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ABSTRACT

It iswell known that a generative family of positive flows provides a more accurate information than
a generative family of ordinary ones. For instance with the help of positive flows one can decide the
structural boundness of the nets and detect the structural implicit places. Up to now, nho computation
of positive flows has been developed for coloured nets. In this paper, we present a computation of
positive flows for two basic families of coloured nets. unary regular nets and unary
Predicate/Transition nets. First of all, we show that these two computations are based on the
resolution of the parametrized equation A.X;=A.X=...=A.X, where A is a matrix and X;, the
unknowns are vectors. Thus an algorithm is presented to solve this equation and at last we show how
this algorithm can be used to compute the generative family of semi-flows in the unary regular nets
and unary Predicate/Transition nets.
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INTRODUCTION

In Petri net theory. the computation of a set of integer vectors - called flows - or a set of honnegative
integer vectors - called semi-flows - is one of the key point for the analysis of systems [Mem83],
[Si185], [Tre86]. So, as abbreviations of Petri nets - coloured nets [Jen82] and predicate transition
nets [Gen81], [Lau85] - were introduced in order to model complex systems, many researchers have
contributed to extend the main results of the Petri net theory and in particular the flow and semi-flow
calculi.

These researches have provided, for the flows computation. a general algorithm [Cou89] in case
where the size of colour domains are fixed -non parametrized algorithm - and many algorithms
[Had86], [Cou9Q], [Sil85] working on subclasses of coloured nets which allow to do not fix the size
of colour domains - parametrized algorithms -.Unfortunately the Algebra technics on which these
results are based can no more be applied in the case of semi-flows calculus because Q" - instead of Q
- is not aring. Thus only few heuristics have been proposed for the computation of semi-flows
[Vaus4], [Sil85], [Tres6].

In this paper we present the parametrized computation of a generative family of semi-flows for two
categories of parametrized coloured nets: the unary regular nets (M-Rr nets)[Had86] and the unary
predicate/transitions nets (U-Pr/T nets) [Gen81], [Vau84].

Section 1 of this paper reviews the two models of coloured nets on which our algorithm works and
gives two examples of modelization with these models.

In section 2 we set precisely the problem of finding positive flows and its parametrization; we show
that this parametrization can be reduced to the parametrized equation D.X;=D.X,=...=D.X,, where D
is the differential matrix of the net [Had86]. notion that is also extended to unary
Predicate/Transition nets.

In section 3 we solve this last equation; i.e. we show that the set of solutions -for all n= 2 - can be
generated by afinite - and calculable -set of integer vectors.

In section 4 we use this result to compute a generative family of semi-flows in unary regular nets
and in unary predicate/transitions nets. We apply our algorithm on the two examples proposed in the
first part.

I SUBCLASSES OF COLOURED NETS

This section will briefly review the most basic definitions of coloured net - multi-set, linear
application, coloured net, incidence matrix, firing rule - and the definition of two subclasses of
coloured net: the unary regular net and the unary predicate transitions nets (U-Pr/T nets). The reader
who wants more details about these definitions could refer to the original papers [Jen86], [Had86],
[Gen81].

I-1 Coloured nets

Definition 1.1: A multi-set, over a finite non-empty set A, isa mapping a 0 [A - N] where N is the
set of al non negative integers.

Intuitively, a multi-set is a set which can contain multiple occurrences of the same element. Each
multi-set a over A is represented as aformal sum:

a=Y a(x).x for al x in A, and where the nonnegative integer a(x) denotes the number of
occurrences of the dement x in the multi-set a.

We will denote by Bag(A) the set of multi-sets over A.



Therelation order on Bag(A) is the natural extension of the relation order on N.

Definition 1.2: Let a=>a(x).x and b=2_ b(x) be two elements of Bag(A). We say that ais greater or
equal than b -denoted a= b - iff O xO A, a(x) = b(x).

Definition 1.3: A mapping f O [Bag(A) — Bag(B)] isalinear application iff: 0 a,a [ Bag(A) f(at+a)
=f(a) +f(@)and O A O N, f(Aa) = Af(a).

A linear application can be defined as the unique linear extension of amapping in [A - Bag(B)]. We
could also define the AxB matrix of the linear application.

Definition 1.4: A coloured net is a 6-tuple CPN = <P, T,C,W+,W - My> where:
-Pisthe non-empty set of places.
-T isthe non-empty set of transitions disjoint from P.
-Cisthecolour function: C: POT - Q, where Q isa set of finite non-empty sets.
Os POT, C(s) isthe colour set (or domain) of s.
-W* (W) is the post (pre) incidence matrix defined from PxT. W'(p,t) and W(p,t) are
linear applications of [Bag(C(t)) — Bag((C(p))].
-Theinitial marking Mo(p) of the place p is anitem of Bag(C(p)).
-Theincidence matrix W of a coloured net is defined by W = W* -W'.

Definition 1.6:
-A transition t is enabled for amarking M and a colour ¢; O C(t) iff:
0 pd P, M(p) 2W (p,t)(c)
-Thefiring of t for a marking M and a colour ¢; O C(t) gives a new marking M' defined by:
0 pd P, M'(p) = M(p) + W(p.t)(c)

The unary regular nets [Had86] or the unary predicate/transition nets are characterized in the class of
the coloured nets by a structuring of the domains and the functions. These two models are widely
used in practice.

1.2 Unary regular nets

To each unary regular net is associated a colour domain, or class, which contains a certain number of
colour, or objets. This number represents the parameter of the mode!.

The colour domain of each place and each transition is this class. The colour functions are
constructed by addition and composition of two basic functions X et S, which allow to express the
free evolution of an objet for the function X, and a global synchronization or the diffusion of all the
objets for the function S.

Definition 1.7: Let E be a set then the functions <X> and <S> are defined by:
-<X> isthefunction from E to Bag(E) such as
<X>(x) = <x>for eachx inE
-<S> isthe function from E to Bag(E) such as
<S>(x) = X<e>, sumonkE, for eachx inE

Definition 1.8: An unary regular net is a 5-tuple R = <P,T,C,W*,W> where
-Pisthe set of places
-T isthe set of transitions, digjoint from P
-C isthe domain colour noted C = [1..n], with n the parameter of the net
-W* and W™ are the incidence matrices where W*(p ,t) and W(p ,t) are called colour functions



The incidence matrix W of a unary regular net is defined by W = W*-W'". and we note for all p in P
andaltinT, W(p,t) = dy. X +b,:.S.

Thefiring ruleisidentical to the one of coloured nets.

We give an example of modelization with unary regular net. This example, defined in [Had86].
models a database.
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-3 Unary predicate/transitions nets

We givethe original definition of an unary predicate/transition net [Vau84].

Definition 1.9: An Unary-Predicate/Transition net is a 7-uple R=<P,T,A,Y,W* W', Dom> where:

-Pand T aretwo disjoint finite sets of places and transitions respectively.

- A and Y aretwo disjoints finite non empty sets.

We shall call respectively colour an element of A, variable an element of Y, label an element
of Bag(A+Y) and interpretation a function from Y to A. X will denote the set of all
interpretations.

- W" and W are two functions from PxT to Bag(A+Y), respectively called forward incidence
function and backward incidence function.

-Dom is a function defined on T such that, for each transition t, Dom(t) is a set of
interpretation called the domain of the transition and denoted by D,.

Wenote Y = {Yy, Y,,..., Yy) the variables of the nets, and A = {a,&,...,85,1,.2,...,n} the domain
colour with &,&,...,8, the constants of the net — i.e. the particular colours which may appear on the
valuation of the arcs.



The incidence matrix W is defined by W = W' -W and we note for all pinPand all tin T

Y| q
W(p.t) =X 6y'°'t.Yy +Y0"La (aformal sum of constants and variables)
y=l i=l

The firing role is identical to the one of coloured nets.
We give an example of unary predicate/transition net which does not model something

special but will allows usto illustrate the positive flows computation on this type of coloured
net.
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Il SEMI-FLOWSIN COLOURED NETS

Semi-flows computation is an analysis tool much more important in coloured nets than in
ordinary Petri nets. It enables to verify behavioural constraints without unfolding all or a part
of the reachability graph which for a coloured net would have an untractable size even by a
computer. It gives also informations on the evolution of the tokens and is finally the efficient
auxiliary of others proof methods like, for example, the reduction theory.

Many categories of semi-flows have been introduced in [Lau85], [Vau85], but most of them
cannot be placed in an appropriate algebraic context. Thus the authors who looked into the
semi-flows or flows calculus [Vau86], [Silv85], [Had86], [Cou86] have taken the most
natural definition of a semi-flows. a semi-flow of a coloured net corresponds to a set of
semi-flows in the Petri net obtained by unfolding the initial coloured net.

Thus, given a coloured net, a solution for computing its semi-flows can be to unfold this net
and then to compute the semi-flows with the help of classical methods. However. such a
solution is expensive in time and in space - because of the sire of th unfolded net - and
provides invariants whose meaning is not always clear. Furthermore. when the size of
domains colour are not fixed - case of parametrized nets - it becomes impossible to unfold
the net and then to compute semi-flows. Thus, it is necessary to find alternative methods.

[I-1  PRELIMINARIES

[1-1.1 Notations

Let p be the size of the set P of places. Semi-flows of a Petri net are vectors of (Q*)°, where Q*
denote the nonnegative rationals and semi-flows of a unary regular net or of a U-P/T net are vectors
of ((Q"P)", where nisan integer greater than 1 representing the parameter of the model.



We introduce the following notations:

- N denotes the set of non negative integers

- Q" denotes the set of non negative rationals

- We note E = (Q")P and E" =((Q")")" where p and n are non negative integers
-SoE"=0E.foraliin[1..n]

- Theimage of avector e of E by the canonical bijection from E to E; is noted (i)

- A vector e of E" has a unique decomposition e =X g(i) or e=<g,&,,...,&> withg inE

- P(E) denotes the powerset of E.

I1-1.2 Definitions
Werecall now some basic definitions of Petri nets.

Definition 2.1: Let R be a Petri net and W its incidence matrix. A vector f O E isasemi-flow iff f isa
solution of the equation f'.W=0.

Definition 2.2 : Let V be avector indexed by E, the support of V noted Supp(V) or [[V]] is the subset
of E defined by [[V]] ={e O E | V. #0}.

Definition 2.3 : Let F be a set of vectors of E. A vector g of F is minimal with respect to the support
notion iff :

Of0OR{a}, [[f]] O [[al]

Example:
Let F={ f=(2,0,0,3), f:=(1,1,0,2), f,=( 1,1,3,0)} aset of vector of Q* then [[f]] can be viewed as
the boolean vector (1,0,0,1) and f is of minimal support in F.

Definition 2.4: Let W be the incidence matrix of a Petri net R. A set {fy,...,fi} of vectors of E isa
generative family of semi-flows of R iff:

-0i,ftw=0

- Of OEf20 with f\W=0, OAy,...,. A« O Q" with f= Ap.fy+...+ A fi

It is also possible to characterize a generative family with the help of the notion of support
[Mem83], [Cam68].

Characterization 1: Let W betheincidence matrix of a Petri net R. A set {f4,....f} of vectorsof Eisa
generative family of semi-flows of R iff:

-0i,ftw=0

- O f O Ef20 with f.W=0, Of; e F such that [[f]] O [[f]].

This characterization and the definition 3.4 provide the Farkas algorithm [Far02] which allows to
compute the minimal generative family of semi-flowsin a Petri net and which is studied in [Mem83]
or more recently in [Col89]. This last paper gives heuristics providing an efficient programming of
the Farkas algorithm.

We give now the definition of semi-flows in unary regular nets or in unary predicate/transition nets.

Definition 2.5: Let R be a M-Rr or a U-P/T net, with n the parameter of the colour domain. A
positive flow is a symbolic expression such that for each n this expression gives a vector in E" which
is a positive flow for the net unfolded for this particular n.



[I-2 A FIRST STEPINTO THE RESOLUTION OF THE PROBLEM

Computation of semi-flows needs to solve the equation W.X = 0, where W is the incidence matrix of
the unfolded net. In unary regular net or in U-P/T net this matrix has p.n columns and t.n lines, where
p and t are respectively the places and transitions number of the net, with n the parameter
corresponding to the size of the domain colours.

Also we have to solve a system parametrized in two ways: the equations of this system are
parametrized — the solutions belong to E" -, and the number of equations depends on n - there are t.n
equations-.

We shall see in this section, on specifying successively the incidence matrix of a M-Rr net and of a
U-PIT net, that we can in the two cases reduce our problem to a system with only two equations
including the following one: D.X;=D.X,=...=D.X, where D is a PxT matrix depending on the net

I1-2.1 Case of unary regular nets.

Let R=< P, T ,C, W', W > be a unary regular net. The incidence matrix of the unfolding net is
defined by:

OpOP, Ot OT, Oc,c' O[l..n], W((p,c), (t,c)) = W(p,t)(c,c).

Thus if we denote W(p,t)(c,C) = dp.X + b,.S with the definitions of part 1-2.1, we have:
OpOP,OtOT,dc,c O[l..N)
W((p,C), (t1cl)) = dp,t+ bp,t |f c=c
W((p,C), (t1cl)) = bp,t ifczc

If we denote now by D the PXT matrix defined by D(p,t) = dy, for al (p,t) in PxT and by B the PXT
matrix defined by B(p,t) = by, for all (p,t) in PxT, the incidence matrix of the unfolded net can be

written as : = = =
| D+B B B I T,
| B D+B ... B | T>
W= | B B B |
| |
| B B D+B  |T,

where P, denotes the set of places for the colour c=i and where T; denotes the set of transitions for the
colour c=i.

Thus a vector X = <Xy,...,.X,> in E" - with notations of part I11-1.1 - is a semi-flow if and only if this

vector verifies the system:
n

() Oid[1.n,DX+XB.X; =0
j=l
Let us examine the system (2):

n
(D+nB). £ X; =0
(2 j=l
D.X;=D.X,=..=D.X,



We have the following proposition.

Proposition 1: Systems (1) and (2) are equivalent.
Proof: The system (1) implies the system (2): i.e. for each X solution of (1) then X is solution of (2).

Oi,j O[1.n)% (D.X; + nz B.Xy) -(D.X; + nz B.Xy) =0
soitcomesi,j O [1ri§]:2| D.Xi = D.X; V\;(I’Tllch can also bewritten D.X; =D.X,=...=D.X,
nZ(D.Xi +nz B.X;) = 0 s0o, D.(nZ X)) + nB.(; X;)=0
Thle: Iwstem J(:ZI) implies the systjejrln (2): a
n

(D+n.B)X X; = 0and Oi,j O [1..n)% D.X; = D.X; so we have:
j=l
n
OiO[l.n, nD.X+nB.XX;=0
=1
O
Thus computing a generative family of semi-flows for a unary regular net is equivalent to
solve the system (2).

11-2.2 Case of unary predicate transition nets

Le R=<PT,A,Y W W ,Dom> beaU-P/T net and let W = W* -W" be the incidence matrix of this
net.

As defined in section 11-3 we note Y = {Y.Y..Yy} the variables of the nets, and
A ={a,a,....85,1,2,....,n} the domain colour with &,a,,...,8, the constants of the nets; thereis also n+q
colours, where g is the number of constants of the net and n the parameter of the net.

Y1 q
We note W the incidence matrix with W(p,t) = Zay’" Yy+ X aPa

y=I i=l

Theincidence matrix Wd, of the unfolded net is defined by:

OpOP0OtOT,0a0A, 0o 0Dy, Wdn((p,a),(t,0))=c(W(p,t))(a)

Let now D bethe matrix defined by: a column for each place of the net, and arow for each transition
and each variable with :
OpOPOtOT,Oy OY, D(p.ty)= 8"

Let io bea particular colour distinct of the constants —ip O A\{ &,&,...,8¢} -, and let Hio,Ha,...,Ha, e
the PxT matrices defined by:
Y1
-OpOPOtOT, Ho(pt)=X 3>
y=1
-0i0[1l.q,0p0OP, OtOT, Ha(p,t) = o™

Remark: All these matrices D, Hio,Ha,...,Haq are finite because P, T, Y and { a,&,...,.8 } are finite
Sets.



Let finally W'd, be the following bloc matrix:

Po Pa Py =
| Ho Ha ... Hog ... 0 | Tio
| D -D 0 0 | Ta

W= | ...
| D 0 -D 0 | T
| D 0 0 -D | Tn

We have the following proposition which is the interesting result of this part.

Proposition 2 : For each n, Wd, and W'd, are equivalent for the calculus of semi-flows;
i.e: 0On=0, O X OE™ Wd,X =0iff Wd..X =0.

Sketch of Proof:
The proof lies on the fact that W'd, is obtained from Wd, by linear combinations on the rows

and on the fact that if wenote oy-,={ o O O D, | o(y) = a), we have:
OpOPRP OtOT,0y0Y,0alANig, Jo O 0y=
Let o' O Dy with a'(y) =ipand o'(x) = o(x) for all x O Y, xzy we have:
- Wdy((p,a),(t,0)) -Wdi((p.a),(t,0)) = &,
- Wdk((piio),(t,0)) -Wd((P,io),(t,0) = -5,
- Wd,((p,b),(t,0)) -Wd.((p,b),(t,0")) = 0 for al b in A with b#a and b#i,

For a complete proof pleaserefer to [Pey90].

So we have trandated the problem of computing semi-flows of an U-P/T net into the problem of
finding solutions of the equation W'd,.X = 0 which can also be written:

Hio. Xio+ Ha . Xa +...+Haq . Xaq =0
3 and
D.X4=D.X»=...=D.X=D.X;=...=DXjo= ...=DX;

Computing the generative family of semi-flows for a U-P/T net is equivalent to compute the
generative family of solutions of the system (3).

Wefind again in this system the equation D.X; = D.X, = ...= D.X,,. Let us see now how to solveit.

11 RESOLUTION OF THE PARAMETRIZED EQUATION A X=...=A.X,

Our purpose is now to propose an algorithm which computes a generative family of the equation
A.X; = ..= AX, for any finite matrix A. We first define the notion of pseudo-generative family.
Then, in order to compare pseudo-generative families, we extend the support notion to families of
vectors, and we give then the algorithm 2 which is a solution to our problem.

From up to now, we denote by A a matrix composed by t rows and p columns, by b a vector of Q'
and we note (i) theequation A.X; = A. X, = ..= AX,.



Definition 3.1: Let F={V4,...,V} beafamily of vectors of E solutions of the equation A.X=b. Fisa
pseudo-generative family of A.X=b iff:
OV OE, V20 with A.V=b then OV; O F with [[V]] O [[Vi]].
We note Sol(A,b) a pseudo-generative family of A.X=b.

Remark: According to characterization 1, Sol(A,0Q) is a generative family of the equation A.X=0.
We propose now an algorithm which, given a matrix A and a vector b, computes a pseudo-
generative family of A.X=b.

Algorithm 1:

I) Compute - with Farkas - a generative family F = { (X, AN)xoexron | [A -b].(X , A) =0}

2) Remove from this family the solutions such that the second component A is null.

3) For each solution divide the first component X by the second component A, to normalize the family;
then eliminate the component A.

The family F of vectors of E obtained at the step 3 is a pseudo-generative family of the equation
A.X=b.

Proof of the algorithm:;
-0V OF, AV =b by construction.
-0V OE,V #0andA.V = b, because the family F obtained at the first step is a generative family,
O{ ((Vi,A), ©) } such that (V,1) = ¢ .(Vi,A) with O, [[(V,D]] O [[ (Vi,A)]]. Obviously, j such
that A;%0; thus (1/A;).V; O Fand [[V]] O [[(/A).V{]].

000

Definition 3.2:
If b#0, we note Sol"(A,b)={ XV;(i) OE" | Ui, V; U Sol(A,b)}.
Soln(A,0)={ V(i) O E"|V O Sol(A,0)}.

Remark:
We use also the following notations to denote the vectors of Sol(A,b) and of Sol"(A,b):
Sol(Ab) ={V",..., Vis}

Sol"(Ab)={XOE"| X=X SV (i) with {C} apartition of [I,n]}
vi OSol(A,b) i 0C

or

n
Sol"(A,b) = { X OE"| X =X Vo’ (i) (i) with o an application from [1,n] to [1,mb]}
i=1

Example :
If Sol(A,b) ={V4, V3}, then:
30|3(A,b) ={<V, VL, V>, <V, V1, V>, <V, V1, V>, <V, Vo, Vo>t

If we remark now that, for any b, Sol"(A,b) gives a set of solution of the equation (i), one can think
is sufficient to solve (i) for n=2, i.e. to solve A.X=A.Y. We are going to see on an example, that in
general, a generative family of A.X=A.Y does not give a generative family of (i) for all n.



Thefollowing algorithm computes a generative family of A.X=A.Y.

Algorithm2: A X=A.Y

1) Compute - with Farkas—a generative family Fg={ (X,Y) /[ A -A ]1.(X,Y)=0}
2)S={b|b=A.X for some(X,Y) OFg}

F=  Oposoo Sol%(A,b) is agenerative family of A.X=A.Y.

Proof:
It isclear that F contains a generative family of A.X=A.Y

Q00

Fact:

The family computed by the algorithm 2 does not provide a generative family of the equation
AXi=AX,=..=AX,fordln=2.

Let be A the matrix:

| 1 -1 1 1 1 1 -1 |
| 1 -1 -1 1 -1 1 -1 |
A= | 1 1 -1 1 1 1 -1 |
| 1 -1 1 1 -1 1 1 |

The set of b, computed by the algorithm 2 is ( with on theright of each b; the set Sol(A,b)).
((_13_ ) denotesthevector (0130000)).

bh=(0-2000 X=(_11___ ) b=(1-1-1)  X=(C_1___)
X:(____l_l) X:(l___112)
b=(1-11-1) X=(C___1 ) by=(-1-1-1-1) X=(C__1 _))
X=(121__1) X=(1___11)
by=(0-20-2) X=(___11__1) bs=(0-2-20) X=C_11__)
X=(_1__111) X=(C___112
X=(21__1) X=(C11__11)

Let the vector bs - with Sol(A,bg) = {X1,X5,X3) - be defined by:

be=(1-3-1-1) Xi=(___212)
Xo=(__111_)
Xs=(22__1)

This last vector is not computed by the algorithm 2 because none vector of Sol%(A,bg ) is minimal in
support between the set (O Sol’(A,bi ) b, O [by,...,bs ] }.Nevertheless this vector bg gives for n=3 the
vector of E* X=<X1,X5,X3> which is minimal intheset { O ( Sol*(A,b; ) with by O {b,...,bs}}. Thus,
since we want a generative family, we have to compute this vector.

It is thus necessary to iterate this calculus; we want to say that after solving A.X,=A.X, we have to

solve A.X1=A.X,=A.X3 and then A.X;=A.X,=A.X3=A.X, and so on. Does such an algorithm end?
That is the question.



In fact, the reason why we have to iterate the calculus implies that this iteration is bounded. If a
vector b is missing, it is because this vector generates a minimal - in support - solution in E", and it
cannot generate a minimal solution if for each b; already computed the set Sol(A,b) does not contain
aminimal vector in the set Sol(A,b;). Also a vector b is missing if and only if the set Sol(A,b) isina
way "minimal" in the set { 0Sol(A,b;),b; already computed). We are going to see that it cannot exist a
infinite sequence of "minimal" sets and then, that the number of necessary iterations is bounded.

In order to clarify this notion of "minimal" vectors sets, we extend the notion of support.

Definition 3.4:

Supp : P(E) - P((P(P)) _
such that Supp(F) = { Supp(V) |V O F }; by extension we note [[F]] = Supp(F).

Definition 3.5:
Let F and F two sets of vectors of E.
We say that F is minimal in comparison with F - noted F < F' - iff
Cf OF such that O f' OF [[f]] O [[f]]

We have for the last example, Sol(A,bs ) < Sol(A,b; ) for each b; and it is why we have to compute
the vector bs.

The following proposition shows that it cannot exist an infinite sequence of "minimal" sets.

Proposition 3.6 :
O {F}ion with F O P(E), Oig,jo such that Fig < Fjg .

Proof:

The sequence {[[F]]}i on takes its values in P((P(P)). As P((P(P)) is a finite set, [ig,jo With
i0<jo such as [[Fio]] = [[Fjo]]. Thus, by definition, we have Fio < Fo .

000

We give now the algorithm which computes a generative family of the equation A. X=...=A.X,.

Algorithm 3::

1) S={by,....b} // result of thealgorithm 2 on the matrix A (A.X = A.Y)

2) IncS:=0

3) DO
3.1) K=|S|// cardinality of S
3.2) Compute - with Farkas - a smallest generative family F

F={ (X Az,... AQ) 0 EX(QO) | [-by ...-bk Al (A1,.... Ak, X)=01}

3.3) IncS:={b' | b'=A.X for some (X,A1,...,Ax)J F, b'20 and O bOS, Sol(A,b") < Sol(A,b)}
3.4)S:=S0IncS
WHILE IncSz0

4)S:=S0{ 0}



Proposition 1.7 :

The set S computed by the last algorithm provides a generative family of the equation
AX=...=A.X, for al n>2

i.e. 0O Sol"(A,b) isagenerative family for all n=2
bOS

Proof:
-Termination:

If this algorithm does not terminate, it builds with the instruction 3.4 aiinfinite sequence { bi}
indexed by their insertion order in S. If we consider the family { Sol(A,b)}, theinstruction 3.3
implies that this family does not satisfy the proposition 3,6. Hence there is a contradiction.

-Correctness.

We do not give the proof because of its technical nature but the reader might refer to [CHPOO0],
000

IV APPLICATION TO THE SEMI-FLOWS COMPUTATION IN COLOURED NETS

We are going to see now how we use the results developed in the last part to compute a generative
family of semi-flows in two types of coloured nets.

IV-1 Unary Predicates/Transitions nets

Werecall that computing a generative family of semi-flowsinaU-P/T net is equivalent to compute a
generative family of the system (3) where D, Hip, Ha,..., Hy @re the matrices defined in part 11-2.2,

Hio. Xio+ Ha . Xa +...+Haq . Xaq =0
3 and
D.X4=D.X»=...=D.X=D.X;=...=DXjo= ...=DX;

Also, we propose the following algorithm which computes a generative family of semi-flowsin a U-
P/T net, The principleis to solve the second equation by the algorithm developed in part 111 and then
to report the solutions in the first equation. As the size of this equation is not dependent on n, it is just

necessary to develop the solutions computed on the first g+1 components and to keep the rest of the
components as aformal sum.

Werecall notations used in part 11.2.2;
-C={a,...a4,1,...,n} thecolour domain, g the number of constants
- S= (bo...,by) theresult of the algorithm 3 on the matrix D (by=0)
- my; denotes the size of Sol(D,b)
- Sal(D,b) ={V?,....Vm, }for each by, in S



Algorithm 4:;
1) Computethe set S={by} corresponding to the matrix D with the algorithm 3.

2) Express the solutions of D.X|=...=D.X, as a formal sum with only the first g+| components

developed - for the constants and the particular colour igin [l,n]- :
- for each bz0in S, for each application g;« from [0,q] to [1,my] (O for the colour i)

form the symbolic vector X;xinE":

M

Xk =2 Vaiuo (@) + Voo (i) + X Z Vi(0)
ctlld i=z1cOC*
with { C'*} i myy @ partition of [1,n]\{ig}

- for each V2 in Sol(D,0), for each color cin{ig} O[l,q] form the vector Xokc in E™

Xoke = Vi(@y) if cip and Xoxe = Vi (i0) if c= iy (only one component is non nul)

3) for each X« constructed at the step 2 do the projection P(X; ) on thefirst equation
( Xj(i) denotes the i component of the vector Xjk):
P(Xjx) = Hio - Xjk(io) + Ha-Xjk(8a) +... + Hag . X (&)
4) Solve by Farkas:
jZk HiP(Xjx) = 0

5) S* = {<px >} the computed family.

Thefollowing proposition makes the link between the family computed by the last algorithm
and the solutions of the equation (3) i.e. the semi-flows of the U-P/T net:

Proposition 4.1:
Let F bethe family composed by the vectors:
-0i=2g+l, d X O Sol(D,0) the vector X(i).
-0 <pjx > O S*, the vector:

Z= Zuj,k.X,-,k

Then F is a generative family of semi-flows.

Proof
The proof lies on the fact that the number of constant is finite -independent of n -and

that the Farkas algorithm computes a generative family.
For a complete proof, please refer to [CHPIQ].
000

Remark
The family obtained is not necessary minimal.




Example:

Let be the net:
With D, Ho, Ha Hb the matrixes defined by: purs
Hof-1-11171
purs p urs
D=[-l 0 1 1]u Hf0 -1 0171
0 -1 0 0]ty p urs

Hb{O -1 OO]:

Thefirst step of the algorithm -algorithm 3 on the matrix D -computes the set defined by :
S={0=(0,0),b;=(-1,0), b,=(0, -1), bs=(1, 0) } with:

-Sol( D, 0) ={(p+1), (p+s)}

-Sol(D, by) ={ (p) }

-Sol(D, by) ={ (u)}

-Sol(D, bs) ={ (1), (9}

We develop now the symbolic vectors associated to each b in S -step 2 -:
.b]_ .
Because thereis only one vector in Sol(D,by), thereis only one partition of [1,n] and one
application o from[0,2] to [1,1] : 0(0)=0(1)=0(2)=1.
Also the vector b, gives only one symbolic vector X, ; with:
X11 =2 p(ac) + plio) +Z p(c) = p(a) + p(b) + p(io) +Z p(c)
cel[l1,2] cO[1,nYio} cO[1,nYio}

.bz:
For the same reasons the vector b, gives only one symbolic vector X, with:
Xz1 =2 u(ac) + U(io) +X u(c) = u(@) + u(b) + u(io) +X u(c)
cel[l,2] cO[1,n]Yio} cO[1,n]Yio}

.bg:
There are two vectors in Sol(A,bs), two constants, aand b plus the particular color iy. Also

the vector bs gives eight symbolic vectors because there are eight applications from [0,2] to

[1,2].
We note these vectors:

Xam = r(@) + r(b) +r(io) +X r(c) +% s(c) with C; OC, = [1,n]Yio}
to [CRule cOC,

X3zss = S(@) + 8(b) + s(io) +2 r(c) +X s(c) with C; OC, = [1,n] i}
c0G G

C, OC; denotes that {C; , C;} isapartition of C



bp=0:
The vector 0 givesthe six vectors: .
Xois = (p1)(a) Xozs = (Pp+s)(a)

Xou= (PF)O) Xow = ( pts )0

Xojio = (P )(io) Xozi0 = (pt+s)(io)

We have now to make the projection of these vectors on the first equation -step 3 -: Compute the
sum: P(Xjk) = HiO-xj,k(iO) + Halxjk(a;) +..+ HaqX,k(aq)

We obtain:

.P(X|Y|):-1

.P(XZJ_) =-3

P(Xamr) = P(X3mrs) = P(Xarer) = P(Xarss) = 1
P(XSSSS) = P(XS,Ssr) = P(XS,srs) = P(XS,srr) =1
P(Xoj2> = P(Xoun) = P(Xo,10) =0

P(Xo2p) = P(Xo20) =0

-P(XO,Za) =1

AS P(X3m)=P(X 3,19 =P(X3rsr)=P(X3zrss) @aNd P(X3.5)=P(X3.55)=P(X3.55)=P(X34r) @and
P(X0,12)=P(X05)=P(X0 10> and P(Xo,)=P(Xjic) We rename the symbolic vectors :

Xy = 2 p(ac) + plio) +Z p(c) = p(a) + p(b) +X p(c)
cO[L1,2] cO[1,n]Yio} cO[1,n]

Xz21=  Zu(@) +ufio) +X u(c) = u(a) + u(b) +xu(c)
cO[L1,2] cO[1,n]Yio} cO[1,n]

Xar = (@) +X r(c) +Xs(c) with C, O C, = [I,n]0 { b}
cOC, cOGC,

Xasa = S(@) +X r(c) +X s(c) with C, O C, = [I,n]O{ b}
cdC, cdGC,

Xoy = (p+r)(i) i O {ab,ig}
Xoz2a= (pt+s)(@
Xozuio = (pt+s)(i) i O {b,ig}

We execute now the fourth step of the algorithm: we solve the system:

ik Mix - PXj) =0

... and we obtain the generative family:

{ (Moy), (Ho2vi0),
(K + Mg )o(Hi) + Has@ )s (i) + Hoza),
(M21 + 3U3r@), (21 + 3Hzs@),(M21 + 3Ho2q)}



We just have now to develop the solutions with the help of proposition 5.1, and we obtain finally the
generative family F composed by the vectors:

We develop first the vectors associated to the set Sol(D,0):

.Sol(D,0)
-(p +r)(i) for ali d[1,n] (i different of the constant)
-(p+s)() for ali d[1,n] (i different of the constant)

(Moy)
-(p+r)(i) i O{ab,ig} whateverioO[1,n]

. (Mo,2vi0)
-(pts)() i O{b,ig} whatever i [1,n]

(i + Har )
-(ptr)(3) +Z (p*r)(c) +Z (p+s)(c) with G O C, = [I,n] I{ b}
cOGC cdGC;
(i) + H3gq )
-(pts)(@) +Z (p+r)(c) +Z(p+s)(c) with G [ C, = [I,n]0{ b}
cOGC cdGC;
- (M) + Ho2a)
-(p*s)(@) +Z p(c)
cO[I,n]O{ab}
. (H21 + 3U3(a)
-(u+3r )(a) +2 (u+3r)(c) +X(u+3s)(c) with C, O C, = [I,n]0{ b}
cOC cGC
- (M21 + 3M3ga)
-(u+3s)(a) +2(u+3r)(c) +X (u+3s)(c) with C, O C, = [I,n|0{ b}
cOC cGC

. (M21 + 3Ho24)
-(u+3s)(a) +X> u(c)
cO[I,n]O{ab}

If we keep only the minimal solutions we obtain the generative family:

(p+ 1)) Oi0[l,n)0{a,b}
(p* 9)() Oi0[I,n0{ab} (iza)
(p+s)(a) +Z p(c)

cO[I,n]O{ab}
.(u+3s)(@) +X2 u(c)
cO[I,n]O{ab}
2(u+3r)(c) + 2 (u+3s)(c) with C, O C, =[I,n|0{ b}
cOCGO{a cGC



IV-2 Unary regular nets

The computation of positive semi-flows in unary regular net is similar to the one in unary
predicate/transition net, but much more technical because we work now on polynomials. Also we
only givethe principle of the algorithm; for more details, please refer to [CHPIQ].

As we see in section I11-2.1, the computation of positive flows in unary regular net is equivalent to
solvethe system (2) :

n
(D+nB).XX;=0
j=I
D.X;=D.X,=...=D.X,

2

Let us suppose that b; is a vector such that Sol(A,b;) = {V;}. Each vector of Sol"(A,b)) is a solution
of the second equation D.X,=...=D.X,. These solutions can be expressed as a formal sum:

X:Zijk(C) with Dijk:C if bj¢0 and X:VO,k if bj:O
CDCJYk

In order to solve the system (2) we have to report the solutions of the equation D.X, =...=D.X,, to the
first one (D+nB).2X;=0. So for each by, if we denote by k;« the size of Cj, kjx = |C;«|, we obtain the
formal vector:

Wj = ij,k(D+nB).Vj,k with > kjyk: n

And for =0 we havefor all Vo in Sol(D,0) the formal vector:
We= (D + nB ).V

Also we have to solve the system with S = {bj} the set corresponding to the matrix D computed by
the algorithm 3 and for each b; in S, Sol(D,by) = {Vj},-..,Vm}:

> e’ . Wi+ Z.Wi = 0 where the unknows are i, ;
Vox 0 S0l(D,0) bj 0 S0}
which corresponds to:

> W’ . (D+N.B).Vort+ T, X kix(D+n.B).V;x = 0 with for each j20 ¥ ki,=n
Vox 0 Sol(D,0) bj OS{0}  k=l,..mi k=l,..,mi

Asfor each bj and each vector V; of Sol(D,b), D.Vjx = by , it is equivalent to solve the system:

> S . (0+n.B.Vo)+ I, (nb + X nkj.B.V;x) = 0 with for each jz0 X kix=n
Vox 0 Sol(D,0) bj OS{0}  k=l,..mi k=l,..,mi

which is also equivalent to:

> e’ . (BVo+ ZH;. (b + X Kkix.B.Vjx) = 0 with for each j20 ¥ ki,=n
Vox 0 Sol(D,0) bj O S{0} k=l,..,mi k=l,..,mi

This last system can be solved by the Farkas' algorithm extended to generic families [CHP9Q]. Let us
see on an example how this algorithm works.



We consider the example given in part 11-1 (figure 1) and we prove that the place Repos is an implicit
place. Also we consider the net in which we have reversed the arcs adjoining to the place Repos, and
we compute then a generative family of semi-flows on this net.

b

X R%pjos

S

Arcs adjoining the
place Repos
are reversed

X

because we want to prove
that the place Repos
is an implicit place

Figure 2

We have the matrix D and B as defined in part 111-2.1:

Repos Mess Modif Mutex At Acc

- -
1 -1 0 0 1 O 11
D= 1 -1 1 0 0 O v)
-1 0 0 0 -1 1 B
-1 0 -1 0 0 1 t4
r 0 1 0 -1 0 0 t
B= 0 0 0 0 0 0 o]
0 0 0 1 0 -1 <
0 0 0 0 0 0 14

_ .

So we solve and the first equation D.X,=...=D.X,, and we obtain the family S defined by (following

the order t,to,ts,t ):

S=((0), b=(0,1,0,-1), 0,=(0,0,1,1), bs=(1,0,-1,0), b,=( -1,-1,0,0), bs=(1,1,-1,-1) } with

Sal(A,(0)) ={ (Mutex), (Mess+tModif+Att+Acc), (RepostMess+Acc) }

Sol(A,by) = { (Modif )}
Sol(A,b) ={ (Acc) }
Sol(A,bs) = { (Att) }

Sol(A,by) = { (Mess) }

Sol(A,bs) ={ (Repos), (Modif+Att) }



For each b in S we have the projection on the equation (D+nB)XX:
(O) gives 3 vectors:
fo; =(-1,0, 1,0), fo2 =( 1,0, -1, 0), fo3=( 1, 0, -1, 0)
b gives the vector:
£1=(0, 1,0, -1)
b, gives the vector:
£.=(0,0, 1-n, 1)
bs gives the vector :
f2=(1,0, -1, 0)
b, gives the vector:
fa=(n-1,-1,0,0)
bs gives the vector:
(1,1,-1,-1) + k(0,0,0,0) + kx(0,0,0,0) with k+k,=n, so:
f5=(1,1,-1, -1)

Also we haveto solve the system W.X= 0 with W the matrix:
for fo3 fo2 fi ) f3 fa fs

101 1 0 0 1 1 nl
w=l0 0 0 1 0 0 1
1 -1 1 0 Ia -1 -1 0
0 "0 0 -1 1 0 -1 0

We"nullify" the second and the fourth row of the preceeding matrix and we obtain:

fo,1 fo3 foo B8 fi+f+5 L+fa+fs

4111
_ 0 0 0 0
=11 1 1 a1 i

0o 0 0 o0 0

O OB5

Asthe polynomial (n-1) and n have a constant sign, n=2, if we "nullify" thefirst row we
obtain the following matrix:

foa+fo2 foir+fo3 foi+fB8 (n-Dfor+fi+L+6 nfo1 +2+f4+£5

ll
(=olele]
OOoOO0O
OO0
COCO

OO0



At this step we have obtained a generative family which gives the following semi-flows:

.(Mutex+Repos+Mess+Acc)(i) for any i in[1,n]

.(Mutex+Mess+Modif+Att+Acc)(i) for any i in[1,n]
.(Mutex)(i) +2(Att)(c) for any i in[1,n]
ceC
.(n-1).(Mutex)(i) +> (Modif+Acc)(c)+ 2. (Repos)(c) + 2 (Modif+Att)(cy)
cOC geC UG
for any i in[1,n] and where{C,; ,C,} isapartition of C

.n.(Mutex)(i) + 2(Messt+Acc)(c)+ 2 (Repos)(cl) + X (Modif+Att)(c2)
cOC caeC ¢0C
for any i in[1,n] and where{C,; ,C,} isapartition of C

Thislast flow gives the particular flow( if wetakeC, =0 ):

.n.(Mutex)(i) + 2 (Mess+Acc+Repos)(c) for any i in[1,n]

cocC

This flow ensures that Reposis an implicit place [Had87,p.166].

Conclusion

We have proposed two algorithms for a computation of a generative family of positive semi-flows in
two basic families of coloured nets. These two algorithms are based on the resolution of the
parametrized equation A.X,=...=A.X,,, where n is the parameter of the model, A a matrix and X; the
unknowns are vectors. We have also proposed an algorithm which solves this equation. The general
idea of this algorithm is that the resolution of the system for a sufficiently great n provides the
general form of a generative family for any n.

The perspective of this work is of course the computation of positive semi-flows in more complex
systems. In this way, there are two possibilities: on the one hand, similar systems but with many
parameters -like regular nets or predicate/transition nets -and on the other hand, systems with more
complex structure but with only one parameter -like ordered nets -Another perspective of this work
can also be the computation of others linear invariants such like deadlocks and traps.
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