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Context: Semantic Segmentation of Medical Images

▸ Semantic Segmentation: class label for each image pixel / voxel
▸ Deep ConvNets: tremendous sucess for visual recognition
▸ Semantic Segmentation of natural images: Fully Convolutional
Networks (FCN), e.g. DeepLab [Chen et al., 2018]

▸ Adpated FCN architectures for medical images,
e.g. U-Net [Ronneberger et al., 2015]

▸ FCN: base architecture for leading approaches in recent medical
segmentation challenges, e.g. LITS’17 [Han, 2017, Li et al., 2017]
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Datasets for Medical Image Semantic Segmentation

▸ ConvNets: large amount of data with clean annotations
▸ Annotation very costly for semantic segmentation: pixel-level labeling

▸ Exacerbated in medical images: 3D data, highly qualified professionals
needed, e.g. tumors (extreme appearance variations)

2/ 20 N. Thome - Segmentation with Incomplete Annotations



Semantic Segmentation of 3D CT-scans
▸ Internal dataset1: ∼ 1000 patients of 100 × 512 × 512 images

▸ 3D segmentation: focusing on 2D slices
⇒ independent training in each image

Liver Pancreas Stomach

Gall blader Tumor
1IRCAD: https://www.ircad.fr/fr/
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Semantic Segmentation with Incomplete Annotations

▸ Large scale dataset, BUT:
▸ Clinical experts: focus on a subset of organs
⇒ Incomplete annotations wrt full Ground Truth

▸ How to train deep ConvNets in this context ?
▸ Organ(s) missing the whole volumes, but: organ segmented in
volume ⇒ complete annotation for that class

▸ Core idea: generating clean target labels from noisy input labels
▸ Binary mask wk for each class ⇒ ambiguous vs non-ambiguous pixels
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Semantic Segmentation with Incomplete Annotations

▸ Standard FCN not adapted to this context, e.g. DeepLab [Chen et al., 2018]

▸ Shared Fully Convolutional Layers, ResNet [He et al., 2016]
▸ Last tensor: 1 × 1 conv + soft-max ⇒ single class prediction
▸ Incomplete annotation: "background" ⇔ missing organ
⇒ conflict with pixels with proper organ annotations during training
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Semantic Segmentation with Incomplete Annotations

▸ Our approach for Semantic segmentation with MIssing Labels and
convnEts (SMILE)

▸ Depart from the (K + 1) multi-class classification formulation,
classify each organ independently using K binary classifiers
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SMILE Training

▸ Binary CE loss at each pixel: Lk(ŷk , y∗k ) = − (y∗k log(ŷk)+ (1− y∗k ) log(1− ŷk))
▸ Final loss: weighted sum of binary losses:

L(ŷ , y∗) =
K

∑
k=1

wk Lk(ŷk , y∗k )
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SMILE Training

▸ Core SMILE component: binary weight maps wk ∈ {0;1}
▸ Selecting or ignoring each pixel for class k

▸ Class k present in volume: wk = 1 ∀ pixel in volume
▸ Class k absent:

wk =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃k ′ ≠ ks.t.wk′ = 1 (⇒ y∗k = −1),
0 otherwise (pixel ignored)
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SMILE Training

▸ Analysis of labels used by FCN baseline and SMILE vs Ground
Truth (GT)

▸ For class k :
▸ βk ratio of voxels in a volume
▸ α the ratio of missing labels for this organ in the dataset.

Baseline FCN
PPPPPPGT

Used Pos Neg

Pos (1 − α) ⋅ βk α ⋅ βk
Neg 0 1 − βk

SMILE
PPPPPPGT

Used Pos Neg

Pos (1 − α) ⋅ βk 0
Neg 0 (1 − α) ⋅ (1 − βk) + ε

ε = ∑
k′≠k

βk′

▸ Both baseline and SMILE: only true positive
▸ BUT only use (1 − α) ⋅ βk vs βk
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SMILE Training

Baseline FCN
PPPPPPGT

Used Pos Neg

Pos (1 − α) ⋅ βk α ⋅ βk
Neg 0 1 − βk

SMILE
PPPPPPGT

Used Pos Neg

Pos (1 − α) ⋅ βk 0
Neg 0 (1 − α) ⋅ (1 − βk) + ε

ε = ∑
k′≠k

βk′

▸ Baseline:
▸ False Negatives (FN): α ⋅ βk , i.e. unannotated pixels indeed
belonging to the organ

▸
TP
FN =

1−α
α

: α > 0.5 ⇒ TP
FN < 1

▸ SMILE:
▸ Only true positives and true negatives
▸ Less true negatives than baseline: (1 − α) ⋅ (1 − βk) + ε vs (1 − βk)

▸ ≈ α less negatives, but as β << 1, e.g. β = 0.052

⇒ in practice, largely enough negative to train

2organs ⇔ small volume portion
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SMILEr Training

Incremental self-supervision and relabeling

▸ SMILE True Positives (TP) labels ∝ (1 − α)
▸ Motovation: automatically increasing number of TP labels

▸ Compensate for incomplete annotations
▸ Auto-supervision: create target positive labels
⇒ SMILEr (re-labeling)

▸ Using a curriculum strategy [Bengio et al., 2009]
1. Train ConvNet with SMILE: certain labels only, i.e. true positives and

negatives ⇒ "easy samples"
2. Seek for new true positives with current model

▸ "Harder samples", automatic labeling
▸ Use this new labels as target to train a new model with more positives
▸ Iterate

▸
TP
FP

: key indicator of SMILEr sucess
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SMILEr Training

▸ SMILEr algorithm: applied for each binary organ classifier independentlya

Algorithm 1 Algorithm for training SMILEr for class k

Require: Training set {(xi ,y∗i )}, γmax , T , SMILE model m0 for class k .
1: Initialize y∗i,0 = y∗i , Nu ← number of unannotated images for class k
2: for t=1 to T do
3: γt = t

T
γmax

4: for i=1 to Nu do
5: ŷi

+ ← (mt ,xi) // Find predicted positive pixels by mt in image xi
6: y∗,+i,t ← (mt ,xi , γt , ŷk+) // Assign new ⊕ taget labels
7: y∗i,t = y∗i,t−1∪ y∗,+i,t // Augment training set
8: end for
9: mt = train({(xi ,y∗i,t)}, ) // Re-train model with augmented training set

10: end for
Ensure: SMILEr Model mT

aIgnoring the dependence on class k for the sake of clarity.
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Dataset and setup

▸ Experiments on sub-set of our dataset with complete ground truth
annotations

▸ 72 3D CT-scan volumes (∼ 100 512 × 512 images) for three organs: liver,
pancreas and stomach

▸ Partially annotated dataset generated: randomly removing α% of organs in
the volumes independently

▸ Comparison of our methods (SMILE, SMILEr) wrt DeepLab baseline
▸ Train 80% / Test (20%), K = 5 datasplits
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Quantitative results

Mean Liver

Pancreas Stomach
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SMILEr re-labeling, α = 50%

GT SMILEr t = 1 SMILEr t = 2

T = 3, γmax = 1.0
SMILEr t = 3 Final prediction
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SMILEr re-labeling, α = 70%

GT SMILEr t = 1 SMILEr t = 2

T = 3, γmax = 1.0
SMILEr t = 3 Final prediction
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SMILEr re-labeling, α = 70%

GT SMILEr t = 1 SMILEr t = 2

T = 3, γmax = 1.0
SMILEr t = 3 Final prediction
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Re-labeling method

▸
TP

TP+FP
vs Curriculum iterations for Liver (α = 70%)
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Re-labeling method

▸
TP

TP+FP
vs Curriculum iterations for Stomach (α = 70%)
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Re-labeling method

▸
TP

TP+FP
vs Curriculum iterations for Pancreas (α = 70%)
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Segmentation results, α = 70%

GT baseline SMILEr

GT baseline SMILEr
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Segmentation results, α = 70%

GT baseline SMILEr

GT baseline SMILEr

GT baseline SMILEr
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Conclusion

▸ Method for learning with incomplete ground truth annotations
▸ First stage: train only with correct label
▸ Second stage: re-label positives
▸ Future works:

▸ Evaluation in larger datasets with more classes
▸ Using 3D conv backbones models
▸ Using uncertainty estimate [Kendall and Gal, 2017] for selecting
target auto-supervision labels

GT SMILEr
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Thank you for your attention!

Joint work with:

▸ Olivier Petit, PhD Student
▸ Luc Soler, Prof. at IRCAD, Visible Patient CEO

Questions?
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