
Adding Partial Functions to Constraint Logic
Programming with Sets

Maximiliano Cristiá1 and Gianfranco Rossi2

1 CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 Università degli studi di Parma, Parma, Italy
gianfranco.rossi@unipr.it

Abstract. Partial functions are common abstractions in formal speci-
fication notations such as Z, B and Alloy. Conversely, executable pro-
gramming languages usually provide little or no support for them. In
this paper we propose to add partial functions as a primitive feature
to a Constraint Logic Programming (CLP) language, namely {log}. Al-
though partial functions could be programmed on top of {log}, providing
them as first-class citizens adds valuable flexibility and generality to the
form of set-theoretic formulas that the language can safely deal with.
In particular, the paper shows how the {log} constraint solver is natu-
rally extended in order to accommodate for the new primitive constraints
dealing with partial functions.

1 Introduction

Given any two sets, X and Y , a binary relation between X and Y is any subset
of the power set of X×Y , P(X×Y). Partial functions are just a particular kind
of binary relations, in which ordered pairs are restricted to verify the classical
notion of function—i.e. that each element in the domain is mapped to at most
one element in the range—, although it may be undefined for every element in
the domain—i.e. it is partial. Binary relations are in turn just sets of ordered
pairs. Then, all relational operators (such as dom, ran, o

9, etc.) can be applied to
partial functions and all set operators can be applied to both of them. Conversely,
and this feature distinguishes partial functions from binary relations, if x is an
element in the domain of partial function f then f(x) is defined as the element,
y, in the range of f such that (x, y) ∈ f .

Partial functions are common in formal specification notations, such as Z [9],
B [1] and Alloy [6], which are mainly used to specify state-based systems. Many
concepts or features of these systems are best represented as partial functions,
not as total functions.

In previous work [5] we have shown how partial functions can be easily en-
coded in a CLP language with sets, such as {log} [3] (pronounced ‘setlog’).
Specifically, partial functions can be represented in {log} as sets of pairs, where
each pair (x, y) is represented as a list of two elements [x, y]. Operations on par-
tial functions can be implemented by user-defined predicates in such a way to

enforce the characteristic properties of partial functions over the corresponding
set representations. For example, the following predicates implement the domain
and range operations:

dom({},{}).

dom({[X,Y]/Rel},Dom) :- dom(Rel,D) & Dom = {X/D} & X nin D.

ran({},{}).

ran({[X,Y]/Rel},Ran) :- ran(Rel,R) & Ran = {Y/R} & Y nin R.

dom(F,D) is true if D is the domain of the partial function F, whereas ran(F,R)
is true if R is the range of the partial function F.3

When partial functions are completely specified this approach is satisfac-
tory, at least from an ‘operational’ point of view. On the other hand, when
some elements of a partial function or (part of) the partial function itself are left
unspecified—i.e., they are represented by unbound variables—then this approach
presents major flaws. For example, the predicate ran(F,{1}), where F is an
unbound variable that represents a partial function, admits infinite distinct so-
lutions F = {[X1,1]}, F = {[X1,1],[X2,1]}, ..., that {log} computes one
after the other though backtracking. If subsequently a failure is detected, such
as with the goal ran(F,{1}) & dom(F,{}), then the computation loops forever
and {log} is not able to detect the unsatisfiability.

Making the implementation of predicates over partial functions more sophis-
ticated as shown for instance in [5] may help in solving more efficiently a larger
number of cases, but does not provide a completely satisfactory solution in the
general case. In fact, there are still cases, such as that considered above, in which
there is no simple finite representation of the possibly infinite solutions and this
may cause the interpreter to go into infinite computations.

Most of the above mentioned problems could be solved by viewing partial
functions as first-class entities of the language and the operations dealing with
them as primitive constraints, for which the constraint language provides a suit-
able solver.

Selecting {log} as the host constraint language for this embedding gives one
the possibility to exploit its flexible and general management of sets to represent
partial functions and to provide many basic set-theoretical operations on partial
functions as primitive set constraints for free. Other more specific operations on
partial functions can be added to the language as primitive constraints and the
solver can be extended accordingly.

The main original results of this work are:

– the identification of a small set of operations on partial functions, to be
dealt with as primitive constraints, which are sufficient to represent all other
common operations on partial functions as simple conjunctions of these con-
straints

3 Notice that in these definitions the nin constraints are used to discard those solutions
for Dom (resp, Ran) which contain repeated occurrences of the same element X, that
might cause the recursive call to dom (resp, ran) to not terminate.

– the definition of a collection of rewrite rules to simplify conjunctions of prim-
itive constraints

– the definition of a labelling mechanism based on the notion of finite repre-
sentable domains for partial functions

– the definition of a collection of inference rules to detect possible inconsisten-
cies without the need to perform time-consuming labelling operations.

The rest of this paper is organized as follows. In Section 2, we briefly recall
the main features of the language {log}. The new extended language with par-
tial functions is presented in Section 3, focusing on what is new with respect
to {log}. In Section 4 we describe the constraint rewriting procedures for the
new constraints and the global organization of the constraint solver. The label-
ing mechanism with the introduction of pf-domains is addressed in Section 5.
Section 6 introduces a number of inference rules that allow the solver to decide
satisfiability of irreducible constraints without having to resort to pf-domains,
thus improving its overall efficiency.

2 {log}

{log} is a Constraint Logic Programming (CLP) language, whose constraint do-
main is that of hereditarily finite sets—i.e., finitely nested sets that are finite at
each level of nesting. {log} allows sets to be nested and partially specified—e.g.,
set elements can contain unbound variables, and it is possible to operate with
sets that have been only partially specified. {log} provides a collection of prim-
itive constraint predicates, sufficient to represent all the most commonly used
set-theoretic operations—e.g., union, intersection, difference.

The {log} language was first presented in [2]. A complete constraint solver
for the pure CLP fragment included in {log}—called CLP(SET)—is described
in [3], while its extension to incorporate intervals and Finite Domain constraints
is briefly presented in [4]. Hereafter, with the name CLP(SET) we will refer
to this last version of our constraint language, while {log} will refer to the
whole language including CLP(SET), along with a number of other syntactic
extensions and extra-logical Prolog-like facilities. A working implementation of
{log} (actually, an interpreter written in Prolog) is available at http://people.
math.unipr.it/gianfranco.rossi/setlog.Home.html.

Sets are denoted by set terms. For example, {1, 1, 2}, {2, 1}, and {1, 2} are set
terms, all denoting the same set of two elements, 1 and 2; {X,Y |S} is a set term
denoting a partially specified set containing one or two elements, depending on
whether X is equal to Y or not, and a, possibly empty, unknown part S.

A primitive SET -constraint is defined as any literal based on the set of
predicate symbols ΠC = {=, in , un, disj,≤, size, set, integer}. The predicates =
and in represent the equality and the membership relation, respectively. The
predicate un represents the union relation: un(r, s, t) holds if and only if t = r∪s.
The predicate disj represents the disjoint relationship between two sets: disj(s, t)
holds if and only if s ∩ t = ∅. The predicate size represents set cardinality:
size(s, n) holds if and only if n = |s|. Finally, the predicate ≤ represents the

comparison relation “less or equal” over the integer numbers. Predicate symbols
neq , nin , nunion, ninteger, . . . , are used to denote the negated versions of the
corresponding constraint predicates—e.g., s nin t represents the literal ¬ (s in t).

Most other useful set-theoretical predicates, e.g., subset (for ⊆) and inters (for
∩), can be defined as SET -constraints, using disj and un—e.g., subset(u, v) ⇔
un(u, v, v) [3]. Similarly, other interesting integer predicates (e.g., <, ≥, and >)
can be defined as SET -constraints using ≤ and =.

Example 1. The following formulas are admissible SET -constraints (R, S, T , X,
and N are variables):

(i) 1 in R ∧ 1 nin S ∧ inters(R,S, T) ∧ T = {X}
(ii) inters(R,S, T) ∧ size(T,N) ∧N =< 2.

Their informal interpretation is as follows: (i) the set T is the intersection be-
tween sets R and S, R must contain 1 and S must not, and T must be a singleton
set; (ii) the cardinality of R ∩ S must be not greater than 2.

CLP(SET) is endowed with a complete constraint solver, called SATSET , for
verifying the satisfiability of SET -constraints. Given a constraint C, SATSET (C)
transforms C either to false (if C is unsatisfiable) or to a finite collection {C1, . . . ,
Ck} of constraints in solved form [3]. A constraint in solved form is guaranteed
to be satisfiable w.r.t. the underlying interpretation structure. Moreover, the
disjunction of all the constraints in solved form generated by SATSET (C) is
equisatisfiable to C in the structure. A detailed description of the constraint
solver SATSET can be found in [3]. Its implementation is included in the {log}-
interpreter [7].

Example 2. Let C be {1, 2 |X} = {1 |Y } ∧ 2 nin X. Then SATSET (C) returns,
one by one, the following three answers each of which is a constraint in solved
form: (i) Y = {2 |X}∧2 nin X∧set(X); (ii) X = {1 |N}∧Y = {2 |N}∧set(N)∧
2 nin N ; (iii) Y = {1, 2 |X} ∧ 2 nin X ∧ set(X) (where N is a new variable).

3 The extended language CLP(PF)

The constraint domain SET is extended so as to incorporate partial func-
tions. The new constraint domain and the related language are called PF and
CLP(PF), respectively. Since PF includes SET as a special case we will simply
highlight what is new in PF with respect to SET .

As concerns syntax, since partial functions can be easily represented as sets,
our choice is to not introduce any special symbol to represent them. Partial
functions are just a particular kind of sets. Forcing a set to represent a par-
tial function will be obtained at run-time by using suitable constraints on its
elements.

Definition 1. We say that a set term r represents a partial function if r has one
of the forms: {} or {[x1, t1], [x2, t2], . . . , [xn, tn]} or {[x1, t1], [x2, t2], . . . , [xn, tn] |
s}, and xi, ti, i = 1, . . . , n, are terms and the constraints xi 6= xj, xi 6∈ dom s,
hold for all i, j = 1, . . . , n, i 6= j.

A critical issue in the definition of PF is the choice of which operations over
partial functions should be primitive—i.e., part of ΠC—and which, on the con-
trary, should be programmed using the language itself. Minimizing the number of
predicate symbols in ΠC has the advantage of reducing the number of different
kinds of constraints to be dealt with and, hopefully, simplifying the language and
its implementation. On the other hand, having to implement such operations on
top of the language may lead to efficiency and effectiveness problems, similar
to those encountered with the implementation of partial functions using {log}
discussed in Section 1.

Our choice is to add to the set ΠC of constraint predicate symbols used in
PF , a few basic predicate symbols dealing with partial functions which, how-
ever, are sufficient to define most of the common operations on partial functions
as (SET ,PF)-constraints, i.e. as simple conjunctions of primitive (SET ,PF)-
constraints.

Specifically, we enlarge the set ΠC with the following four predicate symbols:

dom, ran, comp, pfun.

The intuitive interpretation of these predicate symbols is: dom(r, a) (resp. ran(r, a))
holds iff a is the domain (resp., range) of the partial function r; comp(r, s, t)
holds iff the partial function t is the composition of the partial functions r
and s, i.e. t = {[x, z] : ∃y([x, y] ∈ r ∧ [y, z] ∈ t)}; pfun(r) holds iff r is a
partial function. Atomic predicates based on these symbols are the only primi-
tive constraints that CLP(PF) offers to deal with partial functions (let us sim-
ply call these constraints PF-constraints). A (general) (SET ,PF)-constraint
is just a conjunction of primitive constraints build using the enlarged ΠC , i.e.
{=, in , un, disj,≤, size, set, integer} ∪ {dom, ran, comp, pfun}.

The following theorem ensures that the primitive (SET ,PF)-constraints are
sufficient for our purposes. Complete proofs of this and the remaining theorems
are available on-line at http://people.math.unipr.it/gianfranco.rossi/

SETLOG/setlogpf_proofs.pdf). Many of these theorems were proved formally
using the Z/EVES proof assistant [8].

Theorem 1. Literals based on predicate symbols: dres (domain restriction), rres
(range restriction), ndres (domain anti-restriction), nrres (range anti-restriction),
rimg (relational image), oplus (overriding) and id (identity relation) can be re-
placed by equivalent conjunctions of literals based on =, un, disj, dom, ran and
comp.

Proof (sketch). The following equivalences hold:

ndres(a, r, s)⇔ dres(a, r, b) ∧ diff(r, b, s)
nrres(b, r, s)⇔ rres(b, r, a) ∧ diff(r, a, s)
dres(a, r, s)⇔ dom(r, dr) ∧ dom(s, ds) ∧ inters(a, dr, ds) ∧ subset(s, r)
rres(b, r, s)⇔ un(s, t, r) ∧ ran(s, rs) ∧ ran(r, rr)

∧ inters(b, rr, rs) ∧ ran(t, rt) ∧ disj(rs, rt)
rimg(b, r, s)⇔ dres(b, r, rb) ∧ ran(rb, s)
oplus(r, s, t)⇔ un(rs, s, t) ∧ ndres(ds, r, rs) ∧ dom(s, ds)

id(a, r)⇔ dom(r, a) ∧ ran(r, a) ∧ comp(r, r, r)

Other common operations on partial functions can be defined in the same
way. For example, the application of a partial function r to an element x can be
easily defined in terms of primitive constraints as follows: apply(r, x, y) is true if
and only if [x, y] in r holds.

The ability to express operations on partial functions as (SET ,PF)-constraints
as stated in Theorem 1 allows us to not consider these operations in the defi-
nition of the constraint solver for CLP(PF) and to focus our attention only on
the four primitive constraints based on pfun, dom, ran and comp.

The selection of these four predicates as primitive constraints is (informally)
motivated as follows. Since a function is a tuple of the form (dom, law, ran),
then choosing dom and ran seems a rather obvious choice; the law can be given
as membership predicates (i.e. apply) which already is part of the primitive
constraints; pfun is easy to justify since it is necessary to state what sets are
partial functions; finally, comp is justified by observing that it is hardly definable
in terms of the other primitive constraints. It is worth noting, however, that the
proposed subset of primitive predicate symbols is by no way the only possible
choice. What we are claiming is that it is a “good” choice, which allows us to
define a new solver for partial functions and to master its complexity. Proving
that this subset is the minimal one, as well as comparing our choice with other
possible choices, in terms of, e.g., expressive power, completeness, effectiveness,
and efficiency, is out of the scope of the present work.

4 Constraint Rewriting Procedures

For each primitive constraint symbol π ∈ ΠC , we develop a constraint rewriting
procedure specifically devoted to process that type of constraint. Basically, each
procedure repeatedly applies to the input constraint C a collection of rewrite
rules for π until either C becomes false or no rule for π applies to C. At any
moment, C represents the constraint store managed by the solver.

The rewrite rules have the following general form

pre-conditions

{C1, . . . , Cn} → {C ′
1, . . . , C

′
m}

where Ci and C ′
i are primitive (SET ,PF)-constraints and pre-conditions are

(possibly empty) boolean conditions on the terms occurring in C1, . . . , Cn. In
order to apply the rule, all pre-conditions need to be satisfied. {C1, . . . , Cn} →
{C ′

1, . . . , C
′
m} (n, m ≥ 0) represents the changes in the constraint store caused

by the rule application.
Rewrite rules for dom and comp are shown in Figures 1 and 2, respectively.

In these figures, V represents the set of variables, while empty(s) is an auxiliary
predicate which is defined as follows: s = ∅ ∨ (s = int(x, y) ∧ x > y) (note that,
¬empty(s) holds also if s is an unbound variable). The whole collection of rewrite
rules for dealing with primitive PF-constraints is available on-line at http:

//people.math.unipr.it/gianfranco.rossi/SETLOG/setlogpf_rules.pdf.
Rewrite rules for all other primitive constraints can be found in [3] and [4].

r ∈ V
{dom(r, r)} → {r = ∅} (1)

empty(a)

{dom(r, a)} → {r = ∅} (2)

empty(r)

{dom(r, a)} → {a = ∅} (3)

r = {[x, y]|rr} ¬empty(a)

{dom(r, a)} → {a = {x|rs}, [x, y] nin rr, dom(rr, rs)} (4)

r ∈ V a = {x|rs}
{dom(r, a)} → {r = {[x, y]|rr}, x nin rs, dom(rr, rs)} (5)

Fig. 1. Rewrite rules for dom constraints

empty(r)

{comp(r, s, q)} → {q = ∅} (10)

empty(s) ¬empty(r)

{comp(r, s, q)} → {q = ∅} (11)

empty(q) ¬empty(r) ¬empty(s)

{comp(r, s, q)} → {ran(r, rr), dom(s, ds), disj(rr, ds)} (12)

q = {[x, z]|rq} ¬empty(r) ¬empty(s)

{comp(r, s, q)} → {r = {[x, y]|rr},
s = {[y, z]|rs}, [x, z] nin rq, [y, z] nin rs, comp(rr, s, rq)}

(13)

q ∈ V r = {[x, y]|rr} ¬empty(s) s /∈ V
{comp(r, s, q)} → {s = {[y, z]|rs},

q = {[x, z]|rq}, [x, y] nin rr, [y, z] nin rs, comp(rr, s, rq)}
or

{comp(r, s, q)} → {dom(s, ds), y nin ds, [x, y] nin rr,
comp(rr, s, q)}

(14)

Fig. 2. Rewrite rules for comp constraints

Rewrite rule (14) is a nondeterministic rule: if the preconditions are met, the
rule nondeterministically performs one of the two rewritings in its lower part.
Specifically, rule (14) deals with the case in which both r and s in comp(r, s, q)
are not variables nor empty partial functions. The nondeterministic choice takes
care of the fact that, for each pair [x, y] in r, there may exist a z such that
[y, z] ∈ s or there may not exist any z such that [y, z] ∈ s. This last condition is
expressed by stating that dom(s, ds) ∧ y nin ds.

The global organization of the solver for the new language—called SATPF—
is shown in Algorithm 1. It makes use of two procedures: infer and STEP. infer is
used to automatically add the constraints set, integer, and pfun to the constraint
C in order to force arguments of primitive constraints to be of the proper type.
For example, if C contains the constraint dom(r, a) then infer(C) will add to C
the constraint pfun(r)∧ set(a). The procedure STEP is the core part of SATPF :
it applies specialized constraint rewriting procedures to the current constraint
C and returns the modified constraint. The execution of STEP is iterated until
a fixpoint is reached—i.e., the constraint cannot be simplified any further.

Algorithm 1 The CLP(PF) Constraint Solver

procedure SATPF (C)
C ← infer(C)
repeat

C′ ← C;
C ← STEP(C);

until C = C′;
return C

end procedure

When no rewrite rule applies to the considered PF-constraint then the cor-
responding rewriting procedure terminates immediately and the constraint store
remains unchanged. Since no other rewriting procedure deals with the same
kind of constraints, the irreducible constraints will be returned as part of the
constraint computed by SATPF . Precisely, if X and Xi are variables and t is
a term (either variable or not), the following PF-constraints are dealt with as
irreducible:

1. dom(X1, X2), where X1 and X2 are distinct variables;
2. ran(X, t), where t is distinct from X and t is not the empty set;
3. comp(X1, t,X3) or comp(t,X2, X3), where t is not the empty set;
4. pfun(X) and there are no constraints of the form integer(X) in C.

For all other primitive (SET ,PF)-constraints, SATPF uses the rewriting
rules of CLP(SET) and the irreducible form constraints it returns are all SET -
constraints in solved form (cf. Sect. 2 and [3]). Observe that a constraint com-
posed of only solved form literals is proved to be always satisfiable.

Example 3. Constraint rewriting.

– dom({[a, 1], [b, 2], [c, 1]}, D) is rewritten to D = {a, b, c}
– ran({[a, 1], [b, 2], [c, 1]}, D) is rewritten to R = {1, 2}
– dom({[a, 1]}, {b}) is rewritten to false (actually, it is first rewritten to a con-

straint containing {b} = {a|R} which in turn is rewritten to false by the
equality rewriting procedure of SATSET)

– dom({[1, a]|S}, D) is rewritten to eitherD = {1|DR}∧pfun(S)∧dom(S,DR)∧
1 nin DR ∧ set(DR) or S = {[1, a]|SR} ∧ D = {1|DR} ∧ pfun(SR) ∧
dom(SR,DR) ∧ 1 nin DR ∧ set(DR)

– comp({[1, b]}, B, {[1, a]}) is rewritten to B = {[b, a]|BR} ∧ [b, a] nin BR ∧
pfun(BR) ∧ dom(BR,D) ∧ b nin D ∧ set(D)

– inters({X}, {1}, D) ∧ dom(R,D) ∧ ran(R, ∅) is rewritten to D = ∅ ∧ R =
∅ ∧X neq 1

– apply(F,X, Y) ∧ dom(F,D) ∧X nin D is rewritten to false.

Note that with the implementation of dom and ran as user-defined {log}
predicates (see [5]) the last two goals would loop forever.

The SATPF procedure is proved to be always terminating.

Theorem 2 (Termination). The SATPF procedure terminates for every input
constraint C.

The termination of SATPF and the finiteness of the number of non-determini-
stic choices generated during its computation, guarantee the finiteness of the
number of constraints non-deterministically returned by SATPF . Therefore,
SATPF applied to a constraint C always terminates, rewriting C to either false
or to a (finite) disjunction of (SET ,PF)-constraints in a simplified form. The
following theorem proves that the collection of constraints in irreducible form
generated by SATPF preserves the set of solutions of the input constraint.

Theorem 3 (Soundness and Completeness). Let C be a constraint, C1,
. . . , Cn be the constraints obtained from SATPF (C), σ be a valuation of C and
C1 ∨ . . .∨Cn, expanded to the new variables possibly introduced into C1, . . . , Cn

by the rewrite procedures, and APF be the interpretation structure associated
with the constraint domain PF . Then, APF |= σ(C) if and only if APF |=
σ(C1 ∨ . . . ∨ Cn).

If at least one of the constraint Ci returned by SATPF (C) contains only
primitive SET -constraints then, according to [3], Ci is in solved form and it is
surely satisfiable. Therefore, in this case, thanks to Theorems 2 and 3, we can
conclude that the original constraint C is surely satisfiable.

Unfortunately, this is not always the case, as discussed in the next section.

5 pf-domains

Differently from CLP(SET), the simplified constraint returned by SATPF is not
guaranteed to be satisfiable.

Example 4. The following (SET ,PF)-constraint

dom(R,D) ∧R neq ∅ ∧ un(D,Y, Z) ∧ disj(D,Z)

is an irreducible constraint but it is clearly unsatisfiable (the only possible solu-
tion for un(D,Y, Z) ∧ disj(D,Z) is D = ∅, and D = ∅ if and only if R = ∅).

Thus, differently from CLP(SET), the ability to produce a collection of con-
straints in an irreducible form from the input constraint C cannot be used to de-
cide the satisfiability of C. As many concrete solvers, e.g. the CLP(FD) solvers,
SATPF is an incomplete solver. Thus, if it returns false the input constraint is
surely unsatisfiable, whereas if it returns a constraint in irreducible form then
we cannot conclude that the input constraint is surely satisfiable.

In order to obtain a complete solver, we provide a way to associate a finitely
representable domain to each partial function variable and to force these vari-
ables to get values from their associated domains, i.e. to perform labeling on
them. This is obtained by defining a new constraint pfun, of arity 2, with the
following interpretation:

pfunS(r, n) if and only if r ∈ X 7→ Y ∧ n ∈ N ∧ |r| ≤ n

The solutions of pfun(r, n) are all the partial functions r with cardinality less or
equal to n. The ability to represent domains and ranges of partial functions as
partially specified sets, i.e. sets containing unbound variables as their elements,
allows us to provide a finite representation for the (possibly infinite) set of all
solutions of pfun(r, n). For example, the set of solutions for pfun(r, 2), where r is
a variable, can be represented by the following equisatisfiable disjunction of three
primitive constraints: r = ∅ ∨r = {[X,Y]} ∨r = {[X1, Y1], [X2, Y2]}∧X1 neq X2.

We will call the set of partial functions represented by these constraints the
pf-domain of the pf-variable r. pf-domains represent in general infinite sets but
they are finitely representable in our language. Notice that the pfun/2 constraints
require to specify an upper bound for the cardinality of the involved partial
functions, not to fix its exact value. In this sense, it is not a real restriction to
the expressive power of the language.

From an operational point of view, solving pfun(r, n), with n a constant
natural number, non-deterministically computes, one after the other, all the n+1
possible assignments for r. Therefore, solving pfun(r, n) allows us to perform
a sort of labeling for the pf-variable r. Notice that, differently from pfun(r),
pfun(r, n) has no irreducible form. If r is an unbound variable (n is required to
be a constant number), then solving pfun(r, n) always generates an equality for
r, along with possible inequality constraints over the elements in the domain of
r.

The labeling process involved in pfun/2 constraints do not compromise termi-
nation of the procedure SATPF since the set of possible values to be assigned to
partial function variables through labeling is anyway finite. Moreover, assuming
our domain of discourse is limited to finite partial functions only, it is straight-
forward to see that the rewriting rules for pfun/2 preserve the set of solutions of

the input constraint. Thus we can immediately extend to pfun/2 constraints the
results of Theorems 2 and 3.

Solving pfun/2 constraints allows pf-variables to always get a value, although
it can be a non-ground value. This is enough, however, to guarantee that all
PF-constraints are completely eliminated at the end of the computation.

Lemma 1. Let C be the input constraint and V1, . . . , Vn all the pf-variables
occurring in C. If C contains pfun(V1, k1) ∧ · · · ∧ pfun(Vn, kn), k1, . . . , kn ∈ N,
then SATPF (C) returns either false or a disjunction of (SET)-constraints in
solved form.

Remembering that SET -constraints in solved form are always satisfiable,
Lemma 1 guarantees that, if the input constraint C contains pfun/2 constraints
for all the pf-variables occurring in it and SATPF (C) does not terminate with
false, then the disjunction of constraints returned by SATPF (C) is surely sat-
isfiable. Thanks to soundness and completeness of SATPF extended to pfun/2
constraints, we can conclude that in this case C is satisfiable.

Hence, by properly exploiting pfun/2 constraints, we get a complete solver.
This means that our solver can detect all cases in which the input constraint is
unsatisfiable, as well as all cases in which the input constraint is satisfiable and,
in these cases, it can generate all viable solutions.

Example 5. The following constraints are all rewritten to either false or to a
constraint in solved form, whereas they are simply left unchanged if no pf-domain
is specified.

– ran(X, {1})∧ un(X,Y, Z)∧ pfun(X, 100) is rewritten to the solved form con-
straints (first two solutions): X = {[A, 1]} ∧ Z = {[A, 1]|Y } ∧ set(Y); X =
{[A, 1], [B, 1]} ∧ Z = {[A, 1], [B, 1]|Y } ∧ set(Y) ∧A neq B

– ran(Z1, R)∧ran(Z2, R)∧dom(Z1, S)∧dom(Z2, S)∧Z1 neqZ2∧pfun(Z1, 100)
is rewritten to the solved form constraint (first solution): Z1 = {[A,B], [C,D]}∧
Z2 = {[A,D], [C,B]} ∧R = {B,D} ∧ S = {A,C} ∧B neq D ∧A neq C

– dom(R,D) ∧D neq ∅ ∧ un(D,Y, Z) ∧ disj(D,Z) ∧ pfun(R, 5) is rewritten to
false

– comp({[1, a]}, Y, Z)∧ dom(Y, S)∧ a nin S ∧Z neq ∅ ∧ pfun(Y, 5) is rewritten
to false.

Finally, it is worth noting that, while having to specify domain information
through the pfun/2 constraints may be cumbersome in some cases, it can be of
great importance in other cases. For example, in the application described in [5]
where {log} is used as a test case generator it may be important to be able to
generate possible values (actually, just one solution is enough in this case) for
the variables occurring in goals that are proved to be satisfiable.

6 Improving constraint solving

From a more practical point of view, having to perform labeling for pf-variables,
may cause unacceptable execution time in some cases. For example, the con-

straint

dom(R,D1) ∧ dom(R,D2) ∧D1 neq D2 ∧ pfun(R, k)

is proved to be unsatisfiable, but only for relatively small values of k.

To alleviate this problem, we introduce a number of new rewrite rules—
hereafter simply called inference rules—that allow new constraints to be inferred
from the irreducible constraints. The presence of these additional constraints al-
lows the solver to deduce possible unsatisfiability of the given constraint without
having to resort to any labeling process, thus improving the overall efficiency of
constraint solving in many cases.

The inference rules are applied by calling function infer rules just after the
iteration of STEP ends finding a fixpoint (see Algorithm 1). infer rules(C) applies
all possible inference rules to all possible primitive constraints in C. After the
rules have been applied, possibly modifying C, the STEP loop is repeated from
the beginning. Only when both STEP and infer rules do not modify C, then the
new global constraint solving procedure—called SAT ′

PF—ends.

Each inference rule captures some property of the primitive operators for
partial functions, possibly relating these operators with other general operators,
such as inequality (constraint neq) and set cardinality (constraint size). All
rules take into account one or two primitive constraints at a time and add new
primitive constraints to the constraint store. Figure 3 shows the inference rules
which make sure that the domain and range of a partial function are unique,
while Figure 4 shows the rules expressing the not emptiness relation among
partial functions and their domains and ranges. The whole collection of inference
rules used by SAT ′

PF is available on-line at http://people.math.unipr.it/

gianfranco.rossi/SETLOG/setlogpf_rules.pdf).

{dom(r, a), dom(r, b)} → {dom(r, a), a = b} (21)

{ran(r, a), ran(r, b)} → {ran(r, a), a = b} (22)

Fig. 3. Inference rules for domain and range uniqueness

{dom(r, a), a neq ∅} → {dom(r, a), a neq ∅, r neq ∅} (23)

{dom(r, a), r neq ∅} → {dom(r, a), r neq ∅, a neq ∅} (24)

{ran(r, a), a neq ∅} → {ran(r, a), a neq ∅, r neq ∅} (25)

a ∈ V
{ran(r, a), r neq ∅} → {ran(r, a), r neq ∅, a neq ∅} (26)

a /∈ V
{ran(r, a)} → {ran(r, a), r neq ∅} (27)

Fig. 4. Inference rules for domain and range not emptiness

Example 6. The following constraints are all proved to be unsatisfiable using
SAT ′

PF (rule numbers refer to the on-line document where all rules are listed):

dom(X,D1) ∧ dom(X,D2) ∧D1 neq D2 (using rule (21))
ran(X, {1}) ∧ ran(X, {A}) ∧A neq 1 (using rule (22))
dom(X,DX) ∧X neq ∅ ∧ disj(DX,Z) ∧ un(DX,Y, Z) (using rule (24))
ran(X,RX) ∧RX neq ∅ ∧ disj(X,Z) ∧ un(X,Y, Z) (using rule (26))
dom(X,DX) ∧ size(X,N) ∧ size(DX,M) ∧N neq M (using rule (28))
comp({[a, 1]}, Y, Z) ∧ dom(Z,DZ) ∧ a nin DZ

∧ Z neq ∅ (using rule (30))
un(X,Y, Z) ∧ dom(X,D) ∧ dom(Y,D)

∧ dom(Z,DZ) ∧D neq DZ (using rule (33))

The same constraints of Example 6 but using SATPF , that is without ap-
plying any inference rule, are simply treated as irreducible. On the other hand,
adding constraints pfun/2 to perform labeling on pf-variables would allow SATPF
to detect the unsatisfiability for all these constraints, but only when the speci-
fied partial function cardinalities are relatively small the response times would
be practically acceptable.

Termination of the improved constraint solver is stated by the following the-
orem.

Theorem 4 (Termination of SAT ′
PF). The SAT ′

PF procedure can be imple-
mented in such a way that it terminates for every input constraint C.

Soundness and completeness of the extended solver SAT ′
PF come from sound-

ness and completeness of SATPF and from the following theorem, which ensures
that the added constraints do not modify the set of solutions of the original con-
straint.

Theorem 5 (Equisatisfiability of inference rules). Let S be a constraint
and S′ be the constraint obtained from the inference rules (21)–(34). Then S′ is
equisatisfiable to S with respect to the interpretation structure APF .

SAT ′
PF is still not a complete solver. As a counterexample, consider the

following constraint

ran(X, {1}) ∧ ran(Y, {1, 2}) ∧ dom(X,D) ∧ dom(Y,D) ∧ disj(X,Y).

This constraint is unsatisfiable with respect to APF , but SAT ′
PF is not able to

prove this fact (it simply leaves the constraint unchanged).
New inference rules could be defined and added to the solver to detect further

properties of the partial function domain, thus avoiding as much as possible the
need for pfun/2 constraints. For example, the following inference rule relates
comp, size and ran:

{comp(r, s, q)} → {comp(r, s, q), ran(q, a), size(a, n), size(s,m), n ≤ m}
However, finding a collection of inference rules that guarantees us to obtain

a complete solver, regardless of the presence of pfun/2 constraints, seems to
be a difficult task. Moreover, checking the constraint store to detect applicable
inference rules may be quite costly in general. Thus, the solution we adopted
is based on finding a tradeoff between efficiency and completeness, as usual in
many concrete constraint solvers. Only those properties that require relatively
small effort to be checked are taken into account by the solver. For all cases
not covered by the inference rules, however, solver’s completeness is obtained by
exploiting pf-domains and pfun/2 constraints. Further empirical assessment of
the solver may lead to review the current choices and provide additional inference
rules in future releases.

7 Conclusions

In this paper we have shown how to integrate partial functions as first-class
citizens into the constraint logic programming language with sets {log}. Since
partial functions can be viewed as sets, they are embedded quite smoothly into
{log}, and all facilities for set manipulation offered by {log} are immediately
available to manipulate partial functions as well. We have added to the language
a very limited number of new primitive constraints specifically devoted to deal
with partial functions and we have provided sound, complete and terminating
rewriting procedures for them. The resulting constraint solver either terminates
with false or with a disjunction of simplified constraints which the solver can-
not further simplify (i.e., irreducible constraints). We have identified conditions
under which the ability to generate such a disjunction guarantees the satisfia-
bility of the input constraint. Moreover, we have defined a number of inference
rules that allow the solver to detect, in many cases, unsatisfiability even in the
more general situations (e.g. without requiring to specify an upper bound for
the cardinality of partial functions).

For the future, there are two main correlated lines of work:

– identifying more precisely the class of irreducible constraints which are guar-
anteed to be satisfiable; so far this class is restricted to irreducible constraints
not containing pf-constraints, but it is likely to be enlarged to include pf-
constraints as well, at least of some specific form (e.g., those which con-
tain only unbound variables, thus excluding for instance the irreducible con-
straints of the form ran(X, {. . . }))

– defining new inference rules that allow further “hidden” properties of irre-
ducible constraints to be made explicit, in order to make constraint solving
more and more “precise”; that is, on the one hand, to allow the solver to
detect more and more unsatisfiable constraints and, on the other hand, to
allow the class of irreducible constraints whose satisfiability can be decided
without the need to perform any labeling operation to be enlarged as much
as possible.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996).

2. Dovier, A., Omodeo, E., Pontelli, E., Rossi, G.: A Language for Programming in
Logic with Finite Sets. J. Log. Program. 28, 1 (1996), 1–44.

3. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22, 5 (2000), 861–931.

4. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In PPDP, ACM (2003), 219–229.

5. Cristiá, M., Rossi, G., Frydman, C. S.: {log} as a Test Case Generator for the
Test Template Framework. In SEFM, Hierons, R. M., Merayo, M. G., Bravetti M.
(Eds.), LNCS Vol. 8137, Springer (2013), 229–243.

6. Jackson, D.: Alloy: A logical modelling language. In: ZB 2003: Formal Specification
and Development in Z and B, Bert, D., Bowen, J.P., King, S., Waldén, M.A. (eds.),
LNCS Vol. 2651, Springer (2003).

7. Rossi, G.: {log}. (2008). http://www.math.unipr.it/~gianfr/setlog.Home.html
last access: December 2013.

8. Saaltink, M.: The Z/EVES mathematical toolkit version 2.2 for Z/EVES version
1.5. Technical report, ORA Canada (1997)

9. Spivey, J.M.: The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., Hertfordshire, UK (1992).

