possible to treat cleverly constant mapping.

For instance, consider the simple well-formed net depicted in Figure 2 that models
an atomic assignment Free := f(Id, X) where f is an arbitry Ada boolean function
and where places Write models a read-write lock.

< 0 > <X>
Write : C_Int Free : C_Bool

<id>

<True><0>
<id>

<1>
V.Call : C_Id

V.Return : C_Id < f(Id, X) >

Fig. 2. A simple net

<All> <All>

<All>

Write : C_Int Free : C_Bool

<id>

<All>
<id>

<1>

<All>

V.Call : C_Id

V.Return : C_Id

Fig. 3. The previous net after a first homogenization

The first step (constant and arbitrary mapping homogenization) produces the
model depicted Figure 3. The lowest common multiple color domain is C Id×C Int×
C Bool. After homogenization of the net we obtain the model depicted in Figure 4.
On can remark that information concerning color domain C Bool have been forgotten
by the homogenization process (and that the model is quite less readable).

Once homogenization is done, one can compute positive flow : for instance the sum
〈X, All, All〉.(V.Call + V.Return) defines a simple positive flow of the latest model.
In order to obtain positive flows of the original model it’s sufficient to suppress
carefully color part added for homogenization : for the previous invariant, we obtain
the ”correct” positive flow 〈X〉.(V.Call + V.Return).

3.5 Example

Consider again the net of figure 1. Its incidence matrix after homogenization is:

C = C_Id x C_Int x C_Bool

Free : CWrite : C
<All, All, All>

<id, All, All>

<All, All, All>

<All, All, All>
<All, All, All>

<id, All, All>

<All, All, All>

<1, All, All>
V.Call : C

V.Return : C

Fig. 4. The previous net homogenized

W =

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs −〈X〉 〈X〉 0 0 0 0 0 −〈All〉
takeL 0 −〈X〉 〈X〉 0 0 0 −〈X〉 0
takeR 0 0 −〈X〉 〈X〉 0 0 −〈!X〉 〈All〉
giveL 0 0 0 −〈X〉 〈X〉 0 〈X〉 0
giveR 0 0 0 0 −〈X〉 〈X〉 〈!X〉 0
end 〈X〉 0 0 0 0 −〈X〉 0 0

The corresponding matrices A, B and D are :

A =

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs −1 1 0 0 0 0 0 0
takeL 0 −1 1 0 0 0 −1 0
takeR 0 0 −1 1 0 0 0 0
giveL 0 0 0 −1 1 0 1 0
giveR 0 0 0 0 −1 1 0 0
end 1 0 0 0 0 −1 0 0

B =

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs 0 0 0 0 0 0 0 −1
takeL 0 0 0 0 0 0 0 0
takeR 0 0 0 0 0 0 0 1
giveL 0 0 0 0 0 0 0 0
giveR 0 0 0 0 0 0 0 0
end 0 0 0 0 0 0 0 0

D =

Thinking Att1 Att2 Eating Ending1 Ending2 Forks Chairs

TakeChairs 0 0 0 0 0 0 0 0
takeL 0 0 0 0 0 0 0 0
takeR 0 0 0 0 0 0 −1 0
giveL 0 0 0 0 0 0 0 0
giveR 0 0 0 0 0 0 1 0
end 0 0 0 0 0 0 0 0

Applying algorithm of page 13 leads to 6 flows:

– F1 = 〈X〉.Thinking + 〈X〉.Att1 + 〈X〉.Att2 + 〈X〉.Eating + 〈X〉.Ending1 +
〈X〉.Ending2

– F ′
1 = 〈!X〉.Thinking + 〈!X〉.Att1 + 〈!X〉.Att2 + 〈!X〉.Eating + 〈!X〉.Ending1 +

〈!X〉.Ending2
– F ′′

1 = 〈All〉.Thinking+〈All〉.Att1+〈All〉.Att2+〈All〉.Eating+〈All〉.Ending1+
〈All〉.Ending2

– F2 = 〈!X〉.Forks + 〈!X〉.Att2 + 〈!X〉.Eating + 〈X〉.Eating + 〈X〉.Ending1
– F3 = 〈All〉.Att1 + 〈All〉.Att2 + 〈X〉Chairs F ′

3 = 〈All〉.Att1 + 〈All〉.Att2 +
〈X !〉Chairs

This example emphasizes that, in many cases, our algorithm computes a genera-
tive family of all positive flows. However, it underlines also two difficulties associated
to our method. First we compute useless flows such as F ′

1, F
′′
1 or F ′

3; indeed, as soon
as 〈XC〉.F is a flow 〈X !C〉.F and 〈All〉.F are also two flows and if 〈XC〉.F +〈X !C〉.F ′

is a flow then 〈All〉.(F + F ′) is also a flow. Our first experimentations show that we
compute in average one useless flow per flow and per color domain. As the complexity
of the Farkas algorithm depends principally on the number of solution, our method
behaves as if we compute positive flows on a net two times bigger than the original
one. We are studying algorithm heuristics to solve this slight problem. The second
problem is that, by definition, some positive flows cannot be computed. For instance,
a flow involving three different colors (X , X ! and X !!) or a flow using the cardinal
of a class as weight (n1.〈X〉.F) are not simple positive flows and thus, are not com-
puted. If we don’t foresee now a solution to include parameters in flows definition, we
can easily adapt the definition and the associated computation algorithm of simple
positive flows to take into account more complex flows.

4 Conclusion

We have proposed an algorithm that computes a generative family of particular but
useful positive flows of a slightly restricted subclass of colored nets. This algorithm is
being implemented in our tool Helena [9] (http://helena.cnam.fr) and its distributed
version Cyclades [22]. It will be used to enforce structural techniques, such as struc-
tural reductions, stubborn sets computation or distributed partitioning used in these
tools to verify concurrent programs in the Quasar project (http://quasar.cnam.fr).

The way we define our algorithm allows its extension to other kinds of nets as soon
as they provide some regularity. For instance, it can be immediately adapted to deal
with all non guarded mappings used in normalized symmetric nets definitions[18].

Remark for the reviewers: the length of the paper may be easily reduced by
compacting some matrices and/or suppressing proofs and replacing them by a citation
of a technical report accessible on our web site.

References

1. G. Berthelot. Checking properties of nets using transformations. In G. Rozenberg,
editor, Advances in Petri nets, volume No. 222 of LNCS. Springer-Verlag, 1985.

2. E. Bruneton and J.F. Pradat-Peyre. Automatic verification of concurrent ada programs.
In Michael Gonzalez Harbour and Juan A. de la Puente, editors, Reliable Software
Technologies-Ada-Europe’99, number 1622 in LNCS, pages 146–157. Springer-Verlag,
1999.

3. C. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed colored nets
and their symbolic reachability graph. In ICATPN, Paris-France, June 1990.

4. J. M. Colom and M. Silva. Convex geometry and semiflows in P/T nets. A comparative
study of algorithms for computation of minimal P-semiflows. Lecture Notes in Computer
Science; Advances in Petri Nets 1990, 483:79–112, 1991. NewsletterInfo: 33,39.

5. J. M. Couvreur, S. Haddad, and J. F. Peyre. Computation of generative families of
positive semi-flows in two types of coloured nets. In Proceedings of the 12th International
Conference on Application and Theory of Petri Nets, 1991, Gjern, Denmark, pages 122–
144, June 1991. NewsletterInfo: 39.

6. J. M. Couvreur, S. Haddad, and J. F. Peyre. Generative families of positive invariants
in coloured nets sub-classes. Lecture Notes in Computer Science; Advances in Petri
Nets 1993, 674:51–70, 1993.

7. J.M. Couvreur. The general computation of flows for coloured nets. In proc of the 11th
International Conference on Application and Theory of Petri-Nets, Paris, June 1990.

8. J.M. Couvreur and S. Haddad. Towards a general and powerful computation of flows
for parameterized coloured nets. In 9th European Workshop on Application and Theory
of Petri Nets, volume II, Venice (Italy), June 1988.

9. S. Evangelista. Helena, an efficient high level Petri nets analyser. Technical report,
CEDRIC, CNAM, Paris, 2004.

10. S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. New coloured reductions for software
validation. In Workshop on Discrete Event Systems, 2004.

11. S. Evangelista, C. Kaiser, C. Pajault, J. F. Pradat-Peyre, and P. Rousseau. Dynamic
tasks verification with quasar. In Reliable Software Technologies - Ada-Europe 2005,
volume 3555 of LNCS. Springer-Verlag, 2005.

12. S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar: a new tool for
analysing concurrent programs. In Reliable Software Technologies - Ada-Europe 2003,
volume 2655 of LNCS. Springer-Verlag, 2003.

13. J. Ezpeleta, F. Garćıa-Vallés, and J. M. Colom. A class of well structured petri nets
for flexible manufacturing systems. Lecture Notes in Computer Science: 19th Int. Conf.
on Application and Theory of Petri Nets, ICATPN’98, Lisbon, Portugal, June 1998,
1420:64–83, June 1998.

14. F. Garcia-Valles and J. M. Colom. Implicit places in net systems. In Proc. 8th Int. Work-
shop on Petri Net and Performance Models (PNPM’99), 8-10 October 1999, Zaragoza,
Spain, pages 104–113, 1999.

15. H. J. Genrich and K. Lautenbach. S-invariance in predicate/transition nets. In Pagnoni,
A. and Rozenberg, G., editors, Informatik-Fachberichte 66: Application and Theory of
Petri Nets — Selected Papers from the Third European Workshop on Application and
Theory of Petri Nets, Varenna, Italy, September 27–30, 1982, pages 98–111. Springer-
Verlag, 1983.

16. S. Haddad and C. Girault. Algebraic structure of flows of a regular coloured net.
Lecture Notes in Computer Science: Advances in Petri Nets 1987, 266:73–88, 1987.
NewsletterInfo: 27.

17. Serge Haddad and Jean-François Pradat-Peyre. New efficient petri nets reductions for
parallel programs verification. Parallel Processing Letters, 16(1):101–116, 2006.

18. Lom Hillah, Fabrice Kordon, Laure Petrucci-Dauchy, and Nicolas Trèves. Pn standard-
isation: A survey. In FORTE’06, pages 307–322, 2006.

19. K. Jensen. Coloured Petri nets and the invariant method. In T.C.S., volume 14, pages
317–336, 1981.

20. G. Memmi and J. Vautherin. Computation of flows for unary-predicates/transition nets.
Lecture Notes in Computer Science: Advances in Petri Nets 1984, 188:455–467, 1985.

21. T. Murata. Petri nets : properties, analysis and applications. In proceedings of the IEEE
Vol 77, number 4, pages 39–50, January 1989.

22. C. Pajault and J.F. Pradat-Peyre. Distributed colored petri net model-checking with
cyclades. volume 4346 of Lecture Notes in Computer Science. Springer-Verlag, 2006. to
appear.

23. W. Reisig. EATCS-An Introduction to Petri Nets. Springer-Verlag, 1983.
24. Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer Science,

80:1–34, 1991. NewsletterInfo: 38,39.
25. M. Silva Suarez, J. Martinez, P. Ladet, and H. Alla. Generalized inverses and the calcu-

lation of symbolic invariants for colored petri nets. Technique et Science Informatiques,
4(1):113–126, 1985. NewsletterInfo: 16,21,22.

26. J. Vautherin. Calculation of semi-flows for pr/T-systems. In Int. Workshop on Petri
Nets and Performance Models, Madison, Wisconsin, pages 174–183, Washington, 1987.
IEEE Computer Society Press. NewsletterInfo: 29.

