Query rewriting for
open XML data integration systems

Abstract
This paper presen@penXViewa model for open XML data integration systems, charaadrtzy theautonomy
of userghat publish XML data on a common topic. Autonomy impliejuent and unpredictable changesata and
a high degree of structure heterogeneiffhe OpenXView model provides an original integration sohebased on
a hybrid ontology - XML schema structure. We propose sohgifor two important problems in such systeraasy
access to datéhrough a simple query language over the common schemaiangle integration view management
when data changes. This paper focuses on the query rewpititem in OpenXView, for which existing algorithms
are not suitable, and proposes a query translation algaorith
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1 Introduction

Many companies are now considering storing their data in X#&fositories. Hence, the integration and transforma-
tion of such data has become increasingly important forieajgbns that need to support their users with querying
environments.

We address here the problem of XML data integration in a @algir context. First, we are interesteddpen
integration systems, where users may freely publish dathdrsystem, in order to share information on common
interest topics. A typical example is peer-to-peer [8] camities, initially sharing multimedia files, but currently
focusing more and more on structured content, such as XMd. ddte key characteristic of open integration systems
is user autonomyn publishing dataFrequent and unpredictable changesdata and schemas, as users publish new
information is a first consequence of user autonomy. The atieortant effect of autonomy ata heterogeneityor
documents coming from different users, that have indepethdaesigned the structure of their documents.

The data integration mod&le have chosen for solving this XML data integration problemovel. Usually, the
common (target) schema for XML data integration is eitherea-dike XML schema, or an ontology. In the former
case, the advantage is a low model mismatch, i.e. a good adggfithe common schema model with source data
and with query results (XML data). The drawbacks are a lith#emantic expressiveness and some rigidity in data
typing at query processing: the system often matches onlylteethat preserve in sources the same relations between
the queried elements in the common schema. Ontologieswimthese drawbacks, but the model mismatch between
XML schemas and ontologies complexifies the expression gipings between sources and the common model.

We propose a model that combines the advantages of ontelageXML schemas, by definiraghybrid integra-
tion schemaa simple ontology, where concepts have properties orgdrizhierarchies (such as in XML schemas),
but may be connected through two-way “relatedTo” relatidos, more flexible at query processing.

On the source side, users publish XML schemas and documeéfdsintroduced in [1] the notion oPhysical
Data View(PDV), better adapted to data integration than the XML scepublished by the sources. A PDV is a
view on a real schema; it has a tree-like structure, gathexatess paths to useful nodes in the real schema, and
mappings between this tree and the ontology graph. Mappirgexpressed through simple two-way, node-to-node
correspondences between PDV and ontology nodes. Theatiffeletween a published XML schema and a PDV is
subtle. On the one hand, even if not mandatory, a PDV may miscseless nodes in the XML schema, by removing
subtrees or by replacing a path between two nodes by a sifijlede. Removing nodes helps improving schema
management, storage and query processing. The PDV tre¢usllga data guide, a summary of access paths to
nodes useful for queries. On the other hand, PDVs produaad fiource XML schemas, unlike these schemas,
providea unique wayo translate user visible ontology nodes, by associatirnt e@ach ontology nodat most one
node in a single PDV. This implies that a published XML schansy produce several PDVs. Each time a schema
is published, the system must assist the user to generats,REYdugh semi-automatic procedures. This additional
effort at publishing time is largely justified by the effodved at query rewriting time, when heavy combinatorial
computation and possibly wrong rewritings are avoided.

Figure 1 illustrates the difference between PDVs and XMLesehas through a simple example. The ontology
contains a single concept (Artist) with three propertiemnte, country, birth date). The published XML schema is a
tree containing information about two kinds of artists: fiffinectors and actors. Two PDVs are obtained from this
schema, so as to dissociate directors from actors both rdappmncept Artist in the ontology, each one providing
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Figure 1: XML document schema vs Physical Data View

a unique translation for the artist (possibly incompletg, @ctors lack birth date). Useless nodes are removed from
each PDV; this produces a “//" edge above the root: e.g, nodrée, casandrole removed when creating PDV2.

We present in this paper t@penXViewmodel for open XML data integration. The model aimssehplified
access to data through querigmbined withsimplified management of the data integration view

Users access data by expressing queries over the commdognsiructure ina very simple query language
based on projections and selections over ontology nodesid&ethe advantage, common to all data integration
models, of not requiring knowledge about heterogeneoushadging source schemas, OpenXView avoids also the
need of mastering the subtleties of XML query languages r{dug OpenXView asks no more expertise than querying
a single relational table. Not only novice users benefit ftbim simplicity, but also application developers.

Simple management of the data integration process is vepgritant for open systems, because of their contin-
uously and unpredictably content changing. Unlike refaldntegration systems [5], the OpenXView view is not
defined by a query, but rather as a set of one-to-one mappétgebn source and target schema nodes. The advantage
of such a mapping-based view is that it can be semi-autoaligtigenerated [14, 13] at publishing time and that it is
simpler to visualize and to modify through graphical ugéfdly tools. Moreover, OpenXView usedaral-as-view
integration modelin which local sources are defined as views over the glolktalogy schema. This simplifies change
management, as publishing/modifying a source only intenaith the global schema, not with the other sources.

This paper focuses otne query rewriting problenin the OpenXView system. Given a simple “select-where”
query(@ on the ontology, the system translagsnto a query expressiof)’ that refers only to PDV structures issued
from published schemas, and such that answerg'tare a subset of answers ¢ @’ contains three main query
operations: (i)structured tree-queriesxpressed on PDV trees, to filter and get data from docunieri§ joins,
because the queried elements may not exist all in the same &Miii) unions because there are several ways
to answer the query. Unlike existing models, where joinsexicitly expressed in the query or in mappings, in
OpenXView joins are implicit, based aroncept keysefined in the common ontology. The canonical forntdfis
a union of all the possible joins between PDVs that providedheried elements. We propose in this paper several
algorithms for query rewriting in OpenXView.

The main contributions of this paper are:

e An original model, called OpenXView, for open XML data intatjon systems, i.e. adapted to heterogeneous
and changing XML content. Based on a hybrid common schem@l@my - XML structure), OpenXView
provides both easy querying and simple maintainance ofitiegiation view.

e An algorithm for query rewriting in OpenXView, in a contexhere existing algorithms are not suitable.

The paper is organized as follows. Section 2 presents cebedek, then Section 3 defines the data model. Section
4 presents the query rewriting algorithm, Section 5 dessréxperimental tests and Section 6 concludes the paper.

2 Related Work

The query translation problem in OpenXView is a particulase of query rewriting using views [3, 5]. PDVs are
views over the global ontology, defined through mappingd,tha goal is to rewrite the simple “select-where” query
on the ontology schema into a union of joins of tree-queries &DVs.

Many approaches for query rewriting have been studied utifferent assumptions on the form of the query and
the views, most of them for the relational model: query réngiin description logic [4], recursive queries [11], con-
junctive queries and views [5], etc. Significantly less Hssemerged for semistructured data, most of them focusing
on points different from the aspects addressed in our ptegai: XPath queries and views for caching [15], results
restructuring [17], translation to SQL queries [10].

Among query rewriting algorithms, we best compare to theBuf5] and MiniCon [12] algorithms. Even though
they concern a different model (relational data, expligib$ in queries), the translation process is similar and pro
duces a union of joins. Unlike Bucket/MiniCon, we reduce tlnenber of rewritings to a reasonable subset, by only
considering minimal rewritings. Experimental comparis@tween our algorithm and the Bucket strategy adapted to
OpenXView shows better performances for our algorithméf tlumber of sources is large.

Mixing tree structures and graph ontologies was rarely psed for the integration model. [2] uses a graph
ontology, but extracts trees from it for query processind g} introduces more flexibility in tree structures. Query

1From PDVs'construction, it follows that a tree-query on aPiB a tree-query on a the published schema it is constructed. f
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Figure 2: An example of ontology, Physical Data Views (PD¥glanappings

simplification over XML data, similarly to our approach, watsidied in [9], where queries use tag names only, and
[16], where an annotated XML structure is used to generageygiorm applications. None is adapted to changing,
heterogeneous data.

OpenXView is related to previous work of the authors [1], wehthe system aimed at query simplification over
heterogeneous XML data with few changes. It was advocat§t],ithat query rewriting can be strongly simplified
by fixing in advance unions and joins in the integration vietvjch is unrealistic in open systems.

3 The Data Model

Definition 1 An OpenXView ontology is a labeled directed graph, such that:

e It contains two kinds of nodesonceptshaving unique names, and concepbperties Each concept has a set
of properties attached, each property belongs to a singteept (no property sharing).

e Fora given concept, its properties folcomposition treehose root is the concept itself, the edges representing
“partOf” relationships. Properties areyped types may beatomic (integer, date, string, etc.) ctomposed
(XML element).

¢ Informally a concept (property) instance is the set of ins&s of pdv nodes attached (by the ontology-pdv
mapping) to this concept (property). A pdv node instanckedsset of corresponding paths from root to the node
instance in any document satisfying the pdv. A more fornrabsdics of PDVs is given in [1].

e Each concept haa key, composed of a subset of its properties - without loss of rgditye we consider in the
following, keys composed of a single property. The propethat serves as key allows to specify the pdv paths
on which a join may occur: ik is mapped tau1 in pdvl andn2 in pdv2, then a join may occur between a
document satisfyingdv1 and a document satisfyinglv2 and whose paths from root to n1 (resp. from root to
n2) have same value for the elememtsandn?2.

e Concepts may be connected through symmetric “relatedTtatimnships (edges in the ontology graph), that
indicate, at a general level, a semantic relationship bemvthe concepts.

As an example, Figure 2 presents a simple ontology contafoiur concepts$tadium, Game, Team, Scgrexach
one with several properties connected in “partOf” treed, akey (in italic). There are “relatedTo” relations between
Stadium - Gamgsame - TeanandTeam - Scorer

Ontology relations expressonstraintsto be satisfied on real data, in order to enforce semanticspaktOf”
relation between properties in the ontology constraincased nodes in a PDV to have a similar “partOf” relation.
More precisely, ifp; partOf p in the ontology, and in some PD¥{ ande; are respectively associated with and
p2, thene; must be an ancestor ef,. Our choice is tacheck “partOf” relations between properties at publishing
timeand consider they must exist for any query, windiations between concepts, more flexible, are checkedatqu
rewriting, as described in the following.

Definition 2 OpenXView data sources are represented as PDVs (introduced in Section A)PDV is defined bya
labeled treganda mappingetween this tree and the ontology.

e The PDV structure is a tree, where each node has a parent edge labelled with t/*/6. The PDV tree
represents a summary of simple path expressions that lealémeents in an XML document of the data source.

e The mapping between a PDV and the ontology is a setalationsbetween nodes of the ontology (concepts or
properties) and nodes of the PDV tree (paths in the docurjiesush thatan ontology node is mapped to at
most one node of that PDV. As explained in Section 1, this restriction guarantee$ #imy set of ontology nodes
has at most one translation into a single PDV, thus simplgyguery rewriting.



Figure 2 describes five PDVs, for documents about footbatiem where only “//” edges are marked (the de-
fault is “/"). Nodes annotated with (@) represent attrilsutdlappings between PDVs and the ontology nodes are
presented here grouped by ontology node, such as neededrgtrgwriting. Each ontology node has at most one
corresponding node in each PDV, eStadium/addresis mapped tdFootballGamesHistory/event/addréssPDV1,
to /StadiumEncyclopedia//Stadium/addrasBDV2, etc.

Definition 3 An OpenXView query @ is a “select-where” query over the ontology nodes:

Q: Select  py, ..., pu

Where cond; (p}) and...and cond,, (p},,)
where the;s andp’s 1 <i <n, 1 < j <m are ontology nodes (concepts or properties) @odd; are predicates
over the node value, compatible with the node type.

A user query on the ontology is translated intoraonof queries over PDV structures. Each member of the union
is either a tree query over a single PDV if the user query etesnean all be found in the PDV, or (the query elements
cannot be found all in the same PDV) the memberj@iraof tree queries over several PDVs. Each PDV is involved in
such ajoin as &ree query patterpexpressing structural conditions, query projectionsseiéctions, for matching and
extracting data from XML documentQuery translation produces a union of n-ary joins between PDV tree query
patterns. Union expresses all the possible ways to answer the usey (hejoining PDVs, or with a single PDV). We
call rewriting such an n-ary join, i.e. query translation produces a setwfitings. Joins between PDVs are based
on concept keys, such that the same concept instance is chosen in diffeBrs Bo answer the query.

The example in Figure 3 shows a user query formulated on ttedagy in Figure 2, asking for the stadium address,
capacity and the game description, for games where a teamdsomre than 3 times. A possible covering of all the
qguery elements, is obtained by a join betwé&iv3 and Pdv5, wherePduv3 provides the game description aRdv5
the stadium address, capacity and the team number of gdadsioin is based on the key 6fame. Nevertheless, in
order to bevalid, a rewriting must fulfill an additional conditiorio satisfy the semantic relations between the query
concepts

Definition 4 Each “relatedTo” link between two concepts ¢ appearing in a query, results in aquery constraint.
Each rewriting of the translation must satisfy this consttaSeveral semantics for query constraints are possible i
OpenXView; without loss of generality we consider in théofeing the simple seamnicsf ¢; relatedTo ¢y, SOMe
PDV of the rewriting must contain nodes associated with the keys of ¢; and ¢;. We note the constraint Rej( c2).

The rationale of constraints checking is to restrict theptesiof instances far; ande, only to those semantically
related. Note that PDV semantics [1] guarantees that oelydlosest” instances ef, andc, are returned.

4 Translating user queries

We illustrate the query translation algorithm on the usergexample of Figure 3, expressed as:
Q@ : Select Stadium.address, Stadium.capacity, Game.description
Where Team.nbOfGoals- 3
The translation process has 6 steps, illustrated in Fighieesl 5. It producea set of rewritingof the original query,
each rewriting being a n-ary join between PDV tree pattaasgxplained above. The translation steps are:

Stepl: Identify query properties and constraints.

Step2: Using ontology-to-PDV mappings, compute for eackl Bi2 query properties and constraints it covers.
Step3: Create equivalence classes by grouping togethes B2\ cover the same query properties.

Step4: Build minimal covers of the query properties, usheyget of equivalence classes.

Step5: For each minimal cover, compute the valid rewritings

Step6: For each rewriting, generate an equivalent XQueayfiiters in each document only the closest possible
instances of query concepts [1].

Due to lack of space, we focus here oover generatior(steps 1-4), the most critical part of query rewriting.
Subsequent generation of valid rewritings and of the finaluX (steps 5-6) are only briefly illustrated on the same
example. We propose hetwo important optimizations over the naive approach, that would consider each possible
subset of PDVs and check whether it covers the query pr@serfin experimental study presented in the following
section evaluates the improvement brought by our algorithm

1. We reduce the complexity, by transposing the cover prolfiem PDVs to equivalence classes. FoPDVs
(n is continuously growing and may be very large), and a quesyr b\properties, there are at mazt — 1
equivalence classes, whetas small and does not vary in time. As experimentally verifiegection5, we
believe that in most practical cases the number of non-eestptivalence classes is much smaller.

2. We strongly reduce the number of rewritings, by only cdesng minimal coversi.e. covers where no
PDV/class is redundant, as explained in the following. Weppse a complete and effective algorithm for
generating minimal covers.



Step1: Identify query properties and constraints| Step2: Compute PDVs’ coverage using mappings Step4: Build minimal covers on the set of equivalence classes
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Figure 3: Steps for translating quegy

4.1 Stepl: Identify query properties and constraints

The following elements are identified in the query (Figureep4l):

o Propertieautilized in the queryQ.props = { Stadium.address, Stadium.capacity, Game.descriptmmThbOfGoals
e Constraintsinvolved in the query, coming from “relatedTo” relationstiween concepts utilized in the query:
Q.constr = {Rel(Stadium, Game), Rel(Game, Tegm)

4.2 Step2: Compute for each PDV the query properties and comisints it covers

Definition 5 PDV coverage: Given a PDVpdv and an ontology nodg, let ¢ be the concept gs (if p is a concept,
thenc=p). We say thapdv covers property p if there exists some node jrlv mapped togp and there exists some
node inpdv mapped to the key of We say thapdv coversa constraint cst = Rel(c1, c2) if there exist nodes ipdv
mapped to the keys of both concegateindc,.

Notation: Propfpdv) is the set of properties covered by PR¥v (properties of the ontology for which there is a
mapping with the nodes gilv). For an equivalence clags e £, PDV(d) is the set of PDVs in the equivalence class
and Prop(!) is the set of query properties covered by each PD¥.in

Notation: We index@.props by integersink = {1, ..., k}, wherek is the size of).props. E.g., in Figure 3 step
3, 3 denotes property Game.description. The(sgt-ops can be represented y. The set of covered properties in
an equivalence class, a subsefdfis denoted , for simplicity, by the ordered sequence ofléments, i.e{1, 2, 4
is denoted by 124. In Figure 3 step 3, there are 4 equivaldasseas: 124,12, 13 and 24. Class 124 covers properties
1, 2 and 4 and contains Pdv1 and Pdv5.

To build the set of equivalence classes, a single travefshkmset of PDVs is necessary, each PDV being placed
in the equivalence class that corresponds to its propextgrage. In our example, query translation only handles 4
equivalence classes. More generally, as previously arguey translation is expected to reduce the large number of
PDVs to a very small number of equivalence classes.

4.3 Step4: Build minimal covers of the set of query propertis

Definition 6 Cover: Let £ be the set of equivalence classes of PDVs over the set of guapgrtiesK. A coverc of
K with elements of is a subset of, such that J ;.. Prop(cl) = K (classes irc cover together all the properties in
K). We note Prop{)= {J,,c. Prop(cl). A partial coverc’ is a subset of such that Prop{’) C K but Prop¢’) # K.

e.g. for the example in Figure 37{124, 12 is just a partial cover, because it does not cover 3, wiii4, 12,
13} and{124, 13 are covers of.

Definition 7 Minimal cover: A coverc is minimal if the removal of any member ©produces a partial cover. A
partial coverc is minimal if the removal of any member produces a partiakedkiat covers less properties than

In the example below;={124, 12, 13 is not minimal, becausewithout member 12 is still a cover, whilgl24,
13} is a minimal cover.

The problem of finding a minimal set cover is a well known NPagdete combinatorial problem [7]. We now give
an algorithm called//C (Minimal Cover) (see Figure 4), that computes all the miriowers.

4.3.1 MC-algorithm

The recursive algorithivIC takes as input parameters:

e c: a sequence of equivalence classes representing a minamialgover, to be completed to a minimal cover.

e F: the set of equivalence classes not yet considered in hgitdiE is structured as an ordered list.

e M P: the multiset of properties covered by classes,iimcrementally updated by the algorithm. As a matter of
fact, M P is structured so as to keep for each property the number sdetacovering it, e.g. if=(12, 13), then
MP={1:2,2:1, 3:3.



MC(c, E, M P) minimal(c, 4, M P)
output : set of covers output : boolean
Begin Begin
If (MP = K)%-cis acover If Prop(i) C MP
return{c}) return(false)
End if End If
c=0 NewM Prop=MP U Prop(i)
While E # (0 repeat For each m € crepeat
i=pop(E) If (newM Prop — Prop(m));NewMProp
If minimal(c, ¢, M P) return(false)
C=C U M C(c+i, copy(E)), M P U Prop(i)) End If
End If End For
End While return true
returnC End minimal
EndMC

Figure 4: Minimal Cover (MC) algorithm and minimality test

The first call ofMCuses: = (), F = &, M P = (). The output oMC is the set of covers obtained by extending

with classes in&. The algorithm realizes the following actions:

1. A call toMC returns{c} whenc coversk (cis a cover). The cover tesb{ P = K) verifies whethed/ P and
K are equal as sets, i.e. they have the same elements, no thatteultiplicity of M P.

2. If cis partial, one tries to extendwith each clasg in E. Candidate classes are extracted in the order,of
using thepop function that returngZ’s first element and discards it from the list. If the new mrtiover is
minimal (the code of theninimal boolean function is given in Figure 4), a recursive calM€ computes
minimal covers for the new partial cover+ i, whose cover multiset i8/ P | Prop(i), with the remaining
classes (a copy df). The set of equivalence classBdransmitted to each recursive call only contains classes
after candidatei in the order of€. This ensures that cover sequences produced by the algartspect the
order of€, and guarantees thab cover is produced twice

3. Boolean functiomninimal (Figure 4) takes 3 parameters: a minimal partial cover; - the candidate class for
extending:, M P - the multiset of properties covered byand returnsrue iff ¢+ i is a minimal partial cover.
The algorithm, linear in the size of realizes the following actions:

(a) It tests whetheris not redundant®rop(i) C M P). Ifiis redundant, it returns false.

(b) If 7 is not redundant, we check for each memheof ¢ whethere + 7 is redundantNew M prop=M P U
Prop(i) is the multiset of properties far+i. m is redundant itV ew M prop — Prop(m) = NewM Prop,
i.e. when removingn from ¢ + 4, no element disappears froMew M prop. Thenc + i is minimal only
if no m is redundant.

In the example in Figure 3 step &,={124, 12, 13, 24. In the first call ofMC, c=0), the first member of: 124,
produces a minimal partial cover (124), to be extended tiinaurecursive call, with=(124), E={12, 13, 24. The
first candidate to extendis =12, butc + i is not minimal, becausgis redundant. 12 is removed frofi and the
next candidate i$=13, that leads to a minimal partial cover (124, 13), to beeded withc=(124, 13),E={24}. But
c coversK, so (124, 13) is a minimal cover solution, and so on until alimal covers are found.

Lemma 1l MC generatesll minimal covers andnly minimal covers, without duplicates.

Sketch of proof: Minimality being checked for each covey]C generates only minimal covers. Duplicates are
avoided by generating only sequences that respect the ofder Since each call t?¢1C extends the given partial
cover to distinct partial covers, by induction one easilgwst that final covers are also distinct. Completeness is also
straightforward. Any minimal cover can be represented ajaence of classes respecting the ordét.af=(cly, ...,

cl,). Itis easy to show that each prefix ©fs a minimal partial cover. Thenis produced by successive callsNtC

that produce minimal partial coverd), (cl1, cl2), ...

4.4 Steps 5 and 6: Compute valid rewritings and generate XQug

These two steps are illustrated (see Figure 5) on the exaguals. First, minimal covers of equivalence classes,
produced at step 4, are transformed into minimal covers &$?Dhis means that for each minimal covgiroduced

by MC, we replace equivalence classes imith any possible PDV in each class, i.e. we compute the siarigoroduct

of ¢’s classes. The result is a set of mininPADV-coversamong which we only keeyalid PDV-covers. The validity
test checks whether the PDV-cover contains all the neges$aments to correctly join the PDVs. In our case, the
test only concerns query constraints: for edtli(c;, c2), there must exist a PDV covering it (fusion joins are always
possible, since a PDV that covers a property also coversripepty’s concept key).

Consider the example in Figure 5, for cover(124, 13). Class 124 contaiq®dv;, Pdvs} and 13 contains
{Pdvs}, so we obtain two PDV-cover candidate®dy,, Pdvs) and (Pdvs, Pdvs). The first one is not valid, since it
does not cover constraifitel (Game, Team), while the second one is valid.

Unfortunately, a valid PDV-cover is not enough to produceuaryg rewriting. One must decide, for each query
property, what PDV in the PDV-cover will produce it. E.g., liigure 5, for PDV-cover Pduvs, Pdvs), property



StepS: Compute for each minimal cover the corresponding valid rewritings Step6: generate XQUERY
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Figure 5: Steps for translating quegy(continuation)

1 (Stadium.address) can be produced by eithévs, or Pdvs. Step5 decides, for each PDV-cover, what are the
possibleproperty distributions. Due to lack of space, this problem is out of the scope of thjsep. In Figure 5, there
are 3 possible property distribution:Pdvs : 241, Pdvs : 3), (Pdvs : 24, Pdvs : 13), (Pdvs : 13, Pdvy : 24)}.

For each property distribution, guery rewriting is performed by considering for each PDV its tree-query and
by adding join conditions. In Figure 5, there are three quewritings, one for each property distribution. E.g., the
rewriting for (Pdvs : 24, Pdvs : 13) needs two join conditions: (i) a fusion join on the key of @tan, to merge
Stadium address and capacity, and (i) a join on the key of &awmnnecting the instance of Game that provides the
game descriptionirffo in Pdvs), to the instance of Game that covétsl(Game, Team) in Pdvs.

Finally, each rewriting produces lor-Where-Return XQuery. Figure 5 shows such an XQuery for the first
rewriting. Finally the union of all th€or-Where-Returmueries is taken.

5 Experiments

We did a first experiment to evaluate the performance oMiialgorithm on a set of synthetic PDV coverages. We
used an ontology of 20 concepts, 10 properties/concept, @awept being related to one (25%), two (50%) or three
(25%) other concepts. A uniform distribution of PDVs was gerted such that each PDV covers randomly 2 or 3
concepts, 3 properties of each of these concepts. Queriesraedomly generated with = 3, 4 or 6 properties,
chosen as part of two related concepts in the ontology. Eamsurement is the average of results for 50 random
queries.

The left part of Figure 6 displays the number of equivaleriasses vs the numberof PDVs, for queries of sizes
k=3, 4 and 6. For each, the maximal number of equivalence class¥s 1) is represented as an horizontal line.
Whenn is large (larger than 1000) aridis small (less or equal to 6) we significantly reduce the caxipl of query
rewriting by first grouping the PDVs into a small number (atst®¥ — 1) of equivalence classes as previously argued.
Furthermore the experimental results confirm that the &ctuaber of classes is much smaller in practical cases.
Even for a very large number of PDVs8£1000), the average number of classes is 5 instead/of3)(9 instead of 15
(k=4) and 20 instead of 63:€6). The exponential growth of the number of classes withgtiery size is significantly
reduced in practice.

The right part of Figure 6 compares the complexityM€, measured in number of minimality tests, with an
alternative strategy, used by the Bucket algorithm [5], Viihet generates the sets of sources that cover the query,
then tests for validity. In our case, this strategy corresisao first generating covers, as being generated Gybut
without minimality tests, then testing for minimality. Nothat this strategy already improves Bucket, since it diyea
avoids some non-minimal covers (a cover is never extendddvew elements)MC checks each partial cover for
minimality; on the one hand, this avoids as soon as posstlers that will never be minimal, on the other hand
it may check for minimality, partial covers that do not leadat cover. We counted and displayed the number of
minimality tests for both strategies, as a function of thenbar of equivalence classes, for k=4. Beyond a threshold
(8 equivalence classes in our cadd); behaves much better than the improved Bucket strategy,Hmhithe number
of tests grows fast. The third curve accounts for the realtrerof minimal covers, as an indication of the efficiency
(tests count/results count) of both algorithms.

6 Conclusion

We introduced in this paper a model for open XML data intagrasystems based on a novel hybrid ontology-XML
schema structure. We proposed an algorithm for query riegritA first experimental evaluation showed that it
performs better than the adaptation of the Bucket algor[BimAs part of our future work we intend to improve this
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algorithm and conduct a more comprehensive performandeatian.
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