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Abstract

XML streams are online, continuous, distributbdyh throughputsources of information. For
streams carrying a significant intellectual and/or indaktvalue, proving ownership over pirated
copies is a requirement for data produc&vatermarkings a known technique for hiding a copyright
mark in a digital document, in a resilient manner. While suoethods already exist for numerical
streams, they do not meet the specific requirements f Xtreams. In this paper, we introduce
the ¢-d etour algorithm, which allows for watermarking ML streams so that (i) the watermark
embedding and detection processes are done online and lysa constant memory, (ii) the stream
distortion is controlled, (iii) the type of the stream is peeved and finally (iv) the detection procedure
does not require the original stream. We also evaluateyticely and experimentally, the robustness

of ¢-d etour against attempts to remove the watermark.

I. INTRODUCTION

Streams:Data streams atgigh throughpusequences dbkens potentiallyinfinite. They are used
in a growing number of applications (see e.g. [3]) and thpi&ciicities make them a challenging
application [12]. Since XL has become the standard for specifying exchange formatgebat
applications, the focus in this paper is omX streams. XiL streams can be purchased online and
processed by distant peers. D@i@ducers e.g. news providers distributing news item in RSS (an
XML dialect) format, generate the tokens of the stream whichtés lon processed lmponsumerswWe
focus on automatic consumers, i.e. consumers defined bysrafam program (or a Web Service).
Hence, consumers, as any program, do not accept arbitrapnss$, but place restrictions on thieiput
types Streams with invalid types can not be sold to consumersXiar based systems, types are
usually specified through a Document Type Definition (DTD)aarXML Schema. High throughput
requirement puts severe constraints on consumers: they lmeuable to process each token of the
stream quickly and cannot buffer an arbitrary number of tnsk@ounded memory). For any arbitrary
DTD, typechecking XiL streams can not be done while respecting these constralatse, we

focus onacyclicDTDs , where no element is a sub-element of itself (for exampks iR an acyclic



DTD). Under this hypothesis, typechecking can be done udatgrministic finite automata (DFA)
and types can be specified using regular expressions [15].

Example 1: The XML news feed of Fig. 1 may be regarded as a stream on an alphatiesifg
and ending tag§< news >, < /date >..), letters(S,0,d,e,1,...) and predefinsdquences of letters
(Cinema, Politics, ...). It can be typechecked using thellegganguagenews><priority>[123]
</priority><title>(. *)</title>..<date> D</date>...</news> , Where the expression
D=(19|20)[0-9][0-9]-(0[1-9]|1[0-2])-(3[0-1]|0[1-9]| [1-2][0-9]) captures valid dates
(for the sake of simplicity we do not try to check dates |&@05-02-31 ). Observe that the DTD
standard does not allow the definition of a precise date forsiace the contents of elements are
mostly of type PCDATA (i.e. almost any sequence of lettefsjnore sophisticated model like N

Schema allows for such precise definitions. Our model apptieboth formalisms.

...<[news><news>
<priority>1</priority>
<title>Soderbergh won the Golden Palm</title>
<url>http://www.imdb.com/title/tt0098724/</url>
<date>1989-05-23</date>
<text>Soderbergh’s movie, Sex, lies and videotapes, won th e ..<[text>
<category>Cinema</category>

</news><news>...

Fig. 1. An XML stream snapshot

Watermarking:High-quality streams carry a great intellectual and/oustdal value. Malicious
users may be tempted to make quick profit by stealing andtrdxisng streams illegally. Therefore,
data producers are interested in having a way to prove theiresship over these illicit copies.
Watermarkings known to bring a solution to that issue by hiding copyrigtarks within documents,

in an imperceptible and robust manner. It consists afoluntary alterationof the content of the



document. This alteration is parameterized by a key, kepesby the owner. Accordingly, the secret
key is needed to detect the mark and thus, to prove ownerBhgrobustness of the method relies on
the key in the sense that removing the mark without its kndgdeis very difficult. A first challenge
of streams watermarking is to control and minimize the atten of the stream, i.e. tpreserveits
guality. We measure the alteration by means of a relative editriistand propose a watermarking
algorithm that introduces a bounded distortion accordmghis measure. A second challenge is to
preserve the type of the streago that it remains usable by its intended consumers. EgistimL
watermarking schemes embed watermarks by modificationseofantent of text nodes. We believe
that other embedding areas may be used, e.g. within thdikkeestructure itself. Obviously, altering
the structure can not be done naively. For instance, in gume text watermarking schemes, bits
are embedded by switching words of the document with theliosyms. This can not be directly
applied to our context: if the name of an opening tag is swit;lthe corresponding closing tag has
to be switched to ensure well-formedness. Even if tag nameswitched consistently, the resulting
document may become invalid with respect to its originaktylm that case, watermarked documents
areunusableby their target consumers. Remark also that a good watemngankethod must beobust

i.e. still detects marks within streams altered (randons&ostatistical analysis, ..) by an attacker (up
to a reasonable limit).

Our Contribution.: In this paper, we introduce thied etour algorithm, a robust watermarking
scheme for XiL streams, which respects the quality of the stream as welsaype, specified by
means of an acyclic DTD. The idea 6 etour is the following. We identify two relevant parts of
the stream, based on its semantics. The (ingtlterablepart can not be altered by any attack without
destroying the semantics of the stream. The seadtalable part is still useful for the application,
but can be altered within reasonable limits. For the automaf Figure 1, theunalterablepart will
be e.g. the path name in thel element (but not the host name, since it can easily be raplace
by an IP number). The alterable part will be e.g. the two digit the day in thedate element.

Alterable parts can capture purely textual information &l as structuring one. A finite portion of



the unalterablepart, combined with a secret key known only by the data owisensed to form a
synchronization keyA non-invertible (cryptographic) pseudo-random numbemneayator, seeded with
this synchronization key, determines how thleerable part of the stream is modified to embed the
watermark. This process, repeated along the stream, utestbcal dependenciesetween parts of
the data stream. These dependencies, invisible to anybbdydees not possess the key used for
watermarking, are checked at detection time by the ownely @ private key and the suspect
stream are needed. It can be viewed as an extension of AgeawlaKiernan's method [2] which
considered relational databases watermarking (primayg kéayed the role of our synchronization
keys). In order to respect the type constraint, we simulzeDFA that typechecks the stream. Each
time the insertion of a dependency is required, we changgesee of tokens of the stream so the
walk on the automaton follows @etour, leading to thesamestate. If the altered sequence lead to state
q, the chosen detour still leads ¢ The length? of the detours and the frequency of the alteration
control the quality of the stream. The DFA is also used to @efire alterable and unalterable parts
of the stream.

Organization: In Section II, we present our main contribution: the etour algorithm, which
allows for watermarking XiL streams so that (i) the watermark embedding and detectmcepses
are done online and use only a constant memory, (ii) the ratréigtortion is controlled, (iii) the
type of the stream is preserved and finally (iv) the detegtimtedure does not require the original
stream. In Section lll, we discuss on the robustnesg-dfetour against attempts to remove the
watermark and show that attackers have to alter more thanssréhan the watermarking process did

to remove the mark. Comparison with related work is preskimeSection IV. Section V concludes.

II. THE /- DETOURALGORITHM
A. Preliminaries

In this paper, we use-rational languages on words, i.e. a simple, yet expressixension of

regular languages suited to infinite words.



Fig. 2. A partial specification of the stream type for newsnidée(date element)

« Streams: Let Y be a finite alphabet. Letters froh are called tokens. A-streamo is an infinite
sequence of tokens frok

« Stream Automaton: A stream automaton is a deterministic finite state automatarh that all
states are accepting, except one which has no outcoming tedge accepting state. This state
is called the blocking state

« Stream Acceptance: Let G be a stream automaton. A streamnis accepted by~ if the walk on
G due too never enters the blocking state

o Stream Types: A set of streamg is a stream type if there exists a stream automatbsuch

that £ is the set of all streams accepted &y

Example 2:Figure 2 shows a partial specification of a stream automaiorthi input type of a
news items consumer. It checks that the syntax of the dataieat. The part checking that the stream
is well-formed and conforms to the complete DTD is not deggichere. All unspecified transitions
lead to the blocking state.

As a means to measure the distortion introduced by wateingaidgorithms, we introduce the
relative edit-distancelt is based on the edit-distance for strings [10]. In ourteat) the edit-
distanced.(z,y) between wordse and y is defined as the minimum number of operations (sub-
stitution/deletion/insertion of a token) that are neededransformz into y. For instance, ify has
been obtained by substituting one symbolwfd.(x,y) = 1. The relative edit-distancédetweenz
andy is defined as the average number of operations per symbahtéateeded to transforminto
y. We measure theelative edit-distancdrom finite prefixes of streams:

Definition 1 (Distance):Given oV (resp.o'™) a finite initial segment of a stream of lengf¥



(resp.M), the relative edit distancé(c’V, o'M) is defined by:

de(JN, O,/M)
VNVM
Example 3:d(babba, dabba) = 1/5. Letterb has been substituted far(edit-distance 1), and both

d(O'N,O'/M) —

words have length 5.

B. Informal Introduction to/-d etour

Suppose that we want to watermark a data streaflowing from a producefP to a consume€
which input type is specified by a stream automatanSince’? produces a usable stream {0y its
outputs correspond to non blocking walks 6h Assume that there exist i two different edges
(paths of length 1), labelled by different tokens, and hgwdame start and same end (for example,
paths fromg,7 to ¢o0 in Fig. 2). These edges can be loops on a single node. The fdea algorithm
is to change the value of some tokens of the stream so thatdteon GG follows one of these edges
rather than the other (for instancg; EN go0 Instead ofqy; 2 g20). These tokens are chosen as a
function of (1) the secret ke¥,, of the owner and (2) a finite portion, carefully chosen, of plagh
previously covered. The original walk on the automaton i&ded, and becomes specific to the data
owner. This process is repeated along the stream. Noti¢dah@mving an edge once does not imply
that it will always be chosen because the path previouslgiEm/varies. Then, a watermarked stream
is composed of alternated sequencesiadilteredsegmentsgynchronizatiorsegments) andltered
segments of length. The value of an altered segment cryptographically depemdthe value of
its preceding synchronization segment. This method ensghad the type of the stream is respected.
Furthermore, the modified stream is close to the originathezhoice between two different paths
adds at most 1 to thedit-distancebetween the original and the watermarked stream (and lebgto

relative edit-distance).

C. Finding Detours

The previous paragraph gave the idea of thetetour algorithm because paths of length 1 were

altered in order to embed the watermark. The extension efalgorithm to path of length exactly



is given the name of-d etour . In ¢-d etour , not all paths of lengtid may be changed but only
those calleddetours

Definition 2 (Detours):Let G be a stream automaton. The path- ¢; — ... — ¢; is adetour of
length/ in G if its length is/ and if there is no path’ in G, distinct fromp, of length at mos¥,
having the same end poings and¢;, and an internal node in common.

Example 4:In any stream automaton, all edges are detours of lenhgiince they do not contain
any internal node. Remark also that as soorf as 1, cycles are not allowed in detours of length
£. On the automaton of Fig. 2, there are detours of lerxgth; EN qs N q10 and g7 2 9 A q10.
Conversely, paths fromy3 to g1 going throughg;4 are not detours becausge, is an internal node
common to9 paths of length2 betweeng;3 and¢4. There ared paths fromgy4 t0 g1 labeled byl
to 9.

The proof of proposition 1 provides a constructive way to pata detours. Due to space reasons,
it is not detailed. Remark that space complexity of the metisoO (n?|X|¢) whereas it is usually
O(n?|%[%) to compute paths (and not detours) of length

Proposition 1: Let > be the alphabet; the number of states of the automaton &N, ¢ > 0.
Detours of length? can be computed in space complexityn?|%|¢) and time complexityO(n?/).

Proof: (sketch) Since detours are paths, i.e. finite sequencesbefldd edges, a first naive
strategy is to compute the set of paths of lengéind remove paths which are not detoursS#{i, ;)
is the set of paths of length between states and j, the formulaS*+'(i, j) = U ; Sk(i,q) x

states

S'(q,7) permits to define an iterative algorithm to compwte(i, j) for any k ieo (if (R,)S are two
sets,R x S is defined as the set containing the concatenation of eveny @f R with every item
of S). Unfortunately, this leads to an exponential blowup bseaihe number of paths of lengths
n|X| in the worst case. This blowup can be avoided by getting rigaths which will not become
detours, at each iteration. Indeedpify’ are two detours having the same end points aiddan edge
in G, p.e andyp’.e are not detours because they share an internal rnedip) = end(p’). This fact

remains true for any two paths which hawyendp’ as prefixes. Similarly, ip is a detour of length



k between; andq ande, ¢’ are two edges betweenandj, p.c andp.¢’ are not detours. Hence, we
can reduce the number of paths which are detours in the setputed by the naive algorithm by
modifying the definition of thex operator: if R and S are not singletonsk x S = (. This can be
checked in constant time. Another condition is necessarstriotly compute sets of detours: jf
(resp.p2) is the only detour of lengttt > 1 between states and¢; (resp.q2) ande; (resp.es) is
the only edge between states (resp.q2) andj, p;.e; andpy.eo are detours of length + 1, unless
p1 andps share their first edges. To check this when compufing S, buffering only the first edge
of each path inR is needed. There are at mg&l| such edges.

This leads to a time complexit¢)(n3¢) and a space complexit®(n?|X|¢). At each of the/
iterations, there are? sets of detours to compute, each step requiring at masperations. Space
complexity isO(n?|X|¢) because the number of detours is at madtbetween any two states (two
detours can not begin with the same edge). Therewangairs of states and the maximum length of
a detour is(. ]

Interesting detours are likely to be found in real applwasi. For example, there are 9 detours of
length 2 in the Rs specification, 39 detours of length 1 in a valid email addrssecognizer, and
48 detours of length 1 in a checker of valid IP numbers. In #wusl, only detours of length exactly
¢ are used. A straightforward extension not shown here alfowssing all detours of length at most

L.

D. Watermark Embedding

The/-d etour algorithm can be divided into three successive steps. $i¢psd (2) are performed
once for all, while step (3) is used online and requires @nrtstnemory.
(1) Choiceof the automaton anBrecomputatiorof the detours given a target detour length
(2) Annotation of the automatoihe set of detours is split up into the setalferable ones and
the set ofunalterableones. Among the set of remaining edges (i.e. edges not partdetour
or part of an unalterable detour), a subseswfichronizatioredges is selected.

(3) On-the-fly watermarkingThe stream is continuously rewritten by substituting soegugences



of ¢ tokens.

STEP 1: Precomputation.:For a given input type, a canonical choice for the streamraaton
is the minimal deterministic recognizer of the DTD, but amyigalent deterministic recognizer may
be used. A strategy is to start with the minimal one and to admphe detours using Prop. 1. If
their number is too small or if they do not fit the owner’s negtle automaton can be unfolded into
an equivalent one by splitting nodes and duplicating edged,detours recomputed.

STEP 2: Annotation of the automaton.Not all detours are suitable for watermarking. For
instance, on Fig. 2, there are two detours of ler@gythetween stateg; andqo: ¢7 EN qs N q10 and
q7 2 q9 9 q10- Using these detours for watermark embedding would impbnging the millennium
of a news item, resulting in an important loss of semanticsolution is to divide the previously
computed set of detours into two subsets: the subsaiterabledetours and the subset ofialterable
ones. This partition is done by the owner based on semamtitafia. All the remaining edges can
not be used asynchronization edge$ndeed, some of them may be changed by an attacker without
too much altering the semantics of the data which would tésuhe impossibility to resynchronize
during the detection process and makes the watermark atietfie For instance, we should not use
the title as synchronization key because it can be altergdpg adding spaces or changing the case
of some characters, without changing its semantics. Cealerthe path in theirl is not likely to
be changed in an uninvertible manner (e.g. replacing ledfer by code%61). The corresponding
edges in the automaton can be chosesyaghronizatiorones.

Example 5: A natural choice for watermarking news items is to modify thast significant part
of the date. This can be achieved by using only detours fr@atesd;; to ¢o9, detours from states
q18 10 g1 and detours from stategg to ¢o; asalterableones.

STEP 3: On-the-fly Watermarking.in this last step, the core @fd etour , some portions of
the stream are changed to insert the watermark. It is calleshmWatermark and sketched on
Fig. 3. Its execution is basically a walk on the automatondugetypecheck the stream. At each

move, the last covered edges are changed if they match amdéiedetour of lengtid. Inputs of

10



streamWatermark are a streana, the private keyk, of its owner and an extra parameteused
to change the alteration rate (on average, one alterabbeidetit ofy is altered).

The streamWatermark  procedure uses two variablgs:and K. The pathp is a finite queue
having size at most containing the last covered edges, used as a finite FIFOréefdding a
new edge at the end of a full, its first edge is discarded. Whenis full, it contains a candidate
detour, likely to be changed if it matches alterabledetour. The second variabl€s stands for the
synchronization key. It is used as a bounded-size queuekeh$o It will contain any symbol that
corresponds to a synchronization edge.

The streamWatermark algorithm starts inA and regularly loops back to this cell. K, we
read a token from the input stream which generates a moveeoautomaton. The covered edge is
added top. Then, we move to ceB. If length{p)< ¢, we move back tcA. When lengthg)= ¢, we
move toC. In cell C, we test whethep is going to be changed i.e. whetheis an alterable detour
(from states to j) and whether there is at least one another other detour fioi. When these two
conditions are met, we move to the watermark €elin E, the pathp is converted into an integer: its
rank in an arbitrary ordering of all detours frohto ;. This integer, together with the synchronization
key K, the private key of the owneK,, and~, is passed to the procedurgdWatermark  (Alg.

1). Its output is the number of a new detour which labellingnbpls will be added to the output
stream. This procedure, derived from [2], uses a pseudterangeneratoR seeded withK. K,

to choose (1) whether the passed integer is going to be @ltareot (2) which bit of the passed
integer is going to be modified and (3) what will the new valtfiehis bit. The synchronization key
K is reseted to the empty queue. Remark that this modificatidy @epends on the private key of
the owner and tokens of the stream which are not altered.elfctinditions to move to cek are

not met, we move to celD. Pathp not being an alterable detour does not mean that its suffix of
length/ — 1 is not the prefix of another detour. So, Iy the first edge op is discarded and, if it is

a synchronization edge, its labelling tokeradded toK;. Simultaneously¢ is added to the output

stream. The process loops back to the initial éell

11



READ next token ofo
I
I

V
A~ _move, B lengthp)=( ? |
No
add edge to p Yes
No
C several alterable detours
fromitoj ?
Yes
— D ~=first token ofp; E letr be the rank ofy;
If ¢ labels a sync. r=intWatermark  (r,Kq,Kp,7);
edge append to Kj; resetKs.
|
remove first edge op. :
|
} }
OUTPUT token la- OUTPUT  tokens
belling the removed labelling the #-th
edge detour.

Fig. 3. streamWatermark (o,Kp,7)

Hence, the/-d etour algorithm outputs),1 or ¢ tokens every time it reads a token from the input
stream. IfN tokens have been read from the input stream, at [¥ast/ and at mostV tokens have
been outputted which makes the process a real-time one. Tipeitoof streamWatermark is a
stream of the fornriejcoes... Where eachy; comes from the input stream amgd is the result of a
pseudo-random choice seeded with the synchronizationgbast concatenated with the private key
of the owner. Each segmeat has length.

Example 6: Suppose that we are in the middle of the watermarking promfetbe XML segment of
Fig. 1. Detours of lengthh = 1 have been chosen and the partition of detours has been dénarmple
5. Suppose also that the algorithm has just reached®¢cahat the current position on the automaton

is stateq3 (last read token is), that K, = K? =<url>http://www.imdb...</url> and

12



Algorithm 1: intWatermark  (¢,K,Kp, )
Output: 1 <j5<n

1 R.seed{(;.Ky); / = seed the random generator */
/I (1) decide whether i is going to be changed

2 if R.nextint() %~ = 0 then

3 p = R.nextint() % [logy(n)]; /* (2) choose which bit of 1 to change */

4 b = R.nextInt() % 2; /* (3) new value of bit p of @ x/

5 j :=1 where bitp is forced tob;

6 return  j;

p = q12 — q13. The pathg;o — ¢13 has lengthl but is not a detour, so we move to cBlithrough cell

C. In cell D, the first token op, - is removed, appended #; and added to the output stream. Then,
p =[] and we move to celA. The tokenO is read from the input stream and the ed;ggg q14
appended t. Still, p is not analterabledetour and the same sequence of steps throughR€Il® is
performed. Then, the algorithm moves through edg@si q16, q16 — q17 andqqy N g20; the tokens
5,-,2 are processed the same way the toRewas. The toker8 coding for the lowest significant
digit of the day in the month is read in cell. The pathp =g 3, g21 is a detour of length from
statesgog t0 ¢o1. Since there ar@0 detours between these states, we move to watermarkingzcell
The intWatermark  procedure is called withk, = K2.05-2 andr = 4 (p is the fourth detour
from ¢90 t0 g21). A one-way cryptographic choice of a new detour is done ky. Al depending only
on K, and K,,. For instance, ifintWatermark  outputs7, the seventh detour is chosen and the
token 6 added to the output stream. The watermarked dat989-05-26 . Then, K, andp are

reseted and we loop back #o.

E. Quality Preservation: Setting Alteration Frequengy

The following theorem quantifies to what extent the qualityaavatermarked stream is preserved.
Let G be a stream automaton. L&t (resp. E) be the set of starting (resp. ending) nodes of the

alterabledetours. We define thiater-detoursdistancec as the length of the shortest path between a

13



node inE U gp and a node irS. For the automaton of Fig. g17, ¢1s, 19} € S and{q20,¢21} C F
soc is at most the minimum of the distances betwegmand¢;7 and betweer,; andq;7 (the actual
inter-detoursdistance can not be given because of the partial specifigatio
Theorem 1:Let oV a finite prefix of a stream an@” its watermarked version usingd etour .

Then, at mosti(o™,5") < (1+ §)~" and on averagé(c™,5") < (1 +§)7",

Proof: A finite segmenbN of a streamo can be written agy = cie;..cpe,r Wherecey, .., ¢,
are token sequences used as synchronization keys,e,, are token sequences labelling detours and
r is the remaining/-d etour introduces a distortion of at mos¥. Since the length of each) is

at leaste, the relative distortiorr = ST is such that: < (1 +¢/I)~%. On average% pairs

nt
i +nl+r]
c;e; are altered. [ |
Hence, for a maximum error rate= 0.1%, a detour lengtlY = 2 and an inter-detour distance

¢ = 10, the value ofy is chosen so tha%(l + %)‘1 < e i.e.y = 6000. So, on average, one over

6000 tokens labellinglterable detours should be altered to comply with this error rate.

F. Watermark Detection

Since the alterations performed by the watermarking psackspend only on the value of the
private keyK,, of the owner, exhibiting a key and making the dependencipsapis a strong proof
of ownership. The detection process locates the synchatioizkeys and checks whether the detours
taken by the suspect stream match what would be their watkethavalue. It is very close from the
watermarking algorithm except that the content f the stré&anot changed. We use two countefs,
andme, tc standing fortotal countand mc for match countWe incrementc every time we meet
a detour that would be watermarked (this corresponds toZié Alg. 1). We incremeninc every
time a detour matches what would be its watermarked valuerefore tc > mc. Whentc = mc, we
can conclude of the presence of a watermark. When 0, mc = 0, we are probably in front of an
attacker who successfully inverted every bit of the markisThversion is considered as suspicious
as the full presence of the mark (think of it as a negative iEnaiga black and white picture). For a

non-watermarked stream, we can assume that there is ndatimmebetween the distribution of the

14



data and the pseudo-random watermark embedding processr(aion verified in our experiments).
In this case, the probability that each bit of a detour matakieat would be its watermarked value is
1/2 . Then, we can await fofc to be twice the value ofnc when there is no mark. To sum up, the
watermark is found whepmc/tc — 1/2| > a, wherea is a predefined threshold. The choicecofs
very important: ifa is too large, the detection raises false alarmsy i too small, slightly altered
marks become undetectable, raising false negatives. Toieechf « is discussed in the next section.
Remark also that only the suspect stream and the private kéhecowner are needed to check for

a watermark.

I1l. ROBUSTNESS ANALYSIS AND EXPERIMENTS

A watermarking algorithm is said to lebustwhen an attacker, unaware of the secret key used
for watermark embedding, has to alter more the data than #termarking process did, in order to
remove the mark. In that case, the attacked stream suffetgya lloss of semantics, which is very

likely to destroy their quality.

A. Synchronization Attacks

A watermarked stream can be attacked by modifying synchation parts. Indeed-d etour
requires these parts to remain identical for detection.hSaitacks are limited by theonstant
requirement to keep streams valid with respect to the inppe tof their consumersA non-valid
stream cannot be resold by a malicious user. As explain&T EP 2 of ¢-d etour , synchronization
parts are chosen to be semantically relevant which meanhghnacannot be changed without widely
affecting its semantics. Therefore, a type breaking attagkires to alter data semantics more than

the watermarking process did.

B. Detours Attacks

Since the attacker is unaware of which detours were actadtiyed, two strategies are available
to him. First, he can try to remove the mark by randomly mddgdythe altered detours. We model

this attack as aandom attack

15



Random Attack.For 0 < p < 1, a random attack of parameteiis an attack inverting each bit
of the watermark with a probability at most The false negative occurrence probability, (p) is the
probability that an attacker performing a random attack arbmetemp cheats the detector. Theorem
2 (see [7] for a complete proof) shows how to choesédetection threshold) antk: (number of
altered detours to poll) to get this probability maximallgumded by an owner-defined probability

(e.g.0 = 107%). These parameters also allows for a false positive oceoergrobabilityp s, bounded

by 4.
Theorem 2:Let 0 < d4,p < 1, t¢ € N, p # 1/2, teg = 5(1135(2%22)'
i (te) = —802) anday(te) = & —p — /%202 Then,

(tc > tep and oy (te) < a < ag(te)) = (prp < 8 andps,(p) < 6).
Proof: (sketch) The fact that a detour matches its watermarkedeviglseen as the outcome
of a Bernoulli’'s law of parametet/2. Suppose that we are able to retrievgpossibly watermarked
positions in the stream. The probability that a false pesiticcurs is exactly the probability that the
number of positive outcomes in outcomes of Bernoulli's experiments deviates from the cadh
valuen/2 by a distancev.n. The highem is, the smaller this probability. It can be bounded using a
Hoeffding inequality [8] to obtain a maximal bound for thecacrence of a false positive. Similarly,
one can bound the probability that a false negative occuyscd®nbining these two results, we find
the minimum number of potentially watermarked detours omsstnconsider to test the presence of
a watermark and simultaneously stay under the target pilithadb. [ |
Listen& Learn Attack.:When a synchronization key is met twice, the two correspumava-
termarked bits will have the same position and the same v#fluee; andc.e; are two sequences
synchronization key.detouthe watermarked bit is among the set of bits which have theesaalue
in the binary representations of the rankegfand the rank ok,. An attacker may try to learn such
dependencies in order to performLesten & learnattack. This attack consists in the following two
steps. Firstlearningassociations between synchronization keys values andmatieed bits. Second,

attackingthe watermark using this knowledge. Notice that this canb®otione in constant memory
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and requires an external and efficient storage. This doesarply with computational constraints

on streams, that also apply to the attacker.

C. Experiments

Test Sample..We used Rs news feeds provided by CNN [1] from September 8th 2005 to
September 14th 2005 for a total of 1694 news items (or 52304&nt).Alterable detours were
chosen to be the edges associated to the highest significginddthe minutes field and the lowest
significant digit of the seconds field. Hence, dates of neas iare changed by at most 50 minutes
and 9 seconds. Synchronization keys include the contertedfrtk element and edges not part of
an alterable detour in theubDate element.

Detour-witching Attack.:A detour-switchingattack consists in randomly switchiradl alterable
detours. It is parameterized by the alteration frequenayith probability 1 /¢ each detour is replaced
by another one, having same start and same end, randomlgrchd¢e performed experiments
for various values ofy and v. A summary of the results is displayed in Table I(a). For each
combination ofg and ~, the set of news items was watermarked and attackidtimes. We
count the number of positive detectioR® of the watermark and the relative extra alterati@h
introduced by the attack, compared to the watermarkingga®clf the watermarking process alters
WL tokens of the stream, then the attack has an overall distodf WL+QL. For instance, when
g = 1 and~ = 3, the attack successfully erases the waterm®R=f 0%) but at the price of a
significant quality lossQL= 0.39% compared to the alterations introduced by the watermgrkin
processWL= 0.22%. On the contrary, foy = 1 and~y = 1, the attack is a succesPl}= 0%,
QL= 0%). This shows that choosing= 1 is a bad idea for the data owner, as it means watermarking
everypossible position, hence giving a severe hint to the atraétesoon asy > 1, the mark is not
removed if the attack does not alter more the stream than #termarking process did.

Listen & Learn Attack.:We performed experiments of this attack using two stratedie the
destructivestrategy we change evealterable detour unless we know it is a watermarked one. In

the surge strategy, a detour is altered only if we are sure it is a waaeked one. We performed
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TABLE |
ATTACK EXPERIMENTS WL (QUALITY LOSS DUE TO WATERMARKING), QL (extraQUALITY LOSS DUE TO ATTACKS),

PD (RATIO OF POSITIVE DETECTIONS

y
1 (high rate) 2 3 (low rate)
q
WL:0.65% | WL:0.32% | WL:0.22%
ltime
1 QL:0% QL:0.38% | QL:0.39% 100 500 1500
strategy
PD:0% PD:0% PD:0%
QL:0.27% | QL:0.39% | QL:0.24%
WL:0.65% | WL:0.32% | WL:0.22% surge
PD:100% | PD:100% PD:100%
2 QL:0% QL:0.19% | QL:0.19%
QL:0.57% | QL:0.49% | QL:0.27%
PD:100% PD:100% PD:100% destructive
PD:52% PD:100% PD:100%
WL:0.65% | WL:0.32% | WL:0.22%
3 QL:0% QL:0.13% | QL:0.13%
PD:100% PD:100% PD:100%
(a) Random Attack (b) Listen & Learn Attack
Failure probabilityd = 0.01 6 =0.01,y =3 andWL=0.22%

experiments for different learning time&;ime ranging from100 detours to1500. The detection
process begins after the end of the learning period to magirfie effect of the learning attack. For
each strategy and learning time combinatit®l) experiments were performed. Results are presented
in Table I(b). In only one case, the watermark is removedsTikinot surprising because when
ltime = 100, the destructive strategy is a random attack with 1. Indeed, not enough knowledge

has been acquired. Even for longer learning times, thelattaes not affect the detection.

IV. RELATED WORK

Our work is an extension of [2] which considered relationaadhase watermarking. In [2] and its
further extension [11], the watermarked information isalted in the least significant bits of numerical
values whereas ours is located at any position, providaedptbgition can be localized by an automaton.
Type-preservation is implicit since the structure of théabtlases (relation name, attribute names, key

constraints) is not altered. In theMX context, structure is far more flexible and can be used to
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embed watermarking bits. This motivates structural madglifims in the purpose of watermarking,
but while keeping the data usable, i.e. respecting its maigiype. Such structural modifications are
not discussed in [2]. It is noteworthy that our automataebasodel can mimic their algorithm for

numerical values with a fixed size (which is a usual hypothasipractice).

In [16], a watermarking scheme for sensor streams is prap@&ecams are defined as continuous
sequences of numerical values. Watermarking is based omtagity hypothesis and is performed
by altering salient points of the stream. This method dodscoasider typing problems. Keys and
alterations are to be found in numerical values, whereasdain change in our approach according
to the form of the stream.

Other works [6], [4], [13], [17], [9], [14] address waternkarg XML information in various
contexts. In all these worksmL documents are viewed as a whole, and not as streaming iniorma
In [4], [17], [9], [13], watermark embedding values are ltahthrough the use of specific XPH4
gueries. It is not discussed whether these techniques capjléed in a streaming context but it
must be observed that XPH can not be efficiently evaluated over streaming data [5].yQrie
work [9] considers structural modification as bandwidthvi@termarking which are often viewed as
attacks [17], [14] watermarkers must deal with. A theomdtizork [6] explores the watermarking of
XML databases while preserving constraints which are spetifiedh parametric queries. Type and

stream constraints does not fit this framework.

V. CONCLUSION AND FUTURE WORK

In this work, we have presented thied etour algorithm which permits the embedding and the
detection of copyright marks into ML streams. Thus, it enables detections of illegal redidtiiobs
of such objects. Future work is to study whether it is possiol detect watermarks after one or
several transformations by consumers. Obviously, thignigoissible in the most general setting but
preliminary results [7] show that this question can be amed/éor a restricted class of transformations,

expressing deterministically invertible stream rewgsn
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