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INTRODUCTION 

 

The evolution of cancer is more certainly linked to a complex interplay of genes rather than a 

single gene activity. Multivariate analysis, which can exploit the correlated pattern of gene 

expression display by genes behaving jointly, such as genes performing the same functions or 

genes operating along the same pathway, can become a very useful diagnostic tool to 

determine molecular predictor of survival on the basis of gene expression. However, problems 

encountered in multiple regression due to multicollinearity, or ill posed problems with many 

descriptors and only a few samples, occur in the same way when we are dealing with censored 

data. The proportional hazard regression model suggested by Cox in 1972 to study the 

relationship between the time to event and a set of covariates, in the presence of censoring, is 

the model most commonly used for the analysis of survival data. However, like multivariate 

regression models, it supposes that there are more observations than variables, complete data, 

and variables not strongly correlated between them. These constraints are often crippling in 

practice, as for example in oncology when the expression of several thousand of genes is 

collected from bio-ships and used as molecular predictors of survival. 

 

Prediction in high-dimensional and low-sample size settings already arose in Chemistry in 

the eighties. The PLS regression (S.Wold et al., 1983; M.Tenenhaus, 1998), which could be 

viewed as a regularization method based on dimension reduction, was developed as a 
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Chemometric tool in an attempt to find reliable predictive models with spectral data. 

Nowadays, the difficulty encountered with the use of transcriptomic data for classification or 

prediction, using very large matrices, is of comparable nature. It was thus natural to use PLS 

regression principles in this new context. 

 

Bastien and M.Tenenhaus (2001), showing that PLS univariate regression could be obtained 

as a series of simple and multiple regressions, and replacing the succession of simple and 

multiple linear regression by a succession of simple and multiple generalized linear 

regressions, extended PLS regression to any generalized linear regression and to the Cox 

model as a special case. Their approach is similar to that of Garthwaite (1994), but can also 

cope with missing data by using the principles of the NIPALS algorithm (H.Wold, 1966), 

In the context of censored data, they proposed to modelize the occurrence of prematurely 

graying hair with data on more than 4000 adult males. Both PLS complementary log log 

regression and PLS Cox regression have been carried out depending on the hypothesis 

formulated on the data. Further improvements have been proposed in Bastien, Esposito Vinzi, 

and M. Tenenhaus. (2005) in the case of categorical descriptors with model validation by 

Bootstrap resampling. 

 

The Cox proportional hazards model 

The model assumes the following hazard function for the occurrence of an event at time t in 

the presence of censoring: 

0( ) ( ) exp( )t t Xλ λ β=   

where 0 ( )tλ is an unspecified baseline hazard function, β  the vector of the regression 

coefficients, and X the matrix of prognosis factors which will be the gene expression in the 
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following. The event could be the death or the cancer relapse. Based on the available data, 

the Cox’s partial likelihood can be written as: 

exp( ' )( )
exp( ' )
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Where D is the set of indices of the events and Rk denotes the set of indices of the individuals 

at risk at time tk 

The goal is to find the coefficients β which minimize the negative log partial likelihood 

function. Note that when p > n, there is no unique β to maximise this partial likelihood 

function. Even when p ≤ n, covariates could be highly correlated and regularization may still 

be required in order to reduce the variances of the estimates and to improve the prediction 

performance. 

 

The PLS-Cox algorithm 

The algorithm consists of 4 steps: 

1) computation of the m PLS components th (h = 1,…,m); 

2) Cox regression on the m retained PLS components; 

3) expression of the hazard function in terms of the original explanatory variables; 

4) Bootstrap validation of the coefficients in the final PLS-Cox model. 

The first step will be described in details below: 

Let X={x1, …, xp} be the matrix of the p explanatory variables xj’s. The objective is to search 

for m PLS orthogonal components th’s defined as linear combinations of xj. 

 

Computation of the first PLS component t1 

Step 1 : Compute the regression coefficient a1j of xj in the Cox regression on xj for each 

variable xj, j = 1 to p; 
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Step 2 : Normalise the column vector a1 made by a1j’s: w1 = a1/||a1||; 

Step 3 : Compute the component t1 = Xw1/w1′w1. 

 

Computation of the second PLS component t2 

Step 1 : Compute the regression coefficient a2j of xj in the Cox regression on t1 and xj 

for each variable xj, j = 1 to p; 

Step 2 : Normalise the column vector a2 made by a2j’s: w2 = a2/||a2||; 

Step 3 : Compute the residual matrix X1 of the linear regression of X on t1; 

Step 4 : Compute the component t2 = X1w2/w2′w2; 

Step 5 : Express the component t2 in terms of X : t2 = . *
2Xw

 

Computation of the h-th PLS component th 

In the previous steps, the PLS components t1,…, t h-1 have been yielded. The component th is 

obtained by iterating the search for the second component. 

Step 1 : Compute the regression coefficient ahj of xj in the Cox regression on t1,…, t h-1 

and xj for each variable xj, j = 1 to p; 

Step 2 : Normalise the column vector ah made by ahj’s: wh = ah/||ah||; 

Step 3 : Compute the residual matrix Xh-1 of the linear regression of X on t1,…, t h-1; 

Step 4 : Compute the component th = Xh-1wh/wh′wh; 

Step 5 : Express the component th in terms of X : th = . *
hXw

 

Remarks 

1) Computation of the PLS component th can be simplified by setting to 0 those 

regression coefficients ahj that are not significant. Only significant variables will then 

contribute to the computation of the PLS component. 
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2) The number m of PLS components to be retained may be chosen by cross-validation 

on the predictive power of the model or by observing that the component tm+1 is not 

significant because none of the coefficients am+1,j is significantly different from 0. 

3) The proposed algorithm may cope with missing data. Let xh-1,i be the column vector 

obtained by transposing the i-th row of Xh-1. The value thi = xh-1,i′wh/wh′wh of the i-th 

case on the component th represents the slope of the OLS line without constant term 

related to the cloud of points (wh, xh-1,i). This slope may be computed even when there 

are missing data. In such a case, in computing the h-th PLS component, the 

denominator of Step 4 is computed only on the data available also for the numerator. 

 

Other approaches 

Another approach to extend PLS regression to survival data, by means of generalized linear 

models, was done by Park et al. (2002). They reformulated the Cox model as a Poisson 

model for the censored indicator variable using Whitehead (1980) who showed the 

equivalence of the Poisson model and the survival Cox model, the likelihoods being 

proportional at their maximum. Park et al. then applied the formulation of PLS proposed by 

Marx (1996) for the generalized linear models to derive the PLS components. Marx used the 

fact that in the context of exponential family, maximum likelihood estimates are obtained by 

an iterative reweighted least squares procedure. Its approach consists of replacing the 

iterative weighted least squares step by a sequence of PLS regressions. However the 

reformulation of the censored problem as a Poisson regression increases the dimension of the 

problem. Multiple observations must be created for each single individual depending on the 

number of distinct failure times where the individual is at risk. Moreover when the number 

of covariates is large the algorithm may fail to converge (Li and Gui, 2004). 
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In Nguyen and Rocke (2002), the so-called Partial Least Squares Proportional Hazard 

regression is proposed for the application to gene expression data from DNA microarrays. 

Their proposal actually consists of a two-stage strategy of analysis: PLS regression of 

survival time on the predictors at the first stage, in order to reduce data dimensionality and 

extract PLS components; proportional hazard regression model at the second stage in order 

to estimate the survival distribution. This two-stage strategy does not take into account the 

censoring information in the estimation of PLS components, thus inducing bias in their 

estimates.  

More recently, Li and Gui (2004) proposed a formulation of the PLS Cox algorithm named 

Partial Cox Regression described below, very similar to the one presented by Bastien and 

Tenenhaus (2001). They also proposed to generalized the Garthwaite approach but with an 

alternative weighting scheme for the determination of the PLS components using a pseudo 

generalized covariance. As a direct extension of the Garthwaite approach they algorithm 

does not cope with missing data. 

 

Partial Cox Regression algorithm 

Let X1={x11, …, xp1} be the matrix of the p centred explanatory variables xj’s 

Computation of the first PLS component t1 

Step 1 : Compute the regression coefficient a1j of x1j in the Cox regression on x1j for 

each variable x1j, j = 1 to p; 

Step 2 : Compute the component t1 = 1 1 1
1
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Computation of the second PLS component t2 

Step 0 : Compute the residual matrix X2 of the linear regression of X1 on t1; 
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Step 1 : Compute the regression coefficient a2j of x2j in the Cox regression on t1 and x2j 

for each variable x2j, j = 1 to p; 

Step 2 : Compute the component t2 = 2 2 2
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Computation of the h-th PLS component th 

In the previous steps, the PLS components t1,…, t h-1 have been yielded. The component th is 

obtained by iterating the search for the second component. 

Step 0 : Compute the residual matrix Xh of the linear regression of Xh-1 on th-1 
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Step 1 : Compute the regression coefficient ahj of x1j in the Cox regression on t1, …, th-1 

and xhj for each variable xhj, j = 1 to p; 

Step 2 : Compute the component th =  with 
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PLS-Cox with high dimensional data 

The PLS-Cox algorithm is sequential in the estimation of the weights used in the 

determination of the PLS components. When the number of descriptors exceeds by far the 

number of observations, as it is the case with gene expression where the number of genes can 

reach several tens of thousand, the algorithm becomes computer-intensive and technical 

problems may arise. PLS, as a dot product algorithm, being invariant under orthogonal 

transformation of the X and/or Y variables, PLS based on the X principal components is 

equivalent to PLS based on the original descriptors matrix X. It seems then very appealing, 

when dealing with very large data sets, to use PLS-Cox regression on the X principal 
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components. This algorithm will be named PC PLS-Cox in the text. This modification of the 

PLS algorithm in the setting of Cox regression has been also proposed by Li and Gui (2004) 

in a similar approach, in combination with their PCR algorithm described above. Based on the 

Rosenwald et al. (2002) published dataset of gene expression from diffuse large B-cell 

lymphoma, they obtained better predictive performance by combining the principal 

components to their Partial Cox Regression algorithm. 

 

The invariance property of PLS linear regression under orthogonal transformation does not 

hold for PLS generalized linear regression giving modified coefficient estimates. 

Even if the invariance property is not an optimality criterion, an alternative algorithm 

sharing this property can be proposed, based on a generalisation of a linear kernel PLS 

algorithm, as described hereinafter. 

 

Linear Kernel PLS algorithms 

The same computational problems posed by very large matrices already arose in 

Chemometrics and solutions were proposed in the nineties using linear kernel variants of 

the PLS algorithm. The objective of these methods was to obtain PLS components by 

working on a condensed kernel matrix of a considerably smaller size than the original 

matrices X and Y. let’s note that the term kernel is used here more in an attempted to 

reduce the computational complexity in the input space (linear kernel), than a nonlinear 

transformation into a feature space as it is the case with Support Vector Machine. 

The first kernel algorithm was developed by Lingren et al. (1993) for data matrices with 

many observations. Conversely, for matrices with many variables and only a few objects (p 

>> n), Rännar et al. (1994) developed a quick and efficient algorithm named Kernel-PLS 

based on the deflation of the small matrices XX’ and YY’, which avoid the use of the large 
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X matrix. They used the result of Höskuldson (1988) and Manne (1987) who demonstrated 

that the PLS components can be calculated as the eigenvector associated to the maximum 

eigenvalues of the matrices 1111 −−−− ′′ hhhh YYXX , where 1−hX  and 1−hY  are the deflated matrices 

(i.e. residuals in the multiple regression of X and Y on the previous PLS components). 

These algorithms, however, does not extend to the Cox model. It was thus tempting to 

develop a new kernel PLS algorithm which can be then naturally extended to the Cox 

model. 

 

Modified Canonical PLS algorithm: 

A simple kernel PLS algorithm, named Modified Canonical PLS, can be derived based on 

the kernel matrix XX’=ZZ’. 

 

Let X be the matrix of centred explanatory variables 

 Step 0  SVD of X or NIPALS in case of missing data 1/ 2(X UL V= ')

Let 1/ 2
1Z Z UL= =  

For h=1 to a, 

Step 1 :  Compute the component :ht h hZ Z y′=  

Step 2 :  Normalize the vector : ht 1ht =  

Step 2   Compute the residual 1hZ + in the linear regression of hZ on 1ht + : 

1 1 1( )h h h hZ I t t Z+ + +′= −  

Let’s note that  could also be expressed as ht
2

1 1 ( )h h h i i
i

t U LU iy u y uλ− −′ ′= =∑  with 

1/ 2
h hZ U L= , , and 1( )h h hU I t t U −′= − h L the diagonal matrix of non zero eigenvalues

2
iλ  
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Since all calculations are done in the canonical space, obtained after one singular value 

decomposition, a considerable gain in speed is achieved. PLS coefficients can then be 

easily back transformed to the original co-ordinate system:  1/ 2 ' 'UL V TT yβ −=

 

Nguyen and Rocke (2004) and Nguyen (2005) have also proposed an expression for the 

PLS components involving eigenvectors of the matrices X’X and XX’. However the 

formulas are very complex and explicit only for the first components. 

 

This algorithm is inspired by the “Canonical PLS regression” algorithm of de Jong et al. 

(2001), but with a more explicit analytical expression of the PLS components based on 

eigenvalues and eigenvectors of the X matrix. It amounts, to replace the Gram-Schmidt 

orthonormalisation procedure, used in "Canonical PLS regression" as an implicit deflation, 

by an explicit deflation of the singular vectors:  

2
1 2 1 1( , ,..., ) ( , ,..., ) ( ' , ,..., )a

a a aT T T GS ULU y UL U y UL U y ULU y U LU y U LU y′ ′ ′ ′ ′= ∝  

where the symbol ∝means that the terms in the left series are equal to the terms in the right 

series up to a normalization. 

 

This kernel PLS algorithm can be generalized (MCPLS Cox) by replacing the dot product 

hZ y′ in step 1 of the MCPLS algorithm by with being the coefficients of 

in the Cox regression on .  

( , )hg Z y ( , )hg Z y

hjz 1 1,..., ,h ht t z− j

)

)

In order to be compared, the PC-PCR, PC-PLS Cox, and MCPLS Cox algorithms have 

been expressed as linear combinations of the deflated singular vectors of the X matrix. 

PC PLS-Cox   1 1 1 1( , ) ( ,h h h h ht Z g Z y U g U y− − − −∝ =

PC-PCR:   
1/ 2 1/ 2

1 1 1 1 1 1( , ) ( ,h h h h h h ht Z L g Z y U L L L g U y−
− − − − − −∝ =
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MCPLS-Cox:   1 1( ,h h ht U Lg U y− −∝ )

 

with 0 1,   ,  ( )h h h h h h hZ Z L Z Z Z I t t Z −′ ′= = = −  

 

The PLS components are all expressed as , with different 

expressions of W according to the algorithms. This gives various trade-off between fit and 

stability, which correspond to different paths in the parameter space, the best one 

depending on the data. 

1 1( ,h h ht U Wg U y− −∝ )

 

Application 

The DLBCL published dataset of Rosenwald et al. (2002) has been reanalysed using the PC-

PLS Cox model. This dataset includes a total of 240 patients with DLBCL, including 138 

patient deaths during the follow-ups with median death time of 2.8 years and 30% of right 

censored survival time. The gene expression measurements of 7399 genes are available for 

the analysis. 

 

The PC-PLS Cox regression provides three significant PLS components. The PLS 

components being centred, the score functionTβ , derived from the Cox model on the three 

PC-PLS Cox components, is centred on 0 which represents the average risk. Therefore 

subjects with a positive risk score belong to the high risk group, and conversely subjects with 

a negative risk score belong to the low risk group. 
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The graph below displays the survival curves with their associated 95% confidence intervals 

for the low and high risk groups, based on the test set. We observe a significant difference in 

the risk of death between the high and low groups. 
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Non linear kernel PLS-Cox algorithm 

Rosipal and Trejo (2001) were the first to propose a nonlinear extension of PLS regression 

using kernels. Assuming a nonlinear transformation of the input variables { }  into a 

feature space F, i.e. a mapping 

1

n
i i

x
=

: (N
i )ix R xΦ ∈ →Φ ∈F  they goal was to construct a linear 

PLS regression model in F. They derived an algorithm, named KPLS, for non-linear kernel 

PLS models by performing the PLS regression on ( )XΦ . It amounts to replace in the 

expression of PLS components the product XX’ by ( ) ( ) 'X XΦ Φ  using the so-called kernel 

trick which permits the computation of dot products in high-dimensional feature spaces 

using simple functions defined on pairs of input patterns: ( ) ( ) ' ( , )i j i jx x K x xΦ Φ =   
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Using the kernel functions corresponding to the canonical dot product in the feature space 

allows avoiding non linear optimization and the use of simple linear algebra. 

However, this KPLS algorithm doesn’t allow extension to generalised linear regression.  

A better solution for generalization came 2 years later from Bennett and Embrecht (2003) 

who proposed, with their Direct Kernel PLS algorithm, to perform PLS regression on the 

kernel matrix K instead of ( )XΦ . DKPLS corresponds to a low rank approximation of the 

kernel matrix. As shown by Lewi (1995), latent vectors extracted from a data table are the 

same as those derived from the corresponding distance matrix up to a transformation of the 

later into a variance-covariance matrix. Moreover, A.Tenenhaus et al.(2006) demonstrated 

that for one dimensional output response PLS of ( )XΦ (KPLS) is equivalent to PLS on K1/2 

(DKPLS). 

Following Bennett and Embrechts, A.Tenenhaus et al recently proposed KLPLS, a 

kernelized version of generalized PLS regression (Bastien, Esposiro Vinzi, and M. 

Tenenhaus, 2005) in the framework of logistic regression, as an extension of PLS-logistic 

regression to non linear settings. 

 

Using the previous works, it becomes straightforward to derive a (non linear) Kernel PLS 

Cox algorithm by replacing in the PLS Cox algorithm the X matrix by the kernel matrix K. 

Moreover, the introduction of an intercept when constructing the latent variables avoids the 

kernel centring used in the DKPLS algorithm (Bennett and Embrecht 2003, A.Tenenhaus et 

al. 2006. 

The KPLS Cox algorithm is composed of 3 steps. 

1/ Computation of the kernel matrix 

2/ Computation of the PLS components 

3/ Cox regression on the retained PLS components 
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The main kernel functions are: 

Polynomial kernel   ( )( , ) ,
d

K u v u v c= +  

Gaussian kernel  
2

,
( , ) exp

2 ²
u v

K u v
σ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

The linear kernel ( , ) ,K u v u v=  appears as a particular polynomial kernel. As mentioned 

by A.Tenenhaus and al., the choice of the kernel function defines the relative position of the 

data points in the feature space.  

Let’s note that non-linear kernel regression loses the explanation with the original 

descriptors, unlike linear kernel PLS regression. This could limit the interpretation of the 

results, as for example in genomics when PLS regression may be used to determine the 

genes belonging to transcriptomic signatures linked to the response. 

 

Application 

In order to demonstrate the performance of the KPLS Cox algorithm when dealing with non 

linearity in the relationship between input variables and the hazard function, data showing 

dramatic non linearity have been simulated. 

Data have been simulated in order that independent processes represented by unobserved 

latent variables Lk are responsible for the systematic variation of both the survival time and 

the predictor variables with a highly non linear relationship between the hazard function and 

the latent variables. The predictor covariance matrix has a block structure with variables in 

the same group being highly correlated with each other, while between groups correlations 

are small. Moreover, groups of variables represented by their associated latent variables 

could be not related to the hazard function in order to include some noise in the data. The 

application in the context of transcriptomic data is straightforward with the variables 
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corresponding to gene expression and the latent variables to the associated biological 

functions. Moreover, we suppose that the survival time is non-linearly linked to the 

biological functions. The aim is to find a molecular signature which could be used as a 

prognosis factor of survival.  

 

We first generate for each latent variable k variables with some defined inter-correlation 

pattern represented by the matrix R. 

 

To generate correlated multivariate normal data of k variables with a desired population 

inter-correlation pattern as represented by the matrix R, we take the following steps (Kaiser 

& Dickman 1962, Fan et al 2002): 

1 Perform a PCA on the R correlation matrix in order to extract k principal 

components resulting in a matrix F of size kxk. 

2 Generate k uncorrelated standardized random variables, each with N observations 

and then transpose to a kxN dimension matrix X. 

3 Premultiply the uncorrelated data matrix X with the factor pattern matrix F. The 

resultant Z matrix ( Z(kxN)=F(kxk) X(kxN) ) contains N observations on k correlated 

variables, as if the N observations were sampled from a population with 

population correlation pattern R. Then transpose back to an Nxk data matrix. 

 

In the following, we suppose that the correlation between variables associated with the 

same latent variable is constant. By choosing their respective values, we can specify the 

percentage of variability explained by the first factorial axes of the descriptors matrix X. 



 - 16 - 

Next, survival times are generated satisfying the proportional hazard model. We took 

survival times 0 0( )  ( )i i i yY Y exp r where Y Exp λ= ≈ and censoring 

times 0 0exp( ) where ( )i i iZ Z r Z Exp zλ= ≈ . 

The observed times are . We took min( , )i iT Y= iZ z0.5 1y andλ λ= = which gives 1/3 

censoring rate.  

In the following r is chosen as a non linear function of the latent variables. In the 

example we choose three latent variables F1 to F3 formed from three groups of 100 

variables each with correlation matrices R1 to R3 characterised by their off diagonal 

between variables correlations of 0.7, 0.6, and 0.5 respectively. The third group being not 

associated with survival. A PCA on the 300 simulated data shows eigenvalues of 

respectively 69.7, 60.85, and 49.87 associated to the first three principal axes. 

Let   2 2
1 2r F F= +

The data have been separated in working (n=200) and test (n=100) sets. 

Graph 1 displays the projection on F1 and F2 of the 100 simulated test samples. Red 

circles correspond to data with low values for r (< median), and blue circles the 

otherwise. 
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The KPLS Cox model has two significant components. Graph 2 shows the projection of 

the test samples onto the first two KPLS Cox components. We observe a quasi linear 

separation of the blue and red circles in the feature space, the overlap being due to the 

noise brought by the third group of variables not linked to survival. 
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Graph 3 displays the survival curves with the associated confidence intervals for the low risk 

and high risk groups, based on the test set. Let’s note that the PSL components being centred, 

the score function Tβ , derived from the Cox model on the KPLS Cox components, is 

centred on 0 which represents the average risk. Therefore subjects with a positive score 

function are said to be at high risk, and conversely subjects with a negative score function 

are said to be at low risk. We observe a highly significant difference in the risk of death 

between the high and low groups. 
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Penalized Cox regression 

Other approaches to deal with high dimensional and low-sample size data in the framework 

of the Cox regression is to use penalized partial likelihood, including both L1 (Lasso) and L2 

(Ridge) penalized estimations. Li and Luan (2003) where the first to investigate the L2 

penalized estimation. They developed a kernel Cox regression model for relating gene 

expression profiles to censored phenotypes in terms of function estimation in reproducing 

kernel Hilbert spaces. However, one limitation of the L2 penalized estimation of the Cox 

model is that it uses all the genes in the prediction and does not provide a way of selecting 

relevant genes for prediction. On the other hand, in addition to improving on prediction 

accuracy through shrinkage, the nature of the L1 constraint is such that interpretation is 

enhanced by “zeroing out” many covariates.  

 

Cox-LASSO procedure 
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In the context of censored data, Tibshirani (1997) extended the LASSO procedure for 

variable selection with the Cox’s proportional hazards model. Based on the Cox’s partial 

likelihood (1) the lasso estimate β can be expressed as: 

p

j
j=1

arg max ( ),  l subject to sβ β= ∑ β ≤     (2) 

Where s is a tuning parameter that determine how many coefficients are shrunk to zero. 

Let
2

, , ,  T
T

l lx A and z Aη β μ η
η ηη

−∂ ∂
= = = − = +

∂ ∂
μ  where 1( ,..., )nx x x= is the matrix of 

covariates. 

Let ( ) (Tz A z )η η− −  be a one-term Taylor series expansion for ( )l β , Tibshirani proposed a 

4 steps iterative procedure to solve (2) 

 

Step 1  Fix s and initialize ˆ 0β =  

Step 2  Compute ,  ,  ,   A and zη μ based on the current value of β̂  

Step 3  Minimize ( subject to ) ( )T T Tz X A z Xβ− − β
p

j
j=1

sβ ≤∑  

Step 4  repeat step 2 and 3 until β̂  does not change. 

The strategy for solving step 3 is to express the usual Newton-Raphson update as an iterative 

reweighted least squares step, and then replace the weighted least squares step by a 

constrained weighted least squares procedure. However the quadratic programming 

procedure used in step 3 starts from the least squares solution and hence cannot be applied 

when p > n. 

 

LARS-LASSO procedure 
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In 2004, Efron et al. proposed a highly efficient procedure called LARS for Least Angle 

Regression for variable Selection. This procedure can be used to perform variable selection 

with large matrices. The LARS procedure starts with all coefficients equal to zero, and finds 

the predictor most correlated with the response. It takes then the largest step in the direction 

of this predictor until another predictor becomes as much correlated with the current residual. 

LARS then proceeds in a direction equiangular between the two predictors until a third 

variable in turn becomes as much correlated with the current residual, as the previously 

selected ones. The stopping rule is based on a Cp-type criterion. At each step LARS adds 

one covariate to the model, so that after k steps, k of the β̂ are non-zero. LARS is 

computationally thrifty. The computational cost for the entire steps is of the same order as 

that described for the usual unconstrained Least Squares solution for the full set of covariates.  

 

Moreover, LARS can be modified to provide solution for the LASSO procedure. Using the 

connection between LARS and LASSO, Gui and Li (2005a) proposed the LARS-LASSO for 

gene selection in high-dimension and low-sample settings. Using a Choleski factorization of 

A, they transformed the step 3 minimisation in a constrained version of Ordinary least 

Squares which can be solved by the LARS-LASSO procedure. 

Step 3 (modified)  Minimize subject to ˆ( ) (T T Ty X y Xβ β− − ˆ )
p

j
j=1

sβ ≤∑  

Where   ˆ,  ,  Ty Tz X TX and A TT= = =

They used their procedure in oncology for identifying important genes that are related to 

survival time, and for building a parsimonious Cox model for predicting the survival of 

future patients. 

 

Deviance residuals 
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However the IRWLS iterations performed in the Cox-LASSO procedure counter balanced 

the efficiency of the LARS-LASSO algorithm and render the Gui and Li (2005a) algorithm 

computationally costly. Segal (2005), at the expense of some approximation, proposed to 

speed-up the calculations. He proposed to replace the survival times by the deviance 

residuals, a normalized version of Martingal residuals that result from fitting a null (intercept 

only) Cox regression model. The deviance residual is a measure of excess of death and can 

therefore be interpreted as measure of hazard. Moreover, Segal showed that the expression to 

be minimized in step 3 of the Cox-LASSO procedure can be approximate, at a first order 

Taylor approximation, by the deviance residual sum of squares. 

ˆ( ) ( ) (T T Tz X A z X RSS Dβ β− − ≈ )   

Therefore, in order to perform the Cox-Lasso procedure, initially compute the null deviance 

residuals and use these as outcomes for the LARS-LASSO algorithm. 

 

Moreover both residual deviance and LARS-LASSO procedure are available in R or SPLUS 

with coxph() and lars(), and in SAS with the Proc PHREG and the new proc GLMSELECT 

procedure. 

We propose to use the same idea in the setting of Partial least Squares. An alternative 

formulation of the PLS Cox model could be derived by fitting the deviance residuals with a 

simple univariate PLS regression. We will compare both models based on the evaluation of 

their predictive performance using time dependant ROC curves. 

 

Predictive accuracy  

Cross-validated residual sum of squares used in order to assess how well the model fits or 

predicts the outcomes can no longer be used with censored data. Censored data are 

characterised by both status at the end of the follow-up period and the length of follow-up. 
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Therefore extended predictive accuracy criteria based for continuous data (R²) and binary 

(ROC curves) may be used in the case of censored data. Schemper and Henderson (2000), 

build on earlier works that extend R² to Cox model, proposed to characterize the proportion of 

variation explained by the covariates. Heagerty and Zheng (2003) proposed new time-

dependent predictive accuracy summaries based on time specific versions of sensitivity and 

specificity. This later approach is used in the following where the survival time will be 

characterized by a counting process representation ( ) 1( )i iN t T t= ≤ . The area under the ROC 

curves, which measures the probability that a marker value for a randomly selected case 

exceeds the marker value for a randomly selected control, are particularly useful for 

comparing the discriminatory capacity of different potential biomarkers. For survival there are 

several potential extensions of sensitivity and specificity. Heagerty and Zheng (2003) 

proposed new time-dependent ROC curves based on Incident/Dynamic definition of 

sensitivity and specificity. 

( , ) :  ( / ) ( / 1)i i i isensitivity c t P M c T t P M c dN> = = > =  

( , ) :  ( / ) ( / 0)i i i ispecificity c t P M c T t P M c N≤ = = ≤ =  

with M a predictor score function (M=Xb). 

Sensitivity measures the expected fraction of subjects with marker greater than c among the 

sub-population of individuals who die at time t, while specificity measures the fraction of 

subjects with a marker less than or equal to c among those who survive beyond time t. 

Using the true and false positive rate functions ( ) ( , )tTP c sensitivity c t=  and 

( ) 1 ( , )tFP c specificity c t= − allows the ROC curve to be written as:  

 with 1( ) ( ) ( ) t t tROC p TP FP p−= { }1( ) ( )  inf  :  ( )t c tFP p c FP c p− = ≤  

1

0

( ) ( )tAUC t ROC p dp= ∫  { }/ ,j k j kP M M T t T t= > = >  
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Larger AUC at time t based on the risk score function M indicates better predictability of time 

to event at time t as measured by sensitivity and specificity evaluated at time t. 

It is worthy to mention that, time-dependent ROC curves are related to standard Kendall’s tau 

concordance summary (Heagerty and Zheng,2003)  

 

The PLS-Cox model and the PLS regression with deviance residuals as a response, have been 

compared based on the Rosenwald data. The graph below shows the time-dependant AUC for 

the test sample, as a criterion to assess the relative predictive performance of the two models. 
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Both methods show quite similar predictive performance. This confirms the close agreement 

shown by Segal between the LARS-LASSO Cox procedure of Gui and Li (2005a) and his 

method based on the deviance residuals. 

 

Threshold Gradient Descent 

Friedman and Popescu (2004) showed that PLS regression (or Ridge regression) tends to 

produce regression coefficients { }1
ˆ ˆ ˆ,..., pβ β β=  for which the ˆ

jβ  of highly correlated 
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variables are shrunk to a common value whereas the LARS-LASSO procedure produces an 

opposite effect. Let’s the true parameter *β  represents a point in the parameter space. The 

goal of a model selection procedure is to construct a path in the parameter space such that 

some of the points on the path are close to the parameter *β . Hence if *β has highly disparate 

absolute values, the LARS-LASSO procedure would likely to produce paths in the parameter 

space that come close to *β , whereas if the components of *β  have roughly equal absolute 

values, PLS regression (or Ridge regression) will produce closer paths. 

However for situations in between Friedman and Popescu proposed a generalized gradient 

descent algorithm with a threshold parameter 0 1τ≤ ≤  that controls dispersion in the absolute 

coefficient values. Smaller values of τ create paths closer to PLS regression (or Ridge 

regression), whereas larger values produce paths closer to LARS-LASSO. 

 

Following Friedman and Pospescu, Gui and Li (2005b) proposed to extend the Threshold 

Gradient Descent to the Cox model. Gui and Li found two major limitations of the LARS-

LASSO procedure. First, the number of predictors selected cannot be greater than the sample 

size, and secondly, the LARS-LASSO procedure tends to select only one variable from a 

group with high pair-wise correlations which is a major limitation in transcriptomic data when 

the goal is to select all genes which are most related to survival. 

Specifically, for any threshold value 0 1τ≤ ≤ , the threshold gradient descent algorithm for 

Cox model involves the following steps: 

Step 1  (0) 0,  0β ν= =  

Step 2  Calculate log ( ),  ,  ( ) PLg βη μ ν
β

∂
=

∂
 for the current β  

Step 3  
0

( ) ( ) max ( )j j k
k n

f I g gν ν τ ν
≤ ≤

⎡ ⎤
⎥= ≥⎢⎣ ⎦

 where I  is an indicator function. 
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Step 4  Update ( ) ( ) . ( ). ( )g fβ ν ν β ν ν ν ν+ Δ = + Δ  

  ν ν ν= +Δ  

Step 5  repeats steps 2 to 4 until convergence. 

 

With ( )g Xν μ=  

Let { }1,..., nμ μ μ=  and Xη β=  

log ( ) exp( )
exp( )

i k

k
i i i

k Ci jj R

dPL βμ δ η
η η∈ ∈

∂
= = −

∂ ∑∑
 

Where is the number of events at time and kd kt { }:kC k i R= ∈ k denotes the risk sets 

containing individual i. 

Then log ( )( ) PLg Xβν μ
β

∂
= =

∂
 

Gui and Li (2005b) noted that compared to the LARS-LASSO estimate of the Cox model this 

TGD procedure is computationally fast and does not involve matrix inversion. 

 

Threshold PLS 

A similar approach could be used with PLS Cox regression by selecting, in the construction of 

the hth PLS component, only the variables ix with a significant Wald test in the multivariate 

Cox regression on 1 ,..,  i hx and t t −1 . The significant threshold α of the testing procedure 

could be used to limit the number of selected predictor variables with 1-  α acting asτ  in the 

TGD procedure. There are some arguments to motivate the use of such shrinkage procedure 

when dealing with transcriptomic data. From a biological point of view, one should expect 

that only a small subset of the genes is relevant to predict survival. Many of the thousands of 

genes are not informative with regard to the hazard function and contribute only to reduce the 

predictive performance by introducing noise in the data. 
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In the same state of mind, Huang et al.(2004) proposed a Penalized PLS regression. They 

replaced the coefficient of  ib ix in the computation of the PLS components by 

( = ( )i i ib sign b b
+

− Δ)
)

,with  a shrinkage parameter to be determined and 

. However it seems to make more sense from a statistical 

point of view to shrink the coefficients based on their significance rather than on their 

magnitude. 

Δ

 if 0 and 0 if 0f f f f f+ += > = ≤



 - 27 - 

References 

[1] Bastien P., Tenenhaus M., 2001. PLS generalised linear regression, Application to the 
analysis of life time data. In PLS and Related Methods, Proceedings of the PLS’01 
International Symposium , CISIA-CERESTA Editeur, Paris, pp. 131-140. 

[2] Bastien P., Esposito Vinzi V., and Tenenhaus M., (2005). PLS generalised linear 
regression, Computational Statistics & Data Analysis,48: 17-46  

[3] Cox, D.R. 1972. Regression models and life tables. Journal of the Royal Statistical 
Society  B. ; 74187-220. 

[4] De Jong S., Wise B. and Ricker N., 2001. Canonical partial least squares and continuum 
power regression. Journal of. Chemometrics; 15:85-100. 

[5] Efron B., Johnston I., Hastie T., and Tibshirani R., 2004. Least angle regression. Annals of 
Statistics, in press. 
[6] Fan X., Felsovalyi A., Sivo S., Keenan S.C. 2002, SAS for Monte Carlo Studies: A guide 
for quantitative Researchers, SAS publishing, Cary, NY. 
[7] Friedman J.H. and Popescu B.E., 2004. Gradient Directed Regularization, Technical 
report, Statistics department, Standford University. 
[8] Garthwaite P.H., 1994. An Interpretation of Partial least Squares. Journal of the American 
Statistical Association, 89(425):122-127. 
[9] Gui J. and Li H., 2004. Penalizes Cox regression Analysis in the High-Dimensional and 
Low-sample Size Settings, with Applications to microarray gene Expression Data. Center for 
Bioinformatics & Moleculad Biostatistics, University of California, San Francisco. 
[10] Gui J. and Li H., 2005a. Penalized Cox regression analysis in the high-dimensional 
and low-sample size settings, with application to microarray gene expression data. 
Bioinformatics; 21 (13): 3001-3008. 
[11] Gui J. and Li H., 2005b. Threshold gradient descent method for censored data regression 
with application in pharmacogenomics, Pacific Symposium Biocomputing 272-83. 
[12] Heagerty P. and Zheng Y., 2003. Survival Model Predictive Accuracy and ROC Curves. 
UW Biostatistics Working Paper Series, paper 219, the Berkeley Electronic Press.  
[13] Höskuldsson, 1988. A. PLS regression methods. J. Chemometrics , 2:211-228. 

[14] Huang X. and Pan W. 2003. Linear regression and two-class classification with gene 
expression data. Bioinformatics, 19:2072-2078. 
[15] Huang X., Pan W., Park S., han X., Miler L., and Hall J. (2004). Modeling the 
relationship between LVAD support time and gene expression changes in the human heart by 
penalized least squares Bioinformatics, 20 (6): 888-894. 
[16] Kaiser H.F. and Dickman K. 1962. Sample and population score matrices and sample 
correlation matrices from an arbitrary population correlation matrix. Psychometrika 27: 179-
182. 
[17] Li. and Luan Y., 2003. Kernel Cox regression models for linking gene expression 
profiles to censored survival data. Pacific Symposium of Biocomputing, 8:65-76. 
[18] Lewi, P.J. 1995 Pattern recognition, reflection from a chemometric point of view. 
Chemometrics and Intelligent laboratory System, 28, 23-33. 
[19] Li H. and Gui J., 2004. Partial Cox regression analysis for high-dimension microarray 

gene expression data. Bioinformatics; 20:208-215. 
[20] Lingren F., Geladi P., and Wold S., 1993. The kernel algorithm for PLS. Journal of. 

Chemometrics; 7: 45-59. 

[21] Manne R., 1987. Analysis of Two Partial-Least-Squares Algorithms for Multivariate 
Calibration. Chemometrics and Intelligent Laboratory System; 2:187-197. 



 - 28 - 

[22] Nguyen D.V. and Rocke D., 2002. Partial least squares proportional hazard regression 
for application to DNA microarray survival data. Bioinformatics, 18:1625-1632. 
[23] Nguyen D.V. and Rocke D., 2004. On partial least squares dimension reduction for 
microarry-based classification: a simulation study, Comput. Stat. Data Anal. 46: 407. 
[24] Nguyen D.V., 2005. Partial least squares dimension reduction for microarray gene 
expression data with a censored response. Mathematical Biosciences, 193:119-137. 
[25] Park. P.J., Tian L., and Kohane I.S., 2002. Linking gene expression data with patient 
survival times using partial least squares. Bioinformatics, 18:S120-S127. 
[26] Rânnar S., Geladi P., Lingren F. and Wold S., 1994. A PLS kernel Algorithm for data 

sets with many variables and few objects. Part II : cross-validation, missing data and 
exemples. Journal of. Chemometrics; 9:459-470. 

[27] Rosipal, R. and Trejo, L.J., 2001. Kernel Partial Least Squares Regression in 
Reproducing Kernel Hilbert space. Journal of machine Learning research 2, 97-123. 
[28] Rosenwald A. et al., 2002. The use of molecular profiling to predict survival for diffuse 
large-B-cell lymphoma. The New England Journal of Medicine, 346:1937-1947. 
[29] Segal M. R., 2005. Microarray Gene Expression Data with Linked Survival Phenotypes: 
Diffuse large-B-Cell Lymphoma Revisited. Technical report, Center for Bioinformatic & 
Molecular Biostatistics, University of California San Francisco. 
[30] Tenenhaus A., Giron A., Viennet E., Béra M., Saporta G., and Fertil B., 2005. Kernel 
Logistic PLS: a tool for supervised nonlinear dimensionality reduction and binary 
classification, Computational Statistics and data Analysis, on press. 
[31] Tenenhaus M., 1998. La régression PLS.  Technip, Paris. 
[32] Tibshirani R., 1997. The lasso method for variable selection in the Cox model. Statistics 
in Medicine, 16:385-395. 
[33] Whitehead J., 1980. Fitting Cox’s regression Model to Survival Data using Glim. Appl. 
Statist, 29:268-275. 
[34] Wold H., 1966. Estimation of principal components and related models by iterative 

least squares. In Krishainaah, P.R. (ed), Multivariate Analysis. New Academic Press, 
New York , pp. 391-420. 

[35] Wold S., Martens H. and Wold H., 1983. The multivariate calibration problem in 
chemistry solved by the PLS method. In Proc. Conf. Matrix Pencils, Ruhe A. & Kåstrøm 
B. (Eds), March 1982, Lecture Notes in Mathematics, Springer Verlag, Heidelberg , p. 
286-293. 


	Remarks

