
Static Reductions for Promela Specifications

C. Pajault and J.-F. Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

{pajault,peyre}@cnam.fr

Abstract. The interleaving of concurrent processes actions leads to a com-
binatory explosion. There exists in Petri nets theory some structural reduc-
tions that combat the state explosion by agglomerating sequences of transi-
tions into a single atomic transition. These reductions are easily checkable
and preserve deadlocks, Petri nets liveness and any LTL formula that do
not observe the modified transitions. Furthermore, they can be combined
with others kinds of reductions such like partial-order techniques to obtain
very effective reductions. We propose in this paper to adapt these reduc-
tions to Promela specifications by proposing some simple rules which give
the possibility to automatically infer atomic steps in the Promela model
while preserving the checked property. We demonstrate on typical example
the efficiency of this approach and we propose some perspectives of this
work.

1 Introduction

The interleaving of concurrent processes actions leads to a combinatory explosion.
In order to give a simple insight about this problem, let us take a small example. Let
{pi}i=1...n be a set of stateless servers which infinitely execute a loop consisting in
a sequence of two actions accepti and executei. The interleaving of these actions
leads to a state space whose size is 2n. Partial order methods (e.g. persistent
sets [WG93], sleep sets [GW93], stubborn sets [Val93], ...), or symmetry based
reductions [EPS93,AHI98,Sis03] may reduce the size of the state space to a size
of n. However, the simple fact of considering the sequence as atomic leads to a
state space reduced to a singleton! Obviously, as for partial order techniques, such
a reduction may be faulty since for instance, it could hide occurrence of deadlocks.
Thus the goal of a reduction theory is to (syntactically) characterize situations
where a reduction is sound and how to perform it.

We proposed in [HPP04] new Petri nets reductions based on this principle and
that cover a large range of patterns by introducing algebraic conditions whereas
the previously defined ones [Ber83,Ber85] rely solely on structural conditions. We
extended in [EHPP04b,EHPP04a] these “ordinary” reductions to colored Petri
nets which are an abbreviation of Petri nets (to each colored net corresponds an
ordinary Petri net). Indeed, colored Petri nets are a concise formalism for the mod-
eling of concurrent software and they can be automatically derived from software
using a tool such as Quasar [EKPPR03] which aims to verify concurrent Ada pro-
grams. So, reducing colored Petri nets is an efficient way to simplify concurrent
software analysis.

We propose here to study how these new reductions can be used in Promela
specifications analysis. First we show that we can translate a Promela model into
a colored Petri net using a methodology already applied in the Quasar tool. Then
we show that the verification of this colored Petri net can be efficiently performed
using both structural agglomeration reductions and stubborn sets techniques. In
order to avoid translation of a Promela specification into a colored Petri nets model
we propose some simple syntactical rules based on Petri nets agglomerations which
allow us to automatically detect sequences of statement that can be marked as
”atomic” (using the atomic construction of Promela) while preserving analyzed
properties. We show on classical examples that by this way we can significantly
reduced the size of the state space without increasing time analysis.

2 Petri nets transitions agglomerations

A Petri net reduction is characterised by some application conditions, by a net
transformation and by a set of preserved properties (i.e. which properties are
simultaneously true or false in the original net and in the reduced one). Before
presenting the “behavioral” version of the pre- and the post-agglomerations we
first recall some Petri nets definitions.

2.1 Brief Petri nets definitions and notations

Definition 1. A marked net (N, m0) is a tuple (P, T, W−, W+, m0) where:

– P is the finite set of places,
– T is the finite set of transitions disjoint from P ,
– W− (resp. W+) an integer matrix indexed by P × T is the backward (resp.

forward) incidence matrix,
– m0 a integer vector indexed by P is the initial marking.

Notations

– We note 〈P, T, W+, W−, m0〉 a marked Petri net;
– λ defines the empty sequence of transitions;
– If s is a sequence of transitions, |s| denotes the length of s (that is recursively

defined by |λ| = 0 and |s.t| = |s| + 1);
– ΠT ′(s) denotes the projection of the sequence s on a subset of transitions T ′

and is recursively defined by ΠT ′(λ) = λ, ∀t ∈ T ′ , ΠT ′(s.t) = ΠT ′(s).t and
∀t /∈ T ′ , ΠT ′(s.t) = ΠT ′(s),

– |s|T ′ = |ΠT ′(s)| denotes the number of occurrences of transitions of T ′ in s.
– Pref(s) = {s′ | ∃s′′ s.t. s = s′.s′′} denotes the set of prefixes of s.

Definition 2. Let (N, m0) be a marked net then:

– t ∈ T is firable from m a marking (denoted m[t〉) iff ∀p ∈ P m(p) ≥ W−(p, t),

– the firing of t ∈ T firable from m leads to the marking m′(denoted m[t〉m′)
defined by ∀p ∈ P m′(p) = m(p) + W (p, t) where W the incidence matrix is
defined by W = W +−W−. Note that the incidence matrices W , W− and W+

can easily be extended to matrices indexed by P × T ∗.

Definition 3. Let (N, m0) be a marked net then:

– s ∈ T ∗ is firable from m a marking and leads to m′ (also denoted by m[s〉 and
m[s〉m′) iff

1. either s = λ and m′ = m

2. or s = s1.t with t ∈ T and ∃m1 m[s1〉m1 and m1[t〉m
′

– s ∈ T∞ is firable from m a marking (also denoted m[s〉) iff for every finite
prefix s1 of s, m[s1〉.

Definition 4. Let (N, m0) be a marked net then:

– Reach(N, m0) = {m|∃s ∈ T ∗ m0[s〉m} is the set of reachable markings,

– m is a dead marking if ∀t ∈ T NOT (m[t〉,

– (N, m0) is live iff ∀m ∈ Reach(N, m0) ∀t ∈ T ∃s ∈ T ∗ m[s.t〉,

– L(N, m0) = {s ∈ T ∗|m0[s〉} is the language of finite sequences,

– LMax(N, m0) = {s ∈ T ∗|∃m dead marking m0[s〉m} is the language of finite
maximal sequences,

– L∞(N, m0) = {s ∈ T∞|m0[s〉} is the language of infinite sequences,

2.2 Petri nets agglomerations

We note (N, m0) a Petri net and we suppose in the following definitions that the set
of transitions of the net is partitioned as : T = T0

⊎
i∈I Hi

⊎
i∈I Fi where I denotes

a non empty set of indices. The underlying idea of this decomposition is that a
couple (Hi, Fi) defines transitions sets that are causally dependent : an occurrence
of f ∈ Fi in a firing sequence may always be related to a previous occurrence of
some h ∈ Hi in this sequence. Starting from this property, we developed conditions
on the behaviour of the net which ensure that we can restrict the dynamics of the
model to sequences where each occurrence h ∈ Hi is immediately followed by
an occurrence of some f ∈ Fi without changing its behaviour w.r.t. to a set of
properties. This restricted behaviour is the behaviour of a reduced net as shown
in the next definitions and propositions.

Definition 5 (Reduced net). The reduced Petri net (Nr, m0r) is defined by:

– Pr = P , Tr = T0 ∪i∈I (Hi ×Fi) (we note hf the transition (h, f) of Hi ×Fi);

– ∀tr ∈ T0, ∀p ∈ Pr, W−

r (p, t) = W−(p, t) and W+
r (p, t) = W+(p, t)

– ∀i ∈ I, ∀hf ∈ Hi × Fi, ∀p ∈ Pr W−

r (p, hf) = W−(p, h.f) and W+
r (p, hf) =

W+(p, h.f)

– m0r = m0

From now, we note H = ∪i∈IHi and F = ∪i∈IFi. The firing rule in the reduced
net is noted 〉r (i.e. m[s〉rm

′ denotes a firing sequence in the reduced net). We
note also φ the homomorphism from the monoid T ∗

r to the monoid T ∗ defined by:

∀t ∈ T0, φ(t) = t and ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, φ(hf) = h.f

This homomorphism is extended to an homomorphism from P(T ∗

r) to P(T ∗) and
from P(T∞

r) to P(T∞).
The next basic proposition states in a formal way that the behaviour of the

reduced net is a subset of the original behaviour.

Proposition 1. Let (N, m0) be a net. Then:

1. ∀sr ∈ T ∗

r , m[sr〉rm
′ ⇐⇒ m[φ(sr)〉m

′

2. ∀sr ∈ T∞

r , m[sr〉r ⇐⇒ m[φ(sr)〉

In order to obtain the preservation of more properties (such like deadlock oc-
curences) we have to introduce new behavioural hypotheseses. The basic one,
named Potential agglomerability ensures that an occurence of a transition of F
is always preceeded by an occurence of a transition of H . For doing that we define
a set of counting functions, denoted Γi, by ∀s ∈ T ∗, Γi(s) = |s|Hi

− |s|Fi
.

Definition 6 (Potentially agglomerability). A marked net (N, m0) is poten-
tially agglomerable (p-agglomerable for short) iff ∀s ∈ L(N, m0), ∀i ∈ I, Γi(s) ≥ 0.

We define now the behavioral conditions that ensure that the agglomerations
preserve properties of the net. Note that these behavioral conditions can be checked
with efficient structural and algebraical sufficient conditions (not presented here).

Pre-Agglomeration The following definition states four conditions which “roughly
speaking” ensure that delaying the firing of a transition h ∈ Hi until some f ∈ Fi

fires does not modify the behaviour of the net w.r.t. the set of properties we want
to preserve.

Definition 7. Let (N, m0) be a p-agglomerable net. (N, m0) is

1. H-independent iff ∀i ∈ I, ∀h ∈ Hi, ∀m ∈ Reach(N, m0), ∀s such that
∀s′ ∈ Pref(s), Γi(s

′) ≥ 0, m[h.s〉=⇒m[s.h〉

2. divergent-free iff ∀s ∈ L∞(N, m0), |s|T0∪F = ∞

3. quasi-persistent iff ∀i ∈ I, ∀m ∈ Reach(N, m0), ∀h ∈ Hi,
∀s ∈ (T0 ∪ F)∗, such that m[h〉 and m[s〉 ∃s′ ∈ (T0 ∪ F)∗ fulfilling: m[h.s′〉,
ΠF (s′) = ΠF (s) and W (s′) ≥ W (s).
Furthermore, if s 6= λ=⇒s′ 6= λ then the net is strongly quasi-persistent.

4. H-similar iff |I | = 1 or ∀i, j ∈ I, ∀m ∈ Reach(N, m0), ∀s ∈ T ∗

0 ,
∀hi ∈ Hi, ∀hj ∈ Hj , ∀fj ∈ Fj m[hi〉 and m[s.hj .fj〉 =⇒ ∃s′ ∈ (T0)

∗, ∃fi ∈ Fi

such that m[s′.hi.fi〉 and such that s = λ=⇒s′ = λ.

The H-independence roughly means that once a transition h ∈ Hi is fireable it
can be delayed as long as one does not need its occurrence to fire a transition of Fi.
When a net is divergent-free it does not generate infinite sequences with some suffix
included in H . In the pre-agglomeration scheme, we transform original sequences
by permutation and deletion of transitions to simulateable sequences. Such an
infinite sequence cannot be transformed by this way into an infinite simulateable
sequence. Therefore this condition is mandatory. The quasi-persistence ensures
that in the original net a “quick” firing of a transition of H does not lead to some
deadlock which could have been avoided by delaying this firing. At last, the H-
similarity forbids situations where the firing of transitions of F is prevented due
to a “bad” choice of a subset Hi.

Under previous conditions (or a subset of), fundamental properties of a net are
preserved by the pre-agglomeration reduction. This result is stated in the following
theorem whose demonstration is provided in [HPP04].

Theorem 1. Let (N, m0) be a Petri net.

1. If (N, m0) is p-agglomerable, H-independent and divergent-free then

ΠT0∪F (Lmax(N, m0)) ⊇ ΠT0∪F (Φ(Lmax(Nr, m0r)))

2. If (N, m0) is p-agglomerable, H-independent, strongly quasi-persistent and H-
similar then

ΠT0∪F (Lmax(N, m0)) ⊆ ΠT0∪F (Φ(Lmax(Nr, m0r)))

3. If (N, m0) is p-agglomerable and H-independent then

ΠT0∪F (φ(L∞(Nr, m0))) = ΠT0∪F (L∞(N, m0))

The first point defines which conditions ensure that the reduction does not in-
troduce maximal blocking sequences (e.g. characterizing a deadlock) in the reduced
net. The second one fixes when the reduction does not hide some maximal block-
ing sequences. At last, the third point focuses on the preservation of properties
expressed with infinite sequences (e.g. fairness properties).

Post-Agglomeration The main behavioural property that the conditions of the
post-agglomeration implies is the following one : in every firing sequence with an
occurrence of a transition h of H followed later by an occurrence of a transition f
of F , one can immediately fire f after h. From a modelling point of view, the set
F represents local actions while the set H corresponds to global actions possibly
involving synchronisation.

Definition 8. Let (N, m0) be a p-agglomerable marked net. (N, m0) is

1. F -independent iff ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, ∀s ∈ (T0 ∪ H)∗, ∀m ∈
Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉
(N, m0) is strongly F -independent iff ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, ∀s ∈ T ∗

s.t. ∀s′ ∈ Pref(s), Γ (s′) ≥ 0 ∀m ∈ Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉

2. F -continuable iff ∀i ∈ I, ∀h ∈ Hi, ∀s ∈ T ∗, s.t. ∀s′ ∈ Pref(s), Γ (s′) ≥ 0
∀m ∈ Reach(N, m0) m[h.s〉 =⇒ ∃f ∈ Fi such that m[h.s.f〉

We express the strong dependence of the set F on the set H with these two hy-
potheses. The F -independence means that any firing of f ∈ F may be anticipated
just after the occurrence of a transition h ∈ H which “makes possible” this firing.
The F -continuation means that an excess of occurrences of h ∈ H can always be
reduced by subsequent firings of transitions of F .

As for the pre-agglomeration, these conditions (or a subset of) ensure that
fundamental properties of a net are preserved by the post-agglomeration reduction
(the demonstration is provided in [HPP04]).

Theorem 2. Let (N, m0) be a Petri net.

1. If (N, m0) is p-agglomerable, F -continuable and F -independent then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(Φ(Lmax(Nr, m0r)))

2. If (N, m0) is p-agglomerable, F -continuable and strongly F -independent then

ΠT0∪H(φ(L∞(Nr, m0))) = ΠT0∪H(L∞(N, m0))

3 Using agglomeration for Promela model verification

We propose in this section to study how Petri nets agglomerations can be used to
simplify the verification of Promela models. The first way consists in translating
Promela specification into colored Petri nets before reducing and analyzing it.
This methodologie gives good results in term of state space reduction but need
the implementation of a complete translator and to deal with many Promela subtle
statements.

So we propose a second approach, very easily applicable and which give almost
as good result than the previous one. This method consists in syntactically detect-
ing possible agglomeration in a Promela model (using implicitly the correspond-
ing colored Petri net pattern) and in inferring automatically atomic sequences with
the atomic Prolema construction.

3.1 Promela specifications and colored Petri nets

Background We presented in [EKPPR03] a tool named Quasar which aims to
automatically analyses concurrent Ada programs. This tool is based on colored
Petri nets and translate concurrent Ada programs into colored Petri nets with
the help of pre-defined patterns : each statement of the program is translated
into a sub-nets following the corresponding pattern and once all statements have
been translated, Quasar merges all the sub-nets into an unique colored net. We
showed in [EKP+05] that colored Petri nets are also able to deal with dynamic
aspects of programming languages and especially Ada language and how we have
extend Quasar to allow the verification of Ada program containing dynamic tasks
creation or termination.

Quite all patterns we are using for translating Ada programs into colored Petri
nets can be reused for translating Promela specifications with the same efficiency.
The only specific structure that we have to deal with is communication channels.

Colored Petri nets A colored Petri net may be viewed as a Petri nets with
colored (typed) token. Each token is a tuple of values and each place is thus typed
by a color domain. Each arc is labeled by variables (or expressions on variables)
taking value in the type of the place. When firing a transition, we have first to
instantiate variables around this transition (and defined by attaining arcs). Then
one checks the presence of these values in places that are pre-conditions of this
transition and if the transition is fired, values defined by post-conditions are added
to related places.

For instance, in the net presented in left of figure 1, the color domain of place
VAR C is int × int and the color domain of places P1 and P2 is int. Each token
of the place VAR C is thus a couple of integer values and each token of places P1
and P2 is a simple integer value. Transition T1 has two entering arcs: one from
VAR C labeled by a tuple of two variables id and val, and one from P1 labeled
by the variable id. Transition T1 can thus be fired when a token of P1 has its id
value matching any id value of a token in VAR C. When T1 is fired, a new token
is instantiated in VAR C and an other one in P2.

From Promela to colored Petri nets We consider now how to map any
Promela specification into a colored Petri net. First, to each process of the speci-
fication is assigned a unique process identifier id. This identifier is calculated dy-
namically without introducing any combinatory [EKP+05]. Then, to each variable
is associated a place. If the variable is local this place will contain token<id, val>
where id is the identifier of the process and val is the value of that variable for
this process (if the variable is global then there is only the value of the variable
in the place). Then, each statement of the promela specification is translated into
a sub-net. When all statements have been translated, all the sub-nets are merged
into a single colored Petri net.

Figure 1 presents some patterns illustrating the translation of Promela spec-
ification into colored Petri net. The first sub-net is a translation of a simple as-
signment in which the variable c (modeled by place VAR C) is incremented by 1.
The process identified by id catches its own variable c in the place VAR C (the
token <id, val>) and replaces it by a new token <id, val+1>. The second sub-net
is a translation of a common ’if-then-else’ block. The condition is checked by the
guards [val == 0] and [val! = 0] on the transitions. If the value of the variable c
is equal to 0, the sub-net SUB THEN is executed. If the value of the variable c
is not equal to 0, the sub-net SUB ELSE is executed.

Modeling the channels In this paper we restrict us to patterns corresponding
to channels that are statically created. Thus, the number of channels and their

P1

P2

Affectation : c=c+1;

<id, val>

<id, val+1>

T1VAR_C

<id>

<id>

<id, val> <id, val>

if
:: c==0 −> ...
:: else −> ...
fi

if :

[val==0] [val!=0]

P_IF

P_FI

VAR_C

<id, ...>

<id, ...><id, ...>

<id, ...>

SUB_THEN SUB_ELSE

Fig. 1. Some patterns

buffer size are known at the compile time. It is possible to deal with dynamic
channel creation but the patterns for channels are quite more complicated.

As a channel with a buffer size equal to 0 is just simple synchronization between
the reader and the writer, using a simple transition is thus an instinctive and easy
way of modeling. Such a pattern is presented at figure 2. The transition cannot
be fired until the writer and the reader have not reached their corresponding CALL

places. The message exchanged between the two processes is represented by the
field message in the marks.

<...>

<...>

WRITER

<..., message,...>

<..., message,...>

W_CALL R_CALL

READER

Fig. 2. Pattern for a synchronization channel.

For modeling asynchronous channels we use for each channel (or each array
of channels), a unique corresponding place in the net which will contains tokens
<idc, n, m>where idc is the unique identifier instance of the channel, m is the
message stored in the entry n of the queue. To the channel place is associated a
place which counts the free size of the channel buffer. Furthermore, we use two
places (one for the reader, the other for the writer) for catching messages in the
FIFO order. The pattern for the asynchronous channel is presented figure 3, where
id denotes identifier of processes, idc is the unique identifier of the channel, n is
the entry number in the channel queue, m is the message and SIZE is the buffer
size of the channel. When a writer wants to write in the channel, it checks if the
guarding place (place FREE) is not empty. When it is empty, it means that the
queue is full and the writer is blocked. When it is not empty, the writer catches the
entry number of the queue in the WRITE place and fire the writing transition.

<idc,n>

<idc,(n+1)%SIZE>

<idc,n>

<idc,(n+1)%SIZE>

READERFREE

CHAN

WRITE READ

WRITER

<id, idc>

<id, idc, m> <idc> <id, idc>

<idc,n,m> <idc,n,m>

<idc>

<id, idc, m>

Fig. 3. Pattern for a channel with a buffer size greater than 0.

The firing rule of this transition updates the token of the WRITE place and write
the message in the channel by adding a token in the CHAN place. Similarly,
when a reader wants to write, it catches the entry number in the READ place,
and match the message with the entry number read. When the reader has read
the message, it updates the entry number and adds a token in the FREE place
for an other writer to write in the channel. In the case we decide to not block a
writer when the queue is full we simply suppress place FREE. If we want to do
not respect the FIFO order, we suppress places WRITE and READ.

3.2 A first illustration

Let us consider now the following simple produced / consumer model (presented
figure 4). The colored Petri nets (original and reduced) corresponding to this
Promela model and build using previous defined patterns are presented in Ap-
pendix.

1 int MAX = 10;
2 chan root = [SIZE] o f { int } ;
3
4 proctype reader ()
5 {
6 int i ;
7 int j =1;
8 do

9 : : (j<=MAX) −> root ? i ; j++
10 : : (j>MAX) −> break

11 od

12 }
13 proctype wr i t e r ()
14 {
15 int j = 1 ;
16 do

17 : : (j<=MAX) −> root ! j ; j++
18 : : (j>MAX) −> break

19 od

20 }
21 i n i t

22 {
23 atomic{
24 run wr i t e r () ;
25 run reader ()
26 }
27 }

Fig. 4. A simple producer/consumer written in Promela

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12

N
um

be
r

of
 s

ta
te

s

Size of the channel buffer

Number of states for the asynchronous producer/consumer example.

Petri Nets -- No Reductions
Spin -- No Reductions

Spin -- Partial-Order Reductions
Spin with exclusive sender/receiver -- No Reductions

Spin with exclusive sender/receiver -- Partial-Order Reductions
Petri Nets -- Static Reductions

Petri Nets -- Static Reductions + Stubborn Sets

Fig. 5. Number of generated states for the program presented figure 4. MAX is set to 10
and the buffer size varies from 1 to 12.

We calculate the number of states generated when the buffer size (modeled by
the variable SIZE) varies from 1 to 12 and the results are presented in figure 5. We
can remark that the number of states generated by Spin when none partial order
reductions is used and when no exclusive sender or receiver are specified is quite
similar to the number of states generated by the (non reduced) corresponding
colored Petri net model. Note that when SIZE is greater or equal to 10 every
writing statement can be executed since the writer did not perform more than 10
writing statements. Thus, the number of generated states do not change when the
buffer size is greater or equal to the number of loop executed.

We can also remark that the best efficient reduction ratio is obtained when we
apply both agglomeration transitions and stubborn sets technique and that the
number of states with these techniques is almost from 10 to 20 smaller that the
number of states computed with Spin using partial order reduction and exclusive
reader/writer channel.

Applying this technique to other Promela specifications leads to comparable
results with, some time, a lower ratio between the “best” Spin strategy and the
“best” Petri nets strategy. For instance, using the sort algorithm 1 we obtain results
showing a reduction factor around 25% (see figure 6).

1 provided with the Spin distribution and for which Spin partial order method gives
remarkable results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6

N
um

be
r

of
 s

ta
te

s

Value of N

Number of states for the sort algorithm.

Spin with exclusive sender/receiver -- Partial-Order Reductions
Spin with exclusive sender/receiver -- Static + Partial-Order Reductions

Petri Nets -- Static Reductions + Stubborn Sets

Fig. 6. Evaluations of the sort algorithm.

3.3 Syntactical promela conditions

The main drawback of the strategy used in previous subsection is the need to
translate a specification from a formalism to another. We will define now some
conditions under which it is possible to automatically infer agglomerations di-
rectly in the Promela specification. These agglomerations allow us to group some
statements into an atomic block in order to reduce combinatory. In other term we
will fix simple conditions that allows us to transform a sequence 2

i0; atomic{ i1; i2; . . .; ik}

into the atomic sequence

atomic{ i0; i1; i2; . . .; ik}

The first case we consider is the one where the sequence sf = atomic{ i1;. . .;
ik} is a non blocking sequence and where i1; . . .; ik refer only local variables or
constants (i.e. variables that are declared within the corresponding process or that
are never assigned except at their declaration). In this case, a post-agglomeration
of i0 with the rest of the sequence can be performed. Indeed, as sf is non blocking,
it can be executed as soon as i0 has been executed and then the F -continuation
hypothesis is fulfilled. Now, as i1 . . .; ik refer only local variables or constants the
way the sequences sf is executable cannot change after the execution of i0. Indeed,
suppose that i2 refers a variable x and that sf is executable after i0 for a value
x0 for x. As x is local, the value of x cannot change before sf is executed, and
then the way of sf is executed does not change when i0 has been executed and
sf not. So the F -Independence hypothesis is fulfilled. As statements are executed
by a process i0 cannot be re-executed before sf has been. So the strongly F -
Independence hypothesis is also fulfilled.

2 the case k = 0 is obvious and not studied

Now we distinguish two different cases : i0 is not the first statement of a se-
quence of a selection structure (i0 is not a guard) and i0 is a guard. Then we
examine 3 kinds of statements for i0 : the blocking conditional statement (x == y)
the assignment (x = y) and the receive operations on a channel (q?x) For each of
them we determine if its execution can be “delayed” or “advanced” w.r.t. the pre-
and the post-agglomeration condition.

The statement i0 is not a guard Suppose that i0 is an assignment that do
not refer global variable (except constants). As i0 accesses only variables that
cannot change when the process is not active, the statement i0 can be delayed
and then the H-independent and the strongly quasi-persistence hypotheseses are
fulfilled. As the statement i0 is not a loop the divergence freeness is ensured and
as we agglomerate a single statement (i0) with a sequence (sf) the H-similarity
hypothesis is fulfilled (|I | = 1). Now, if i1 is a blocking statement and if i1 does not
use variable modified by i0 and does not modify variables accessed by i0 then we
can safely replace the statement atomic{ i0; i1; . . .; ik} by the statement atomic{
i1; i0; . . .; ik}. By this way we put the “blocking” statement at the beginning of the
sequence which disable a possible interruption in the atomic statement execution.

Now, suppose that i0 is a blocking boolean expression and suppose that this
expression does not refer to global variables (except constant). Then using same
reasoning, a pre-agglomeration can be performed between i0 and sf .

When i0 is a blocking reception on a channel we have to take more precautions.
First we have to suppose that the channel is marked as “exclusive reader”. This
disables the possibility that a process takes a message that another process was
waiting for (which will contradict the quasi-persistence hypothesis). Then the H-
independence hypothesis implies that the reception of a message on the channel
does not enable an action of an other process. In the general case this is not
possible (a “reader” can unblock a “writer”). However, suppose that the user can
mark a channel as “sufficient capacity” meaning that a writing on this channel will
never block. Then, reading a message on such a channel cannot unblock a process
waiting for writing. In such a case, a pre-agglomeration can be safely performed.

The statement i0 is a guard Now suppose that i0 is the first instruction of a
case selection (this applies also to a repetition statement)
if

:: i0; atomic{ i1; . . .; ik}
:: s1

:: . . .
:: sn

:: else se

fi
where s1, . . ., sn and se are sequences (atomic or not).

First, suppose that i0 is an assignment or a boolean expression that uses only
local variables or constants. Suppose also that atomic{ i1; . . .; ik} is a non blocking
sequence and that each statement sj can be written ij0.s

′

j with s′j a non blocking

sequence and ij0 an assignment or a boolean expression that uses only local vari-
ables or constants. In this case we van perform a pre-agglomeration of i0 with the
sequence atomic{ i1; . . .; ik} simultaneously of a pre-agglomeration of each ij0 with
the first statement of s′j . Indeed, the H-independence and the quasi-persistence
are ensured due to the locality of variables used in statements. The H-similarity
is obtained by the non blocking character of each sequence s′j which ensure that if
a given sequence s′j is executable then all other sequences s′j′ are also executable.

Second suppose that i0, is a boolean expression using only local variables and
constants. If each statement si begins with also a boolean expression using only
local variables and constants and if at most one of this boolean expression is true
at a time then i0 can be pre-agglomerated with atomic{ i1; . . .; ik}. This is so
because there is no really choice on the selection structure : at most one sequence
is executable and the one which is executable does not change until it’s executed.

A same reasoning can be applied when i0 is a statement q?v0(x0) such that,
q is a channel that is marked exclusive reader that does not block writers, and
when each si is also a statement q?vi(xi), where v0 . . . vn design different constant
values and where x0, . . ., xi design local variable and when there is no else part
in the selection structure. Indeed, in this case, there is no real choice (due to the
different value of message type) and as there is no else part, the message reception
can be delayed.

At last, suppose that all the alternative of a case statement are atomic se-
quences. Then, without modifying its behavior we can rewrite it into an atomic
sequence that contains the case statement as the unique statement.

Applying these syntactical agglomerations to the producer/consumer example
(figure 4) leads to a slightly modified promela model (figure 7) with a smaller state
space as depicted by the third curve in figure 8. Comparable results are obtained
on the sort model (see the second curve of figure 6).

1 proctype reader ()
2 {
3 int i ;
4 int j =1;
5 xr root ;
6 do

7 : : atomic { (j<=MAX) −> root ? i ; j++}
8 : : (j>MAX) −> break

9 od

10 }
11 proctype wr i t e r ()
12 {
13 int j = 1 ;
14 xs root ;
15 do

16 : : atomic{(j<=MAX) −> root ! j ; j++}
17 : : (j>MAX) −> break

18 od

19 }

Fig. 7. The simple producer/consumer with automatically inferred atomic blocks.

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12

N
um

be
r

of
 s

ta
te

s

Size of the channel buffer

Number of states for the asynchronous producer/consumer example.

Spin with exclusive sender/receiver -- Partial-Order Reductions
Spin -- Atomic + Partial-Order Reductions

Petri Nets -- Static Reductions
Petri Nets -- Static Reductions + Stubborn Sets

Fig. 8. Number of generated states for the program presented figure 4. MAX is set to 10
and the buffer size varies from 1 to 12.

4 Related works on syntactical model reductions

First works concerning reduction of sequences into atomic actions for simplifica-
tion purpose was performed by Lipton in [Lip75]. Lipton focused only on deadlock
property preservation. Using parallel program notations of Dijkstra he defined
“left” and “right” movers. Roughly speaking, a “left” (resp. “right”) mover is a lo-
cal process statement that can be moved forward (resp. delayed) w.r.t. statements
of others processes without modifying the halting property. Lipton then demon-
strated that, in principle, the statement P(S), where S is a semaphore, is a “left”
mover and V(s) is a “right” mover. Then Lipton proved that some parallel pro-
gram are deadlock free by moving P(S) and V(S) statements and by suppressing
atomic statements that have no effect on variables. However, two difficulties arise:
the reduction preserves only deadlocks and the application conditions are difficult
to be checked.

Cohen and Lamport propose in [CL98] assumptions on TLA specifications un-
der which they define a reduction theorem preserving liveness and safety proper-
ties. This work fixes the reduction theorem in a “high” level formalism which can
be a clear advantage for defining specific utilization. However, it’s also its main
drawback since it is based on the hypothesis that some actions commute, but no
effective way is proposed to check whether this assumption holds.

More recently, Cohen, Stoller, Qadeer, and Flanagan [SC03], [FQ03b], [FQ03a]
leveraged Lipton’s theory of reduction to detect transactions in multi-threaded
programs (and consider these transactions as atomic actions in the model check-
ing step). Stoller and Cohen propose in [SC03] a reduction theorem based on
omega algebra that can be applied to models of concurrent systems using mutual
exclusion for access to selected variables. However, they use a restricted notion of
“left” mover and a better reduction ratio can be obtained by applying more accu-
rate reductions (as demonstrated in [EHPP04a]). Moreover, their reductions are
justified by the correct use of “exclusive access predicates” and by the respect of
a specific synchronization discipline. These predicates may be difficult to compute

and no effective algorithm is given to test that the synchronization discipline is
respected.

Flanagan and Qadeer noted in [FQ03a] that the previous authors use only
the notion of “left” mover and proposed an algorithm that uses both “left” and
“right” mover notions to infer transactions. However, this algorithm is based on
access predicates that can be automatically inferred only for specific programs
using lock-based synchronization. Moreover, as they use both “left” and “right”
movers to obtain a better reduction ratio and as they do not fix sufficient restrictive
application conditions, their reduction theorem do not preserve deadlock.

In Petri nets formalism, the first works concerning reductions have been per-
formed by Berthelot [Ber85]. The link between transition agglomerations (the most
effective structural reductions proposed by Berthelot) and general properties, ex-
pressed in LTL formalism, is done in [PPP00].

In [ES01], Esparza and Schröter simplify one point in the original pre-agglo-
meration conditions. However, they consider only 1-safe Petri nets (each place is
bounded by 1), the application conditions remain purely structural, and as the
authors focus only on infinite sequences preservation, their reductions do not even
preserve the deadlock property! 3

We proposed in [HPP04] new Petri nets reductions that cover a large range of
patterns by introducing algebraic conditions whereas the previously defined ones
rely solely on structural conditions. We adapted them in [EHPP04b,EHPP04a] to
colored Petri nets which are an abbreviation of Petri nets and define a concise
formalism for the modeling of concurrent software. We showed here that these
reductions can also be adapted to Promela specifications leading to simple syntac-
tical rules which permit a significant reduction of the combinatory while preserving
properties of the model.

5 Conclusion

We showed in this paper that efficient Petri nets reductions can be used to sig-
nificantly reduce the state space size of a Promela specification. We proposed two
approaches among which one is based on simple syntactical rules allowing the
automatic building of atomic sequences. We showed on classical examples the ef-
ficiency of these approaches. We are currently working on the implementation of
this rules in order to confirm the benefit of the approach on large Promela models.

References

[AHI98] K. Ajami, S. Haddad, and J-M. Ilié. Exploiting symmetry in linear time
temporal logic model checking: One step beyond. Lecture Notes in Computer
Science, 1384, 1998.

[Ber83] G. Berthelot. Transformation et analyse de réseaux de Petri, applications
aux protocoles. Thèse d’état, Université Pierre et Marie Curie, Paris, 1983.

3 Note moreover that being 1-safe is not a stable characteristic w.r.t. reductions.

[Ber85] G. Berthelot. Checking properties of nets using transformations. In
G. Rozenberg, editor, Advances in Petri nets, volume No. 222 of LNCS.
Springer-Verlag, 1985.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In International Con-
ference on Concurrency Theory, pages 317–331, 1998.

[EHPP04a] S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. Coloured Petri nets reduc-
tions for concurrent software validation. Technical report, CEDRIC, CNAM,
Paris, 2004.

[EHPP04b] S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. New coloured reductions
for software validation. In Workshop on Discrete Event Systems, 2004.

[EKP+05] S. Evangelista, C. Kaiser, C. Pajault, J. F. Pradat-Peyre, and P. Rousseau.
Dynamic tasks modeling for concurrent programs verification with quasar.
In Reliable Software Technologies - Ada-Europe 2005, LNCS. Springer-
Verlag, 2005.

[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar: a
new tool for analysing concurrent programs. In Reliable Software Technolo-
gies - Ada-Europe 2003, volume 2655 of LNCS. Springer-Verlag, 2003.

[EPS93] A.E. Emerson and A. Prasad Sistl. Symmetry and model checking. In proc.
of the 5th conference on Computer Aided Verification, June 1993.

[ES01] J. Esparza and C. Schröter. Net Reductions for LTL Model-Checking. In
T. Margaria and T. Melham, editors, Correct Hardware Design and Verifi-
cation Methods (CHARME’01), volume 2144 of Lecture Notes in Computer
Science, pages 310–324. Springer-Verlag, 2001.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for software model check-
ing. In Byron Cook, Scott Stoller, and Willem Visser, editors, Electronic
Notes in Theoretical Computer Science, volume 89. Elsevier, 2003.

[FQ03b] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomic-
ity. In Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 338–349. ACM Press, 2003.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. Form. Methods Syst.
Des., 2(2):149–164, 1993.

[HPP04] S. Haddad and J.F. Pradat-Peyre. Efficient reductions for LTL formulae
verification. Technical report, CEDRIC, CNAM, Paris, 2004.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[PPP00] D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations for LTL
model checking. In M. Nielsen and D Simpson, editors, High-level Petri Nets,
Theory and Application, number 1825 in LNCS. Springer-Verlag, 2000.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based state-
space reduction. In H. Garavel and J. Hatcliff, editors, TACAS’03, volume
2619 of Lecture Notes in Computer Science. Springer-Verlag, April 2003.

[Sis03] A. Prasad Sistla. Symmetry reductions in model-checking. In VMCAI
2003: Proceedings of the 4th International Conference on Verification, Model
Checking, and Abstract Interpretation, London, UK, 2003. Springer-Verlag.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In Proceedings
of the 5th International Conference on Computer Aided Verification, pages
397–408. Springer-Verlag, 1993.

[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal verification.
In E. Best, editor, CONCUR’93: Proc. of the 4th International Conference
on Concurrency Theory, pages 233–246. Springer, Berlin, Heidelberg, 1993.

T10

T1

T2

T13

T10

T15

T9

T8

T6

T4

T3

INIT_P1

INIT_END

<id>

<id>

<id>

<id>

WRITER_BEGIN

WRITER_P1

WRITER_P2

WRITER_P3

WRITER_END

READER_BEGIN

READER_P1

READER_P2

READER_P3

READER_P4

READER_END

WRITER_J READER_J

READER_I

MAX

<max>

<max> <max>

<max>

<id,j> <id,j>

<id,j>

<id,j>

<id,i>

<id,j>

<id,j+1> <id,j+1>

[j<=max][j>max] T11[j<=max] [j>max]

T5 T12 <id,j> <id,j>

<id’, idc> <id’’,idc>

<id,idc>

<id,idc>

<id,idc> <id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc> <id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,1>

<id,0> READER_I

READER_JWRITER_J <id,1>

INIT_BEGIN

ROOT

FREE

<idc,n,m><idc,n,j>

<idc,(n+1)%s>

WRITE

<idc,(n+1)%s>

READ<idc,n> <idc,n>

<id,m>

<idc> <idc>

F
ig

.
9
.
T

h
e

co
lo

red
P
etri

n
et

o
f
th

e
P

ro
m

ela
sp

ecifi
ca

tio
n

d
ep

icted
fi
g
u
re

4

T15

READER_END

<id,idc>

[j>max]

<id,0>

T10

T2

T10T3

INIT_END

<id>

<id>

WRITER_BEGIN

WRITER_P1

WRITER_END

READER_P2

[j>max] T11

<id,idc>

<id,idc>

<id,idc> <id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,idc>

<id,1>
READER_JWRITER_J <id,1>

T8 T4

WRITER_J<id,j+1>

<id,j>
<id,j>

<id,j>

<id,i>

READER_I

READER_J

<id,j>

<id,j+1>

<id,idc>

]

MAX

ROOT

FREE

<id,idc>

[j<=max [j<=max]

WRITE READ

<idc,(n+1)%s> <idc,(n+1)%s>

<idc,n> <idc,n>

<idc,n,j> <idc,n,m>

<id,m>

<max>

<max> <max>

<max>

<idc> <idc>

<id’, idc>

INIT_BEGIN

READER_BEGIN

<id’’,idc>

READER_I

F
ig

.
1
0
.
T

h
e

red
u
ced

co
lo

red
P
etri

n
et

o
f
th

e
P

ro
m

ela
sp

ecifi
ca

tio
n

d
ep

icted
fi
g
u
re

4

1 /∗
2 ∗ A pro g ram t o s o r t c o n c u r r e n t l y N ” random ” numbe r s
3 ∗ The r e d u c e d s p a c e and t im e s h o u l d b e l i n e a r i n t h e
4 ∗ number o f p r o c e s s e s , and can be r e d u c e d when t h e l e n g t h o f
5 ∗ t h e b u f f e r q u e u e s i s i n c r e a s e d .
6 ∗ I n f u l l s e a r c h i t s h o u l d b e e x p o n e n t i a l .
7 ∗/
8
9 #define N 7 /∗ Number o f Proc ∗/

10 #define L 10 /∗ S i z e o f b u f f e r q u e u e s ∗/
11 #define RANDOM (seed ∗ 3 + 14) % 100 /∗ C a l c u l a t e ” random ” number ∗/
12
13 chan q [N] = [L] o f { byte } ;
14
15 proctype l e f t (chan out) /∗ l e f t m o s t p r o c e s s , g e n e r a t e s random number s ∗/
16 { byte counter , seed ;
17
18 xs out ;
19
20 counter = 0 ; seed = 15;
21 do

22 : : out ! seed −> /∗ o u t p u t v a l u e t o t h e r i g h t ∗/
23 atomic{
24 counter = counter + 1 ;
25 atomic{
26 i f

27 : : atomic{ counter == N −> break}
28 : : atomic{ counter != N −> sk ip}
29 f i ;
30 }
31 seed = RANDOM /∗ n e x t ” random ” number ∗/
32 }
33 od

34 }
35
36 proctype middle (chan in , out ; byte procnum)
37 { byte counter , myval , nextva l ;
38
39 xs out ;
40 xr in ;
41
42 counter = N − procnum ;
43 in ?myval ; /∗ g e t f i r s t v a l u e f rom t h e l e f t ∗/
44 do

45 : : counter > 0 −>

46 atomic{
47 in ? nextva l ; /∗ upon r e c e i p t o f a new v a l u e ∗/
48 atomic{
49 i f

50 : : atomic{nextva l >= myval −> out ! nextva l}
51 : : atomic{nextva l < myval −>

52 out ! myval ;
53 myval=nextva l} /∗ s e n d b i g g e r , h o l d s m a l l e r ∗/
54 f i ;
55 }
56 counter = counter − 1
57 }
58 : : counter == 0 −> break

59 od

60 }
61
62 proctype r i gh t (chan in) /∗ r i g h t m o s t c h a n n e l ∗/
63 { byte b ig g e s t ;
64
65 xr in ;
66
67 in ? b igg e s t /∗ a c c e p t s o n l y one v a l u e , w h i c h i s t h e b i g g e s t ∗/
68 }
69
70 i n i t {
71 byte proc=1;
72
73 atomic {
74 run l e f t (q [0]) ;
75 do

76 : : proc < N −>

77 run middle (q [proc −1] , q [proc] , proc) ;
78 proc = proc+1
79 : : proc == N −> break

80 od ;
81 run r i gh t (q [N−1])
82 }
83 }

Fig. 11. The sort algorithm modified

