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ABSTRACT 

With advances in high-density DNA microarray technology, gene expression profiling is 

extensively used to discover new markers and new therapeutic targets. This technique 

supposes to take into account the expression of thousands of genes with respect to a limited 

number of patients. To predict survival probability on the basis of gene expression signatures 

can become a very useful diagnostic tool. In the context of highly multidimensional data the 

classical Cox model does not work. The PLS-Cox model by operating a dimension reduction 

of the gene expression space directed towards the explanation of the risk function appears 

particularly useful. It allows the determination of signatures of genomic expressions 

associated with survival, to predict the survival probability from these profiles, and reduce 

inter individual variability by changing the level of adjustment from a phenotypical level to a 

genotypical level. 

 

I.INTRODUCTION 

The proportional hazard regression model suggested by Cox in 1972 to study the 

relationship between the time to event and a set of covariates in the presence of censoring, 

is the model most commonly used for the analysis of survival data. However, like multivariate 

regression models, it supposes that there are more observations than variables, complete 

data, and variables not strongly correlated between them. These constraints are often 

crippling in practice. In particular the analysis of transcriptomic data supposes to take into 

account the expression of thousands of genes compared to only a limited number of patients. 

The solution suggested is to initially operate a dimension reduction of the space of genes 

directed towards the explanation of the risk function. One then builds a Cox model on the 

PLS components. 

Alizadeh et al. (2000) identified from the expression of genes of 40 subjects suffering from 

diffuse large B-cell lymphomas (DLBCL) two subgroups, each characterized by a distinct 

gene expression signature. These were associated with very different clinical prognoses. 

Using information on patients survival allows the determination of genotypic signatures linked 

to the risk function. Survival probabilities have then been carried out from these expression 



profiles. We show that these genotypic signatures bring additional informations to an index of 

existing clinical risk. 

 

II METHODS 
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Let X0={x1,...,xp} a matrix whose columns are gene expression (log ratio). One seeks 

successively m orthogonal PLS components Th which are linear combinations of the xj. In 

particular the research of the h-th.PLS component Th is carried out according to the following 

steps: 

Step 1 : For j=1 to p, calculate the coefficients of regression ahj of xj in the Cox model with 

covariates T1, T2,..., Th-1 and xj.  

Step 2:  normalize the column vector ah formed by ahj : wh = ah/||ah|| 

Step 3:  calculate the residual Xh-1 of the linear regression of X0 on T1...,Th-1 

Step 4:  calculate the component Th = Xh-1wh / wh
’wh. 

Step 5:  express the component Th according to X0 : Th= +
( �12  

 

The prediction of the risk function h(t) is then carried out in a natural way with the Cox model 

adjusted on PLS components. The regression equation can also be written according to the 

original data with the coefficients confidence intervals estimated by bootstrap resampling.  

 

Cross-validation 
The number k of PLS components Th was chosen by cross-validation. Each patient’s score 

was estimated using a training data set of N-1 samples (leave-one-out CV). 

Let i be the subscript for sample i and -i the subscript when sample i is leaved out. The score 

for patient i on h-th PLS component is defined as : 
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with : xh-1,i the ith row of the residual matrix Xh-1 

 wh,-i the weights based on Xh-1,-i 



 "3& −�,  , the loadings, defined as the coefficients of Tj,-i in the regression of "2 −�(  on 

T1,-i,…,Tj,-i, the j first PLS components carried out on "2 −�(  

 

PLS-Cox and PLS-GR 

The Cox-PLS algorithm uses the principles of the NIPALS algorithm (Wold 1966) and can 

also function in the presence of missing data. The PLS-Cox model is a particular case of PLS 

generalized linear regression  (Bastien, Esposito Vinzi, Tenenhaus, 2004). 

 

Estimation of the survivor function 

During the prediction phase, a proportional hazard model is fitted with the k PLS scores T1, 

..Tk as covariates. Let �
�
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( ��� %��  the baseline unspecified survivor function,  

T'i=(ti1,...,tik), and β'=(β1,..., βk). The survivor function given the scores Ti is : 

�� %�
(

,����� β"4
" (�4(� = . The calculation of the non-parametric maximum likelihood of S0(t) 

(Kalbfleich and Prentice, 1973) is based on the product limit estimate with similar argument 

to that used in obtaining kaplan-Meier estimate.  

Let t(1),..., t(l) be the distinct failures times, the likelihood function is maximized by taking S0(t) 

= S0(t(j)+0) for t(j)< t ≤ t(j+1) and allowing probability mass to fall only at the observed failure 

time t(j). This leads to the consideration of a discrete model with hazard contribution 1-αj at t(j). 
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The maximum likelihood estimate 33 αα ��)�.  is obtained numerically from : ��
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with �.,� %�. β55 4� = , Fj the set of individuals failing at time t(j) and R(t(j)) the risk set at time t(j) . 

In case where there are no ties then the set Fj contains only one individual and the solution to 

the above equation can be solved analytically and is given by �
∈
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the Kaplan-Meier estimator when Ti = 0 for all the individuals : ∏
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III APPLICATION 

The data set from Alizadeh and al. consists of gene expression level from cDNA experiments 

involving three prevalent adult lymphoid malignancies : Diffuse large B-cell lymphoma 

(DLBCL), B-Cell chronic Lymphocytic Leukemia (BCLL), and Follicular Lymphoma (FL). Data 

are available on the study supplement web site (http://llmpp.nih.gov/lymphoma/data.shtml) . 

 

cDNA targets were prepared from experimental mRNA samples and were labelled with Cy5-

dye during reverse transcription. A reference cDNA sample was prepared from a 

combination of nine different lymphoma cell lines and was labelled with Cy3-dye. Cy-labelled 

experimental and reference cDNAs were mixed and hybridised onto the microarray The 

standardized intensity ratio of fluorescence was then quantified for each gene. It reflects the 

relative abundance of the gene in each experimental sample of mRNA compared to the 

reference sample. 

 

By using clustering analysis, Alizadeh and al. identified two DLBCL sub-groups with different 

transcriptomic profiles. They correspond to distinct levels  of lymphocytes B differentiation: 

Germinal Center B-like (19 patients) and Activated B-like (21 patients).  

In complement to the transcriptomic data, the duration of patients survival was also collected. 

Among the 40 patients 22 events (death) were observed and the 18 remaining survival 

durations being censured. Patients with a DLBCL of the Germinal center B-like have, on 

average, a significantly better survival than those with Activated B-like type as shown on 

figure 1. The molecular classification of the tumours on the basis of their genetic expression 

profile thus allows to highlight sub-types of cancer non identified. 

 

Figure 1 : Kaplan-Meier survival curves estimates by molecular sub-groups 
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IV RESULTS  

One Thousand and height hundred genes were selected from over more than 13000 to 

having different expressions to the two molecular types (ttest, p< 0.05). We retained two PLS 

components by cross-validation. Once PLS-Cox model has been estimated, the significance 

of genes coefficients could be ascertain in a non parametric framework by means of a 

bootstrap procedure. Bootstrap confidence intervals were computed based on the 2.5 and 

97.5 percentiles of the bootstrap empirical distribution  (balanced bootstrap, B=500). 

 

 Figure 2 presents coefficients confidence intervals of the PLS-Cox model on two 

components expressed according to their original data (log ratio). The coefficients were 

sorted by ascending values. In order to simplify PLS components, only genes having a 

significant contribution at the 5% threshold were taken into account. It explains the clear 

separation on both sides of the ordinate axis. 

 

Figure 2 : 95% bootstrap confidence intervals for genes coefficients  
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The following graph (figure 3) presents the individual distributions for the patients of the 

Activated B-like type (dotted line) and for those of Germinal center B-like type (continuous 

line). The letters represent the average distributions by molecular type. The distributions 

were estimated by cross-validation with two PLS components. 



Figure 3 : Cross-validated survival curves 

 

Based on the log-ratio of gene expressions for the mean levels of PLS components, the 

survival curves demonstrated more marked prognoses between the two molecular types in 

comparison to the survival estimation using Kaplan-Meier. The genotypic signatures of the 

two molecular types appear well associated with the different prognoses, with very minor 

overlaps. 

 

International Prognostic indicator (IPI) 

A clinical index scored from 0 to 5 is used to define sub-groups of patients suffering from 

DLBCL. The subjects of the group with the lowest scores IPI (0-2) have a better prognostic 

than those having highest scores (3-5). Alizadeh et al showed that in the group with the 

lowest risk factors, the patients presenting a profile of genetic expression of Germinal center 

B-like type had a significantly better survival (Logrank, p<0.05) than those of Activated B-like 

type. They did not observe a similar effect in the higher risk factors group (Logrank, p=0.55) 

as illustrated in figure 4. 

Figure 4 : Kaplan-Meier survival curves for the high clinical risk patients 
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The PLS-Cox model on the higher risk factors group, taking into account the transcriptomic 

information is more selective and allows the differentiation of the two molecular types. Figure 

5 shows the individual distributions of survival estimated by cross-validation. 

 

Figure 5 : Cross-validated survival curves for the high clinical risk patients  

 

The gene expression signature makes it possible to differentiate the two molecular types. 

More precise clinical diagnosis procedures could therefore be developed. 

 

V DISCUSSION 

With advances in high-density cDNA microarray technology, gene expression profiling is 

extensively use to discover new markers and new therapeutic targets. This technique 

supposes to take into account the expression of thousands of genes with respect to only a 

limited number of patients. To predict survival probability on the basis of gene expression 

signatures can become a very useful diagnostic tool. In the context of highly 

multidimensional data the classical Cox model does not work.  

 

Recently Nguyen and Rocke (2002) illustrated using the example of Alizadeh et al. the use of 

PLS components as covariates to predict the probabilities of survival in a Cox model. 

However their model was not completely satisfactory, since it did not take into account the 

censoring information in the estimation of PLS components, thus inducing a potential bias in 

their estimates. 

 

The PLS-Cox model described above shows major improvement with respect to the method 

proposed by Nguyen and Rocke. It takes into account the censoring information in the 

estimation of PLS components. In case of missing data, PLS components are computed in 



accordance with the NIPALS algorithm. Moreover statistical significance of gene coefficients 

is ascertain using bootstrap validation procedure. 

 

The PLS-Cox model by operating a dimension reduction of the genes expression space 

directed towards the explanation of the risk function appears particularly useful. It allows the 

determination of signatures of genomic expressions associated with survival, to predict the 

survival probability from these profiles, and reduce inter individual variability by changing the 

level of adjustment from a phenotypical level to a genotypical level. In order to assess the 

efficacy of new drugs, study design will benefit from a better characterisation of patient 

groups made possible by genomic expression profiling. 
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