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Summary. Linear discriminant analysis is studied when the predictors are data
of functional type and the response is a Bernoulli random variable. The aim of
this work is to anticipate the prediction of the response earlier than the end of the
observed stochastic process. Due to the infinite dimension of the predictor space,
discriminant coefficient functions cannot be derived as in the classical way and partial
least squares approach is proposed. Results of a simulation study as well as an
application to kneading data are presented.
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1 Introduction

Let us consider the particular case of linear discriminant analysis for binary re-
sponse when the predictor set is a stochastic process with continuous time index,
{Xt}t∈[0,T ]. Such data, known in literature as functional data ( [RS97]), has received
in the last years a large interest for research, especially due to the difficulty to deal
with infinite dimensional spaces in the context of classical multivariate methods.
Thus, generalized linear regression models are developed in [Jam02] and more re-
cently by [CS05]. Different linear approaches based on decomposition of the underly-
ing stochastic process are proposed : principal component regression ( [CFS99]), par-
tial least squares regression (PLS)( [PS05]), logistic regression ( [EAV04], [EAV05]).
Non-parametric models for regression on functional data using classical kernel esti-
mators are developed in [FV04] and [Pre06], both for scalar and categorical response.

In this paper we are interested to predict a binary response Y , Y ∈ {0, 1}, from
a stochastic process X = {Xt}t∈[0,T ] in the following way. Firstly, we measure the
predictive capacity of X by considering the process on the whole interval [0, T ].
Depending on the quality of prediction, we are interested to determine a time t∗ <

T such that the process X considered on [0, t∗] gives similar results, in terms of
prediction of Y , as considered on [0, T ]. This second point is very important from a
practical point of view. If the process X is related to a control parameter affecting
the outcome (Y ) then it is useful to anticipate the realization of Y , for example,
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in order to prevent some critical events (which will occur at time T ) or just for
economical reasons.

Let us consider the example of the kneading process. For a given flour, during the
kneading process one can record the resistance of dough in a interval of time [0, T ].
The obtained curve (see an example in Fig. 1) can be used ( [LACMM04], [PSL])
for predicting the quality of cookies obtained with this dough. If the cookie’s quality
could be anticipated in a short time, reparation could be done for amelioration or for
stopping the production process of bad quality cookies. Several other examples where
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Fig. 1. Example of functional data : dough resistance curve observed during 480
seconds

anticipated prediction is useful for controlling process can be found in [RLH02a],
[RLH02b], [KLSK00].

The paper is organized as follow. In the Section 2 we present some tools for
linear discrimination on functional data, in particular the partial least squares (PLS)
approach. Section 3 is devoted to anticipated prediction under several criterion of
prediction quality. A simulation study as well as an application on kneading data is
presented in Section 4.

2 Linear discriminant analysis on functional data. The

PLS approach

Let X = {Xt}t∈[0,T ] be a second order stochastic process L2-continuous with sample
paths in L2[0, T ] and Y a binary random variable, Y ∈ {0, 1}. Without loss of
generality we assume also that E(Xt) = 0, ∀t ∈ [0, T ]. As an extension of the
classical multivariate approach, the aim of linear discriminant analysis (LDA) for

functional data is to find linear combinations Φ(X) =
R T

0
Xtβ(t)dt, β ∈ L2([0, T ])

such that the between class variance is maximized with respect to the total variance,
i.e.

max
β∈L2[0,T ]

V(E(Φ(X)|Y ))

V(Φ(X))
. (1)

Let {(xi, yi)}i=1,...,n be n observations of random variables (X, Y ) with xi =
{xi(t), t ∈ [0, T ]} and yi ∈ {0, 1}, i = 1, . . . , n. Due to infinite dimension of the
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predictor, the estimation of β is in general an ill–posed problem. In [PSL] it is shown
that the optimization problem (1) is equivalent to find the regression coefficients in
the linear model which predicts Y (after a convenient encoding) by the stochastic
process X under the least-squares criterion.

Without loss of generality, let us recode Y by : 0 
q

p1

p0
and 1 −

q
p0

p1
, where

p0 = P(Y = 0) and p1 = P(Y = 1). If β is a solution of (1) then β satisfies the
Wiener-Hopf equation

E(Y Xt) =

Z T

0

E(XtXs)β(s)ds, (2)

which is the equation giving, up to a constant, the regression coefficient function of
the linear regression of Y on X = {Xt}t∈[0,T ]. Equation (2) has an unique solution
under conditions of convergence of series implying the eigenvalues and eigenvectors
of the covariance operator of the process X [Sap81]. These conditions are rarely
satisfied. Thus, in practice, the problem to find β is generally an ill-posed problem.
However, if the aim is to find the discriminant variable (scores), then one can use
the above relationship between LDA and linear regression.

Using this result, there are several ways to approximate the discriminant score
Φ(X). Thus, Φ(X) can be approximate using the linear regression on the principal
components of X. The choice of principal components used for regression is not
easy and should be a trade off between the quality of the model and the quality
of the representation of X. The PLS approach proposed in [PS05] is an efficient
alternative and provides generally better results. It allows to approximate Φ(X)

by ΦPLS(X) =
R T

0
βPLS(t)Xtdt and thus, to compute for a new observation the

discriminant score for further prediction.

2.1 The PLS approximation

The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, 1] and Y0 = Y . At

step q, q ≥ 1, of the PLS regression of Y on X, we define the qth PLS component, tq,
by the eigenvector associated to the largest eigenvalue of the operator WX

q−1W
Y
q−1,

where WX
q−1, respectively WY

q−1, are the Escoufier’s operators ( [Sap81]) associ-
ated to X, respectively to Yq−1. The PLS step is completed by the ordinary linear
regression of Xq−1,t and Yq−1 on tq. Let Xq,t, t ∈ [0, 1] and Yq be the random vari-
ables which represent the residual of these regressions : Xq,t = Xq−1,t − pq(t)tq and
Yq = Yq−1 − cqtq. Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in
L2(X) and the PLS approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + · · · + cqtq =

Z T

0

β̂PLS(q)(t)Xtdt. (3)

In practice, the number of PLS components used for regression is determined by
cross-validation.

2.2 Quality criterion. The ROC curve

Let denote by dT = ΦPLS(X) =
R T

0
βPLS(t)Xtdt the approximation for the dis-

criminant score given by the PLS regression on the process X = {Xt}t∈[0,T ].
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There are several criteria to evaluate the quality of the discriminant model, for
example the error rate for a defined threshold, the squared correlation ration

η2(dT |Y ) =
V(E(dT |Y ))

V(dT )
, the ROC curve, etc.

For a binary target Y , the ROC curve is generally accepted as the best measure
of the discriminating power of a discriminant score.

Let dT (x) be the score value for some unit x. Given a threshold r, x is classified
into Y = 1 if dT (x) > r. The true positive rate or ”sensitivity” is P (dT > r|Y = 1)
and the false positive rate or 1−”specificity”, P (dT > r|Y = 0). The ROC curve gives
the true positive rate as a function of the false positive rate and is invariant under
any monotonic increasing transformation of the score. In the case of an inefficient
score, both conditional distributions of dT given Y = 1 and Y = 0 are identical and
the ROC curve is the diagonal line. In case of perfect discrimination, the ROC curve
is confounded with the edges of the unit square.

The Area Under ROC Curve or AUC, is then a global measure of discrimination.
It can be easily proved that AUC = P (X1 > X0), where X1 is a random variable
distributed as d when Y = 1 and X0 is independently distributed as d for Y = 0.
Taking all pairs of observations, one in each group, AUC is thus estimated by the
percentage of concordant pairs (Wilcoxon-Mann-Whitney statistic).

3 Anticipated prediction

Now, let denote by dt the approximation for the discriminant score given by PLS
regression on the process X considered on the interval time [0, t], with t ≤ T . The
objective here is to find t∗ < T such that the discriminant function dt∗ performs
quite as well as dT .

The stochastic process {dt}t∈[0,T ] is such that :

• dt = Y − εt, where Y is recoded by 0 
q

p1

p0

and 1 −
q

p0

p1

. E(dt) = 0.

• E(εt, ds) = 0, ∀s ≤ t,
• E(dtds) = E(dsY ) =

√
p0p1(E(ds|Y = 0) − E(ds|Y = 1)), ∀s ≤ t.

Once a quality measure Qs is defined, a solution could be to define t∗ as the
first value of s where Qs is not significantly different from QT . Since Qs and QT are
dependent random variables, we will use a non parametric paired comparison test.

We will use in the following the AUC criterion for defining the quality of the
discriminant model.

Since the distribution of AUC is not known, we will test the equality of AUC(s)
with AUC(T), by using booststrap methodology: we resample M times the data,
according to a stratified scheme in order to keep invariant the number of observations
of each group. Let AUCm(s) and AUCm(T ) be the resampled values of AUC for
m = 1 to M , and δm their difference. Testing if AUC(s) = AUC(T ) is performed
by using a paired t-test, or a Wilcoxon paired test, on the M values δm.

4 Applications

We use a simulation study for which the anticipated prediction is possible before
the end of the process and we evaluate our procedure for this particular case. In the
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second part, we perform an application of the anticipated prediction on the kneading
data ( [LACMM04]) provided by Danone Vitapole Research Department (France).

4.1 Simulation study

Let us consider Y be a Bernoulli random variable, Y ∼ B(0.5). The simulated data,
X = {Xt}t∈[0,2], we consider correspond to the binary response Y for which the
predictor has the following form :

Class {Y = 0} : Xt =

�
W (1− t), 0 ≤ t ≤ 1
−2 sin(t − 1) + W (t− 1), 1 < t ≤ 2

Class {Y = 1} : Xt =

�
W (1− t), 0 ≤ t ≤ 1
2 sin(t − 1) + W (t − 1), 1 < t ≤ 2

where W is the standard brownian motion. Observed data are discretized curves
with 201 equidistant points, t ∈ {0, 0.01, 0.02, . . . , 2}. Fig. 2 displays a sample of 100
simulated curves for each class.
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Fig. 2. Sample of size n = 100 for each class of Y .
endcenter

Clearly, for t ≤ 1, the distribution of X(t) = {Xs}s∈[0,t] being the same for both

classes, any prediction model will fail. For, t > 1, X(t) = {Xs}s∈[0,t] is intuitively
more predictible as t is closer to 2.

For each s ∈ {0, 0.01, 0.02, . . . , 2} one generates M = 50 learning samples of size
n = 100 for each class. For each learning sample we generate a test sample (same
size) which is used to evaluate the model by computing the AUC(s). One obtains
in this way M = 50 independent realisations of AUC(s).

Using the Wilcoxon test (one-tailed) with the first error type fixed to 0.05, the
minimum t∗ for which the test is not significant is t∗ = 1.46. The Wilcoxon statistic
is 1.582 and the two averaged AUC corresponding to t∗ = 1.46 and respectively
to T = 2 are AUC(t∗) = 0.866, respectively, AUC(T ) = 0.872. The corresponding
averaged ROC curves are presented in Fig. 3.
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Fig. 3. Averaged ROC curves for T = 2 and t∗ = 1.46

4.2 Application to kneading data

PLS approach is applied to predict the quality of cookies from the kneading curve
representing the resistance (density) of dough observed during the kneading process.
For a given flour, the kneading process is observed during 480 seconds. Since we have
115 different flours we have 115 curves (functions of time), which represent a set of
sample paths of the stochastic process X = {Xt, t ∈ [0, 480]}. Each curve is observed
in a finite number of points corresponding to a discretization of [0, 480] into 240
equispaced instants of time (the same for all flours). After kneading, the dough is
processed to obtain cookies. For each flour we have the quality (Y ) of cookies which
can be Good, Adjustable or Bad. Our sample contains 50 observations for Y = Good,
25 for Y = Adjustable and 40 for Y = Bad. Due to measuring errors, each curve is
smoothed using cubic B-spline functions as in [LACMM04] (Fig 4.).
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seconds
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In the following we consider Y ∈ {Bad, Good}. The sample of 90 flours is ran-
domly divided into a learning sample of size 60 and a test sample of size 30. In the
test sample the two classes have the same number of observations. Several discrimi-
nant models are fitted in [PSL]. The PLS discriminant analysis gives, for a prediction
taking into account the whole interval [0, 480], an average of the test error rate of
about 0.112, for an average AUC(T ) = 0.746. The anticipated prediction procedure
gives for M = 50 and sample size test n = 30 (same number of observation in each
class), t∗ = 186. Thus, one can reduce the recording period of the resistance dough
to less than half of the current one.

5 Conclusion and perspective

In this paper we addressed the problem of forecasting a random response categorical
variable Y , namely a binary one, by predicting on the associated continuous stochas-
tic process {Xt}t∈[0,T ]. Such kind of situation is common to many real applications
where a continuous phenomenon evolving in a certain interval of time results in an
outcome not observable before the completion of the process itself. We faced the
problem by means of the PLS approach for which forecasting of the binary response
is drawn as ’anticipated prediction’ of the process {Xt}t∈[0,T ] at t = T .

A conceptually different approach would be ’on-line’ forecasting Y : instead of
using the same anticipated decision time t∗ for all data, we adapt t∗ to each new
trajectory given its incoming measurements. Work in progress comprises the devel-
opping of the presented approach by means of PLS-functional logistic model, which
would involve detection of an optimal time at which starts the ’best’ forecasting and
a sequential test procedure to validate the predicted forecasting of Y .
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