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Context: Big Data
▸ Superabundance of visual data: images, videos, etc

BBC: 2.4M videos Social media, 100M monitoring cameras
e.g. Facebook: 1B each day

▸ Obvious need for Visual Recognition
▸ Huge number of applications: mobile visual search, medical imaging,
robotics, autonomous driving, augmented reality,etc
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Visual Recognition

Challenge: filling the semantic gap

What we perceive vs
What a computer sees

▸ Illumination variations
▸ View-point variations
▸ Deformable objects
▸ intra-class variance
▸ etc

⇒ How to design "good" intermediate representations ?
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Deep Learning (DL) & Visual Recognition

▸ Before DL:
handcrafted intermediate
representations for each domain

▸ Since DL:
Representation Learning
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Neural Networks

▸ The formal neuron
xi : inputs
wi ,b: weights
f : activation function
y : output of the neuron

y = f (w⊺x + b)

▸ Stacking several formal neurons ⇒ Perceptron
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The Multi-Layer Perceptron (MLP)

▸ Perceptron: limited to linear decision boundaries
▸ Stacking layers of neural networks ⇒ more complex and rich
functions

▸ Basis of the “deep learning” field
▸ All parameters trained with backpropagation with class labels
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Convolutional Neural Networks (ConvNets)
▸ Scalability issue with Fully Connected Networks (MLP) + no local information!

▸ ConvNets: sparse connections, shared weights = compact + local features
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Convolutional Neural Networks (ConvNets)
▸ Convolution on tensors, i.e. multidimensional arrays: T of size W ×H ×D

▸ Convolution: C[T ] = T ′, T ′ tensor of size W ′
×H ′ ×K

▸ Each filter locally connected with shared weights (K number of filters)
▸ Elementary block: Convolution + Non linearity (e.g. ReLU)+ pooling

▸ Stacking several Blocks: intuitive hierarchical information extraction
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Deep Learning History

▸ 80’s: training Convolutionnal Neural Networks (CNN) with
back-propagation ⇒ postal code reading [LeCun et al., 1989]

▸ 90’s: golden age of kernel methods, NN = black box
▸ 2000’s: BoW + SVM : state-of-the-art CV

8/ 20 N. Thome - Deep Learning for Medical Images



Deep Learning History

▸ Deep learning revival in 2012: outstanding success of ConvNets in
ImageNet [Krizhevsky et al., 2012]

▸ Two main practical reasons:
1. Huge number of labeled images (106 images)
2. GPU implementation for training
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Deep Learning (DL) for Medical Image Diagnostic
▸ Deep ConvNets require large-scale annotated datasets
▸ BUT: Transferring Representations learned from ImageNet
Extract layer (fixed-size vector) ⇒ "Deep Features" (DF)

▸ Now state-of-the-art for any visual recognition task [Azizpour et al., 2016]
▸ DF very robust to domain shifts, e.g. medical images
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Deep Learning (DL) for Medical Image Diagnostic

▸ DL & ConvNets: performance boost for classification in medical images
▸ Transfer & fine-tuning (ImageNet), e.g. Polyp Detection [Tajbakhsh et al., 2016]
▸ ConvNets trained from scratch, e.g. Mammography
Classification [Kooi et al., 2017]

▸ ConvNets: winners of recent challenges based on deep learning: Mammography,
Melanoma Detection, etc
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Deep Learning for Medical Image Semantic Segmentation

▸ Semantic segmentation: assigning a label to each image pixel
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Deep Learning for Medical Image Semantic Segmentation

▸ Deep Learning segmentation: classifying image regions around each pixel
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Deep Learning for Medical Image Semantic Segmentation

▸ Standard computer vision models models based on Fully Convolutional Networks
(FCN)

▸ FCN base models for many state-of-the-art methods segmentation methods,
e.g. leading approach in Liver Tumor Segmentation (LiTS’17)
challenge [Li et al., 2017]
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Deep Learning for Medical Images

▸ Successful exportation of DL solutions boost performances... BUT
▸ ... Medical images very different from natural images:

▸ Discriminative pattern often tiny, e.g. Mammography 0.5% − 1.2% cancer pixel
[Akselrod-Ballin et al., 2017] vs > 50% ImageNet or > 30% VOC

▸ ⇒ Strong imbalance between ⊕ and ⊖ (background) classes

Calcification(0.5%) Mass(1.2%)
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Deep Learning for Medical Images

▸ Successful exportation of DL solutions boost performances... BUT
▸ ... Medical images very different from natural images:

▸ 3D volumes vs 2D Images
▸ Hierarchical / nested detection or organs, e.g. tumor inside liver
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Specific Deep Learning Architectures for Medical Images

Resolution loss through the network

▸ Introduction of skip connections in U-Net [Ronneberger et al., 2015]
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Specific Deep Learning Architectures for Medical Images

Representation Learning with 3D Inputs?

▸ Use 3D convolution, e.g. V-Net [Milletari et al., 2016], 3D
U-Net [Çiçek et al., 2016] or [Lu et al., 2017]
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Specific Training Schemes for Medical Images

Class imbalance
Use a specific loss function, e.g.

▸ Weighted cross entropy, U-Net [Ronneberger et al., 2015]
▸ Dice score, V-Net [Milletari et al., 2016] or
[Fidon et al., 2017, Sudre et al., 2017]

s =
2∣T ∩ P ∣
∣T ∣ + ∣P ∣
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Specific Training Schemes for Medical Images

Exploit prior knowledge between organs, e.g. tumors only in liver
▸ Cascaded FCNNs for liver-tumor segmentation [Christ et al., 2016]
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Conclusion

▸ Deep Learning & ConvNets: state-of-the-art solutions for medical image analysis
▸ Representation learning ⇒ better visual features

▸ Exporting solutions from computer vision: transfer for classification, RPN for
localization, FCN for segmentation, etc

▸ Some adaptation required: spatial resolution, class imbalance, 3D data, etc
▸ Other crucial steps for deploying DL solution in Healthcare: uncertainty estimate
and explainability ⇒ vanilla DL models poor at these tasks

▸ Some preliminary solutions for uncertainty [Gal and Ghahramani, 2016] and
explainability [Frosst and Hinton, 2017]
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Thank you for your attention!

Questions?
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