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Abstract—This paper presents an extension of the HMAX  Models of the mammalian visual system mainly originate
model: a neural network model for image classication. The with the Nobel prize work of Hubel & Wiesel]. A key point
HMAX model can be described as a four-level architecture ot ey discovery is that neurons in the visual cortex describe a
with a rst level consisting of multi-scale and multi-orientation ) . . - .
local Iters. We introduce two main contributions to this model. manifold _Of Iocallzgd Iters organlz.ed into COIum'?S of.spatlal
First, we improve the way the local lters at the rst level are  frequencies and orientations. Their work gave biological sup-
integrated into more complex lIters at the last level, providing port to early psychophysical theories stating that the visual
a exible description of object regions, combining local infor- system analyzes patterns into multiple and independent fre-
mation o_f r_nult_lple scales _and orientations. These new _Iters quency channels], [6]. More recent studies7], [£] provide
are discriminative and yet invariant, two key aspects of visual . . o
classi cation. We evaluate their discriminative power and their mathemanc_al models to th_e work of]{ In [_ ] it is shown )
level of invariance to geometrical transformations on a synthetic that the point spread function of neurons in the mammalian
image set. Second, we introduce a multi-resolution spatial pooling. visual cortex can be modeled by Gaussian derivative lters (i.e
This pooling encodes both local and global spatial information pand-pass Iter) of multiple orientations and scales. Thif is

to produce discriminative image signatures. Classi cation results hown how h Iters emer learning statisti f natural
are reported on three image data sets, Caltech101, Caltech256.S 0 ow'suc € S? € g.e by lea _g statistics ot natu _a
and Fifteen Scenes. We show signicant improvements over 'Mages. All these considerations regarding the local receptive

previous architectures using a similar framework. elds of visual neurons are also given a strong theoretical
setting in the scale-space theory of visiéh, [ 10], [11], [17],
[13]. The scale-space theory describes the visual front end of
l. INTRODUCTION the cortex with a family of local and scaled gaussian operators.
This formulation of the visual cortex can be implemented in
The task of visual classi cation is a cornerstone of imaggwulti-layer neural networks composed of simple units with
processing and computer vision. This remains one of the maséal receptive eld pro les [L4].
challenging problems of the eld since it implies identifying According to the biological model, the low level operations
complex categories inside images, such as scenes or objectsf Ahese multi-layer networks are de ned by local oriented
good classi cation system should respond invariably to objectgers at multiple scales (i.e. Gaussian derivatives or Gabor
within the same class and differently between classes. Oners). These networks combine the low level representations
key aspect of such a system is the ability to de ne and leaiito object level representations suitable for recognition tasks
representations with a proper balance between discriminabilitys], [16], [14], [17], [1€], [19. Different types of feature
and invariance. combinations in the hierarchy can be considered and produce
In the eld of computer vision, some developments havéifferent performances2[], [21]. Physiological studies sug-
pointed towards this goal. One is the design of discriminatiygest that feedforward activation, with little or no feedback,
low-level local features, such as SIFT][and HoG []. produces the early recognition response while sustained feed-
These local descriptors provide a discriminative signature lbfick mechanisms generate a more attentive respcide |
image patches, and are invariant to various image degradatipng. When modeling a purely feedforward activation, the
such as geometric and photometric transformations. Anothgtallenge is to produce high level representations which are
development in computer vision is the emergence of mi@doth discriminative and invariant. Indeed, by building complex
level representations based on the Bag of Words (BoWhd global representations from simple and localized features
model [3]. The Bow model, inspired from the text retrievalthese networks face the problem of nding a balance between
community, leads to state-of-the art performances in masiject speci ¢ representations and invariant representations to
standard databases. To achieve human performance level,dhsure differentiation between classes of object and invariance
ultimate solution to image classi cation remains unclear an@side each class.
alternative avenues, such as biological vision, can be exploredn this paper, we introduce an architecture for image clas-
in order to de ne image representations. si cation which extends on previous work based on basic
When considering models of visual recognition it is dif cultoperations of the visual cortex/{], [1]. In particular, our
to ignore the level of performance achieved by biologicaletwork pools over oriented and scaled lters at the lowest
vision. The mammalian visual system displays recognitidavel, which correspond to early operations simple cells
abilities that cannot be matched by any arti cial system and @nd complex cellsn the V1 cortical areall4]. The work of
seems wise to consider insights about the functioning of th&3] also presents an extension 6] by integrating sparsity,
visual cortex. a rened pooling strategy and a feedback mechanism to



select relevant representations. We keep this basic framewtit& quantization errors induced by vector quantization, one
of simple cellsand complex cellsoperations, and improve may rely on soft assignment’ ], or sparse coding tech-
previous networks19)], [1], [24] by re ning the Iters on the niques P7], [25], that explicitly minimize reconstruction error.
last level of the network which integrate simple local ltersThe Restricted Boltzman Machine (RBM) model has been
into more complex lters covering larger and more complexsed to produce fast sparse coding inferene€f Regarding
image regions. pooling, max pooling has recently been studied and proved to
Speci cally, we introduce two main contributions that im-be a good alternative to sum pooling, especially when linear
prove the classi cation capacity of previous similar networkglassi ers are used. An extension of the BoW formalism uses
First, the coefcients of each lIter on the last layer area pooling which encodes the distance-to-codeword distribution
trained to better discriminate the image content. Importantfy29]. Another extension of BoW models using Fisher ker-
this gain in terms of discriminability is also coupled withnels which bene ts from both generative and discriminative
an increase in terms of invariance. This joint discriminabilitppproaches has also shown good classi cation restlts [
and invariance improvement is achieved due to the abiliinally, since the BoW model ignore spatial information,
to extract relevant image structures while being tolerant toost of the approaches integrate the Spatial Pyramid Scheme
various degradations such as geometric transformations (8PM) [31], also extended in the context of photographic style
occlusions. image classi cation $2]. Other approaches, based on the Bow
Second, we present a exible multi-resolution radial apmodel, also encode the relative spatial distributions between
proach to pool the outputs of Iters across the image. Neurongsual words B3], [34]. Learning algorithms have also been
in the inferior temporal visual cortex (IT) are known to haveised to learn ef cient feature combinations3].
limited receptive elds of various sizesl{]. These can be
interpreted as pooling over local regions of various sizes & Deep & biologically inspired architectures
the visual eld, which results in partial invariance to spatial po- Multi-layer networks or the convolutional networks intro-
sition. In this spirit, our multi-resolution pooling correspondsluced by LeCuret al. [17], [36] are certainly amongst the
to matching a given lIter inside spatial neighborhoods witlpioneer works of this type of architecture. The main idea is
different pooling radii, yielding different levels of invarianceto learn each layer representations from data. In the original
The optimal level of invariance, for a classi cation task, casonvolutional networks, parameters of the whole network are
then be learned by a classi er in a supervised manner at ttrained in a supervised manner using the error backpropagation
highest level of the network. algorithm. Ranzatet al. [17] focus on unsupervised learning
The remainder of this paper is organized as follows. Section features at every layer of a standard convolutional neural
Il presents state-of-the-art methods that are the most connectetivork, while Leeet al. [37] propose to use a Convolutional
to ours. The general HMAX network architecture is depicteBestricted Boltzman Machine (CRBM) for image catego-
in sectionlll . SectionlV gives the details of our contributions,rization, and report promising performances. A key aspects
while sectionsvV andVI give supporting experimental resultsof these type of models consists in learning a hierarchical
Finally, sectionVIl concludes the paper and gives directionsomposition of lters €], [17]. The depth of these models,
for future works. although appealing, implies a very large number of coef cients
to be learned and often require to solve complex and highly
II. RELATED WORK non convex optimization problems.
In this section, we review the approaches which are the mostOther bllologlcally inspired models focus on bwldmg ngt—
relevant to our approach. works of simple and complex f_eatures based on physiological
data about the mammalian visual pathway$ [15], [39,
[14], [4Q], [1€6]. Beginning with low level lters, matching
A. Bag of Words (BoW) Methods the physiological recordings in the early steps of the visual
BoW models have extensively been studied in the lagathway, the challenge is to organize such low level repre-
decade due to their good performances for classi cations gentations into a coherent robust object level representation.
many object or scene databases. In the BoW madel[set The low level representations are often xed but supported by
of local and accurate descriptosd.SIFT) is rst computed, physiological studies, while higher level representations can be
forming the so-called "Bag of Features” (BoF) for a givetearned and driven by a speci c task. The pioneer workléi,[
image. The BoF is then transformed to a constant-size imdge], [36] has shown how a deep architecture can be trained to
representation to generate the Bag of Words (BoW). The Boliverge simple visual features into a more complex whole while
can be interpreted as an occurrence histogram of visual wordgaining some degree of invariance to basic visual transforms.
where the visual codebook (dictionary) has been trained frdm [40] effort is put in statistical learning of the relative
a set of local descriptors. The mapping of visual codebookssition of simple features and carrying this information into
against image descriptors can be decomposed into a codinglobal discriminative representation. The work irf][uses
phase followed by a pooling step, as formalized #%][ In  temporal correlations, between views of a transforming object,
the original Bow model J], a simple vector quantization to learn a multi-layer architecture with invariant properties to
stage is applied for coding, and the codes are aggregated withious visual transformations. 1] the emphases is put
an average pooling strategy. Several improvement have beenthe unsupervised learning of relevant object level features
proposed to improve coding and pooling steps. To reduasing the temporal aspect of neural encoding.
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Fig. 1.  General convolution network: the network alternates layers of feature mapping (convolution) and layers of feature pooling. The convolution layers

generate speci c feature information whereas the pooling layers generate invariance by relaxing the con guration of these features.

Another important contribution to biologically inspired 1. GENERAL HMAX MODEL

models comes from the HMAX model.{], which focuses  The general HMAX model follows a basic alternating
less on learning and more on designing simple operatioggnyolution/pooling scheme as inq, [1] and illustrated in
inspired by the visual .corte>'<. This networks 'aIternates _|aygure 1. Each convolution step yields a set of feature maps
ers of features extraction with layers of maximum poolingyng each pooling step provides robustness to variations in these
mimicking known data about the ventral pathway of visugbature maps. Below we describe the operations of each layer
cortex. Serreet al. [19] extend the original HMAX model to 55 done in 19.

add multi-scale representations as well as more complex visugf ayer 1. Each feature maf.l can be obtained by
features. Huangt al. [27] also improved the HMAX model conyolution of the input image with a set of Gabor lters
with sparsity constraints, a different pooling strategy and éﬁ with orientations and scales . These lters are used

feedback mechanism to improve feature learning. The modgl modelsimple cellactivation in the V1 area of the visual
proposed by Mutctet al. [1] is the most closely related to cortex [4]

ours: they improve the network of.§] by tuning the lIters 2 2

to the dominant local orientations. In our previous work][ g (x;y) = exp( X°+72y°) cos(z—xo); (1)
we further improved this idea to local scales. W] it is ’ 2

also shown how HMAX lters can outperform state-of-the-arfvherex, = xcos +ysin andy, = xsin +ycos . The
lters such as SIFT under various controled invariance tasRarameter indicates the aspect ratio of the Iter andits

on synthetic images. Wavglength.. - . -
Given an imagd , Layer 1 at orientation and scale is

We extend on the properties of this particular family Oe&iven by the absolute value of the convolution product

models. We use two levels of lters in which the second lev
Iters are trained to optimally t the dominant local geometry L1 =jg Ij ?)

of images. Our contributions can be summarized as follows:
Layer 2. Each feature map2 is a dimension reduction of

Training of lters which generate representations that alel ~ obtained by selecting maxima on local neighborhoods.

more discriminative and more invariant A well known effect of maximum pooling over local neigh-
Design of a novel multi-resolution pooling that codes thkorhood is the invariance to local translations and thereby to
spatial distribution of each category. global deformations1g], [15].

Experimental validations of the discriminative power and Speci cally, the second layer partitions ea¢li  map
invariance level of the network with respect to previousito small neighborhoods;; and selects the maximum value
models inside eachu;; such that

Additionally, we highlight the complementarity between L2 (i;j)= max uj: )
our representations and the local descriptors used in BowW ' Ui 2L
models. We combine both strategies to reach or outperformSome degree of scale invariance is also achieved by
state-of-the art results. The local descriptors used in the BdWeping only the maximum output over two adjacent scales
models are usually ne-grained description of an image, whidit each positior(i;j ).
correspond to small image area&sg.16 16 pixel patches.
The descriptors presented in this paper operate on a differentayer 3 Layer L3 at scale is obtained by convolving
scale and correspond to features with larger spatial extent, albekrs ™, which we call HL lters, against layet2
constitute therefore complementary representations from those
extracted with Bow models. L3MmM= M L2 : (4)



HL lters represent visual descriptors of "mid-level” areaslV. ADVANCED CODING AND SPATIAL POOLING STRATEGY
in the image which combine “low-level” Gabor Iters of
multiple orientations at a given scale. To compute equation
4, HL lters must rst be trained as described below.

Training In the basic HMAX framework 19], as shown in
gure 2, the HL lters ™ are the result of a sampling process
over the layerL2 of training images. This sampling process
has three parameters: scale, spatial position, and spatial size.
Speci cally, HL lters are generated by randomly sampling
prototype blocksof L2 coef cients of spatial sizen n at
position(x;y) and scale , covering all orientations. In [19],
M 1000 prototypes blocksare sampled over the training
set to createM HL lters. For illustration, in gure 2, the
shaded blue represents the entir2 layer with all scales
and orientations concatenated together alongztlaeis. The
shaded redl.2 , illustrates one slice of the layer at scale
and containing all the orientations.

Layer activation As shown by the right part of gure,
each sampled block de nes one HL lIter which can be later
matched against the? layer of new images. In1[] each HL
Iter is matched against layek2 at all spatial positions and
all scales. Speci cally, as given by equatidneach HL Iter Fig. 3. Our model: level-3 operations. In our model each HL lter spans

is convolved over each scale mhp to produce the feature over multiple scales simultaneously. In this example, the lter is convolved
m simultaneously over multiple scales centered at scaldét training the
mapsL3™. coef cients corresponding to weak scales and orientations are set to zero
making our Iter more discriminative, ignoring weaker scale and orientations

during testing.

Here we describe our contribution to the HMAX model and
give parameter details for each layer.

Layer 1. As done in L9, we use equatior? to de ne
eachL1 map. The scale range of varies with grid size
according to tablé. We use a range of 12 orientations
f& g k2f0:::11gand 8 scale$=[ 1;:; g . The aspect
ratio was set to = 0:3 to match the settings in1p]. To
ensure scale invariance, each lter is normalized to zero mean
and unit length. To obtain invariance to light intensity, each
pixel patch during the convolution product in equatidris
normalized to unit length before being multiplied by the lter.

Scale | Filter size

Fig. 2. HMAX: level-3 operations. TrainingM 1000 HL lters are
de ned by samplingorototype block®f L2 coef cients from training images.
Layer activation: Given a new image, each HL lIters is convolved over all
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positions of each scale maj2 . TABLE |
LAYER 1 FILTERS PARAMETERS AS DONE IN[19] THE SCALE AND
. . . . . WAVELENGTH OF EACH FILTER IS CHOSEN TO MATCH PHYSIOLOGICAL
Layer 4 To gain global invariance, the nal signature is RECORDINGS

computed by selecting the maximum outpul.8f™ across all
position and scales. The nal layer is thus a vector of dimen-
sionM 1000 where each coef cient gives the maximum | ayer 2. Each feature map2  is obtained as described for
output of each HL lter across scalesand positiongx;y).  the HMAX model in sectiorill. Similarly to [1], we applied
a competition to both the orientation and scale coef cients

2 max L3%(x; y) setting to zero the weaker coef cients at each posiijof).
3y ) We used pooling neighborhoods; of sizes proportional to
E (5) the scale of processing as ih9 and given by tablel.
max |_3 (x;y) Layer 3 Our rst principal contribution is in way the HL

Iters are trained and used to generate lay8r.



Sclale Ne'ghboghogw Sizes Equation 6 can be thought of as a learning rule which
2 10 10 sets to zero the connections on weak orientations and scales
3 1212 (white cubes in gure3) after being presented with a single
g ig ig prototype exampleB™. For each HL lIter, the coordinate
6 18 18 Sm = (Xm:;Ym:; ') at which prototype B™ is sampled
7 22 22 is memorized. This memorized coordinate is used at layer
8 24 24 L4 to encode spatial information about each HL Iter when

TABLE Il presented with new images.

LAYER 2 MAXIMUM POOLING NEIGHBORHOOD SIZE. THE POOLING SIZE
IS PROPORTIONAL TO THE FILTERING SCALE OF THE PRECEDING LAYER Algorithm 1 HL lter training

Require: M: number of lters to train

j J =12: number of orientations

iSj 2 1;3;5; 7: number of scales

n 2 4;8;12,16. spatial size

form=1toM do
Select one training image
Activate up to layer L2
Select a random coordinasg, = (Xm;Ym; &) on L2
Extract a random samp@™ 2 R" " Sii | at position

Training Our methods contrasts with earlier modeis)][
[19, [1] since our HL lters are not limited to a single scale.
This difference with the original HMAX model is illustrated
when comparing gure2 with gure 3. There are two main
differences to be noted between the two gures:

1) Modeling :our HL lters cover a range of scales
simultaneously. This gives more representation power to each
HL Iter. By increasing its scale range, each HL Iter can
represent "mid-level” structures containing multiple scales
inside the same spatial neighborhood. This is an improvemen
over the representation ing], [1], where the HL lIters span

a single scale, limiting the possibility of each Iter to match Layer activation Each feature map3™ is a convolution
the local scale of image structures. product of theL2 layer with Iter ™ centered at scale.

Speci cally, the outputL3™ (x;y) is given by the dot product

2) Robustness our HL lIters are trained to optimally match ©f ™ Wwith the blockL2 (x;y) at spatial position(x;y),
the dominant local scales and orientations, discarding weak&htered on scale.

training scales and orientations. By setting its coef cients on " . .

Gabor lters which produce strong training outputs, each HL L37(xy)=h "L2 (xy)i: (7
lter gains robustness to interfering orientations and scales kg our most basic network we udé = 4080 lters to

(i.e noise and clutter) when presented with a new imaggnerateM mapsL3™. We normalize to unit length each
This principle has been introduced in][for the case of .,mponents of equation so that it gives the cosine between
orientations. As shown at the bottom left of gui& the i components. Inif], [1] a radial basis function (RBF)
HL lIters in [ 1] are a re ned version of [, where the HL s ;seq for layelL3. After experimental veri cation showing
lter coef cients corresponding to weak orientations are set tgqtter performances we chose a normalized dot product as
zero (white cubes set to zero). This increased discriminatigsposed to a RBF. We observe ne## improvement in
power reduces interference caused by weak orientations duriiigk«; cation score using the normalized dot product de ned
testing. We extend the principle of][by also specializing each ;, equation7 when compared to the RBF function used in
Iter on the.dominant local scale, sgtting to zero coef cient:f 1, [19. One possible advantage of using normalization here
corresponqmg tolweakejrsca.les. This makes our HL It'ers EVedlto ensure that geometrical similarities of features are kept
more dl_scr|m|nat|ve by ignoring weaker scales and or'emat'%\/ariably with respect to light intensity variations.
on test IMages. i . The toy example (synthetic image) in gure shows how
Algorithm 1 summarizes the steps for training the HL Iters., ;v HL ters adapts differently to local image structures
As for the HMAX our HL lters are t_ra_1ine_d by sampling_roto- when compared with1], [19. In the gure, the red ellipses
typeblocks from thel.2 layer of training images. Speci cally, correspond to the local scales and orientations of Gabor lters
we sampleprototypeblocksB™ 2 R" "1 S11 1 from layer ggjected by the HL Iter ™. In [1] the randomly chosen scale
L2. The dimensiom 2 f 4;8; 12, 16g de ne the spatial size of ot the |ter is misadapted to the local image scale. This results
the HL lter, jSj 2 f 1,3,5,79 its scale range, anf | = 12, gyp-optimal Gabor lters selected along the edges and not
its orientation range. Using the sampleatotypeblock B™,  ¢4rresponding to the optimal local scale of the training image.

m
Apply equation6 to get ™
end for
{eturn Sm, M

the coefcients [? ~ are set such that In [19] the randomly chosen scale is again misadapted to the
8 local image scale and all orientations are trained. As shown,
<B™ (i;j) if ( :; )=argmaxB™(i;j) our HL Iter adapts to the optimal local scale and orientation
m = ' : - of the training image.
h ) otherwise Layer 4. Our second main contributions is in the way the

(6) outputs of HL Iters ™ are spatially pooled together to create



Each search regioB; is de ned by a radiuR; as shown
in table lll and centered on the memorized coordingie .
We chose 6 levels of spatial pooling resolution. The lowest
level R1 = 5%) corresponds to the level of resolution used
in [1]. The highest levelRg = 100%) ensures that the entire
image is covered, not discarding any feature. The remaining 4
resolutions are chosen to ensures a suf ciently ne resolution
to encode variations in spatial positions.

Fig. 4. Toy examples. The red ellipses indicates the local scale and
orientation of Gabor lters selected by the HL Iter. On the left, the HL
Iter is trained at a randomly chosen scale on all orientations as don&jn [

In the middle the HL lter is trained on a randomly chosen scale and learns
the optimal orientation as done i§][ On the left, our HL Iter adapts to the
optimal scale and orientation.

a full image signature at layér4. As done in 9 (gure 5) _ _ _ . _
one can store the maximum global output of each HL Iter int6'%- _S- o )M(;'t'éf;:"ﬁf”Itgro‘i’s"”r?q-er:gﬁzéga'”;g? e‘;"c‘?]rdr']rgv“#?ma;e .

. . . . . m,Ym, s . )
one vector signature. In], spatial information is representedeoncentric series of 6 search spatial regions are centered on this coordinate
by memorizing the training position of each HL Iter andand spanningd 1 scales . The maximum value is pooled from each search
then taking the maximum output for each test image in tﬁ@gion. This generates both rich and localized spatial information.
neighborhood of the training position. 131 a pyramidal

pooling approach (SPM) is used to code spatial information. BY de ning a local pooling region centered on the training
position of each HL Iter we take advantage of spatial reg-

Serre [[9 Lazebnik B1] Mutch [1] Our Model ularities inside a given image class as done’ih By also
varying the pooling radius ( gur&) we allow a more precise
encoding of spatial relations. But unlik&], our pooling is
centered on each HL lter and is therefore feature speci c.

For example as shown in guré&, two categories might
share a similar feature (i.e peak) but consistently positioned
around the same position inside each category and at different

Fig. 5. Image partitions for pooling. InLf] the entire image is used to POSitions between categories. It is therefore essential for
pool each HL lter. In [31] a pyramidal (SPM) partition of the image is usedclassi cation to encode the spatial position of these features

to code spatial information. Ini] a localized pooling regions is de ned for : - - . . .
each HL Iter. Our pooling is localized with multiple spatial resolutions. Wh_lle capt_urlng Sf_’_me Varla}tlons’ which is accomplished by
using multiple radii off pooling.

Here, we introduce a spatial pooling which merges aspects
of the pyramidal pooling in§1] and the localized pooling in
[1]. Using these principles, our HL Iters perform a maximum
pooling over image regions of various sizes. Speci cally, for
each HL Iter ™ a set of concentric search regio8s is
established around the coordinag = ( Xm;Ym; &) which
was memorized at training. To retain some scale information,
the search region is also established dtscale around .

Search Radius % of image size

R1 5

R2 10

R3 30

R4 50 Fig. 7. Multi-resolution pooling. Both categories contain a similar feature (i.e
Rs 70 peak). The feature is located in a limited but different region in both categories,
Re 100 with some variations inside each category. Both the category speci ¢ position

and the variations within it are coded by our multi-resolution pooling.
TABLE Il

LAYER 4 POOLING RADII. THE POOLING RADII ARE EMPIRICALLY hi ) i q , lied f h
CHOSEN TO COVER THE WHOLE IMAGE WITH A SUFFICIENTLY FINE This maximum pooling procedure is applied for each HL

SPATIAL RESOLUTION. Iter and the results are concatenated into a ra} vector
signature (equatioB). Each element of th&4 vector repre-



sents the maximum activation level of each HL lter inside [_15images | S0images |

each search region. Our model
2 3 iSj=1 53 59
max L31, + normalized dot product| 56.17 0.48 | 63.00 0.9
Ry 401 s iSj=1[7 59.21 0.18 | 66.84 1.05
+ multi-resolution pooling| 60.1 0.5 69.52 0.39
+ pixel level gradient | 68.49 0.75 | 76.32 0.97
max L3M, _ :
Ry; M o1 s Deep biologically inspired architectures
_ . . Serreet al. [19] 35 42
L4 = : : (8) Mutch&Lowe [1] 48 54
1 Huanget al. [23] 49.8 1:25
Re T (B3 Theriaultet al. [24] 54 05 61 05
Lecunet al. [17] - 54 1.0
: Leeet al.[37] 57.7 1.5 65.4 0:5
M Jarretet al. [46] - 65.6 1.0
5 max 1'-3 M Zeiler et al. [3] 58.6 0:7 66.9 1:1
& s Fidler et al. [40] 60.5 66.5
Classi er. The layer 4 signature vector of each image are Zeileret al. | ]B S — 710 1.0
. . . . . (o} arcnitectures
uged tg train one-against-all classi er, using a gaussian kerne Cazebniket al [71] 564 646 07
with L= norm [£3]. Zhanget al. [4€] 59.1 0:6 62.2 0:5
Wanget al. [27] 64.43 73.44
Yang et al. [49] 67.0 0:5 73.2 0:5
V. CLASSIFICATION EXPERIMENTS Boureauet al. [25] - 757 11
We give classi cation results for three images sets and we Sohnet al. [50 - 78
breakdown the improvements according to our contributions. TABLE IV

CLASSIFICATION RESULTS INAVERAGE PRECISION ONCALTECH101
A. Data sets

To evaluate our network on classi cation tasks, we use
three natural image data sets (gug®. The rst two, Cal-
techl01 and Caltech256, are composed of various objects
classes whereas the second one, Fifteen Scenes, corresponds
to indoor/outdoor scenes.

1) Caltech101 and Caltech25@:he Caltech10144] image
set is composed of 102 categories for a total of 9144 natural
images. The Caltech256!]] image set is composed of 257
categories or a total of 30607 natural images. For both, each
category represents a particular object against either a plain
background or a natural scene.

2) Fifteen scenes:The Fifteen Scenes data seid] is
composed of 15 categories of urban and rural scenes fo“:i& 8

. Our best ve classi cation accuracies on Caltech101
total of 4885 images.

B. Classi cation results to reproduce or go above their published scored2% and

1) Caltech101:Our basic architecture trairg0 HL lters 54%respectively. We used these reimplementations as our rst
per category for a total oM = 4080 HL lters. We used baselines. Note that our basic score58R6 is already above
the standard classi cation procedure with 15 and 30 trainirffje score reported inl]. This is explained by the fact that we
examples per class, as done in all models presented inltableuse alL? norm gaussian kernel instead of a linear classi er
A mean comparison Student t-tesith a risk = 0:05, shows and also by our choice of implementing a multi-resolution of
that our score 069:52%is signi cantly above all biologically Gabor lters as opposed to an image pyramid with a xed Iter
inspired architectures reported ind, [1], [23], [24], [17], Size. Beginning with our most basic setup, tableshows the
[37], [46], [3€], [40] and compares with the highest scores iiCrease in classi cation scores observed when adding step by
[47]. All these architectures use a similar generic framework §fep the various aspects of our contributions.
alternating convolution/pooling. Our highest score76f32% First, when adding a normalized dot product on lay&r
reaches state-of-the-art level for 30 training examples whétguation7) instead of the RBF function used in][we
compared to benchmark models using Bow methods wi@ipserve an increase nedo in classi cation scores.
mono feature descriptors. Our architecture generates a totabecond, we observe a jump of neé¥ when using HL
increase ofl5%over the results inl], the model most closely lters with multiple scalesjSj 2 f 1; 3;5; 7g. There is indeed
related to ours. a trade-off between the precision at which the HL lter ts

We reimplemented the two models presentedli€],[[1], the training data (discriminative power) and the level of scale
which are the most closely related to ours, and were abieariance it can achieve. To account for both discriminative



Fig. 9. Top: samples from the Caltech101 and Caltech256 image sets. Bottom: samples from the Fifteen Scenes image set

power and invariance we can train HL Iters on all values ofo a SIFT descriptor, one single HL lter pools multiple spatial
iSj- scales inside the same patch simultaneously (red ellipses in
Third, when adding our multi-resolution pooling at the nalgure 10). For this reason one single HL lter can describe
level of the network, an addition&% increase is observed.an object using multiple scales across one large image region
For certain objects the spatial position relative to other featurg@s 90x90 pixels). Different SIFT descriptors can operate at
in the image can be very informative. To encode spatidlfferent scales but the scale of each individual descriptor is
training positions as well as spatial relations between featutbe same across the patch which usually covers smaller image
our nal L4 image signature concatenates all pooling radiegions (16x16 up to 48x48 pixels). These are two different
fR1;::;;Reg de ned in tablelll. levels of representation. Combining these descriptors allows
The independent effects of our two main contributions, tifer ne gradient descriptions as well as more macro, object
multi-resolution pooling and the deeper HL lters are showievel, descriptions. When combining the pixel level encoding
in tableVV. When combining HL lters signatures using all 7of SIFT descriptors as done intq] with the larger spatial
scales with signatures using a single scald%increase is span of HL lters our model generat@$:32%in classi cation
observed. Apaired sample Student t-tesh 10 independent score reaching state-of-the-art level on models using mono
splits shows this increase to be signi cant with a risk=  features descriptors (i.e. derivative lters, band-pass lters). A
0:05. When adding the multi-resolution pooling alone a neanean comparison Student t-tegtows the increase ovetq]
2% increase is observed, also signi cant with a riske 0:05. to be signi cant with a risk = 0:05.
2) Caltech256:TableVI shows classi cation results on the

Our model

ST=7 5585 090 Caltech256 data set. As for Caltech101, the basic architecture
jSj=11[7 66.84 1.05 trains 40 HL lters per category for a total oM = 10280
. mull'tfge;;ution pooling| 64.58 1.0 I—!L _Iters. Again our quel reaches statg-of-the-ar_t scores on
- . similar architectures using a 4 layer architecture with convolu-
TABLE V tion and maximum pooling as irtf]. When combining with
IMPROVEMENT OBTAINED INDEPENDENTLY FOR OUR TWO MAIN the pixel level gradient of49] our score reaches near state-of-

CONTRIBUTIONS TESTED ONCALTECH101FOR 30 TRAINING EXAMPLES. the-art and improves the scores iri I by close to7%. cIearIy
DIFFERENCES ARE SIGNIFICANT ON Apaired sample Student t-testTH A '

RISK =0 :05. above statistical signi cance at a risk=0:05.
Our model
By being composed of large arrays of Gabor Iters, our isj=117

+ multi-resolution pooling| 31.23 0:38
+ pixel level gradient 40.56 0:28

HL lIters give spatial information spanning large image areas
(object level) as shown in guré0. Although Gabor Iters are

de ned as local frequency operators they respond similarly to Deep biologically inspired architectures

an oriented second order derivative and they share relations zelleretal.[1/] | 332 08
. - . S . Bow architectures

with the family of gaussian derivative operators], [11], Yang et al. [2]] 3402 035

[17). Therefore it is fair to say that our HL lters fall into the Wanget al. [27] 41.19

general category of descriptors composed of local band-pass Boureauet al. [51] 41.7 08

Iters, measuring or approximating various orders of spatial TABLE VI

derivatives. . . . . . CLASSIFICATION RESULTS INAVERAGE PRECISION CALTECH256 FOR 30
One such descriptor used for image classi cation is the SIFT TRAINING EXAMPLES.

descriptor P5], [49] which relies on local gradients. Contrarily



3) Fifteen Scened-or the Fifteen Scenes data set, our basarganized patterns of clear-cut structures. This translates quite
architecture train800 HL lIters per category for a total of well into the high classi cation score obtained for the Building
M =4500 HL lters. Table VII shows the confusion matrix of category, also illustrated in gurél
our network applied to the Fifteen Scenes set. As for the Cal-
tech101 image set we combine the complementary mid-level
descriptions of our HL Iters with the pixel level descriptions
of SIFT as in 9. Our global average classi cation score
of 8294% is above or close to benchmark results obtained
in [31], [25]. A mean comparison Student t-testows the
increase over49] to be signicant with a risk = 0:05.

More importantly, as shown in tabllll our standard model
improves our reimplementation of][[19] by over 10% and
20% respectively.
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Fig. 11. The building categories showcases our model's ability to consis-
tently t arrays of simple, scaled and oriented local structures.

C. Computation time

We used a 8 core PC at 3.47MHz, using a simple and
non-optimized Matlab code. Generating image signatures is
faster then a regular sparse code BoW model thanks to
our feedforward architecture. Activating layekd L2 is
fast ( 1 sec) using simple convolution functions. Activating
layerL3 is more computationally demanding since it requires
convolution of, for exampleM 4080 HL lIters which

TABLE VII
CONFUSION MATRIX FOR15 SCenesMAGE SET

~_Our model are coded as high dimension matrices. The total feedforward
ISj=117 _ activation of one image through the network takes roughly 4
+ multi-resolution pooling| 74.35 0:83 ds. Traini he HL | is f . . | .
+ pixel level gradient | 82.94 0:57 seconds. Training the ters, is fast since it only requires
activation of layersL1 L2. For example, on Caltech101,
Deep biologically inspired architectures trainingM  4080HL lIters takes close to 1 hour. Training
ng:tﬁggtl_g}m[e []] gg'g and testing the classi er can be costly since we used a classi er
Bow architectures with a L? norm gaussian kernel. Depending on the size of the
Lazebniket al. [3]] 81.4 045 data set, computing the kernel can be time demanding: close
Yang et al. [49] 80.4 0:45 i ; ;
Boureavet al. [7] 4.3 045 to 1 hour for Caltech101. Timing is proportional for the other
data sets.
TABLE VIII
CLASSIFICATION RESULTS INAVERAGE PRECISION ONFIFTEEN SCENES VI. FURTHERANALYSIS
FOR 100 TRAINING EXAMPLES. SCORES FOR[1],[19] ARE OBTAINED BY i . L. i .
OUR OWN REIMPLEMENTATION. Here we give quantitative and qualitative explanations with

respect to the improvements gained from our HL lters with
multiple scales
The high discriminative power of our deepest HL Iters is Recall that the two key properties of our HL Iters are their
made obvious for certain categories in the Fifteen Scenes idiscriminative power and their invariance level. A good bal-
age set. For instance, our model consistently gives near perfaete between discriminative power and invariance is necessary
classi cation score for the Building category. This categorfor classi cation tasks. As illustrated in guréO different ob-
showcases our model's ability to t arrays of simple, scaleftcts can be matched by HL Iters with different scale depths.
and oriented local structures. Categories such as Building &#hile some objects are matched using a single scale HL lter
mostly composed of well de ned local structures of multiplémore freedom for scale invariance), others are matched using
scales and orientations. Our most discriminative HL Iter$iL Iters with multiple scales (more discriminative).
(iSj = 7) are well suited for this type of image stimuli. Indeed, To evaluate more precisely the invariant and discriminative
our HL Iters are expected to nd close to optimal t on properties of our HL Iters, we generated 1000 synthetic
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Fig. 10. HL lters visualization. Trained HL lIters on some of the images in gueThe yellow bounding box de nes the spatial range of the HL Iter.
The red ellipses indicate the local scales and orientations of the Gabor Iters selected by the HL lter.

toy images. These synthetic images are generated from the
superposition of thresholded Gabor lters with varying scales,
orientations and positions as shown in gut@. More pre-
cisely, the images consists of keeping the central part of
Gabor Iters (equationl) corresponding to a full wavelength

. This is a simple way of generating images where the
local structures correspond to ideal inputs. Although the
Caltech101,Caltech256 and the Fifteen Scenes sets are widely
used for image classi cation, such image set make it dif cult
to evaluate the invariant properties of lters under various
geometrical transformationst]], [57]. By using synthetic
images we are able to control parameters such as translation,
rotation and scaling and evaluate the invariance level of our
Iters under such transformations.

Fig. 13.  Training image t. Fitness error is lower with increasing scale
rangeS  Sof HL lters. All of our HL lters give better t to local image
structures than HL Iters used inlP], [1]. As expected the more scales are

Fig. 12.  Synthetic images: composed of non rigid arrays of Gabor [ter@vailable for training the HL Iters the more they t local image structures.
Each local feature is thresholded to cover one wavelength as de ned in
equationl
Figure 14 illustrates 2 different synthetic image patches
composed o#4 4 Gabor features. For clearer visualization,
A. Discriminative power of HL lters: tness error the Gabor features are spread at a constant distance from

. . L Each other. The red ellipses indicates the learned scales and
This section evaluates the discriminative power of our HL . ) L
orientations after training 4 4 HL lIter over each patch.

ters. To dq S0 We measure the tness error of our HLrhe left image shows the tting obtained for a HL Iter
Iters on training images and compare the results to our

: . . using all available scale§gj = 7). Clearly the local scale
reimplementation Of- previous models], [1]. and orientation learned by the HL lters t the local image
Since M 2 R" niSiio i :;pd becausé® m 1, it y 9

_ o , - structure. The right image shows the training mist obtained
follows from equationt that s h% We canthen when using a single-scale HL lter as it is the case for our

i reimplementation of 1.
de ne the tness error of each HL lter by P !

X
e= n? .r,n : (9) B. Invariance level of HL lters
i As mentioned above a good balance between discriminative
Figure 13 shows the average tness error with respect tpower and invariance is necessary for classi cation tasks. This
the scale ranggSj of HL lters as de ned in sectionlV. The section evaluates the invariance level generated by our HL
graph shows that HL Iters with deeper scales are on averadiers under various local transformations. For this purpose
better tuned to the training images structures and thus maeve evaluate the invariance of the HL Iters outputs with re-

discriminative. spect to local geometrical transformations such as translation,
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Fig. 14. Toy example: trained HL lter one synthetic image patch. On the
left image a Iter with full scale depthj§j = 7) is trained. The red ellipses
indicate the local scales and orientations learned by the HL Iter. The lter
clearly matches the local image structures. The right image shows the local
misalignment of the Iter when limited to one randomly chosen scale as in

(1.

rotation and scaling. All these local transformations lead to
global deformations at object level. Robustness to these lo ig. 16. Effect on local translations with respect to scale depth of HL lters.
. . . . en compared to HL lters has the ones used 18][ [1], our HL lter

transformations is therefore a key aspect to good classi catiQfith deeper scale range are less sensitive to image deformations created by

1) Local translation: One property gained by training HL local translations
Iters with a lower tness error is to increase the network
invariance level to basic local geometrical transformations.
For example, global deformations observed at object level2) Local Rotation: Yet another advantage of training HL
can be decomposed into local translations] which can be |ters with a lower tness error is that they are locally aligned
minimized by our HL [ters. To evaluate the effect of localwith the axis of relevant image structures and are thus less
translations on the output of our network we rst generatgensitive to local perturbations around this axis. To evaluate the
1000 synthetic image patches and train one HL lIter on eagével of invariance of HL lters with respect to local rotation
patch according to equatigh This generates 1000 HL lters we use the same procedure as for local translation but instead
optimally tting the corresponding image patch as shown ogpply local rotation of increasing amplitude on the training
the left in gure 14. After training we apply local translationsimages. Figurel7 shows a lesser decrease in matching score
(see gureld) of increasing amplitude on each training imageor deeper our HL lters compared with the ones used i [
and measure the output of each corresponding HL Iter on thied]. Deeper HL lters are less sensitive to image deformations

transformed image. created by local rotations. This is explained, as shown in
gure 14, by the fact that deep HL Iter are better aligned, or

(‘\f) centered, with the local structures of images. Consequently a
\/ local rotation will not affect the HL Iter response as much
o as it is the case for misaligned HL lters as obtained for our

reimplementation of 1], [19].

3) Local Scaling: Local scaling in our network underlines
particularly well the necessary balance between discriminative
power and invariance for classi cation. When local scaling
is applied in the same way as for translation and rotation
a different pattern is observed. HL Iters with maximum
scale depthj§j = 7) are more discriminative as shown in

Fig. 15. Local transformations. Rotation and translation are appligkectionVI-A but are less robust to local scaling than other
idn_dividual_ly to each local feature in the image patch to create a globalML lters (jSj = 3;5). The deepest HL Iter uses all available
istorted image. The distorted images are then used to measure the robustness - )
of HL lters. network scales to t the image patches. It optimally matches
the image local scales and as result has more discriminative
As shown in gure 16, the output of HL Iters decreases power. However it leaves no freedom to nd a perfect match at
with increasing local translations. The decrease is less pagher scales. The high level of discriminative power gained by
nounced in the case of HL lters with a deep scale rangesing all scales makes the HL Iter witfj = 7 less invariant
showing more local translation invariance (i.e. global defote scaling in comparison to HL Iters with less depth. On
mation). Indeed by using the optimal local scale, the deep@e other hand too much invariance to local transformations
HL Iters pool from a corresponding local neighborhood agsompromises the discriminative power of the network. As
de ned in equation3 and tablell in such a way that larger shown in sectionv-B a balance between discriminative and
structures are pooled invariably from larger spatial regions iavariant properties of HL Iters generates better classi cation
theL2 level. performances.
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Also, recordings of neurons in the inferior temporal visual
cortex (IT) show that these neurons have limited receptive
elds of various sizes 4]. In particular neurophysiological
[5€], [57] studies suggest that information about the relative
spatial positions of objects at different eccentricities from the
xation point, is coded by a population of IT neurons with
various receptive eld sizes. Moreover, the sizes of these
receptive elds vary in the presence of other objects and
background. These neurons can be seen as pooling over local
regions of different sizes on the visual eld, which results in
partial invariance to spatial position. These ndings also share
some principles with our model where pooling HL lters over
multiple radii at layerL4 encodes the relative spatial position
of features.

VIl. CONCLUSION
The architecture presented in this paper allows for the

Effect on local rotation with respect to scale depth of HL Itersmanipulation of two crucial variables for image classi ca-

Our HL lter with deeper scale range are more robust to image distortioion: discriminability and invariance. Our lters are modeled

created by local rotation.

Fig. 18.

Effect on local scaling. HL lters with more scale depth are

and trained to optimally t local image structures and as
a results, generate a good balance between discriminative
representations and invariance. In particular, our results on
three natural image sets and one synthetic image set highlight
the increase in discriminative power of our network as well as
its robustness to local geometrical transformations. Moreover,
spatial organization of local features into a global representa-
tion is a key aspect to image recognition. In this regard, the
multi-resolution pooling introduced in this paper provides rich
spatial information, resulting in improved classi cation scores.
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