ACHIEVING ROBUSTNESS IN CLASSIFICATION WITH 1-LIPSCHITZ NN AND OPTIMAL TRANSPORT WITH HINGE REGULARIZATION

Louis Béthune, Mathieu Serrurier, Franck Mamalet, Thibaut Boissin, Alberto González-Sanz, Jean-Michel Loubes, Eustasio del Barrio
PUBLICATIONS

« Achieving robustness in classification using optimal transport with hinge regularization », Mathieu Serrurier, Franck Mamalet, Alberto González-Sanz, Thibaut Boissin, Jean-Michel Loubes, Eustasio del Barrio,

« The Many Faces of 1-Lipschitz Neural Networks », Louis Béthune, Alberto González-Sanz, Franck Mamalet, Mathieu Serrurier
(https://arxiv.org/abs/2104.05097)
CONTEXT

• Adversarial attacks of Neural Networks

• Local Lipschitz robustness: \[|f(x + \epsilon) - f(x)| \leq k. ||\epsilon|| \]

• Classification with Lipschitz Neural Networks and Wasserstein

• Building 1-Lipschitz network
ADVERSARIAL ATTACK

- Adversarial example: closest example with the opposite class

\[
adv(f, x) = \arg\min_{z \in \Omega} \| x - z \| \text{ sign}(f(z)) = -\text{sign}(f(x))
\]

- Why neural networks are structurally weak to attack?
L-Lipschitz function: there exists L such that for all x, y}

$$\| f(x) - f(y) \| \leq L \| x - y \|$$

Note: f is continuous and almost everywhere (for Lebesgue measure) differentiable:

$$\| \nabla_x f \| \leq L$$

Weierstrass function: continuous but not Lipschitz

Lipschitz continuous function
WHY ARE NN WEAK TO ATTACK?

• High Lipschitz constant: small variation of inputs leads to high variation of the output -> principle of adversarial attack

• Illustration
1-Lipschitz classifier existence and limitations of Cross-entropy
LIPSCHITZ NETWORKS: AS CLASSIFIERS, THEY ARE GREAT

With \textbf{sign(f)} classifier: can imitate \textit{any} other classifier having closed pre-images

- if a network \(f \) is L-Lipschitz, \(\frac{1}{L}f \) is 1-Lipschitz and has same decision frontier
- if classes are separable, a 1-Lipschitz neural can attain 100\% test-accuracy
- even if classes are not separable, optimal Bayes classifier can be imitated

😊 They at least as powerful as unconstrained neural networks
BINARY CROSS ENTROPY MINIMUM

Probability with sigmoid function:

\[
\sigma(f(x)) = \frac{1}{1 + \exp(-x)}
\]

The loss:

\[
\mathcal{L}(f(x), y) = -\log \sigma(yf(x))
\]

Unconstrained neural network: \text{argmin ill-defined}

Lipschitz constant might grow indefinitely during optimization...

Training set: 2 points

\[(x_1, y_1) = (-1, -1)\]
\[(x_2, y_2) = (+1, +1)\]

Vanishing gradient slow down order 1 methods

\[y = Wx + b\]

\[W \to \infty\quad b = 0\]

Lipschitz neural network: \text{argmin attained}

Analysis of its properties and generalization capabilities is easier
LIPSCHITZ CONSTANT AND GENERALIZATION OF BCE

Points = {-2, -1, 1, 2}
Labels = {-1, 1, -1, 1}
Weights = {10, 1, 1, 10}

Small Lipschitz constant ⇔ Poor fitting of training set (underfitting possible)
Big Lipschitz constant ⇔ Tight fitting of training set (overfitting possible)

Lipschitz constant for BCE needs to be tuned just like Margin for Hinge!
• Training 1-Lipshitz networks
WHY CLASSIFYING WITH WASSERSTEIN

- Problem: cross entropy not suitable for 1-Lipschitz networks
- Wasserstein distance used as « discriminator » in WGAN
- Solution of the dual problem:
 - 1 Lipschitz function

\[\mathbb{P}_{x,z \sim \gamma^*}(f^*(x) - f^*(z) = ||x - z||) = 1 \]
WASSERSTEIN DISTANCE

Primal formulation:

\[\mathcal{W}_p(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{x, z \sim \pi} \| x - z \|^p \]

Dual formulation: \(f \) can be represented by a 1-lipschitz neural network

\[\mathcal{W}_p(\mu, \nu) = \sup_{f \in Lip_1(\Omega)} \mathbb{E}_{X \sim \mu} [f(X)] - \mathbb{E}_{X \sim \nu} [f(X)] \]

Problem: Wasserstein classifier is weak
OUR PROPOSITION: REGULARIZED WASSERSTEIN

- Idea: add an hinge regularization term to enforce classification

- Regularized dual problem

\[W_{pen} = \sup_{f \in Lip_1(\Omega)} \mathbb{E}_{X,Y} (Y f(X) - \gamma(1 - Y f(X)))_+ \]
OUR PROPOSITION: REGULARIZED WASSERSTEIN

- Trade-off accuracy robustness
THEORETICAL PROPERTIES

• Hinge regularized Wasserstein is still an optimal transport problem
 \[
 \sup_{f \in \text{Lip}_1(\Omega)} \mathbb{E}_{X,Y} (Y f(X) - \gamma (1 - Y f(X))_+) = \\
 \inf_{\pi \in \Pi^p_0(\mu, \nu)} \int_{\Omega \times \Omega} \| x - z \| \, d\pi - \pi_x(\Omega) - \pi_y(\Omega) + 1.
 \]

• Existence and uniqueness of the solution
• Gradient norm equals to 1 almost everywhere
• Risk bounds (almost OK)
PRACTICAL PROPERTIES

• Provable robustness

\[\| x - \text{adv}(\hat{f}, x) \| \geq |\hat{f}(x)| \]

• In practice

\[\| x - \text{adv}(\hat{f}, x) \| \approx |\hat{f}(x)| \]

• Structurally Robust to attack

• Adversarial attack:
 • Follow the transportation path
 • In the direction of \(\nabla_x f^*(x) \)
 • Shows explicitly what you have to change to change class
• Experimentations
ROBUSTNESS EVALUATION

Figure 4: Accuracy (Y-axis) w.r.t. of l_2 norm of FGSM, l_2PGD, deepfool and l_2 Carlini and Wagner combined attacks on 500 images of the test set.
MNIST 0-8 ADVERSARIAL ATTACKS

- Qualitative comparison of adversarial examples (50/50 score)

MLP with binary cross-entropy

1-Lipschitz MLP with binary cross-entropy

1-Lipschitz MLP with regularized OT
CELEB-A MOUSTACHE ADVERSARIAL ATTACKS

- Qualitative comparison of adversarial examples (50/50 score)

Lipschitz VGG with **regularized OT**

Without moustache □ In-between with or without moustache

(a) Fooling CelebA images classical network

(b) Fooling images 1-lipschitz network (binary crossentropy)
CELEB-A GLASS ADVERSARIAL ATTACKS

• Qualitative comparison of adversarial examples

Lipschitz VGG with regularized OT

• Raw

• Classical approaches

• Our approach
• Building 1-Lipschitz neural networks
LIPSCHITZ CONSTANT NEURAL NETWORK

• Very hard to evaluate accurately (np-hard)
• Multilayer perceptron

\[f(x) = \phi_k(W_k \cdot (\phi_{k-1}(W_{k-1} \ldots \phi_1(W_1 \cdot x)))) \]

• Lipschitz constant upper-bound

\[L(f) \leq L(\phi_k) \times L(W_k) \times L(\phi_{k-1}) \times L(W_{k-1}) \times \ldots \times L(\phi_1) \times L(W_1 \cdot x) \]

• Activation function are usually 1-Lipschitz

• If all linear layer are 1-Lipschitz, the network is 1-Lipschitz (but the constant can be smaller than one)
1-LIPSCHITZ NEURAL NETWORKS

- Principles: all the layers have to be 1-lipschitz
- Dense Layer with weights W

$$L(W) = \|W\| \leq \|W\|_F \leq \max_{ij}(|W_{ij}|) \times \sqrt{nm}$$

- Constraining Lipschitz constant
 - WGAN: weight clipping (last term of the equation)
 - Weight normalization with Frobenius norm $\|W\|_F$
 - Spectral normalization with spectral norm $\|W\|$
1-LIPSCHITZ OTHERS LAYERS

- ReLU, sigmoid, Tanh: 1-lipschitz by nature
- LeakyReLU: 1-lipschitz if $\alpha < 1.0$
- PReLU (Parametric Rectified Linear Unit): need a constraint on scaling factor (\RightarrowPReLU\text{lip})

- BatchNormalization: Not lipschitz
- Dropout: Not Lipschitz
GRADIENT PRESERVING

- Property of the optimal f for the dual Wasserstein problem:
 \[||\nabla f^*|| = 1 \text{ almost everywhere on the support of } \gamma^*. \]

- i.e. \(f^* \) is piecewise linear with slope equal to 1 almost everywhere

- How to achieve that:
 - Use gradient preserving activation function
 - Max min
 - Group sort
 - Full-sort
 - Orthonormalize the eigen vectors of the Weights of each layers (all singular values equals to one)
 - Bjork algorithm during inference
 - Can be time consuming
 - See also previous presentation by Bachour, Malgouyres, Mamalet
DEEL-LIP LIBRARY

• Library DEEL-LIP based on Tensorflow (Pytorch is coming) for building k-Lipschitz Neural Networks.

• Easy to use, implementing 1-lipschitz and Gradient Norm Preserving (GNP) layers, with GroupSort activation functions.

• hKR multi-class loss implementation

• additional feature to export linear layers to standard layers of TF after learning. (github.com/deel-ai/deel-lip)
CONCLUSIONS

• 1-Lipschitz NN are for classification and provide certification robustness radius

• Training 1-Lipschitz network with optimal transport loss
 • New interpretation of classification problem
 • Improve robustness structurally
 • Interpretable

• Deep lip : accessible and optimized library to train and use 1-Lipschitz networks

• Future works
 • Outlier detection
 • Semi-supervised/ agnostic learning