
Query rewriting for
open XML data integration systems

Abstract
This paper presentsOpenXView, a model for open XML data integration systems, characterized by theautonomy

of usersthat publish XML data on a common topic. Autonomy impliesfrequent and unpredictable changesto data and
a high degree of structure heterogeneity. The OpenXView model provides an original integration schema, based on
a hybrid ontology - XML schema structure. We propose solutions for two important problems in such systems:easy
access to datathrough a simple query language over the common schema andsimple integration view management
when data changes. This paper focuses on the query rewritingproblem in OpenXView, for which existing algorithms
are not suitable, and proposes a query translation algorithm.

Keywords: XML, heterogeneous data integration, ontology, query rewriting, local-as-view

1 Introduction

Many companies are now considering storing their data in XMLrepositories. Hence, the integration and transforma-
tion of such data has become increasingly important for applications that need to support their users with querying
environments.

We address here the problem of XML data integration in a particular context. First, we are interested inopen
integration systems, where users may freely publish data inthe system, in order to share information on common
interest topics. A typical example is peer-to-peer [8] communities, initially sharing multimedia files, but currently
focusing more and more on structured content, such as XML data. The key characteristic of open integration systems
is user autonomyin publishing data.Frequent and unpredictable changesto data and schemas, as users publish new
information is a first consequence of user autonomy. The other important effect of autonomy isdata heterogeneity, for
documents coming from different users, that have independently designed the structure of their documents.

The data integration modelwe have chosen for solving this XML data integration problemis novel. Usually, the
common (target) schema for XML data integration is either a tree-like XML schema, or an ontology. In the former
case, the advantage is a low model mismatch, i.e. a good adequacy of the common schema model with source data
and with query results (XML data). The drawbacks are a limited semantic expressiveness and some rigidity in data
typing at query processing: the system often matches only results that preserve in sources the same relations between
the queried elements in the common schema. Ontologies eliminate these drawbacks, but the model mismatch between
XML schemas and ontologies complexifies the expression of mappings between sources and the common model.

We propose a model that combines the advantages of ontologies and XML schemas, by defininga hybrid integra-
tion schema: a simple ontology, where concepts have properties organized in hierarchies (such as in XML schemas),
but may be connected through two-way “relatedTo” relationships, more flexible at query processing.

On the source side, users publish XML schemas and documents.We introduced in [1] the notion ofPhysical
Data View(PDV), better adapted to data integration than the XML schemas published by the sources. A PDV is a
view on a real schema; it has a tree-like structure, gathering access paths to useful nodes in the real schema, and
mappings between this tree and the ontology graph. Mappingsare expressed through simple two-way, node-to-node
correspondences between PDV and ontology nodes. The difference between a published XML schema and a PDV is
subtle. On the one hand, even if not mandatory, a PDV may discard useless nodes in the XML schema, by removing
subtrees or by replacing a path between two nodes by a single “//” edge. Removing nodes helps improving schema
management, storage and query processing. The PDV tree is actually a data guide, a summary of access paths to
nodes useful for queries. On the other hand, PDVs produced from source XML schemas, unlike these schemas,
providea unique wayto translate user visible ontology nodes, by associating with each ontology nodeat most one
node in a single PDV. This implies that a published XML schemamay produce several PDVs. Each time a schema
is published, the system must assist the user to generate PDVs, through semi-automatic procedures. This additional
effort at publishing time is largely justified by the effort saved at query rewriting time, when heavy combinatorial
computation and possibly wrong rewritings are avoided.

Figure 1 illustrates the difference between PDVs and XML schemas through a simple example. The ontology
contains a single concept (Artist) with three properties (name, country, birth date). The published XML schema is a
tree containing information about two kinds of artists: filmdirectors and actors. Two PDVs are obtained from this
schema, so as to dissociate directors from actors both mapped to concept Artist in the ontology, each one providing

Artist

name country birthdate name birthdate country

director
actor

name country

title
movie

cast

role

name birthdate country

director actor

name country

Physical data views (PDV)

//

XML document schemaOntology

//

PDV1 PDV2

Figure 1: XML document schema vs Physical Data View

a unique translation for the artist (possibly incomplete, e.g. actors lack birth date). Useless nodes are removed from
each PDV; this produces a “//” edge above the root: e.g, nodesmovie, castandrole removed when creating PDV2.

We present in this paper theOpenXViewmodel for open XML data integration. The model aims atsimplified
access to data through queries, combined withsimplified management of the data integration view.

Users access data by expressing queries over the common ontology structure ina very simple query language,
based on projections and selections over ontology nodes. Besides the advantage, common to all data integration
models, of not requiring knowledge about heterogeneous andchanging source schemas, OpenXView avoids also the
need of mastering the subtleties of XML query languages. Querying OpenXView asks no more expertise than querying
a single relational table. Not only novice users benefit fromthis simplicity, but also application developers.

Simple management of the data integration process is very important for open systems, because of their contin-
uously and unpredictably content changing. Unlike relational integration systems [5], the OpenXView view is not
defined by a query, but rather as a set of one-to-one mappings between source and target schema nodes. The advantage
of such a mapping-based view is that it can be semi-automatically generated [14, 13] at publishing time and that it is
simpler to visualize and to modify through graphical user-friendly tools. Moreover, OpenXView uses alocal-as-view
integration model, in which local sources are defined as views over the global ontology schema. This simplifies change
management, as publishing/modifying a source only interacts with the global schema, not with the other sources.

This paper focuses onthe query rewriting problemin the OpenXView system. Given a simple “select-where”
queryQ on the ontology, the system translatesQ into a query expressionQ′ that refers only to PDV structures issued
from published schemas, and such that answers toQ′ are a subset of answers toQ. Q′ contains three main query
operations: (i)structured tree-queriesexpressed on PDV trees, to filter and get data from documents1, (ii) joins,
because the queried elements may not exist all in the same PDV, and (iii) unions, because there are several ways
to answer the query. Unlike existing models, where joins areexplicitly expressed in the query or in mappings, in
OpenXView joins are implicit, based onconcept keysdefined in the common ontology. The canonical form ofQ′ is
a union of all the possible joins between PDVs that provide the queried elements. We propose in this paper several
algorithms for query rewriting in OpenXView.

The main contributions of this paper are:
• An original model, called OpenXView, for open XML data integration systems, i.e. adapted to heterogeneous

and changing XML content. Based on a hybrid common schema (ontology - XML structure), OpenXView
provides both easy querying and simple maintainance of the integration view.

• An algorithm for query rewriting in OpenXView, in a context where existing algorithms are not suitable.

The paper is organized as follows. Section 2 presents related work, then Section 3 defines the data model. Section
4 presents the query rewriting algorithm, Section 5 describes experimental tests and Section 6 concludes the paper.

2 Related Work
The query translation problem in OpenXView is a particular case of query rewriting using views [3, 5]. PDVs are
views over the global ontology, defined through mappings, and the goal is to rewrite the simple “select-where” query
on the ontology schema into a union of joins of tree-queries over PDVs.

Many approaches for query rewriting have been studied underdifferent assumptions on the form of the query and
the views, most of them for the relational model: query rewriting in description logic [4], recursive queries [11], con-
junctive queries and views [5], etc. Significantly less results emerged for semistructured data, most of them focusing
on points different from the aspects addressed in our present work: XPath queries and views for caching [15], results
restructuring [17], translation to SQL queries [10].

Among query rewriting algorithms, we best compare to the Bucket [5] and MiniCon [12] algorithms. Even though
they concern a different model (relational data, explicit joins in queries), the translation process is similar and pro-
duces a union of joins. Unlike Bucket/MiniCon, we reduce thenumber of rewritings to a reasonable subset, by only
considering minimal rewritings. Experimental comparisonbetween our algorithm and the Bucket strategy adapted to
OpenXView shows better performances for our algorithm if the number of sources is large.

Mixing tree structures and graph ontologies was rarely proposed for the integration model. [2] uses a graph
ontology, but extracts trees from it for query processing and [6] introduces more flexibility in tree structures. Query

1From PDVs’construction, it follows that a tree-query on a PDV is a tree-query on a the published schema it is constructed from.

Games

Game

id(@) info Stadium
address name(@)

//

//

StadiumEncyclopedia

Stadium

addressname

//

capacity

Winner
Team(@) NbOfGoals

Ontology

biography

Game

date

Team

Scorercapacityname id name

name

Stadium

Physical Data Views

Mappings

................

stadium address

FootballGamesHistory

Team
name(@)

date(@)event

capacity Goals

Pdv3

Pdv1

Pdv2

Pdv4

Pdv5

Pdv3:/Games//Game//Stadium/address
Pdv2:/StadiumEncyclopedia//Stadium/address,

Pdv2:/StadiumEncyclopedia//Stadium/capacity,
Pdv4://ChampionsLeague/Stadium/capacity,
Pdv5://WorldCupContention/Stadium/capacity}

Pdv5://WorldCupContention/Stadium/
Winner/NbOfGoals}

O:Stadium/address−−> {Pdv1:/FootballGamesHistory/event/address,

 O:Stadium/capacity −−>{Pdv1:/FootballGamesHistory/event/capacity,

{Pdv1:/FootballGamesHistory/Team/Goals,
Pdv4://ChampionsLeague/Game/NbOfGoals,

address

city zipCode

description nbOfGoals

nbOfGoals

O:Game/description −−>{Pdv3:/Games//Game/info}

O:Team/nbOfGoals −−>

date Stadium

address

//

capacityname(@)

WorldCupContention

Game

reference

ChampionsLeague

GameStadium

name(@) capacity

//

id TeamName NbOfGoals

Pdv5:/WorldCupContention/Stadium/address}

Figure 2: An example of ontology, Physical Data Views (PDV) and mappings

simplification over XML data, similarly to our approach, wasstudied in [9], where queries use tag names only, and
[16], where an annotated XML structure is used to generate query form applications. None is adapted to changing,
heterogeneous data.

OpenXView is related to previous work of the authors [1], where the system aimed at query simplification over
heterogeneous XML data with few changes. It was advocated in[1], that query rewriting can be strongly simplified
by fixing in advance unions and joins in the integration view,which is unrealistic in open systems.

3 The Data Model
Definition 1 An OpenXView ontology is a labeled directed graph, such that:

• It contains two kinds of nodes:concepts, having unique names, and conceptproperties. Each concept has a set
of properties attached, each property belongs to a single concept (no property sharing).

• For a given concept, its properties forma composition treewhose root is the concept itself, the edges representing
“partOf” relationships. Properties aretyped; types may beatomic (integer, date, string, etc.) orcomposed
(XML element).

• Informally a concept (property) instance is the set of instances of pdv nodes attached (by the ontology-pdv
mapping) to this concept (property). A pdv node instance is the set of corresponding paths from root to the node
instance in any document satisfying the pdv. A more formal semantics of PDVs is given in [1].

• Each concept hasa key, composed of a subset of its properties - without loss of generality, we consider in the
following, keys composed of a single property. The propertyk that serves as key allows to specify the pdv paths
on which a join may occur: ifk is mapped ton1 in pdv1 andn2 in pdv2, then a join may occur between a
document satisfyingpdv1 and a document satisfyingpdv2 and whose paths from root to n1 (resp. from root to
n2) have same value for the elementsn1 andn2.

• Concepts may be connected through symmetric “relatedTo” relationships (edges in the ontology graph), that
indicate, at a general level, a semantic relationship between the concepts.

As an example, Figure 2 presents a simple ontology containing four concepts (Stadium, Game, Team, Scorer), each
one with several properties connected in “partOf” trees, and a key (in italic). There are “relatedTo” relations between
Stadium - Game, Game - TeamandTeam - Scorer.

Ontology relations expressconstraintsto be satisfied on real data, in order to enforce semantics. A “partOf”
relation between properties in the ontology constrain associated nodes in a PDV to have a similar “partOf” relation.
More precisely, ifp1 partOf p2 in the ontology, and in some PDVe1 ande2 are respectively associated withp1 and
p2, thene1 must be an ancestor ofe2. Our choice is tocheck “partOf” relations between properties at publishing
timeand consider they must exist for any query, whilerelations between concepts, more flexible, are checked at query
rewriting, as described in the following.

Definition 2 OpenXView data sources are represented as PDVs (introduced in Section 1).A PDV is defined bya
labeled tree, anda mappingbetween this tree and the ontology.

• The PDV structure is a tree, where each node has a parent edge labelled with “/” or “//”. The PDV tree
represents a summary of simple path expressions that lead toelements in an XML document of the data source.

• The mapping between a PDV and the ontology is a set ofrelationsbetween nodes of the ontology (concepts or
properties) and nodes of the PDV tree (paths in the documents), such thatan ontology node is mapped to at
most one node of that PDV. As explained in Section 1, this restriction guarantees that any set of ontology nodes
has at most one translation into a single PDV, thus simplifying query rewriting.

Figure 2 describes five PDVs, for documents about football games, where only “//” edges are marked (the de-
fault is “/”). Nodes annotated with (@) represent attributes. Mappings between PDVs and the ontology nodes are
presented here grouped by ontology node, such as needed at query rewriting. Each ontology node has at most one
corresponding node in each PDV, e.g.Stadium/addressis mapped to/FootballGamesHistory/event/addressin PDV1,
to /StadiumEncyclopedia//Stadium/addressin PDV2, etc.
Definition 3 An OpenXView query Q is a “select-where” query over the ontology nodes:

Q: Select p1, ..., pn

Where cond1(p
′
1) and...and condm(p′m)

where thepis andp′js 1 ≤ i ≤ n, 1 ≤ j ≤ m are ontology nodes (concepts or properties) andcondj are predicates
over the node value, compatible with the node type.

A user query on the ontology is translated into aunionof queries over PDV structures. Each member of the union
is either a tree query over a single PDV if the user query elements can all be found in the PDV, or (the query elements
cannot be found all in the same PDV) the member is ajoin of tree queries over several PDVs. Each PDV is involved in
such a join as atree query pattern, expressing structural conditions, query projections andselections, for matching and
extracting data from XML documents.Query translation produces a union of n-ary joins between PDV tree query
patterns. Union expresses all the possible ways to answer the user query (by joining PDVs, or with a single PDV). We
call rewriting such an n-ary join, i.e. query translation produces a set of rewritings. Joins between PDVs are based
on concept keys, such that the same concept instance is chosen in different PDVs to answer the query.

The example in Figure 3 shows a user query formulated on the ontology in Figure 2, asking for the stadium address,
capacity and the game description, for games where a team scored more than 3 times. A possible covering of all the
query elements, is obtained by a join betweenPdv3 andPdv5, wherePdv3 provides the game description andPdv5
the stadium address, capacity and the team number of goals. The join is based on the key ofGame. Nevertheless, in
order to bevalid, a rewriting must fulfill an additional condition:to satisfy the semantic relations between the query
concepts.

Definition 4 Each “relatedTo” link between two conceptsc1, c2 appearing in a queryQ, results in aquery constraint.
Each rewriting of the translation must satisfy this constraint. Several semantics for query constraints are possible in
OpenXView; without loss of generality we consider in the following the simple seamnics:if c1 relatedTo c2, some
PDV of the rewriting must contain nodes associated with the keys of c1 and c2. We note the constraint Rel(c1, c2).

The rationale of constraints checking is to restrict the couples of instances forc1 andc2 only to those semantically
related. Note that PDV semantics [1] guarantees that only the “closest” instances ofc1 andc2 are returned.

4 Translating user queries
We illustrate the query translation algorithm on the user query example of Figure 3, expressed as:

Q : Select Stadium.address, Stadium.capacity, Game.description
Where Team.nbOfGoals> 3

The translation process has 6 steps, illustrated in Figures3 and 5. It producesa set of rewritingsof the original query,
each rewriting being a n-ary join between PDV tree patterns,as explained above. The translation steps are:

• Step1: Identify query properties and constraints.
• Step2: Using ontology-to-PDV mappings, compute for each PDV the query properties and constraints it covers.
• Step3: Create equivalence classes by grouping together PDVs that cover the same query properties.
• Step4: Build minimal covers of the query properties, using the set of equivalence classes.
• Step5: For each minimal cover, compute the valid rewritings.
• Step6: For each rewriting, generate an equivalent XQuery, that filters in each document only the closest possible

instances of query concepts [1].

Due to lack of space, we focus here oncover generation(steps 1-4), the most critical part of query rewriting.
Subsequent generation of valid rewritings and of the final XQuery (steps 5-6) are only briefly illustrated on the same
example. We propose heretwo important optimizations over the naive approach, that would consider each possible
subset of PDVs and check whether it covers the query properties. An experimental study presented in the following
section evaluates the improvement brought by our algorithm.

1. We reduce the complexity, by transposing the cover problem from PDVs to equivalence classes. Forn PDVs
(n is continuously growing and may be very large), and a query over k properties, there are at most2k − 1
equivalence classes, wherek is small and does not vary in time. As experimentally verifiedin section5, we
believe that in most practical cases the number of non-emptyequivalence classes is much smaller.

2. We strongly reduce the number of rewritings, by only considering minimal covers, i.e. covers where no
PDV/class is redundant, as explained in the following. We propose a complete and effective algorithm for
generating minimal covers.

selectQ:

where Team.nbOfGoals>3

Stadium.address,
Stadium.capacity,
Game.description

address, capacity, nbOfGoals

address, capacity

address, description

Stadium

Concept KeysProps Constr
Stadium, Team {}

{}
Pdv1

Pdv2

 Rel(Stadium, Game)Stadium, Game

Pdv5

Pdv4

Pdv3

address, capacity, nbOfGoals Stadium, Game, Team

capacity, nbOfGoals

 Rel(Stadium, Game), Rel(Game, Team)

 Rel(Stadium, Game), Rel(Game, Team)Stadium, Game, Team

i

12
13
24

minimal

T

F

F

5)

3) 124, 13)

2)

4)
c=(c=(124,13) }C={

E= {124, 12, 13, 24}c={}

NO SOLUTION

c=(12, 13)

c=(12, 24) = {} NO SOLUTION

{Stadium.address, Stadium.capacity,
Game.description, Team.nbOfGoals}

{Rel(Stadium,Game),Rel(Game,Team)}

1) Q.props =

2) Q.constr =

address, capacity, description, nbOfGoals = {124, 12, 13, 24}E

321

Step1: Identify query properties and constraints

4

K={1, 2, 3, 4}

1)

6)

i minimal

24 T c=(124,13), c=(13, 24)}C={

c=(124)

c=(13)

c=(12)

124={Pdv1, Pdv5} 24={Pdv4}13={Pdv3}12={Pdv2}

c=(24)

24

i minimal

F13

24

i minimal

T

T

7) 8)

E
9) 10)

11)

12)
)c=(13, 24

13)

14)

Step4: Build minimal covers on the set of equivalence classes

Step3: Build equivalence−classes by grouping together PDVs covering the same query properties

Step2: Compute PDVs’ coverage using mappings

Figure 3: Steps for translating queryQ

4.1 Step1: Identify query properties and constraints

The following elements are identified in the query (Figure 3 step 1):

• Propertiesutilized in the query:Q.props = { Stadium.address, Stadium.capacity, Game.description, Team.nbOfGoals}.
• Constraintsinvolved in the query, coming from “relatedTo” relations between concepts utilized in the query:

Q.constr = {Rel(Stadium, Game), Rel(Game, Team)}.

4.2 Step2: Compute for each PDV the query properties and constraints it covers

Definition 5 PDV coverage: Given a PDVpdv and an ontology nodep, let c be the concept ofp (if p is a concept,
thenc=p). We say thatpdv covers property p if there exists some node inpdv mapped top and there exists some
node inpdv mapped to the key ofc. We say thatpdv covers a constraint cst = Rel(c1, c2) if there exist nodes inpdv

mapped to the keys of both conceptsc1 andc2.
Notation: Prop(pdv) is the set of properties covered by PDVpdv (properties of the ontology for which there is a

mapping with the nodes ofpdv). For an equivalence classcl ∈ E , PDV(cl) is the set of PDVs in the equivalence class
and Prop(cl) is the set of query properties covered by each PDV incl.

Notation: We indexQ.props by integers inK = {1, ..., k}, wherek is the size ofQ.props. E.g., in Figure 3 step
3, 3 denotes property Game.description. The setQ.props can be represented byK. The set of covered properties in
an equivalence class, a subset ofK, is denoted , for simplicity, by the ordered sequence of its elements, i.e.{1, 2, 4}
is denoted by 124. In Figure 3 step 3, there are 4 equivalence classes: 124, 12, 13 and 24. Class 124 covers properties
1, 2 and 4 and contains Pdv1 and Pdv5.

To build the set of equivalence classes, a single traversal of the set of PDVs is necessary, each PDV being placed
in the equivalence class that corresponds to its property coverage. In our example, query translation only handles 4
equivalence classes. More generally, as previously argued, query translation is expected to reduce the large number of
PDVs to a very small number of equivalence classes.

4.3 Step4: Build minimal covers of the set of query properties

Definition 6 Cover: Let E be the set of equivalence classes of PDVs over the set of querypropertiesK. A coverc of
K with elements ofE is a subset ofE , such that

⋃
cl∈c Prop(cl) = K (classes inc cover together all the properties in

K). We note Prop(c)=
⋃

cl∈c Prop(cl). A partial coverc′ is a subset ofE such that Prop(c′) ⊂ K but Prop(c′) 6= K.
e.g. for the example in Figure 3,c={124, 12} is just a partial cover, because it does not cover 3, while{124, 12,

13} and{124, 13} are covers ofK.

Definition 7 Minimal cover: A coverc is minimal if the removal of any member ofc produces a partial cover. A
partial coverc is minimal if the removal of any member produces a partial cover that covers less properties thanc.

In the example below,c={124, 12, 13} is not minimal, becausec without member 12 is still a cover, while{124,
13} is a minimal cover.

The problem of finding a minimal set cover is a well known NP-complete combinatorial problem [7]. We now give
an algorithm calledMC (Minimal Cover) (see Figure 4), that computes all the minimal covers.

4.3.1 MC-algorithm

The recursive algorithmMC takes as input parameters:

• c: a sequence of equivalence classes representing a minimal partial cover, to be completed to a minimal cover.
• E: the set of equivalence classes not yet considered in buildingc. E is structured as an ordered list.
• MP : the multiset of properties covered by classes inc, incrementally updated by the algorithm. As a matter of

fact,MP is structured so as to keep for each property the number of classes covering it, e.g. ifc=(12, 13), then
MP={1:2, 2:1, 3:1}.

MC(c, E, MP) minimal(c, i, MP)
output : set of covers output : boolean

Begin Begin

If (MP
s

= K) %–c is a cover If Prop(i) ⊂ MP

return({c}) return(false)
End if End If
C=∅ NewMProp=MP ∪ Prop(i)
While E 6= ∅ repeat For each m ∈ c repeat

i=pop(E) If (newMProp − Prop(m))
s

=NewMProp

If minimal(c, i, MP) return(false)
C=C ∪ MC(c+i, copy(E), MP ∪ Prop(i)) End If

End If End For
End While return true
returnC End minimal

EndMC

Figure 4: Minimal Cover (MC) algorithm and minimality test

The first call ofMC usesc = (), E = E , MP = ∅. The output ofMC is the set of covers obtained by extendingc

with classes inE. The algorithm realizes the following actions:
1. A call toMC returns{c} whenc coversK (c is a cover). The cover test (MP

s
= K) verifies whetherMP and

K are equal as sets, i.e. they have the same elements, no matterthe multiplicity ofMP .
2. If c is partial, one tries to extendc with each classi in E. Candidate classes are extracted in the order ofE,

using thepop function that returnsE’s first element and discards it from the list. If the new partial cover is
minimal (the code of theminimal boolean function is given in Figure 4), a recursive call ofMC computes
minimal covers for the new partial coverc + i, whose cover multiset isMP

⋃
Prop(i), with the remaining

classes (a copy ofE). The set of equivalence classesE transmitted to each recursive call only contains classes
after candidatei in the order ofE . This ensures that cover sequences produced by the algorithm respect the
order ofE , and guarantees thatno cover is produced twice.

3. Boolean functionminimal (Figure 4) takes 3 parameters:c - a minimal partial cover,i - the candidate class for
extendingc, MP - the multiset of properties covered byc, and returnstrue iff c + i is a minimal partial cover.
The algorithm, linear in the size ofc, realizes the following actions:

(a) It tests whetheri is not redundant (Prop(i) ⊂ MP). If i is redundant, it returns false.
(b) If i is not redundant, we check for each memberm of c whetherc + i is redundant:NewMprop=MP ∪

Prop(i) is the multiset of properties forc+i. m is redundant ifNewMprop−Prop(m)
s
= NewMProp,

i.e. when removingm from c + i, no element disappears fromNewMprop. Thenc + i is minimal only
if no m is redundant.

In the example in Figure 3 step 4,E ={124, 12, 13, 24}. In the first call ofMC, c=∅, the first member ofE : 124,
produces a minimal partial cover (124), to be extended through a recursive call, withc=(124),E={12, 13, 24}. The
first candidate to extendc is i=12, butc + i is not minimal, becausei is redundant. 12 is removed fromE and the
next candidate isi=13, that leads to a minimal partial cover (124, 13), to be extended withc=(124, 13),E={24}. But
c coversK, so (124, 13) is a minimal cover solution, and so on until all minimal covers are found.

Lemma 1 MC generatesall minimal covers andonly minimal covers, without duplicates.

Sketch of proof: Minimality being checked for each cover,MC generates only minimal covers. Duplicates are
avoided by generating only sequences that respect the orderof E . Since each call toMC extends the given partial
cover to distinct partial covers, by induction one easily shows that final covers are also distinct. Completeness is also
straightforward. Any minimal cover can be represented as a sequence of classes respecting the order ofE : c=(cl1, ...,
cln). It is easy to show that each prefix ofc is a minimal partial cover. Thenc is produced by successive calls toMC
that produce minimal partial covers (cl1), (cl1, cl2), ...

4.4 Steps 5 and 6: Compute valid rewritings and generate XQuery

These two steps are illustrated (see Figure 5) on the examplequery. First, minimal covers of equivalence classes,
produced at step 4, are transformed into minimal covers of PDVs. This means that for each minimal coverc produced
by MC, we replace equivalence classes inc with any possible PDV in each class, i.e. we compute the cartesian product
of c’s classes. The result is a set of minimalPDV-covers, among which we only keepvalid PDV-covers. The validity
test checks whether the PDV-cover contains all the necessary elements to correctly join the PDVs. In our case, the
test only concerns query constraints: for eachRel(c1, c2), there must exist a PDV covering it (fusion joins are always
possible, since a PDV that covers a property also covers the property’s concept key).

Consider the example in Figure 5, for coverc =(124, 13). Class 124 contains{Pdv1, Pdv5} and 13 contains
{Pdv3}, so we obtain two PDV-cover candidates: (Pdv1, Pdv3) and (Pdv5, Pdv3). The first one is not valid, since it
does not cover constraintRel(Game, T eam), while the second one is valid.

Unfortunately, a valid PDV-cover is not enough to produce a query rewriting. One must decide, for each query
property, what PDV in the PDV-cover will produce it. E.g., inFigure 5, for PDV-cover (Pdv5, Pdv3), property

12 34

Pdv3Pdv5

non valid

2 4 1 3

Pdv3

12 34

12 34

Pdv3Pdv5 valid

Pdv5Pdv3Pdv1

1 3 2 4

Pdv3

valid 2 41 3

Pdv3 Pdv4

Pdv4

2) Step4: output= c=(13, 24)

1) Step4: output= c=(124, 13)

Games

Game

Stadium

name(@)

id(@) info

//ChampionsLeague

Game

id

Stadium

name(@) TeamNameaddress capacity NbOfGoals

Pdv3 Pdv4

=join

=join

//WorldCupContention

date(@) Stadium

name(@) capacityaddress reference

Game

Winner

NbOfGoalsTeam(@)

Pdv3 Games

Game

Stadium

name(@)

id(@)

address

info

join

Pdv5

</address>
</capacity>

String($var7)

$var1 in $doc1//WorldCupContention,

</Game>

For

$var2 in $var1/Stadium,
$var3 in $var2/address,
$var4 in $var2/capacity,
$var5 in $var1/Game
$doc2 in collection(Pdv3_URI),
$var6 in $doc2/Games/Game,
$var7 in $var6/info

$var5/Winner/NbOfGoals>3Where

Return<Stadium>
<address>string($var3)

</Stadium>
<capacity>string($var4)

<Game><description>
</description>

$doc1 in collection(Pdv5_URI),

and $var5/reference=$var6/@id

,......................

Union(

Games
//WorldCupContention

date(@) Stadium

name(@) reference

Game

Winner

NbOfGoalsTeam(@)

capacityaddress

Game

Stadium

name(@)

id(@) info

address

join==join

Pdv5 Pdv3

Step5: Compute for each minimal cover the corresponding valid rewritings. Step6: generate XQUERY

Generate valid rewritingsCompute valid PDV−covers and properties distribution

Figure 5: Steps for translating queryQ (continuation)

1 (Stadium.address) can be produced by eitherPdv5, or Pdv3. Step5 decides, for each PDV-cover, what are the
possibleproperty distributions. Due to lack of space, this problem is out of the scope of this paper. In Figure 5, there
are 3 possible property distributions:{(Pdv5 : 241, Pdv3 : 3), (Pdv5 : 24, Pdv3 : 13), (Pdv3 : 13, Pdv4 : 24)}.

For each property distribution, aquery rewriting is performed by considering for each PDV its tree-query and
by adding join conditions. In Figure 5, there are three queryrewritings, one for each property distribution. E.g., the
rewriting for (Pdv5 : 24, Pdv3 : 13) needs two join conditions: (i) a fusion join on the key of Stadium, to merge
Stadium address and capacity, and (ii) a join on the key of Game, connecting the instance of Game that provides the
game description (info in Pdv3), to the instance of Game that coversRel(Game, T eam) in Pdv5.

Finally, each rewriting produces aFor-Where-Return XQuery. Figure 5 shows such an XQuery for the first
rewriting. Finally the union of all theFor-Where-Returnqueries is taken.

5 Experiments
We did a first experiment to evaluate the performance of theMC algorithm on a set of synthetic PDV coverages. We
used an ontology of 20 concepts, 10 properties/concept, each concept being related to one (25%), two (50%) or three
(25%) other concepts. A uniform distribution of PDVs was generated such that each PDV covers randomly 2 or 3
concepts, 3 properties of each of these concepts. Queries were randomly generated withk = 3, 4 or 6 properties,
chosen as part of two related concepts in the ontology. Each measurement is the average of results for 50 random
queries.

The left part of Figure 6 displays the number of equivalence classes vs the numbern of PDVs, for queries of sizes
k = 3, 4 and 6. For eachk, the maximal number of equivalence classes (2k − 1) is represented as an horizontal line.
Whenn is large (larger than 1000) andk is small (less or equal to 6) we significantly reduce the complexity of query
rewriting by first grouping the PDVs into a small number (at most2k − 1) of equivalence classes as previously argued.
Furthermore the experimental results confirm that the actual number of classes is much smaller in practical cases.
Even for a very large number of PDVs (n=1000), the average number of classes is 5 instead of 7 (k=3), 9 instead of 15
(k=4) and 20 instead of 63 (k=6). The exponential growth of the number of classes with thequery size is significantly
reduced in practice.

The right part of Figure 6 compares the complexity ofMC, measured in number of minimality tests, with an
alternative strategy, used by the Bucket algorithm [5], whofirst generates the sets of sources that cover the query,
then tests for validity. In our case, this strategy corresponds to first generating covers, as being generated byMC but
without minimality tests, then testing for minimality. Note that this strategy already improves Bucket, since it already
avoids some non-minimal covers (a cover is never extended with new elements).MC checks each partial cover for
minimality; on the one hand, this avoids as soon as possible covers that will never be minimal, on the other hand
it may check for minimality, partial covers that do not lead to a cover. We counted and displayed the number of
minimality tests for both strategies, as a function of the number of equivalence classes, for k=4. Beyond a threshold
(8 equivalence classes in our case),MC behaves much better than the improved Bucket strategy, for which the number
of tests grows fast. The third curve accounts for the real number of minimal covers, as an indication of the efficiency
(tests count/results count) of both algorithms.

6 Conclusion

We introduced in this paper a model for open XML data integration systems based on a novel hybrid ontology-XML
schema structure. We proposed an algorithm for query rewriting. A first experimental evaluation showed that it
performs better than the adaptation of the Bucket algorithm[5]. As part of our future work we intend to improve this

Figure 6: Measures on (a) number of equivalence classes and (b) number of minimality tests

algorithm and conduct a more comprehensive performance evaluation.

References

[1] Previous work of the authors.

[2] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Queryingxml sources using an ontology-based mediator.
CoopIS/DOA/ODBASE, pages 429–448, 2002.

[3] D. Calvanese, D. Lembo, and M. Lenzerini. Survey on methods for query rewriting and query answering using
views. Technical Report D2I, 2001.

[4] C.Beeri, A. Y.Levy, and M.-C. Rousset. Rewriting queries using views in description logic.PODS, 1997.

[5] A. Halvey. Answering queries using views: A survey.The VLDB Journal, pages 270–294, 2001.

[6] H.V.Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Srivastava, and N. Wiwatwattana. Colorful xml: One
hierarchy isn’t enough.Proc. SIGMOD, 2004.

[7] R. Karp. Reducibility among combinatorial problems.In R. Miller and J. Thatcher, editors, Complexity of
Computer Communications, pages 85–103, 1972.

[8] G. Koloniari and E. Pitoura. Peer-to-peer management ofxml data: issues and research challenges.ACM
SIGMOD Record, 2005.

[9] Y. Li, C. Yu, and H. Jagadish. Schema free xquery.VLDB, 2004.

[10] I. Manolescu, D. Florescu, and D. Kossmann. Answering xml queries on heterogeneous data sources.VLDB,
2002.

[11] O.M.Duschka and M.R.Genesereth. Answering recursivequeries using views.PODS, 1997.

[12] R. Pottinger and A. Halevey. Minicon: A scalable algorithm for answering queries using views.The VLDB
Journal, pages 182–198, 2001.

[13] R.J.Miller, L. Haas, and M.A.Hernandez. Schema mapping as query discovery.VLDB, 2000.

[14] L. Xiao, L. Zhang, G. Huang, and B. Shi. Automatic mappings from xml documents to ontologies.Proceedings
of the fourth international Conference on Computer and information technology, 2004.

[15] W. Xu and Z. M. Ozsoyoglu. Rewriting xpath queries usingmaterialized views.VLDB, 2005.

[16] Y.Papakonstantinou, M.Petropoulos, and V.Vassalos.Qursed: Querying and reporting semistructured data.Proc.
SIGMOD, 2002.

[17] Y.Papakonstantinou and V.Vassalos. Rewriting queries using semistructured views.SIGMOD, 1999.

