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Abstract—This paper presents an extension of the HMAX
model: a neural network model for image classi�cation. The
HMAX model can be described as a four-level architecture
with a �rst level consisting of multi-scale and multi-orientation
local �lters. We introduce two main contributions to this model.
First, we improve the way the local �lters at the �rst level are
integrated into more complex �lters at the last level, providing
a �exible description of object regions, combining local infor-
mation of multiple scales and orientations. These new �lters
are discriminative and yet invariant, two key aspects of visual
classi�cation. We evaluate their discriminative power and their
level of invariance to geometrical transformations on a synthetic
image set. Second, we introduce a multi-resolution spatial pooling.
This pooling encodes both local and global spatial information
to produce discriminative image signatures. Classi�cation results
are reported on three image data sets, Caltech101, Caltech256
and Fifteen Scenes. We show signi�cant improvements over
previous architectures using a similar framework.

I. I NTRODUCTION

The task of visual classi�cation is a cornerstone of image
processing and computer vision. This remains one of the most
challenging problems of the �eld since it implies identifying
complex categories inside images, such as scenes or objects. A
good classi�cation system should respond invariably to objects
within the same class and differently between classes. One
key aspect of such a system is the ability to de�ne and learn
representations with a proper balance between discriminability
and invariance.

In the �eld of computer vision, some developments have
pointed towards this goal. One is the design of discriminative
low-level local features, such as SIFT [1] and HoG [2].
These local descriptors provide a discriminative signature of
image patches, and are invariant to various image degradations
such as geometric and photometric transformations. Another
development in computer vision is the emergence of mid-
level representations based on the Bag of Words (BoW)
model [3]. The BoW model, inspired from the text retrieval
community, leads to state-of-the art performances in most
standard databases. To achieve human performance level, the
ultimate solution to image classi�cation remains unclear and
alternative avenues, such as biological vision, can be explored
in order to de�ne image representations.

When considering models of visual recognition it is dif�cult
to ignore the level of performance achieved by biological
vision. The mammalian visual system displays recognition
abilities that cannot be matched by any arti�cial system and it
seems wise to consider insights about the functioning of the
visual cortex.

Models of the mammalian visual system mainly originate
with the Nobel prize work of Hubel & Wiesel [4]. A key point
of their discovery is that neurons in the visual cortex describe a
manifold of localized �lters organized into columns of spatial
frequencies and orientations. Their work gave biological sup-
port to early psychophysical theories stating that the visual
system analyzes patterns into multiple and independent fre-
quency channels [5], [6]. More recent studies [7], [8] provide
mathematical models to the work of [4]. In [8] it is shown
that the point spread function of neurons in the mammalian
visual cortex can be modeled by Gaussian derivative �lters (i.e
band-pass �lter) of multiple orientations and scales. In [7] it is
shown how such �lters emerge by learning statistics of natural
images. All these considerations regarding the local receptive
�elds of visual neurons are also given a strong theoretical
setting in the scale-space theory of vision [9], [10], [11], [12],
[13]. The scale-space theory describes the visual front end of
the cortex with a family of local and scaled gaussian operators.
This formulation of the visual cortex can be implemented in
multi-layer neural networks composed of simple units with
local receptive �eld pro�les [14].

According to the biological model, the low level operations
of these multi-layer networks are de�ned by local oriented
�lters at multiple scales (i.e. Gaussian derivatives or Gabor
�lters). These networks combine the low level representations
into object level representations suitable for recognition tasks
[15], [16], [14], [17], [18], [19]. Different types of feature
combinations in the hierarchy can be considered and produce
different performances [20], [21]. Physiological studies sug-
gest that feedforward activation, with little or no feedback,
produces the early recognition response while sustained feed-
back mechanisms generate a more attentive response [22],
[14]. When modeling a purely feedforward activation, the
challenge is to produce high level representations which are
both discriminative and invariant. Indeed, by building complex
and global representations from simple and localized features
these networks face the problem of �nding a balance between
object speci�c representations and invariant representations to
ensure differentiation between classes of object and invariance
inside each class.

In this paper, we introduce an architecture for image clas-
si�cation which extends on previous work based on basic
operations of the visual cortex [19], [1]. In particular, our
network pools over oriented and scaled �lters at the lowest
level, which correspond to early operations ofsimple cells
and complex cellsin the V1 cortical area [14]. The work of
[23] also presents an extension of [19] by integrating sparsity,
a re�ned pooling strategy and a feedback mechanism to
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select relevant representations. We keep this basic framework
of simple cellsand complex cellsoperations, and improve
previous networks [19], [1], [24] by re�ning the �lters on the
last level of the network which integrate simple local �lters
into more complex �lters covering larger and more complex
image regions.

Speci�cally, we introduce two main contributions that im-
prove the classi�cation capacity of previous similar networks.

First, the coef�cients of each �lter on the last layer are
trained to better discriminate the image content. Importantly,
this gain in terms of discriminability is also coupled with
an increase in terms of invariance. This joint discriminability
and invariance improvement is achieved due to the ability
to extract relevant image structures while being tolerant to
various degradations such as geometric transformations or
occlusions.

Second, we present a �exible multi-resolution radial ap-
proach to pool the outputs of �lters across the image. Neurons
in the inferior temporal visual cortex (IT) are known to have
limited receptive �elds of various sizes [14]. These can be
interpreted as pooling over local regions of various sizes on
the visual �eld, which results in partial invariance to spatial po-
sition. In this spirit, our multi-resolution pooling corresponds
to matching a given �lter inside spatial neighborhoods with
different pooling radii, yielding different levels of invariance.
The optimal level of invariance, for a classi�cation task, can
then be learned by a classi�er in a supervised manner at the
highest level of the network.

The remainder of this paper is organized as follows. Section
II presents state-of-the-art methods that are the most connected
to ours. The general HMAX network architecture is depicted
in sectionIII . SectionIV gives the details of our contributions,
while sectionsV andVI give supporting experimental results.
Finally, sectionVII concludes the paper and gives directions
for future works.

II. RELATED WORK

In this section, we review the approaches which are the most
relevant to our approach.

A. Bag of Words (BoW) Methods

BoW models have extensively been studied in the last
decade due to their good performances for classi�cations in
many object or scene databases. In the BoW model [3], a set
of local and accurate descriptors (e.g.SIFT) is �rst computed,
forming the so-called ”Bag of Features” (BoF) for a given
image. The BoF is then transformed to a constant-size image
representation to generate the Bag of Words (BoW). The BoW
can be interpreted as an occurrence histogram of visual words,
where the visual codebook (dictionary) has been trained from
a set of local descriptors. The mapping of visual codebooks
against image descriptors can be decomposed into a coding
phase followed by a pooling step, as formalized in [25]. In
the original BoW model [3], a simple vector quantization
stage is applied for coding, and the codes are aggregated with
an average pooling strategy. Several improvement have been
proposed to improve coding and pooling steps. To reduce

the quantization errors induced by vector quantization, one
may rely on soft assignment [26], or sparse coding tech-
niques [27], [25], that explicitly minimize reconstruction error.
The Restricted Boltzman Machine (RBM) model has been
used to produce fast sparse coding inferences [28]. Regarding
pooling, max pooling has recently been studied and proved to
be a good alternative to sum pooling, especially when linear
classi�ers are used. An extension of the BoW formalism uses
a pooling which encodes the distance-to-codeword distribution
[29]. Another extension of BoW models using Fisher ker-
nels which bene�ts from both generative and discriminative
approaches has also shown good classi�cation results [30].
Finally, since the BoW model ignore spatial information,
most of the approaches integrate the Spatial Pyramid Scheme
(SPM) [31], also extended in the context of photographic style
image classi�cation [32]. Other approaches, based on the BoW
model, also encode the relative spatial distributions between
visual words [33], [34]. Learning algorithms have also been
used to learn ef�cient feature combinations [35].

B. Deep & biologically inspired architectures

Multi-layer networks or the convolutional networks intro-
duced by LeCunet al. [17], [36] are certainly amongst the
pioneer works of this type of architecture. The main idea is
to learn each layer representations from data. In the original
convolutional networks, parameters of the whole network are
trained in a supervised manner using the error backpropagation
algorithm. Ranzatoet al. [17] focus on unsupervised learning
of features at every layer of a standard convolutional neural
network, while Leeet al. [37] propose to use a Convolutional
Restricted Boltzman Machine (CRBM) for image catego-
rization, and report promising performances. A key aspects
of these type of models consists in learning a hierarchical
composition of �lters [38], [17]. The depth of these models,
although appealing, implies a very large number of coef�cients
to be learned and often require to solve complex and highly
non convex optimization problems.

Other biologically inspired models focus on building net-
works of simple and complex features based on physiological
data about the mammalian visual pathways [4], [15], [39],
[14], [40], [16]. Beginning with low level �lters, matching
the physiological recordings in the early steps of the visual
pathway, the challenge is to organize such low level repre-
sentations into a coherent robust object level representation.
The low level representations are often �xed but supported by
physiological studies, while higher level representations can be
learned and driven by a speci�c task. The pioneer work of [15],
[41], [36] has shown how a deep architecture can be trained to
merge simple visual features into a more complex whole while
retaining some degree of invariance to basic visual transforms.
In [40] effort is put in statistical learning of the relative
position of simple features and carrying this information into
a global discriminative representation. The work in [16] uses
temporal correlations, between views of a transforming object,
to learn a multi-layer architecture with invariant properties to
various visual transformations. In [39] the emphases is put
on the unsupervised learning of relevant object level features
using the temporal aspect of neural encoding.
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Fig. 1. General convolution network: the network alternates layers of feature mapping (convolution) and layers of feature pooling. The convolution layers
generate speci�c feature information whereas the pooling layers generate invariance by relaxing the con�guration of these features.

Another important contribution to biologically inspired
models comes from the HMAX model [18], which focuses
less on learning and more on designing simple operations
inspired by the visual cortex. This networks alternates lay-
ers of features extraction with layers of maximum pooling,
mimicking known data about the ventral pathway of visual
cortex. Serreet al. [19] extend the original HMAX model to
add multi-scale representations as well as more complex visual
features. Huanget al. [23] also improved the HMAX model
with sparsity constraints, a different pooling strategy and a
feedback mechanism to improve feature learning. The model
proposed by Mutchet al. [1] is the most closely related to
ours: they improve the network of [19] by tuning the �lters
to the dominant local orientations. In our previous work [24],
we further improved this idea to local scales. In [42] it is
also shown how HMAX �lters can outperform state-of-the-art
�lters such as SIFT under various controled invariance tasks
on synthetic images.

We extend on the properties of this particular family of
models. We use two levels of �lters in which the second level
�lters are trained to optimally �t the dominant local geometry
of images. Our contributions can be summarized as follows:

� Training of �lters which generate representations that are
more discriminative and more invariant

� Design of a novel multi-resolution pooling that codes the
spatial distribution of each category.

� Experimental validations of the discriminative power and
invariance level of the network with respect to previous
models

Additionally, we highlight the complementarity between
our representations and the local descriptors used in BoW
models. We combine both strategies to reach or outperform
state-of-the art results. The local descriptors used in the BoW
models are usually �ne-grained description of an image, which
correspond to small image areas,e.g. 16 � 16 pixel patches.
The descriptors presented in this paper operate on a different
scale and correspond to features with larger spatial extent, and
constitute therefore complementary representations from those
extracted with BoW models.

III. G ENERAL HMAX MODEL

The general HMAX model follows a basic alternating
convolution/pooling scheme as in [19], [18] and illustrated in
�gure 1. Each convolution step yields a set of feature maps
and each pooling step provides robustness to variations in these
feature maps. Below we describe the operations of each layer
as done in [19].

Layer 1. Each feature mapL1
� ,�

can be obtained by
convolution of the input image with a set of Gabor �lters
g

� ,�
with orientations� and scales� . These �lters are used

to model simple cellactivation in the V1 area of the visual
cortex [14]

g
� ,�

(x; y) = exp(
x2

o + y 2
o

2� 2 ) � cos(
2�
�

xo); (1)

wherexo = x cos� + y sin � andyo = � x sin � + y cos� . The
parameter indicates the aspect ratio of the �lter and� its
wavelength.

Given an imageI , Layer 1 at orientation� and scale� is
given by the absolute value of the convolution product

L1
� ,�

= jg
� ,�

� I j: (2)

Layer 2. Each feature mapL2
� ,�

is a dimension reduction of
L1

� ,�
obtained by selecting maxima on local neighborhoods.

A well known effect of maximum pooling over local neigh-
borhood is the invariance to local translations and thereby to
global deformations [18], [15].

Speci�cally, the second layer partitions eachL1
� ,�

map
into small neighborhoodsu i;j and selects the maximum value
inside eachu i;j such that

L2
� ,�

(i; j ) = max
u i;j 2 L1

� ,�

u i;j : (3)

Some degree of scale invariance is also achieved by
keeping only the maximum output over two adjacent scales
at each position(i; j ).

Layer 3 Layer L3 at scale� is obtained by convolving
�lters � m , which we call HL �lters, against layerL2 �

L3 m
� = � m � L2 � : (4)



4

HL �lters represent visual descriptors of ”mid-level” areas
in the image which combine ”low-level” Gabor �lters of
multiple orientations at a given scale. To compute equation
4, HL �lters must �rst be trained as described below.

Training In the basic HMAX framework [19], as shown in
�gure 2, the HL �lters � m are the result of a sampling process
over the layerL2 of training images. This sampling process
has three parameters: scale, spatial position, and spatial size.
Speci�cally, HL �lters are generated by randomly sampling
prototype blocksof L2 coef�cients of spatial sizen � n at
position(x; y) and scale� , covering all orientations� . In [19],
M � 1000 prototypes blocksare sampled over the training
set to createM HL �lters. For illustration, in �gure 2, the
shaded blue represents the entireL2 layer with all scales
and orientations concatenated together along thez axis. The
shaded red,L2 � , illustrates one slice of the layer at scale�
and containing all the orientations.

Layer activation As shown by the right part of �gure2,
each sampled block de�nes one HL �lter which can be later
matched against theL2 layer of new images. In [19] each HL
�lter is matched against layerL2 at all spatial positions and
all scales. Speci�cally, as given by equation4, each HL �lter
is convolved over each scale mapL2 � to produce the feature
mapsL3 m

� .

Fig. 2. HMAX: level-3 operations. Training:M � 1000 HL �lters are
de�ned by samplingprototype blocksof L2 coef�cients from training images.
Layer activation: Given a new image, each HL �lters is convolved over all
positions of each scale mapL2 � .

Layer 4 To gain global invariance, the �nal signature is
computed by selecting the maximum output ofL3 m

� across all
position and scales. The �nal layer is thus a vector of dimen-
sion M � 1000 where each coef�cient gives the maximum
output of each HL �lter across scales� and positions(x; y).

L4 =

2

6
6
6
4

max
(x;y ) ;�

L3 1
� (x; y)

...
max

(x;y ) ;�
L3 M

� (x; y)

3

7
7
7
5

: (5)

IV. A DVANCED CODING AND SPATIAL POOLING STRATEGY

Here we describe our contribution to the HMAX model and
give parameter details for each layer.

Fig. 3. Our model: level-3 operations. In our model each HL �lter spans
over multiple scales simultaneously. In this example, the �lter is convolved
simultaneously over multiple scales centered at scale� At training the
coef�cients corresponding to weak scales and orientations are set to zero
making our �lter more discriminative, ignoring weaker scale and orientations
during testing.

Layer 1. As done in [19], we use equation2 to de�ne
eachL1

� ,�
map. The scale range of� varies with grid size

according to tableI. We use a range of 12 orientations� =
f k�

12 g; k 2 f 0: : : 11g and 8 scalesS = [ � 1; ::; � 8] . The aspect
ratio was set to = 0 :3 to match the settings in [19]. To
ensure scale invariance, each �lter is normalized to zero mean
and unit length. To obtain invariance to light intensity, each
pixel patch during the convolution product in equation2 is
normalized to unit length before being multiplied by the �lter.

Scale Filter size � �
1 7� 7 2.8 3.5
2 11� 11 4.5 5.6
3 15� 15 6.7 7.9
4 19� 19 8.2 10.3
5 23� 23 10.2 12.7
6 27� 27 12.3 15.5
7 31� 31 14.6 18.2
8 35� 35 17.0 21.2

TABLE I
LAYER 1 FILTERS PARAMETERS. AS DONE IN [19] THE SCALE AND

WAVELENGTH OF EACH FILTER IS CHOSEN TO MATCH PHYSIOLOGICAL
RECORDINGS.

Layer 2. Each feature mapL2
� ,�

is obtained as described for
the HMAX model in sectionIII . Similarly to [1], we applied
a competition to both the orientation and scale coef�cients
setting to zero the weaker coef�cients at each position(i; j ).
We used pooling neighborhoodsu i;j of sizes proportional to
the scale of processing as in [19] and given by tableII .

Layer 3 Our �rst principal contribution is in way the HL
�lters are trained and used to generate layerL3 .
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Scale Neighborhoodu sizes
1 8� 8
2 10� 10
3 12� 12
4 14� 14
5 16� 16
6 18� 18
7 22� 22
8 24� 24

TABLE II
LAYER 2 MAXIMUM POOLING NEIGHBORHOOD SIZE. THE POOLING SIZE
IS PROPORTIONAL TO THE FILTERING SCALE OF THE PRECEDING LAYER.

Training Our methods contrasts with earlier models [18],
[19], [1] since our HL �lters are not limited to a single scale.
This difference with the original HMAX model is illustrated
when comparing �gure2 with �gure 3. There are two main
differences to be noted between the two �gures:

1) Modeling :our HL �lters cover a range� � � � of scales
simultaneously. This gives more representation power to each
HL �lter. By increasing its scale range, each HL �lter can
represent ”mid-level” structures containing multiple scales
inside the same spatial neighborhood. This is an improvement
over the representation in [19], [1], where the HL �lters span
a single scale, limiting the possibility of each �lter to match
the local scale of image structures.

2) Robustness :our HL �lters are trained to optimally match
the dominant local scales and orientations, discarding weaker
training scales and orientations. By setting its coef�cients on
Gabor �lters which produce strong training outputs, each HL
�lter gains robustness to interfering orientations and scales
(i.e noise and clutter) when presented with a new image.
This principle has been introduced in [1] for the case of
orientations. As shown at the bottom left of �gure3, the
HL �lters in [ 1] are a re�ned version of [19], where the HL
�lter coef�cients corresponding to weak orientations are set to
zero (white cubes set to zero). This increased discriminative
power reduces interference caused by weak orientations during
testing. We extend the principle of [1] by also specializing each
�lter on the dominant local scale, setting to zero coef�cients
corresponding to weaker scales. This makes our HL �lters even
more discriminative by ignoring weaker scales and orientation
on test images.

Algorithm 1 summarizes the steps for training the HL �lters.
As for the HMAX our HL �lters are trained by samplingproto-
typeblocks from theL2 layer of training images. Speci�cally,
we sampleprototypeblocks B m 2 Rn � n �j Sj�j � j from layer
L2 . The dimensionn 2 f 4; 8; 12; 16g de�ne the spatial size of
the HL �lter, jSj 2 f 1; 3; 5; 7g its scale range, andj� j = 12
its orientation range. Using the sampledprototypeblock B m ,
the coef�cients� m

i;j ,� ,�
are set such that

� m
i;j ,� � ,� � =

8
<

:

B m
� � ,� �

(i; j ) if (� � ; � � ) = arg max B m
� ,�

(i; j )

0 otherwise
:

(6)

Equation 6 can be thought of as a learning rule which
sets to zero the connections on weak orientations and scales
(white cubes in �gure3) after being presented with a single
prototype exampleB m . For each HL �lter, the coordinate
sm = ( xm ; ym ; � m

s ) at which prototype B m is sampled
is memorized. This memorized coordinate is used at layer
L4 to encode spatial information about each HL �lter when
presented with new images.

Algorithm 1 HL �lter training
Require: M: number of �lters to train

j� j = 12: number of orientations
jSj 2 1; 3; 5; 7: number of scales
n 2 4; 8; 12; 16: spatial size
for m = 1 to M do

Select one training image
Activate up to layer L2
Select a random coordinatesm = ( xm ; ym ; � m

s ) on L2
Extract a random sampleB m 2 Rn � n �j Sj�j � j at position
sm

Apply equation6 to get � m

end for
return sm , � m

Layer activation Each feature mapL3 m
� is a convolution

product of theL2 layer with �lter � m centered at scale� .
Speci�cally, the outputL3 m

� (x; y) is given by the dot product
of � m with the block L2 � (x; y) at spatial position(x; y),
centered on scale� .

L3 m
� (x; y) = h� m ; L2 � (x; y)i : (7)

For our most basic network we useM = 4080 �lters to
generateM maps L3 m

� . We normalize to unit length each
components of equation7 so that it gives the cosine between
both components. In [19], [1] a radial basis function (RBF)
is used for layerL3 . After experimental veri�cation showing
better performances we chose a normalized dot product as
opposed to a RBF. We observe near3% improvement in
classi�cation score using the normalized dot product de�ned
in equation7 when compared to the RBF function used in
[1], [19]. One possible advantage of using normalization here
is to ensure that geometrical similarities of features are kept
invariably with respect to light intensity variations.

The toy example (synthetic image) in �gure4 shows how
our HL �lters adapts differently to local image structures
when compared with [1], [19]. In the �gure, the red ellipses
correspond to the local scales and orientations of Gabor �lters
selected by the HL �lter� m . In [1] the randomly chosen scale
of the �lter is misadapted to the local image scale. This results
in sub-optimal Gabor �lters selected along the edges and not
corresponding to the optimal local scale of the training image.
In [19] the randomly chosen scale is again misadapted to the
local image scale and all orientations are trained. As shown,
our HL �lter adapts to the optimal local scale and orientation
of the training image.

Layer 4. Our second main contributions is in the way the
outputs of HL �lters � m are spatially pooled together to create
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Fig. 4. Toy examples. The red ellipses indicates the local scale and
orientation of Gabor �lters selected by the HL �lter. On the left, the HL
�lter is trained at a randomly chosen scale on all orientations as done in [19].
In the middle the HL �lter is trained on a randomly chosen scale and learns
the optimal orientation as done is [1]. On the left, our HL �lter adapts to the
optimal scale and orientation.

a full image signature at layerL4 . As done in [19] (�gure 5)
one can store the maximum global output of each HL �lter into
one vector signature. In [1], spatial information is represented
by memorizing the training position of each HL �lter and
then taking the maximum output for each test image in the
neighborhood of the training position. In [31] a pyramidal
pooling approach (SPM) is used to code spatial information.

Serre [19] Lazebnik [31] Mutch [1] Our Model

Fig. 5. Image partitions for pooling. In [19] the entire image is used to
pool each HL �lter. In [31] a pyramidal (SPM) partition of the image is used
to code spatial information. In [1] a localized pooling regions is de�ned for
each HL �lter. Our pooling is localized with multiple spatial resolutions.

Here, we introduce a spatial pooling which merges aspects
of the pyramidal pooling in [31] and the localized pooling in
[1]. Using these principles, our HL �lters perform a maximum
pooling over image regions of various sizes. Speci�cally, for
each HL �lter � m a set of concentric search regionsSi is
established around the coordinatesm = ( xm ; ym ; � m

s ) which
was memorized at training. To retain some scale information,
the search region is also established at� 1 scale around� m

s .

Search Radius % of image size
R1 5
R2 10
R3 30
R4 50
R5 70
R6 100

TABLE III
LAYER 4 POOLING RADII. THE POOLING RADII ARE EMPIRICALLY

CHOSEN TO COVER THE WHOLE IMAGE WITH A SUFFICIENTLY FINE
SPATIAL RESOLUTION.

Each search regionSi is de�ned by a radiusRi as shown
in table III and centered on the memorized coordinatesm .
We chose 6 levels of spatial pooling resolution. The lowest
level (R1 = 5%) corresponds to the level of resolution used
in [1]. The highest level (R6 = 100%) ensures that the entire
image is covered, not discarding any feature. The remaining 4
resolutions are chosen to ensures a suf�ciently �ne resolution
to encode variations in spatial positions.

Fig. 6. Multi-resolution pooling. The training coordinatesm =
(xm ; ym ; � m

s ) of each HL �lter is memorized. For each new image, a
concentric series of 6 search spatial regions are centered on this coordinate
and spanning� m

s � 1 scales . The maximum value is pooled from each search
region. This generates both rich and localized spatial information.

By de�ning a local pooling region centered on the training
position of each HL �lter we take advantage of spatial reg-
ularities inside a given image class as done in [1]. By also
varying the pooling radius (�gure6) we allow a more precise
encoding of spatial relations. But unlike [31], our pooling is
centered on each HL �lter and is therefore feature speci�c.

For example as shown in �gure7, two categories might
share a similar feature (i.e peak) but consistently positioned
around the same position inside each category and at different
positions between categories. It is therefore essential for
classi�cation to encode the spatial position of these features
while capturing some variations, which is accomplished by
using multiple radii off pooling.

Fig. 7. Multi-resolution pooling. Both categories contain a similar feature (i.e
peak). The feature is located in a limited but different region in both categories,
with some variations inside each category. Both the category speci�c position
and the variations within it are coded by our multi-resolution pooling.

This maximum pooling procedure is applied for each HL
�lter and the results are concatenated into a �nalL4 vector
signature (equation8). Each element of theL4 vector repre-
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sents the maximum activation level of each HL �lter inside
each search region.

L4 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

max
R 1 ; � 1

s � 1
L3 1

� 1
s

...
max

R 1 ; � M
s � 1

L3 M
� M

s

...
max

R 6 ; � 1
s � 1

L3 1
� 1

s

...
max

R 6 ; � M
s � 1

L3 M
� M

s

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (8)

Classi�er . The layer 4 signature vector of each image are
used to train one-against-all classi�er, using a gaussian kernel
with L 2 norm [43].

V. CLASSIFICATION EXPERIMENTS

We give classi�cation results for three images sets and we
breakdown the improvements according to our contributions.

A. Data sets

To evaluate our network on classi�cation tasks, we use
three natural image data sets (�gure9). The �rst two, Cal-
tech101 and Caltech256, are composed of various objects
classes whereas the second one, Fifteen Scenes, corresponds
to indoor/outdoor scenes.

1) Caltech101 and Caltech256:The Caltech101 [44] image
set is composed of 102 categories for a total of 9144 natural
images. The Caltech256 [45] image set is composed of 257
categories or a total of 30607 natural images. For both, each
category represents a particular object against either a plain
background or a natural scene.

2) Fifteen scenes:The Fifteen Scenes data set [44] is
composed of 15 categories of urban and rural scenes for a
total of 4885 images.

B. Classi�cation results

1) Caltech101:Our basic architecture trains40 HL �lters
per category for a total ofM = 4080 HL �lters. We used
the standard classi�cation procedure with 15 and 30 training
examples per class, as done in all models presented in tableIV.
A mean comparison Student t-test, with a risk� = 0 :05, shows
that our score of69:52%is signi�cantly above all biologically
inspired architectures reported in [19], [1], [23], [24], [17],
[37], [46], [38], [40] and compares with the highest scores in
[47]. All these architectures use a similar generic framework of
alternating convolution/pooling. Our highest score of76:32%
reaches state-of-the-art level for 30 training examples when
compared to benchmark models using BoW methods with
mono feature descriptors. Our architecture generates a total
increase of15%over the results in [1], the model most closely
related to ours.

We reimplemented the two models presented in [19], [1],
which are the most closely related to ours, and were able

15 images 30 images

Our model
jSj = 1 53 59
+ normalized dot product 56.17 � 0.48 63.00 � 0.9

jSj = 1 [ 7 59.21 � 0.18 66.84 � 1.05
+ multi-resolution pooling 60.1 � 0.5 69.52 � 0.39

+ pixel level gradient 68.49 � 0.75 76.32 � 0.97

Deep biologically inspired architectures
Serreet al. [19] 35 42

Mutch&Lowe [1] 48 54
Huanget al. [23] 49.8 � 1:25

Theriaultet al. [24] 54 � 0:5 61 � 0:5
Lecunet al. [17] - 54� 1:0
Lee et al. [37] 57.7� 1:5 65.4� 0:5

Jarretet al. [46] - 65.6� 1:0
Zeiler et al. [38] 58.6� 0:7 66.9� 1:1
Fidler et al. [40] 60.5 66.5
Zeiler et al. [47] 71.0 � 1:0

BoW architectures
Lazebniket al. [31] 56.4 64.6� 0:7

Zhanget al. [48] 59.1� 0:6 62.2� 0:5
Wanget al. [27] 64.43 73.44
Yang et al. [49] 67.0� 0:5 73.2� 0:5

Boureauet al. [25] - 75.7� 1:1
Sohnet al. [50] - 77.8

TABLE IV
CLASSIFICATION RESULTS INAVERAGE PRECISION ONCALTECH101

Fig. 8. Our best �ve classi�cation accuracies on Caltech101

to reproduce or go above their published scores of42% and
54%respectively. We used these reimplementations as our �rst
baselines. Note that our basic score of59% is already above
the score reported in [1]. This is explained by the fact that we
use aL 2 norm gaussian kernel instead of a linear classi�er
and also by our choice of implementing a multi-resolution of
Gabor �lters as opposed to an image pyramid with a �xed �lter
size. Beginning with our most basic setup, tableIV shows the
increase in classi�cation scores observed when adding step by
step the various aspects of our contributions.

First, when adding a normalized dot product on layerL3
(equation 7) instead of the RBF function used in [1] we
observe an increase near3% in classi�cation scores.

Second, we observe a jump of near4% when using HL
�lters with multiple scalesjSj 2 f 1; 3; 5; 7g. There is indeed
a trade-off between the precision at which the HL �lter �ts
the training data (discriminative power) and the level of scale
invariance it can achieve. To account for both discriminative



8

Fig. 9. Top: samples from the Caltech101 and Caltech256 image sets. Bottom: samples from the Fifteen Scenes image set

power and invariance we can train HL �lters on all values of
jSj.

Third, when adding our multi-resolution pooling at the �nal
level of the network, an additional2% increase is observed.
For certain objects the spatial position relative to other features
in the image can be very informative. To encode spatial
training positions as well as spatial relations between features
our �nal L4 image signature concatenates all pooling radii
f R 1; :::; R 6g de�ned in tableIII .

The independent effects of our two main contributions, the
multi-resolution pooling and the deeper HL �lters are shown
in tableV. When combining HL �lters signatures using all 7
scales with signatures using a single scale, a4% increase is
observed. Apaired sample Student t-teston 10 independent
splits shows this increase to be signi�cant with a risk� =
0:05. When adding the multi-resolution pooling alone a near
2% increase is observed, also signi�cant with a risk� = 0 :05.

Our model
jSj = 7 62.82 � 0.90

jSj = 1 [ 7 66.84 � 1.05
jSj = 7

+ multi-resolution pooling 64.58 � 1.05

TABLE V
IMPROVEMENT OBTAINED INDEPENDENTLY FOR OUR TWO MAIN

CONTRIBUTIONS TESTED ONCALTECH101 FOR 30 TRAINING EXAMPLES.
DIFFERENCES ARE SIGNIFICANT ON Apaired sample Student t-testWITH A

RISK � = 0 :05.

By being composed of large arrays of Gabor �lters, our
HL �lters give spatial information spanning large image areas
(object level) as shown in �gure10. Although Gabor �lters are
de�ned as local frequency operators they respond similarly to
an oriented second order derivative and they share relations
with the family of gaussian derivative operators [10], [11],
[12]. Therefore it is fair to say that our HL �lters fall into the
general category of descriptors composed of local band-pass
�lters, measuring or approximating various orders of spatial
derivatives.

One such descriptor used for image classi�cation is the SIFT
descriptor [25], [49] which relies on local gradients. Contrarily

to a SIFT descriptor, one single HL �lter pools multiple spatial
scales inside the same patch simultaneously (red ellipses in
�gure 10). For this reason one single HL �lter can describe
an object using multiple scales across one large image region
(i.e 90x90 pixels). Different SIFT descriptors can operate at
different scales but the scale of each individual descriptor is
the same across the patch which usually covers smaller image
regions (16x16 up to 48x48 pixels). These are two different
levels of representation. Combining these descriptors allows
for �ne gradient descriptions as well as more macro, object
level, descriptions. When combining the pixel level encoding
of SIFT descriptors as done in [49] with the larger spatial
span of HL �lters our model generates76:32%in classi�cation
score reaching state-of-the-art level on models using mono
features descriptors (i.e. derivative �lters, band-pass �lters). A
mean comparison Student t-testshows the increase over [49]
to be signi�cant with a risk� = 0 :05.

2) Caltech256:TableVI shows classi�cation results on the
Caltech256 data set. As for Caltech101, the basic architecture
trains 40 HL �lters per category for a total ofM = 10280
HL �lters. Again our model reaches state-of-the-art scores on
similar architectures using a 4 layer architecture with convolu-
tion and maximum pooling as in [47]. When combining with
the pixel level gradient of [49] our score reaches near state-of-
the-art and improves the scores in [49] by close to7%, clearly
above statistical signi�cance at a risk� = 0 :05.

Our model
jSj = 1 [ 7

+ multi-resolution pooling 31.23 � 0:38
+ pixel level gradient 40.56 � 0:28

Deep biologically inspired architectures
Zeiler et al. [47] 33.2� 0:8

Bow architectures
Yang et al. [49] 34.02� 0:35
Wanget al. [27] 41.19

Boureauet al. [51] 41.7 � 0:8

TABLE VI
CLASSIFICATION RESULTS INAVERAGE PRECISIONCALTECH256 FOR 30

TRAINING EXAMPLES.
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3) Fifteen Scenes:For the Fifteen Scenes data set, our basic
architecture trains300 HL �lters per category for a total of
M = 4500 HL �lters. Table VII shows the confusion matrix of
our network applied to the Fifteen Scenes set. As for the Cal-
tech101 image set we combine the complementary mid-level
descriptions of our HL �lters with the pixel level descriptions
of SIFT as in [49]. Our global average classi�cation score
of 82:94% is above or close to benchmark results obtained
in [31], [25]. A mean comparison Student t-testshows the
increase over [49] to be signi�cant with a risk � = 0 :05.
More importantly, as shown in tableVIII our standard model
improves our reimplementation of [1],[19] by over 10% and
20% respectively.
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bedroom0.89 0.01 0.03 0.03.
calsub.. 0.710.05 0.02 0.130.04 0.01
indust.. 0.030.76 0.01 0.010.060.02 0.05
kitchen 0.93 0.020.01 0.01
living.. 0.01 0.81 0.14 0.01 0.01
coast 0.020.01 0.06 0.6 0.01 0.040.01 0.010.180.01
forest 0.01 0.1 0.790.1 0.03 0.01

highway 0.01 0.910.03 0.02
insid.. 0.010.04 0.02 0.030.84

mount.. 0.020.120.10 0.010.010.640.03 0.06
country 0.03 0.030.91
street 0.02 0.95
build.. 0.01 0.98
paroff.. 0.010.010.01 0.01 0.020.070.05 0.01 0.76
store 0.02 0.01 0.01 0.91

TABLE VII
CONFUSION MATRIX FOR15 scenesIMAGE SET

Our model
jSj = 1 [ 7

+ multi-resolution pooling 74.35 � 0:83
+ pixel level gradient 82.94 � 0:57

Deep biologically inspired architectures
Mutch&Lowe [1] 63.5
Serreet al. [19] 53.0

Bow architectures
Lazebniket al. [31] 81.4 � 0:45

Yang et al. [49] 80.4 � 0:45
Boureauet al. [25] 84.3� 0:45

TABLE VIII
CLASSIFICATION RESULTS INAVERAGE PRECISION ONFIFTEEN SCENES
FOR 100 TRAINING EXAMPLES. SCORES FOR[1],[ 19] ARE OBTAINED BY

OUR OWN REIMPLEMENTATION.

The high discriminative power of our deepest HL �lters is
made obvious for certain categories in the Fifteen Scenes im-
age set. For instance, our model consistently gives near perfect
classi�cation score for the Building category. This category
showcases our model's ability to �t arrays of simple, scaled
and oriented local structures. Categories such as Building are
mostly composed of well de�ned local structures of multiple
scales and orientations. Our most discriminative HL �lters
(jSj = 7 ) are well suited for this type of image stimuli. Indeed,
our HL �lters are expected to �nd close to optimal �t on

organized patterns of clear-cut structures. This translates quite
well into the high classi�cation score obtained for the Building
category, also illustrated in �gure11

Fig. 11. The building categories showcases our model's ability to consis-
tently �t arrays of simple, scaled and oriented local structures.

C. Computation time

We used a 8 core PC at 3.47MHz, using a simple and
non-optimized Matlab code. Generating image signatures is
faster then a regular sparse code BoW model thanks to
our feedforward architecture. Activating layersL1 � L2 is
fast (� 1 sec) using simple convolution functions. Activating
layerL3 is more computationally demanding since it requires
convolution of, for example,M � 4080 HL �lters which
are coded as high dimension matrices. The total feedforward
activation of one image through the network takes roughly 4
seconds. Training the HL �lters, is fast since it only requires
activation of layersL1 � L2 . For example, on Caltech101,
training M � 4080HL �lters takes close to 1 hour. Training
and testing the classi�er can be costly since we used a classi�er
with a L 2 norm gaussian kernel. Depending on the size of the
data set, computing the kernel can be time demanding: close
to 1 hour for Caltech101. Timing is proportional for the other
data sets.

VI. FURTHER ANALYSIS

Here we give quantitative and qualitative explanations with
respect to the improvements gained from our HL �lters with
multiple scales

Recall that the two key properties of our HL �lters are their
discriminative power and their invariance level. A good bal-
ance between discriminative power and invariance is necessary
for classi�cation tasks. As illustrated in �gure10 different ob-
jects can be matched by HL �lters with different scale depths.
While some objects are matched using a single scale HL �lter
(more freedom for scale invariance), others are matched using
HL �lters with multiple scales (more discriminative).

To evaluate more precisely the invariant and discriminative
properties of our HL �lters, we generated 1000 synthetic
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Fig. 10. HL �lters visualization. Trained HL �lters on some of the images in �gure9. The yellow bounding box de�nes the spatial range of the HL �lter.
The red ellipses indicate the local scales and orientations of the Gabor �lters selected by the HL �lter.

toy images. These synthetic images are generated from the
superposition of thresholded Gabor �lters with varying scales,
orientations and positions as shown in �gure12. More pre-
cisely, the images consists of keeping the central part of
Gabor �lters (equation1) corresponding to a full wavelength
� . This is a simple way of generating images where the
local structures correspond to ideal inputs. Although the
Caltech101,Caltech256 and the Fifteen Scenes sets are widely
used for image classi�cation, such image set make it dif�cult
to evaluate the invariant properties of �lters under various
geometrical transformations [42], [52]. By using synthetic
images we are able to control parameters such as translation,
rotation and scaling and evaluate the invariance level of our
�lters under such transformations.

Fig. 12. Synthetic images: composed of non rigid arrays of Gabor �lters.
Each local feature is thresholded to cover one wavelength as de�ned in
equation1

A. Discriminative power of HL �lters: �tness error

This section evaluates the discriminative power of our HL
�lters. To do so we measure the �tness error of our HL
�lters on training images and compare the results to our
reimplementation of previous models [19], [1].

Since� m 2 Rn � n �j Sj�j � j and because0 � � m
i;j ,� ,�

� 1, it

follows from equation6 that
X

i;j;�;�

� m
i;j ,� ,�

� n2. We can then

de�ne the �tness error of each HL �lter by

e = n2 �
X

i;j;�;�

� m
i;j ,� ,�

: (9)

Figure 13 shows the average �tness error with respect to
the scale rangejSj of HL �lters as de�ned in sectionIV. The
graph shows that HL �lters with deeper scales are on average
better tuned to the training images structures and thus more
discriminative.

Fig. 13. Training image �t. Fitness error is lower with increasing scale
rangeS � S of HL �lters. All of our HL �lters give better �t to local image
structures than HL �lters used in [19], [1]. As expected the more scales are
available for training the HL �lters the more they �t local image structures.

Figure 14 illustrates 2 different synthetic image patches
composed of4 � 4 Gabor features. For clearer visualization,
the Gabor features are spread at a constant distance from
each other. The red ellipses indicates the learned scales and
orientations after training a4 � 4 HL �lter over each patch.
The left image shows the �tting obtained for a HL �lter
using all available scales (jSj = 7 ). Clearly the local scale
and orientation learned by the HL �lters �t the local image
structure. The right image shows the training mis�t obtained
when using a single-scale HL �lter as it is the case for our
reimplementation of [1].

B. Invariance level of HL �lters

As mentioned above a good balance between discriminative
power and invariance is necessary for classi�cation tasks. This
section evaluates the invariance level generated by our HL
�lters under various local transformations. For this purpose
we evaluate the invariance of the HL �lters outputs with re-
spect to local geometrical transformations such as translation,



11

Fig. 14. Toy example: trained HL �lter one synthetic image patch. On the
left image a �lter with full scale depth (jSj = 7 ) is trained. The red ellipses
indicate the local scales and orientations learned by the HL �lter. The �lter
clearly matches the local image structures. The right image shows the local
misalignment of the �lter when limited to one randomly chosen scale as in
[1].

rotation and scaling. All these local transformations lead to
global deformations at object level. Robustness to these local
transformations is therefore a key aspect to good classi�cation.

1) Local translation: One property gained by training HL
�lters with a lower �tness error is to increase the network
invariance level to basic local geometrical transformations.
For example, global deformations observed at object level
can be decomposed into local translations [15] which can be
minimized by our HL �lters. To evaluate the effect of local
translations on the output of our network we �rst generate
1000 synthetic image patches and train one HL �lter on each
patch according to equation6. This generates 1000 HL �lters
optimally �tting the corresponding image patch as shown on
the left in �gure 14. After training we apply local translations
(see �gure15) of increasing amplitude on each training image
and measure the output of each corresponding HL �lter on the
transformed image.
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Fig. 15. Local transformations. Rotation and translation are applied
individually to each local feature in the image patch to create a globally
distorted image. The distorted images are then used to measure the robustness
of HL �lters.

As shown in �gure 16, the output of HL �lters decreases
with increasing local translations. The decrease is less pro-
nounced in the case of HL �lters with a deep scale range,
showing more local translation invariance (i.e. global defor-
mation). Indeed by using the optimal local scale, the deeper
HL �lters pool from a corresponding local neighborhood as
de�ned in equation3 and tableII in such a way that larger
structures are pooled invariably from larger spatial regions at
the L2 level.

Fig. 16. Effect on local translations with respect to scale depth of HL �lters.
When compared to HL �lters has the ones used in [19], [1], our HL �lter
with deeper scale range are less sensitive to image deformations created by
local translations

2) Local Rotation: Yet another advantage of training HL
�lters with a lower �tness error is that they are locally aligned
with the axis of relevant image structures and are thus less
sensitive to local perturbations around this axis. To evaluate the
level of invariance of HL �lters with respect to local rotation
we use the same procedure as for local translation but instead
apply local rotation of increasing amplitude on the training
images. Figure17 shows a lesser decrease in matching score
for deeper our HL �lters compared with the ones used in [1],
[19]. Deeper HL �lters are less sensitive to image deformations
created by local rotations. This is explained, as shown in
�gure 14, by the fact that deep HL �lter are better aligned, or
centered, with the local structures of images. Consequently a
local rotation will not affect the HL �lter response as much
as it is the case for misaligned HL �lters as obtained for our
reimplementation of [1], [19].

3) Local Scaling:Local scaling in our network underlines
particularly well the necessary balance between discriminative
power and invariance for classi�cation. When local scaling
is applied in the same way as for translation and rotation
a different pattern is observed. HL �lters with maximum
scale depth (jSj = 7 ) are more discriminative as shown in
sectionVI-A but are less robust to local scaling than other
HL �lters ( jSj = 3 ; 5). The deepest HL �lter uses all available
network scales to �t the image patches. It optimally matches
the image local scales and as result has more discriminative
power. However it leaves no freedom to �nd a perfect match at
other scales. The high level of discriminative power gained by
using all scales makes the HL �lter withjSj = 7 less invariant
to scaling in comparison to HL �lters with less depth. On
the other hand too much invariance to local transformations
compromises the discriminative power of the network. As
shown in sectionV-B a balance between discriminative and
invariant properties of HL �lters generates better classi�cation
performances.
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Fig. 17. Effect on local rotation with respect to scale depth of HL �lters.
Our HL �lter with deeper scale range are more robust to image distortion
created by local rotation.

Fig. 18. Effect on local scaling. HL �lters with more scale depth are
less robust to local scaling. Too much invariance as in [19] leeds to less
discrimination, reducing classi�cation power of the network. Optimally, our
network combines the invariant and discriminative aspects of all HL �lters to
increase classi�cation results in sectionV-B.

C. Discussion regarding potential relationships with biologi-
cal systems

Neurophysiological studies [53] suggest that the spatial
receptive �eld pro�les of neurons observed in cortical area
V4 is constructed by pooling from speci�c orientation and
spatial spatial frequency channels from more peripheral stages
of visual processing. In particular, other studies [54], [55]
also suggest that many neurons in area V4 are sensitive
to boundary information (i.e. orientation,scales) at a speci�c
position relative to the object center. These �ndings share
some principles with our HL �lters which are sensitive not
only to multiple orientations at different positions from the
center of their receptive �elds but also to multiple scales.

Also, recordings of neurons in the inferior temporal visual
cortex (IT) show that these neurons have limited receptive
�elds of various sizes [14]. In particular neurophysiological
[56], [57] studies suggest that information about the relative
spatial positions of objects at different eccentricities from the
�xation point, is coded by a population of IT neurons with
various receptive �eld sizes. Moreover, the sizes of these
receptive �elds vary in the presence of other objects and
background. These neurons can be seen as pooling over local
regions of different sizes on the visual �eld, which results in
partial invariance to spatial position. These �ndings also share
some principles with our model where pooling HL �lters over
multiple radii at layerL4 encodes the relative spatial position
of features.

VII. C ONCLUSION

The architecture presented in this paper allows for the
manipulation of two crucial variables for image classi�ca-
tion: discriminability and invariance. Our �lters are modeled
and trained to optimally �t local image structures and as
a results, generate a good balance between discriminative
representations and invariance. In particular, our results on
three natural image sets and one synthetic image set highlight
the increase in discriminative power of our network as well as
its robustness to local geometrical transformations. Moreover,
spatial organization of local features into a global representa-
tion is a key aspect to image recognition. In this regard, the
multi-resolution pooling introduced in this paper provides rich
spatial information, resulting in improved classi�cation scores.
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