
1

XML Streams Watermarking(draft)

Juien Lafaye and David Gross-Amblard

{julien.lafaye,david.gross-amblard }@cnam.fr

Laboratoire CEDRIC (EA 1395) – CC 432

Conservatoire national des arts et métiers

292 rue Saint Martin

75141 PARIS Cedex 3, France

May 18, 2006 DRAFT

Abstract

XML streams are online, continuous, distributed,high throughputsources of information. For

streams carrying a significant intellectual and/or industrial value, proving ownership over pirated

copies is a requirement for data producers.Watermarkingis a known technique for hiding a copyright

mark in a digital document, in a resilient manner. While suchmethods already exist for numerical

streams, they do not meet the specific requirements of XML streams. In this paper, we introduce

the ℓ-d étour algorithm, which allows for watermarking XML streams so that (i) the watermark

embedding and detection processes are done online and use only a constant memory, (ii) the stream

distortion is controlled, (iii) the type of the stream is preserved and finally (iv) the detection procedure

does not require the original stream. We also evaluate, analytically and experimentally, the robustness

of ℓ-d étour against attempts to remove the watermark.

I. INTRODUCTION

Streams:Data streams arehigh throughputsequences oftokens, potentiallyinfinite. They are used

in a growing number of applications (see e.g. [3]) and their specificities make them a challenging

application [12]. Since XML has become the standard for specifying exchange formats between

applications, the focus in this paper is on XML streams. XML streams can be purchased online and

processed by distant peers. Dataproducers, e.g. news providers distributing news item in RSS (an

XML dialect) format, generate the tokens of the stream which is later on processed byconsumers. We

focus on automatic consumers, i.e. consumers defined by means of a program (or a Web Service).

Hence, consumers, as any program, do not accept arbitrary streams, but place restrictions on theirinput

types. Streams with invalid types can not be sold to consumers. ForXML based systems, types are

usually specified through a Document Type Definition (DTD) oran XML Schema. High throughput

requirement puts severe constraints on consumers: they must be able to process each token of the

stream quickly and cannot buffer an arbitrary number of tokens (bounded memory). For any arbitrary

DTD, typechecking XML streams can not be done while respecting these constraints.Hence, we

focus onacyclic DTDS , where no element is a sub-element of itself (for example, RSS is an acyclic

2

DTD). Under this hypothesis, typechecking can be done usingdeterministic finite automata (DFA)

and types can be specified using regular expressions [15].

Example 1:The XML news feed of Fig. 1 may be regarded as a stream on an alphabet ofclosing

and ending tags(< news >, < /date >..), letters (S,o,d,e,1,...) and predefinedsequences of letters

(Cinema, Politics, ...). It can be typechecked using the regular language<news><priority>[123]

</priority><title>(. *)</title>..<date> D</date>...</news> , where the expression

D=(19|20)[0-9][0-9]-(0[1-9]|1[0-2])-(3[0-1]|0[1-9]| [1-2][0-9]) captures valid dates

(for the sake of simplicity we do not try to check dates like2005-02-31). Observe that the DTD

standard does not allow the definition of a precise date format, since the contents of elements are

mostly of type PCDATA (i.e. almost any sequence of letters).A more sophisticated model like XML

Schema allows for such precise definitions. Our model applies to both formalisms.

...</news><news>

<priority>1</priority>

<title>Soderbergh won the Golden Palm</title>

<url>http://www.imdb.com/title/tt0098724/</url>

<date>1989-05-23</date>

<text>Soderbergh’s movie, Sex, lies and videotapes, won th e ...</text>

<category>Cinema</category>

</news><news>...

Fig. 1. An XML stream snapshot

Watermarking:High-quality streams carry a great intellectual and/or industrial value. Malicious

users may be tempted to make quick profit by stealing and redistributing streams illegally. Therefore,

data producers are interested in having a way to prove their ownership over these illicit copies.

Watermarkingis known to bring a solution to that issue by hiding copyrightmarks within documents,

in an imperceptible and robust manner. It consists of avoluntary alterationof the content of the

3

document. This alteration is parameterized by a key, kept secret by the owner. Accordingly, the secret

key is needed to detect the mark and thus, to prove ownership.The robustness of the method relies on

the key in the sense that removing the mark without its knowledge is very difficult. A first challenge

of streams watermarking is to control and minimize the alteration of the stream, i.e. topreserveits

quality. We measure the alteration by means of a relative edit-distance and propose a watermarking

algorithm that introduces a bounded distortion according to this measure. A second challenge is to

preserve the type of the streamso that it remains usable by its intended consumers. Existing XML

watermarking schemes embed watermarks by modifications of the content of text nodes. We believe

that other embedding areas may be used, e.g. within the tree-like structure itself. Obviously, altering

the structure can not be done naı̈vely. For instance, in somepure text watermarking schemes, bits

are embedded by switching words of the document with their synonyms. This can not be directly

applied to our context: if the name of an opening tag is switched, the corresponding closing tag has

to be switched to ensure well-formedness. Even if tag names are switched consistently, the resulting

document may become invalid with respect to its original type. In that case, watermarked documents

areunusableby their target consumers. Remark also that a good watermarking method must berobust,

i.e. still detects marks within streams altered (random noise, statistical analysis, ..) by an attacker (up

to a reasonable limit).

Our Contribution.: In this paper, we introduce theℓ-d étour algorithm, a robust watermarking

scheme for XML streams, which respects the quality of the stream as well as its type, specified by

means of an acyclic DTD. The idea ofℓ-d étour is the following. We identify two relevant parts of

the stream, based on its semantics. The firstunalterablepart can not be altered by any attack without

destroying the semantics of the stream. The secondalterable part is still useful for the application,

but can be altered within reasonable limits. For the automaton of Figure 1, theunalterablepart will

be e.g. the path name in theurl element (but not the host name, since it can easily be replaced

by an IP number). The alterable part will be e.g. the two digits of the day in thedate element.

Alterable parts can capture purely textual information as well as structuring one. A finite portion of

4

the unalterablepart, combined with a secret key known only by the data owner,is used to form a

synchronization key. A non-invertible (cryptographic) pseudo-random number generator, seeded with

this synchronization key, determines how thealterable part of the stream is modified to embed the

watermark. This process, repeated along the stream, introduceslocal dependenciesbetween parts of

the data stream. These dependencies, invisible to anybody who does not possess the key used for

watermarking, are checked at detection time by the owner. Only the private key and the suspect

stream are needed. It can be viewed as an extension of Agrawaland Kiernan’s method [2] which

considered relational databases watermarking (primary keys played the role of our synchronization

keys). In order to respect the type constraint, we simulate the DFA that typechecks the stream. Each

time the insertion of a dependency is required, we change a sequence of tokens of the stream so the

walk on the automaton follows adetour, leading to thesamestate. If the altered sequence lead to state

q, the chosen detour still leads toq. The lengthℓ of the detours and the frequency of the alteration

control the quality of the stream. The DFA is also used to define the alterable and unalterable parts

of the stream.

Organization: In Section II, we present our main contribution: theℓ-d étour algorithm, which

allows for watermarking XML streams so that (i) the watermark embedding and detection processes

are done online and use only a constant memory, (ii) the stream distortion is controlled, (iii) the

type of the stream is preserved and finally (iv) the detectionprocedure does not require the original

stream. In Section III, we discuss on the robustness ofℓ-d étour against attempts to remove the

watermark and show that attackers have to alter more the streams than the watermarking process did

to remove the mark. Comparison with related work is presented in Section IV. Section V concludes.

II. T HE ℓ- DÉ T O U RALGORITHM

A. Preliminaries

In this paper, we useω-rational languages on words, i.e. a simple, yet expressive, extension of

regular languages suited to infinite words.

5

URL YEAR MONTH DAY

q9 q15 q20

q7 q10 q11 q12 q13 q16 q17 q19 q21

q8 q14 q18
1

2

9

0

0-9 0-9 -
0

1

1-9

0-2

-
3

1-2

0
0-1

1-9

0-9

Fig. 2. A partial specification of the stream type for news items (date element)

• Streams: Let Σ be a finite alphabet. Letters fromΣ are called tokens. AΣ-streamσ is an infinite

sequence of tokens fromΣ.

• Stream Automaton: A stream automaton is a deterministic finite state automatonsuch that all

states are accepting, except one which has no outcoming edgeto an accepting state. This state

is called the blocking state.

• Stream Acceptance: Let G be a stream automaton. A streamσ is accepted byG if the walk on

G due toσ never enters the blocking state.

• Stream Types: A set of streamsL is a stream type if there exists a stream automatonG such

that L is the set of all streams accepted byG.

Example 2:Figure 2 shows a partial specification of a stream automaton for the input type of a

news items consumer. It checks that the syntax of the date is correct. The part checking that the stream

is well-formed and conforms to the complete DTD is not depicted here. All unspecified transitions

lead to the blocking state.

As a means to measure the distortion introduced by watermarking algorithms, we introduce the

relative edit-distance. It is based on the edit-distance for strings [10]. In our context, the edit-

distancede(x, y) between wordsx and y is defined as the minimum number of operations (sub-

stitution/deletion/insertion of a token) that are needed to transformx into y. For instance, ify has

been obtained by substituting one symbol ofx, de(x, y) = 1. The relative edit-distancebetweenx

andy is defined as the average number of operations per symbol thatare needed to transformx into

y. We measure therelative edit-distancefrom finite prefixes of streams:

Definition 1 (Distance):Given σN (resp.σ′M) a finite initial segment of a stream of lengthN

6

(resp.M), the relative edit distanced(σN , σ′M) is defined by:

d(σN , σ′M) =
de(σ

N , σ′M)√
N
√

M
.

Example 3:d(babba, dabba) = 1/5. Letterb has been substituted ford (edit-distance 1), and both

words have length 5.

B. Informal Introduction toℓ-d étour

Suppose that we want to watermark a data streamσ flowing from a producerP to a consumerC

which input type is specified by a stream automatonG. SinceP produces a usable stream forC, its

outputs correspond to non blocking walks onG. Assume that there exist inG two different edges

(paths of length 1), labelled by different tokens, and having same start and same end (for example,

paths fromq17 to q20 in Fig. 2). These edges can be loops on a single node. The idea of our algorithm

is to change the value of some tokens of the stream so that the walk onG follows one of these edges

rather than the other (for instance,q17
1→ q20 instead ofq17

2→ q20). These tokens are chosen as a

function of (1) the secret keyKp of the owner and (2) a finite portion, carefully chosen, of thepath

previously covered. The original walk on the automaton is diverted, and becomes specific to the data

owner. This process is repeated along the stream. Notice that following an edge once does not imply

that it will always be chosen because the path previously covered varies. Then, a watermarked stream

is composed of alternated sequences ofunalteredsegments (synchronizationsegments) andaltered

segments of length1. The value of an altered segment cryptographically dependson the value of

its preceding synchronization segment. This method ensures that the type of the stream is respected.

Furthermore, the modified stream is close to the original: each choice between two different paths

adds at most 1 to theedit-distancebetween the original and the watermarked stream (and less tothe

relative edit-distance).

C. Finding Detours

The previous paragraph gave the idea of the1-d étour algorithm because paths of length 1 were

altered in order to embed the watermark. The extension of this algorithm to path of length exactlyℓ

7

is given the name ofℓ-d étour . In ℓ-d étour , not all paths of lengthℓ may be changed but only

those calleddetours:

Definition 2 (Detours):Let G be a stream automaton. The pathp = qi → ... → qj is a detour of

length ℓ in G if its length is ℓ and if there is no pathp′ in G, distinct fromp, of length at mostℓ,

having the same end pointsqi andqj, and an internal node in common.

Example 4: In any stream automaton, all edges are detours of length1 since they do not contain

any internal node. Remark also that as soon asℓ > 1, cycles are not allowed in detours of length

ℓ. On the automaton of Fig. 2, there are detours of length2: q7
1→ q8

9→ q10 and q7
2→ q9

0→ q10.

Conversely, paths fromq13 to q16 going throughq14 are not detours becauseq14 is an internal node

common to9 paths of length2 betweenq13 andq16. There are9 paths fromq14 to q16 labeled by1

to 9.

The proof of proposition 1 provides a constructive way to compute detours. Due to space reasons,

it is not detailed. Remark that space complexity of the method is O(n2|Σ|ℓ) whereas it is usually

O(n2|Σ|ℓ) to compute paths (and not detours) of lengthℓ.

Proposition 1: Let Σ be the alphabet,n the number of states of the automaton andℓ ∈ N, ℓ > 0.

Detours of lengthℓ can be computed in space complexityO(n2|Σ|ℓ) and time complexityO(n3ℓ).

Proof: (sketch) Since detours are paths, i.e. finite sequences of labelled edges, a first naı̈ve

strategy is to compute the set of paths of lengthℓ and remove paths which are not detours. IfSk(i, j)

is the set of paths of lengthk between statesi andj, the formulaSk+1(i, j) =
⋃

q∈states(G)

Sk(i, q) ×

S1(q, j) permits to define an iterative algorithm to computeSk(i, j) for any k > 0 (if R,S are two

sets,R × S is defined as the set containing the concatenation of every item of R with every item

of S). Unfortunately, this leads to an exponential blowup because the number of paths of lengthℓ is

n|Σ|ℓ in the worst case. This blowup can be avoided by getting rid ofpaths which will not become

detours, at each iteration. Indeed, ifp, p′ are two detours having the same end points ande is an edge

in G, p.e andp′.e are not detours because they share an internal node:end(p) = end(p′). This fact

remains true for any two paths which havep andp′ as prefixes. Similarly, ifp is a detour of length

8

k betweeni andq ande, e′ are two edges betweenq andj, p.e andp.e′ are not detours. Hence, we

can reduce the number of paths which are detours in the sets computed by the naı̈ve algorithm by

modifying the definition of the× operator: ifR andS are not singletons,R × S = ∅. This can be

checked in constant time. Another condition is necessary tostrictly compute sets of detours: ifp1

(resp.p2) is the only detour of lengthk > 1 between statesi and q1 (resp.q2) and e1 (resp.e2) is

the only edge between statesq1 (resp.q2) andj, p1.e1 andp2.e2 are detours of lengthk + 1, unless

p1 andp2 share their first edges. To check this when computingR× S, buffering only the first edge

of each path inR is needed. There are at most|Σ| such edges.

This leads to a time complexityO(n3ℓ) and a space complexityO(n2|Σ|ℓ). At each of theℓ

iterations, there aren2 sets of detours to compute, each step requiring at mostn operations. Space

complexity isO(n2|Σ|ℓ) because the number of detours is at most|Σ| between any two states (two

detours can not begin with the same edge). There aren2 pairs of states and the maximum length of

a detour isℓ.

Interesting detours are likely to be found in real applications. For example, there are 9 detours of

length 2 in the RSS specification, 39 detours of length 1 in a valid email addresses recognizer, and

48 detours of length 1 in a checker of valid IP numbers. In the sequel, only detours of length exactly

ℓ are used. A straightforward extension not shown here allowsfor using all detours of length at most

ℓ.

D. Watermark Embedding

Theℓ-d étour algorithm can be divided into three successive steps. Steps(1) and (2) are performed

once for all, while step (3) is used online and requires constant memory.

(1) Choiceof the automaton andPrecomputationof the detours given a target detour lengthℓ.

(2) Annotation of the automaton.The set of detours is split up into the set ofalterableones and

the set ofunalterableones. Among the set of remaining edges (i.e. edges not part ofa detour

or part of an unalterable detour), a subset ofsynchronizationedges is selected.

(3) On-the-fly watermarking.The stream is continuously rewritten by substituting some sequences

9

of ℓ tokens.

STEP 1: Precomputation.:For a given input type, a canonical choice for the stream automaton

is the minimal deterministic recognizer of the DTD, but any equivalent deterministic recognizer may

be used. A strategy is to start with the minimal one and to compute the detours using Prop. 1. If

their number is too small or if they do not fit the owner’s needs, the automaton can be unfolded into

an equivalent one by splitting nodes and duplicating edges,and detours recomputed.

STEP 2: Annotation of the automaton.:Not all detours are suitable for watermarking. For

instance, on Fig. 2, there are two detours of length2 between statesq7 andq10: q7
1→ q8

9→ q10 and

q7
2→ q9

0→ q10. Using these detours for watermark embedding would imply changing the millennium

of a news item, resulting in an important loss of semantics. Asolution is to divide the previously

computed set of detours into two subsets: the subset ofalterabledetours and the subset ofunalterable

ones. This partition is done by the owner based on semanticalcriteria. All the remaining edges can

not be used assynchronization edges. Indeed, some of them may be changed by an attacker without

too much altering the semantics of the data which would result in the impossibility to resynchronize

during the detection process and makes the watermark ineffective. For instance, we should not use

the title as synchronization key because it can be altered, e.g. by adding spaces or changing the case

of some characters, without changing its semantics. Conversely, the path in theurl is not likely to

be changed in an uninvertible manner (e.g. replacing letter’a’ by code%61). The corresponding

edges in the automaton can be chosen assynchronizationones.

Example 5:A natural choice for watermarking news items is to modify theleast significant part

of the date. This can be achieved by using only detours from statesq17 to q20, detours from states

q18 to q21 and detours from statesq19 to q21 asalterableones.

STEP 3: On-the-fly Watermarking.:In this last step, the core ofℓ-d étour , some portions of

the stream are changed to insert the watermark. It is calledstreamWatermark and sketched on

Fig. 3. Its execution is basically a walk on the automaton used to typecheck the stream. At each

move, the last covered edges are changed if they match an alterable detour of lengthℓ. Inputs of

10

streamWatermark are a streamσ, the private keyKp of its owner and an extra parameterγ used

to change the alteration rate (on average, one alterable detour out ofγ is altered).

The streamWatermark procedure uses two variables:p andKs. The pathp is a finite queue

having size at mostℓ containing the last covered edges, used as a finite FIFO: before adding a

new edge at the end of a fullp, its first edge is discarded. Whenp is full, it contains a candidate

detour, likely to be changed if it matches analterabledetour. The second variableKs stands for the

synchronization key. It is used as a bounded-size queue of tokens. It will contain any symbol that

corresponds to a synchronization edge.

The streamWatermark algorithm starts inA and regularly loops back to this cell. InA, we

read a token from the input stream which generates a move on the automaton. The covered edge is

added top. Then, we move to cellB. If length(p)< ℓ, we move back toA. When length(p)= ℓ, we

move toC. In cell C, we test whetherp is going to be changed i.e. whetherp is an alterable detour

(from statesi to j) and whether there is at least one another other detour fromi to j. When these two

conditions are met, we move to the watermark cellE. In E, the pathp is converted into an integer: its

rank in an arbitrary ordering of all detours fromi to j. This integer, together with the synchronization

key Ks, the private key of the ownerKp andγ, is passed to the procedureintWatermark (Alg.

1). Its output is the number of a new detour which labelling symbols will be added to the output

stream. This procedure, derived from [2], uses a pseudo-random generatorR seeded withKs.Kp

to choose (1) whether the passed integer is going to be altered or not (2) which bit of the passed

integer is going to be modified and (3) what will the new value of this bit. The synchronization key

Ks is reseted to the empty queue. Remark that this modification only depends on the private key of

the owner and tokens of the stream which are not altered. If the conditions to move to cellE are

not met, we move to cellD. Pathp not being an alterable detour does not mean that its suffix of

lengthℓ− 1 is not the prefix of another detour. So, inD, the first edge ofp is discarded and, if it is

a synchronization edge, its labelling tokenc added toKs. Simultaneously,c is added to the output

stream. The process loops back to the initial cellA.

11

READ next token ofσ

move;

add edge to p.

A length(p)=ℓ ?B

several alterable detours

from i to j ?

C

c=first token ofp;

If c labels a sync.

edge appendc to Ks;

remove first edge ofp.

D let r be the rank ofp;

r̃=intWatermark (r,Ks,Kp, γ);

resetKs.

E

OUTPUT token la-

belling the removed

edge

OUTPUT tokens

labelling the r̃-th

detour.

No

Yes

No

Yes

Fig. 3. streamWatermark (σ,Kp, γ)

Hence, theℓ-d étour algorithm outputs0,1 or ℓ tokens every time it reads a token from the input

stream. IfN tokens have been read from the input stream, at leastN − ℓ and at mostN tokens have

been outputted which makes the process a real-time one. The output of streamWatermark is a

stream of the formc1e1c2e2... where eachci comes from the input stream andei is the result of a

pseudo-random choice seeded with the synchronization partof ci concatenated with the private key

of the owner. Each segmentei has lengthℓ.

Example 6:Suppose that we are in the middle of the watermarking processof the XML segment of

Fig. 1. Detours of lengthℓ = 1 have been chosen and the partition of detours has been done inExample

5. Suppose also that the algorithm has just reached cellA, that the current position on the automaton

is stateq13 (last read token is-), that Ks = K0
s =<url>http://www.imdb...</url> and

12

Algorithm 1: intWatermark (i,Ks,Kp, γ)

Output: 1 ≤ j ≤ n

R.seed(Ks.Kp); / * seed the random generator * /1

// (1) decide whether i is going to be changed

if R.nextInt() %γ = 0 then2

p = R.nextInt() %⌈log2(n)⌉; / * (2) choose which bit of i to change * /3

b = R.nextInt() % 2; / * (3) new value of bit p of i * /4

j := i where bitp is forced tob;5

return j;6

p = q12
-→ q13. The pathq12

-→ q13 has length1 but is not a detour, so we move to cellD through cell

C. In cell D, the first token ofp, - is removed, appended toKs and added to the output stream. Then,

p = [] and we move to cellA. The token0 is read from the input stream and the edgeq13
0→ q14

appended top. Still, p is not analterabledetour and the same sequence of steps through cellsB,C,D is

performed. Then, the algorithm moves through edgesq14
5→ q16, q16

-→ q17 andq17
2→ q20; the tokens

5,-,2 are processed the same way the token0 was. The token3 coding for the lowest significant

digit of the day in the month is read in cellA. The pathp =q20
3→ q21 is a detour of length1 from

statesq20 to q21. Since there are10 detours between these states, we move to watermarking cellE.

The intWatermark procedure is called withKs = K0
s .05-2 and r = 4 (p is the fourth detour

from q20 to q21). A one-way cryptographic choice of a new detour is done by Alg. 1, depending only

on Ks and Kp. For instance, ifintWatermark outputs7, the seventh detour is chosen and the

token 6 added to the output stream. The watermarked date is1989-05-26 . Then,Ks and p are

reseted and we loop back toA.

E. Quality Preservation: Setting Alteration Frequencyγ

The following theorem quantifies to what extent the quality of a watermarked stream is preserved.

Let G be a stream automaton. LetS (resp.E) be the set of starting (resp. ending) nodes of the

alterabledetours. We define theinter-detoursdistancec as the length of the shortest path between a

13

node inE ∪ q0 and a node inS. For the automaton of Fig. 2,{q17, q18, q19} ⊆ S and{q20, q21} ⊆ E

so c is at most the minimum of the distances betweenq0 andq17 and betweenq21 andq17 (the actual

inter-detoursdistance can not be given because of the partial specification).

Theorem 1:Let σN a finite prefix of a stream and̃σN its watermarked version usingℓ-d étour .

Then, at mostd(σN , σ̃N) ≤ (1 + c
ℓ)

−1 and on averaged(σN , σ̃N) ≤ 1
γ (1 + c

ℓ)
−1.

Proof: A finite segmentσN of a streamσ can be written asσN = c1e1..cnenr wherec1, .., cn

are token sequences used as synchronization keys,e1, .., en are token sequences labelling detours and

r is the remaining.ℓ-d étour introduces a distortion of at mostnℓ. Since the length of eachci is

at leastc, the relative distortionε = nℓ
P

|ci|
1,n

+nℓ+|r] is such thatε ≤ (1 + c/l)−1. On average,1γ pairs

ciei are altered.

Hence, for a maximum error ratee = 0.1%, a detour lengthℓ = 2 and an inter-detour distance

c = 10, the value ofγ is chosen so that1γ (1 + c
ℓ)

−1 ≤ e i.e. γ ≈ 6000. So, on average, one over

6000 tokens labellingalterabledetours should be altered to comply with this error rate.

F. Watermark Detection

Since the alterations performed by the watermarking process depend only on the value of the

private keyKp of the owner, exhibiting a key and making the dependencies appear is a strong proof

of ownership. The detection process locates the synchronization keys and checks whether the detours

taken by the suspect stream match what would be their watermarked value. It is very close from the

watermarking algorithm except that the content f the streamis not changed. We use two counters,tc

andmc, tc standing fortotal countandmc for match count. We incrementtc every time we meet

a detour that would be watermarked (this corresponds to line2 of Alg. 1). We incrementmc every

time a detour matches what would be its watermarked value. Therefore,tc ≥ mc. Whentc = mc, we

can conclude of the presence of a watermark. Whentc > 0,mc = 0, we are probably in front of an

attacker who successfully inverted every bit of the mark. This inversion is considered as suspicious

as the full presence of the mark (think of it as a negative image of a black and white picture). For a

non-watermarked stream, we can assume that there is no correlation between the distribution of the

14

data and the pseudo-random watermark embedding process (assumption verified in our experiments).

In this case, the probability that each bit of a detour matches what would be its watermarked value is

1/2 . Then, we can await fortc to be twice the value ofmc when there is no mark. To sum up, the

watermark is found when|mc/tc− 1/2| > α, whereα is a predefined threshold. The choice ofα is

very important: ifα is too large, the detection raises false alarms; ifα is too small, slightly altered

marks become undetectable, raising false negatives. The choice of α is discussed in the next section.

Remark also that only the suspect stream and the private key of the owner are needed to check for

a watermark.

III. ROBUSTNESS: ANALYSIS AND EXPERIMENTS

A watermarking algorithm is said to berobust when an attacker, unaware of the secret key used

for watermark embedding, has to alter more the data than the watermarking process did, in order to

remove the mark. In that case, the attacked stream suffers a huge loss of semantics, which is very

likely to destroy their quality.

A. Synchronization Attacks

A watermarked stream can be attacked by modifying synchronization parts. Indeed,ℓ-d étour

requires these parts to remain identical for detection. Such attacks are limited by theconstant

requirement to keep streams valid with respect to the input type of their consumers. A non-valid

stream cannot be resold by a malicious user. As explained inSTEP 2 of ℓ-d étour , synchronization

parts are chosen to be semantically relevant which means that they cannot be changed without widely

affecting its semantics. Therefore, a type breaking attackrequires to alter data semantics more than

the watermarking process did.

B. Detours Attacks

Since the attacker is unaware of which detours were actuallyaltered, two strategies are available

to him. First, he can try to remove the mark by randomly modifying the altered detours. We model

this attack as arandom attack.

15

Random Attack.:For 0 < p < 1, a random attack of parameterp is an attack inverting each bit

of the watermark with a probability at mostp. The false negative occurrence probabilitypfn(p) is the

probability that an attacker performing a random attack of parameterp cheats the detector. Theorem

2 (see [7] for a complete proof) shows how to chooseα (detection threshold) andtc (number of

altered detours to poll) to get this probability maximally bounded by an owner-defined probabilityδ

(e.g.δ = 10−6). These parameters also allows for a false positive occurrence probabilitypfp bounded

by δ.

Theorem 2:Let 0 < δ, p < 1, tc ∈ N, p 6= 1/2, tc0 = − log(δ/2)
2(1−2p)2 ,

α1(tc) = − log(δ/2)
2tc andα2(tc) = 1

2 − p −
√

− log(δ/2)
2tc . Then,

(tc ≥ tc0 andα1(tc) ≤ α ≤ α2(tc)) ⇒ (pfp ≤ δ andpfn(p) ≤ δ).

Proof: (sketch) The fact that a detour matches its watermarked value is seen as the outcome

of a Bernoulli’s law of parameter1/2. Suppose that we are able to retrieven possibly watermarked

positions in the stream. The probability that a false positive occurs is exactly the probability that the

number of positive outcomes inn outcomes of Bernoulli’s experiments deviates from the standard

valuen/2 by a distanceα.n. The highern is, the smaller this probability. It can be bounded using a

Hoeffding inequality [8] to obtain a maximal bound for the occurrence of a false positive. Similarly,

one can bound the probability that a false negative occurs. By combining these two results, we find

the minimum number of potentially watermarked detours one must consider to test the presence of

a watermark and simultaneously stay under the target probability δ.

Listen& Learn Attack.:When a synchronization key is met twice, the two corresponding wa-

termarked bits will have the same position and the same value. If c.e1 and c.e2 are two sequences

synchronization key.detour, the watermarked bit is among the set of bits which have the same value

in the binary representations of the rank ofe1 and the rank ofe2. An attacker may try to learn such

dependencies in order to perform aListen & learnattack. This attack consists in the following two

steps. First,learningassociations between synchronization keys values and watermarked bits. Second,

attackingthe watermark using this knowledge. Notice that this can notbe done in constant memory

16

and requires an external and efficient storage. This does notcomply with computational constraints

on streams, that also apply to the attacker.

C. Experiments

Test Sample.:We used RSS news feeds provided by CNN [1] from September 8th 2005 to

September 14th 2005 for a total of 1694 news items (or 523041 tokens).Alterable detours were

chosen to be the edges associated to the highest significant digit of the minutes field and the lowest

significant digit of the seconds field. Hence, dates of news item are changed by at most 50 minutes

and 9 seconds. Synchronization keys include the content of the link element and edges not part of

an alterable detour in thepubDate element.

Detour-witching Attack.:A detour-switchingattack consists in randomly switchingall alterable

detours. It is parameterized by the alteration frequencyq: with probability1/q each detour is replaced

by another one, having same start and same end, randomly chosen. We performed experiments

for various values ofq and γ. A summary of the results is displayed in Table I(a). For each

combination of q and γ, the set of news items was watermarked and attacked100 times. We

count the number of positive detectionsPD of the watermark and the relative extra alterationQL

introduced by the attack, compared to the watermarking process. If the watermarking process alters

WL tokens of the stream, then the attack has an overall distortion of WL+QL. For instance, when

q = 1 and γ = 3, the attack successfully erases the watermark (PD= 0%) but at the price of a

significant quality lossQL= 0.39% compared to the alterations introduced by the watermarking

processWL= 0.22%. On the contrary, forq = 1 and γ = 1, the attack is a success (PD= 0%,

QL= 0%). This shows that choosingγ = 1 is a bad idea for the data owner, as it means watermarking

everypossible position, hence giving a severe hint to the attacker. As soon asγ > 1, the mark is not

removed if the attack does not alter more the stream than the watermarking process did.

Listen & Learn Attack.:We performed experiments of this attack using two strategies. In the

destructivestrategy we change everyalterable detour unless we know it is a watermarked one. In

the surgestrategy, a detour is altered only if we are sure it is a watermarked one. We performed

17

TABLE I

ATTACK EXPERIMENTS: WL (QUALITY LOSS DUE TO WATERMARKING), QL (extraQUALITY LOSS DUE TO ATTACKS),

PD (RATIO OF POSITIVE DETECTIONS)

@
@

@@q

γ
1 (high rate) 2 3 (low rate)

1

WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.38% QL:0.39%

PD:0% PD:0% PD:0%

2

WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.19% QL:0.19%

PD:100% PD:100% PD:100%

3

WL:0.65% WL:0.32% WL:0.22%

QL:0% QL:0.13% QL:0.13%

PD:100% PD:100% PD:100%

PPPPPPPPPPPstrategy

ltime
100 500 1500

surge
QL:0.27% QL:0.39% QL:0.24%

PD:100% PD:100% PD:100%

destructive
QL:0.57% QL:0.49% QL:0.27%

PD:52% PD:100% PD:100%

(a) Random Attack (b) Listen & Learn Attack

Failure probabilityδ = 0.01 δ = 0.01,γ = 3 and WL= 0.22%

experiments for different learning times,ltime ranging from100 detours to1500. The detection

process begins after the end of the learning period to maximize the effect of the learning attack. For

each strategy and learning time combination,100 experiments were performed. Results are presented

in Table I(b). In only one case, the watermark is removed. This is not surprising because when

ltime = 100, the destructive strategy is a random attack withp = 1. Indeed, not enough knowledge

has been acquired. Even for longer learning times, the attack does not affect the detection.

IV. RELATED WORK

Our work is an extension of [2] which considered relational database watermarking. In [2] and its

further extension [11], the watermarked information is located in the least significant bits of numerical

values whereas ours is located at any position, provided this position can be localized by an automaton.

Type-preservation is implicit since the structure of the databases (relation name, attribute names, key

constraints) is not altered. In the XML context, structure is far more flexible and can be used to

18

embed watermarking bits. This motivates structural modifications in the purpose of watermarking,

but while keeping the data usable, i.e. respecting its original type. Such structural modifications are

not discussed in [2]. It is noteworthy that our automata-based model can mimic their algorithm for

numerical values with a fixed size (which is a usual hypothesis in practice).

In [16], a watermarking scheme for sensor streams is proposed. Streams are defined as continuous

sequences of numerical values. Watermarking is based on a continuity hypothesis and is performed

by altering salient points of the stream. This method does not consider typing problems. Keys and

alterations are to be found in numerical values, whereas this can change in our approach according

to the form of the stream.

Other works [6], [4], [13], [17], [9], [14] address watermarking XML information in various

contexts. In all these works XML documents are viewed as a whole, and not as streaming information.

In [4], [17], [9], [13], watermark embedding values are located through the use of specific XPATH

queries. It is not discussed whether these techniques can beapplied in a streaming context but it

must be observed that XPATH can not be efficiently evaluated over streaming data [5]. Only one

work [9] considers structural modification as bandwidth forwatermarking which are often viewed as

attacks [17], [14] watermarkers must deal with. A theoretical work [6] explores the watermarking of

XML databases while preserving constraints which are specifiedtrough parametric queries. Type and

stream constraints does not fit this framework.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented theℓ-d étour algorithm which permits the embedding and the

detection of copyright marks into XML streams. Thus, it enables detections of illegal redistributions

of such objects. Future work is to study whether it is possible to detect watermarks after one or

several transformations by consumers. Obviously, this is impossible in the most general setting but

preliminary results [7] show that this question can be answered for a restricted class of transformations,

expressing deterministically invertible stream rewritings.

19

REFERENCES

[1] CNN RSShttp://www.cnn.com/services/rss/ .

[2] R. Agrawal, P. J. Haas, and J. Kiernan. Watermarking Relational Data: Framework, Algorithms and Analysis.VLDB

J., 12(2):157–169, 2003.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma,

and J. Widom. STREAM: The Stanford Stream Data Manager.IEEE Data Eng. Bull., 26(1):19–26, 2003.

[4] D. G.-A. Camelia Constantin and M. Guerrouani. Watermill: an optimized fingerprinting tool for highly constrained

data. InACM Workshop on Multimedia and Security (MMSec), pages 143–155, August 1-2 2005.

[5] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithmsfor processing xpath queries.ACM Trans. Database Syst.,

30(2):444–491, 2005.

[6] D. Gross-Amblard. Query-preserving watermarking of relational databases and XML documents. InSymposium on

Principles of Database Systems, pages 191–201. ACM, 2003.

[7] D. Gross-Amblard and J. Lafaye. Xml streams watermarking. Technical report, CEDRIC, 2005. CEDRIC TR-976.

[8] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.Journal of the American Statistical

Association, 58(301):13–30, March 1963.

[9] S. Inoue, K. Makino, I. Murase, O. Takizawa, T. Matsumoto, and H. Nakagawa. Proposal on information hiding

method using xml. InThe 1st Workshop on NLP and XML, 2001.

[10] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.Soviet Physics Doklady,

10(7):707–710, 1966.

[11] Y. Li, V. Swarup, and S. Jajodia. Fingerprinting relational databases: Schemes and specialties.IEEE Trans. Dependable

Sec. Comput., 2(1):34–45, 2005.

[12] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A Transducer-Based XML Query Processor. InVLDB,

pages 227–238, 2002.

[13] W. Ng and H. L. Lau. Effective approaches for watermarking xml data. InDASFAA, pages 68–80, 2005.

[14] M. A. Radu Sion and S. Prabhakar. Resilient informationhiding for abstract semi-structures. In S. Verlag, editor,

Proceedings of the Workshop on Digital Watermarking IWDW, volume 2939, pages 141–153, 2003.

[15] L. Segoufin and V. Vianu. Validating Streaming XML Documents. InSymposium on Principles of Database Systems,

pages 53–64, 2002.

[16] R. Sion, M. Atallah, and S. Prabhakar. Resilient RightsProtection for Sensor Streams. InProc. of the 30th International

Conference on Very Large Data Bases, Toronto, 2004.

[17] X. Zhou, H. Pang, K.-L. Tan, and D. Mangla. Wmxml: A system for watermarking xml data. InVLDB, pages

1318–1321, 2005.

20

