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SUMMARY 
 
Problems encountered in multiple regression due to multicolinearity or 
missing data can be overcome by using PLS regression. Several 
versions of the PLS regression algorithm exist. In this paper, we 
present a new version of this algorithm which can be extended to 
generalized linear regression models such as ordinal or multinomial 
logistic regression, generalized linear models, and Cox regression 
models. An application with discrete censored data concerning the 
occurrence of prematurely graying hair in more than 4000 adult males 
is presented. The Cox regression model has been used. For discrete 
data summarizing a continuous time process, this model is equivalent 
to a generalized linear model using a complementary log-log link 
function. 
 
key words : PLS regression; Generalized linear regression; Life time 
data; Survival analysis; Cox model. 
 

I  PLS generalized linear regression  
 
The PLS regression method in its basic form ( PLS 1) applies  for one 
single response variable Y and is non iterative (Tenenhaus 1998). It is 
particularly useful when the X variables are closely correlated with 
each other. 
 
Marx (1996) proposed a generalization of the PLS algorithm to 
generalized linear models (Dobson 1990). He used the fact that, in the 
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context of the exponential family, maximum likelihood estimates are 
obtained by an iterative weighted least squares procedure. His 
approach consisted of replacing the iterative weighted least squares 
step by a sequence of PLS regressions. 
 
Esposito Vinci and Tenenhaus (2001) propose a much simpler 
approach consisting of adapting the PLS regression algorithm 
described by Wold, Martens and Wold, (1983) to the case of binary or 
ordinal logistic regression. In this paper, we present a generalization 
of this algorithm to generalized linear regression. 
 
The generalized linear regression model is described below : 
 
Let Y be a response function and τ some parameter related to the 
distribution of Y. For example τ can be the mean μ , the probability π 
of occurrence of an event, or a hazard function h(t). Let  be the 
explanatory variables. Let 

pxx ,..,1

g  be the link function. 
 
The generalized linear regression is the following : 
 
(1)   ∑=

j
jj xg βτ )(  

The model parameters jβ  are estimated by maximum likelihood. 
 
The PLS generalized linear regression algorithm is described below: 
 
Let X0 be the matrix of the standardized input variables . pxx 001 ,..,
 
Determination of the first PLS component t1
   
1: For each  j = 1 to p, compute the regression coefficient w1j of x0j 

in the generalized linear regression model (1) of y on x0j. 
2: The vector w1 = (w11,…,w1p)′ is normalized. 
3: t1 = X0w1/w1′w1
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 Determination of the second PLS component t2 
 
1: Compute the residual X1 of the regression of X0 on t1. 
2: Compute the regression coefficient w2j of x1j in the generalized 

linear regression of y on t1 and  x1j, for j = 1 to p. 
3: The vector w2 = (w21,…,w2p)′ is normalized. 
4: t2 = X1w2/w2′w2 
 
This procedure is iterated for the other PLS components th. 
 
When some data are missing, the calculation of the PLS components 
is modified by applying the NIPALS algorithm principle. The 
calculation of the numerator and denominator of th = Xh-1wh/wh′wh is 
carried out on the basis of the available data. The denominator is in 
fact calculated only on data available to the numerator. 
 
At each step the generalized linear regression of y on components 
t1,…, th is carried out. We stop the procedure and the component th is 
not included in the model if it is not significant. The number m of PLS 
components th can also be determined by cross-validation.. The final 
regression equation is obtained by expressing the generalized linear 
regression of y on t1,…, tm as a function of the original variables. 
In the case of ordinary multiple regression, this algorithm gives usual 
PLS regression when there is no missing data. When some missing 
data are present this algorithm takes into account the correlation 
between the PLS components. This is not the case for the usual PLS 
regression. 

II Application 

II.1 Material and objectives 
 
Begun in 1994 by Professor Serge Hercberg, the cohort study 
SUVIMAX («SUpplémentation en VItamines et Minéraux 
Antioxydants») assumed the task of evaluating the nutritional state of 
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the population in France and assessing the influence of antioxidant 
minerals and vitamins on various indications of the state of health 
such as cancer or cardiovascular disease (Hercberg 1997). This study, 
scheduled for completion after 8 years in 2002, has enrolled more than 
12000 volunteers aged between 35 and 65 years and representative of 
the population of France, half of whom received antioxidants and the 
other half a placebo. 
 
We conducted a study of the state of health of hair and nails in 10323 
subjects (4057 men and 6266 women) from this cohort. On the basis 
of responses to a questionnaire covering more than 150 items, an  
attempt was made to demonstrate the risk factors associated with the 
premature onset of graying hair in men.  
 
The response variable is the age at which the first gray hairs appear in 
men. This is a discrete variable divided into 6 stages: less than 30 
years, 31 to 35 years, 36 to 40 years, 46 to 50 years and over 50 years. 
The Cox regression model was used to fit the data. As the process of 
the advent of the first gray hairs is intrinsically continuous, the Cox 
regression model is equivalent to a generalized linear model using a 
complementary log-log link function (Allison, 1995, page 216). 
 
Family factors, natural hair color, and hair thickness are predictor 
variables significantly related to the time at which the first gray hairs 
appear. A Cox model was used to relate the response variable to the 
predictors. 

II 2 Discrete life time data 
 
The basic ideas described in Allison (1995) are simple. Each 
individual’s survival history is broken down into a set of discrete time 
units that are treated as distinct observations. After pooling these 
observations, the next step is to estimate a binary regression model to 
predict whether an event did or did not occur in each time unit. Even 
if multiple observations are created for a single individual, there is no 
concern about dependence here. The creation of multiple observations 

 4



follows directly from factoring the likelihood function for the data. It 
follows immediately from the definition of conditional probability. 
 
Two models for processing these data exist: one that assumed that 
events really occur at the same discrete time and another that assumed 
that ties result from imprecise measurement. 
 
When events can only occur at regular discrete points in time, the 
appropriate model is a logit model. 
 
Let Pit be the conditional probability that individual i has an event at 
time t, given that the event has not already occurred in the case of that 
individual. The model states that Pit is related to the predictors by the 
logit regression equation: 

(2)   pipit
it

it xx
P

P
ββα +++=

−
...

1
log 11  

For most applications, however, ties occur because event times are 
measured coarsely even though events can actually occur at any point 
in time. If we now assume that events are generated by Cox’s 
proportional hazards model it follows that: 
 
(3)   [ ] pipitit xxP ββα +++=−− ...)1log(log 11  
 
i.e. the probability of an event at some well-defined interval of time is 
given by the complementary log-log model. Furthermore the β 
coefficients in the model have the same relative risk interpretation as 
in the underlying Cox proportional hazard model. The expression 

 in formula 3 is the discrete version of the hazard 
function h

)1log( itP−−

i(t). Hence, formula 3 is the discrete version of the Cox 
proportional hazard model : 
 
(4)   [ ] pipiti xxth ββα +++= ...)(log 11  
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II.3 Results 
 
All analyses have been carried out using SAS® software release 8.0. 
 
II.3.1 The PLS Complementary log-log model 
 
The first two PLS components t1,t2 are significant and have been 
retained in the model. Table 1 below describes t1 and t2, based on all 
data,  as a function of the original predictors. 
 
Table 1: PLS components of model 3 in terms of  the original variables. 
 

 t1 t2
Mother gray-haired under the age of 30 1.92 -2.78 
Mother with no gray hair at 60+ years -1.50 -2.0 
Sister gray-haired under the age of 30 1.91 -3.6 
Father gray-haired under the age of 30 2.23 0.35 
Father with no gray hair at 60+ years -1.35 0.63 
Natural hair color  
Red-blonde-light chestnut dark chestnut brown black  

0.45 0.06 

Hair thickness 
Very fine – fine – medium – thick 

0.55 0.6 

 
Results of the PLS Cloglog model based on all data are presented in 
Table 2. 
 
Table 2: Parameter estimates of model 3 in terms of PLS components. 
 
 Parameter       DF    Estimate     Std Err   ChiSquare  Pr>Chi 

 

 INTERCEPT        1      0.4213      0.0483     76.2043  0.0001 

 T1               1      0.2247      0.0119    357.1172  0.0001 

 T2               1      0.0220      0.0108      4.1925  0.0406 

 TIME       1     1     -3.0941      0.0763   1644.8937  0.0001 

 TIME       2     1     -2.8345      0.0730   1509.6531  0.0001 

 TIME       3     1     -1.9391      0.0617    987.0238  0.0001 

 TIME       4     1     -1.1353      0.0575    389.4365  0.0001 

 TIME       5     1     -0.7232      0.0598    146.3576  0.0001 

 TIME       6     0      0.0000      0.0000           .       . 
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Intercept is an estimate of Time 6, the log-hazard for the onset of  the 
first gray hairs over 50 years. For level j of the Time variable, the 
coefficient is the difference in the log-hazard of onset of the first gray 
hairs in interval j and the log-hazard of onset of the first gray hairs 
over 50 years. 
 
The results of the Cloglog and PLS Cloglog models expressed 
according to the original predictors are given in table 3. The Cloglog 
parameters are estimated using observations without missing data. In 
order to compare PLS Cloglog and Cloglog models on the same basis, 
PLS Cloglog parameters have also been estimated on the observations 
without missing data. Finally PLS Cloglog model has been fitted on 
the whole data set. This possibility of working with missing data is a 
rather interesting feature of PLS methods. 
 
Table 3: Parameter estimates of model 3 in terms of the original variables. 
 

 Cloglog 
β 

(exp β) 
 

no missing 

Cloglog 
PLS 

t1 
t1 , t2 

no missing 

Cloglog 
PLS 

t1 
t1 , t2 

all data 
Mother gray-haired 
Under the age of 30 

0.51 
(1.65) 

0.58 
0.50 

0.42 
0.37 

Mother with no gray hair 
at 60+ years 

-0.44 
(0.65) 

-0.39 
-0.44 

-0.33 
-0.38 

Sister gray-haired  
under the age of 30 

0.63 
(1.88) 

0.73 
0.63 

0.42 
0.35 

Father gray-haired 
 under the age of 30 

0.82 
(2.24) 

0.74 
0.81 

0.49 
0.51 

Father with no gray hair 
at 60+ years 

-0.44 
(0.64) 

-0.40 
-0.44 

-0.30 
-0.29 

Natural hair color 
Red-blonde-light chestnut  
dark chestnut brown black  

0.14 
(1.14) 

0.13 
0.14 

0.10 
0.10 

Hair thickness 
Very fine – fine – medium – thick 

0.13 
(1.14) 

0.13 
0.13 

0.12 
0.14 
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We can interpret the coefficients just as if this was a proportional 
hazards model. For instance, having a mother with gray hair under the 
age of 30 produce a 100(exp(0.51) – 1 ) = 65 percent increase in the 
hazard of occurrence of gray hair with respect to having a mother 
without gray hair under the age of 30, all the other variables being 
fixed. 
 
In the classical multivariate approach, individuals for whom one or 
more variables are unknown are excluded from the analysis. They 
represent here more than half the population. In order to show 
convergence of the PLS Cloglog model coefficients towards those of 
the classic Cloglog model when the design matrix is not ill-
conditioned, PLS model based on complete data has been carried out. 
Results are displayed in the third column of Table 3. The coefficients 
of the PLS Cloglog model with two PLS components appear to be 
very close to those of the classic Cloglog model. 
 
The loss of information due to a very high percentage of missing data 
demonstrate the advantage of using a PLS model here, allowing all the 
individuals to be taken into account. In an extreme case, the classic 
approach could collapse without the PLS model being really affected. 
The last column of the table displays coefficients of the PLS Cloglog 
model based on all data. In spite of the high percentage of missing 
data results in the last two column are homogeneous. 
 
II.3.2 The PLS Cox model 
 
Table 4 below presents the results of the classic Cox model (formula 
4) and of the PLS Cox regression model in terms of the original 
predictors. The data are assumed here to be continuous without loss of 
generality. To take into account the ties, Efron’s approximation for 
tied event time was used. 
 
The convergence of the coefficients of the PLS Cox model towards 
those of the classic model with two components is again observed.  
The remarks in the preceding paragraph remain valid here. 
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Table 4: Parameter estimates of model (4) in terms of the original variables 
 

 
 

Cox 
β 

exp(β) 
 

no missing 

Cox 
PLS 

t1 
t1 , t2 

no missing 

Mother gray-haired  
Under the age of 30  

0.48 
(1.62) 

0.54 
0.47 

Mother without gray hair 
 at 60+ years 

-0.42 
(0.66) 

-0.37 
-0.41 

Sister gray-haired 
Under the age of 30  

0.58 
(1.79) 

0.68 
0.58 

Father gray-haired 
 Under the age of 30  

0.77 
(2.16) 

0.69 
0.76 

Father without gray hair 
at 60+ years  

-0.41 
(0.66) 

-0.39 
-0.42 

Hair color 
Red – blond – light chestnut-dark chestnut 
 Brown black 

0.13 
(1.14) 

0.12 
0.12 

Hair thickness 
Very fine – fine – medium – thick 

0.12 
(1.13) 

0.12 
0.12 

 

III Conclusion 
 
In this article, it has been demonstrated that the PLS regression can be 
extended to generalized linear regression and, more specifically, to 
survival data analysis. Initially, only discrete data were handled in 
order to fit into the framework of generalized linear models with logit 
or complementary log-log models. Subsequently, the capacity of the 
algorithm for extension to any linear regression model outside the 
exponential family was used to extend the concept of PLS regression 
to the Cox regression model. This approach offers a true alternative to 
the generalized linear regression models in the event of missing data 
or strong colinearity. 
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