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Abstract
Object detection methods usually represent objects through rectangular bounding boxes from which they extract features,
regardless of their actual shapes. In this paper, we apply deformations to regions in order to learn representations better
fitted to objects. We introduce DP-FCN, a deep model implementing this idea by learning to align parts to discriminative
elements of objects in a latent way, i.e. without part annotation. This approach has two main assets: it builds invariance to
local transformations, thus improving recognition, and brings geometric information to describe objects more finely, leading
to a more accurate localization. We further develop both features in a new model named DP-FCN2.0 by explicitly learning
interactions between parts. Alignment is done with an in-network joint optimization of all parts based on a CRF with custom
potentials, and deformations are influencing localization through a bilinear product. We validate our models on PASCAL
VOC and MS COCO datasets and show significant gains. DP-FCN2.0 achieves state-of-the-art results of 83.3 and 81.2% on
VOC 2007 and 2012 with VOC data only.

Keywords Object detection · Fully convolutional network · Deep learning · Part-based representation · End-to-end latent
part learning

1 Introduction

Recent years have witnessed a great success of Deep Learn-
ing with deep Convolutional Networks (ConvNets) (LeCun
et al. 1989; Krizhevsky et al. 2012) in several visual tasks.
Originally mainly used for image classification (Krizhevsky
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et al. 2012; Simonyan and Zisserman 2015; He et al. 2016),
they are now widely used for others tasks such as object
detection (Girshick et al. 2014; Girshick 2015; Dai et al.
2016b; Zagoruyko et al. 2016; Lin et al. 2017a) or semantic
segmentation (Long et al. 2015; Chen et al. 2015; Li et al.
2017). In particular for detection, region-based deep Con-
vNets (Girshick et al. 2014; Girshick 2015; Dai et al. 2016b)
are currently the leading methods. They exploit region pro-
posals (Ren et al. 2015; Pinheiro et al. 2016; Gidaris and
Komodakis 2016a) as a first step to focus on interesting areas
within images, and then classify and finely relocalize these
regions at the same time.

Although they yield excellent results, region-based deep
ConvNets still present a few issues that need to be solved.
Networks are usually initialized with models pre-trained on
ImageNet dataset (Russakovsky et al. 2015) and are therefore
prone to suffer from mismatches between classification and
detection tasks. As an example, pooling layers bring invari-
ance to local transformations and help learning more robust
features for classification, but they also reduce the spatial res-
olution of featuremaps andmake the network less sensitive to
the positions of objectswithin regions (Dai et al. 2016b), both
of which are bad for accurate localization. Furthermore, the

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-018-1109-z&domain=pdf
http://orcid.org/0000-0002-4775-9239


International Journal of Computer Vision

Fig. 1 Illustration of deformations. Regions are divided into regular
grids (a) and all cells are moved from their initial positions to adapt
to the shape of the object and better describe it (b), improving both
recognition and localization

use of rectangular boundingboxes limits the representationof
objects, in the way that boxes may contain a significant frac-
tion of background, especially for non-rectangular objects.

Before the introduction of Deep Learning into object
detection by Girshick et al. (2014), the state of the art was
led by approaches exploiting Deformable Part-based Mod-
els (DPMs) (Felzenszwalb et al. 2010). These methods are
in contrast with region-based deep ConvNets: while the lat-
ter relies on strong features learned directly from pixels
and exploit region proposals to focus on interesting areas
of images, DPM explicitly takes into account geometry of
objects by optimizing a graph-based representation and is
usually applied in a sliding window fashion over images.
Both approaches exploit different hypotheses and seem there-
fore complementary.

In this paper, we propose Deformable Part-based Fully
Convolutional Network (DP-FCN) and its improved succes-
sor DP-FCN2.0, two end-to-end models integrating ideas
fromDPMinto region-based deepConvNets for object detec-
tion, as an answer to the aforementioned issues. They learn

part-based representations of objects and align these parts
to enhance both classification and localization (see Fig. 1).
Training is done with box-level supervision only, i.e. without
part annotations. They improve upon existing object detec-
tors with two key contributions.

The first one is the introduction of a new deformable
part-based RoI pooling layer, which explicitly selects dis-
criminative elements of objects around region proposals by
simultaneously optimizing latent displacements of all parts
(middle of Fig. 2). Indeed, using a fixed box geometry must
be sub-optimal, especially when objects are not rigid and
parts can move relative to each other. Through alignment of
parts, deformable part-based RoI pooling increases the lim-
ited invariance to local transformations brought by pooling,
which is beneficial for classification.

In addition, aligning parts gives access to their configura-
tions (i.e. their positions relative to each other), which brings
important geometric information about objects, e.g. their
shapes, poses or points of view. The second improvement is
the design of a deformation-aware localization module (right
of Fig. 2), a specific module exploiting configuration infor-
mation to refine localization. It improves bounding boxes
regression by explicitly modeling displacements of parts in
the localization branch, in order to tightly fit boxes around
objects.

We integrate the previous ideas into Fully Convolutional
Networks (FCNs) (He et al. 2016; Dai et al. 2016b) (left of
Fig. 2) and show that those architectures are amenable to an
efficient computation of parts and their deformations. They
also offer natural solutions to keep spatial resolution, which
is beneficial since the application of deformable part-based
approaches is severely dependent on the availability of rather
fine feature maps (Savalle et al. 2014; Girshick et al. 2015;
Wan et al. 2015).

Fig. 2 Architecture of DP-FCN. It is composed of a FCN to extract
dense featuremapswith high spatial resolution (Sect. 3.1), a deformable
part-based RoI pooling layer to compute a representation aligning parts
(Sect. 3.2) and two sibling classification and localization prediction

branches (Sect. 3.3). Initial rectangular region is deformed to focus on
discriminative elements of object. Alignment of parts brings invariance
for classification and geometric information refining localization via a
deformation-aware localization module
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This paper is a two-fold extension of our previous work
(Mordan et al. 2017) already introducing DP-FCN. We first
improve it here with DP-FCN2.0, which has better designs
for both key modules of the model: a better part alignment
in the deformable part-based RoI pooling layer (detailed in
Sect. 3.2.2) and a more accurate description of shapes in the
deformation-aware localization refinement module (detailed
in Sect. 3.3.2). With these improvements, the network is now
able to express more relations between all parts by explicitly
taking their relative interactions into account, and so shapes
of objects are described more finely. Our secondmain contri-
bution is experimental. We present a more detailed ablation
study, with additional visualizations of the models and their
outputs. DP-FCN2.0 also obtains state-of-the-art results on
standard PASCAL VOC 2007 and 2012 datasets (Evering-
ham et al. 2015) with VOC data only, and especially show
better results than Mordan et al. (2017) in all common object
detection metrics, i.e. both in recognition and localization.
We finally experimentally validate the effectiveness of defor-
mations on the more challenging and larger-scaleMSCOCO
dataset (Lin et al. 2014).

2 RelatedWork

Region-Based Object Detectors The leading approaches in
object detection are currently region-based deep ConvNets.
Since the seminal works of R-CNN (Girshick et al. 2014) and
Fast R-CNN (Girshick 2015), most object detectors exploit
existing region proposals or directly learn to generate them
(Ren et al. 2015; Gidaris and Komodakis 2016a; Pinheiro
et al. 2016), and then use RoI pooling layers to locally pool
features within those regions. Compared to sliding window
approach, the use of region proposals allows the model to
focus the computation on interesting areas of images and
to balance positive and negative examples to ease learning.
Other improvements are now commonly used, e.g. using
intermediate high-resolution layers to refine coarse deep fea-
turemaps (Bell et al. 2016; Kong et al. 2016; Zagoruyko et al.
2016; Lin et al. 2017a) in order to have a finer accuracy in
locating objects, or selecting interesting regions for building
mini-batches (Shrivastava et al. 2016; Dai et al. 2016b).

We note that there is a second kind of object detectors, not
based on region proposals, e.g. YOLO (Redmon et al. 2016;
Redmon and Farhadi 2017), SSD (Liu et al. 2016). While
their performances have long trailed behind those of region-
based detectors, RetinaNet (Lin et al. 2017b) has now closed
the gap between the two kinds of approaches.

Deformable Part-BasedModels The core idea behind DPM
(Felzenszwalb et al. 2010) is to represent each class by a root
filter describingwhole appearances of objects and a set of part
filters to finely model local parts. Each part filter is assigned

to an anchor point, defined relative from the root, and move
around during detection to model deformations of objects
and best fit them. A regularization is further introduced in the
form of a deformation cost penalizing large displacements.
Each part is then optimizing a trade-off between maximiz-
ing detection score and minimizing deformation cost. Final
detection output combines scores from root and all parts.
Accurate localization is done with a post-processing step.

Several extensions have been proposed toDPM, e.g. using
a second hierarchical level of parts to finely describe objects
(Zhu et al. 2010), sharing part models between classes (Ott
and Everingham 2011), learning from strongly supervised
annotations (i.e. at the part level) to get a better model
(Azizpour and Laptev 2012), exploiting segmentation clues
to improve detection (Fidler et al. 2013).

CRF Optimization Joint optimization of multiple variables
is often performed to bring spatial coherence in tasks with
structured predictions, such as semantic segmentation, e.g.
Krähenbühl andKoltun (2011), Chen et al. (2015) and Zheng
et al. (2015). For this application, this yields improved results
compared to independently classifying each pixel, by filter-
ing out spatially isolated labels or taking more context into
account. The optimization problem often being challenging,
it is in most cases cast as an inference over a Conditional
Random Field (CRF) tailored to the problem, for which
there exist several algorithms.Krähenbühl andKoltun (2011)
propose an efficient inference algorithm for fully connected
CRFs relying on Mean Field approximation, and apply it to
semantic segmentation task. They show improvements with
joint optimization of all pixels with respect to independent
prediction at each location, while keeping computational
requirements low. The same algorithm has then been used
in a number of following works in semantic segmentation,
includingChen et al. (2015) andZheng et al. (2015). In partic-
ular, Zheng et al. (2015) integrate it as layers within networks
so that models are learned in an end-to-end way with CRFs.
Those can then influence training, as they are not relegated
to post-processing anymore. Chandra et al. (2017) gener-
alize this approach by learning deep embeddings, allowing
exact inference over fully connected CRFs, and by applying
it to other tasks than semantic segmentation, such as saliency
estimation and human part segmentation. In this paper, we
propose to cast the computation of deformations of regions
as a CRF optimization, so that all parts are optimized jointly
and their interactions are expressed in the model.

Part-Based Deep ConvNets The first attempts trying to use
deformable parts with deep ConvNets simply exploited deep
features learnedby anAlexNet (Krizhevsky et al. 2012) to use
them with DPMs (Savalle et al. 2014; Girshick et al. 2015;
Wan et al. 2015), but without region proposals. However,
tasks implying spatial predictions (e.g. detection, segmen-
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tation) require fine feature maps in order to have accurate
localization (Lin et al. 2017a). The fully connected layers
were therefore discarded to keep enough spatial resolution,
lowering results. We solve this issue by using a FCN, well
suited for these kinds of applications as it naturally keeps
spatial resolution. Thanks to several tricks easily integrable
into FCNs (e.g. dilated convolutions (Chen et al. 2015; Long
et al. 2015; Yu and Koltun 2016) or skip pooling (Bell et al.
2016; Kong et al. 2016; Zagoruyko et al. 2016), FCNs have
recently been successful in various tasks, e.g. image classi-
fication (He et al. 2016; Zagoruyko and Komodakis 2016;
Xie et al. 2017), object detection (Dai et al. 2016b), seman-
tic segmentation (Li et al. 2017), weakly supervised learning
(Durand et al. 2017).

Zhang et al. (2014) introduce parts for detection by
learning part models and combining them with geometric
constraints for scoring. It is learned in a strongly supervised
way, i.e. with part annotations. Although manually defining
parts can be more interpretable, it is likely sub-optimal for
detection as theymight not correspond tomost discriminative
elements.

Parts are often used for fine-grained recognition. Lin et al.
(2015) propose a module for localizing and aligning parts
with respect to templates before classifying them, Simon and
Rodner (2015) find part proposals from activation maps and
learn a graphical model to recognize objects, Zhang et al.
(2016) use two sub-networks for detection and classification
of parts, Sicre et al. (2017) consider parts as a vocabulary
of latent discriminative features decoupled from the task and
learn them in an unsupervised way. Usage of parts is also
common in semantic segmentation, e.g. Wang et al. (2015),
Dai et al. (2016a) and Li et al. (2017).

Thework closest to ours isDeformableConvNet (Dai et al.
2017), a concurrent model which also exploits deformations
to adapt to shapes of objects. While the ideas behind it are
similar to ours, deformations are computed in a differentway.
Dai et al. (2017) obtain deformations by using convolutional
layers to estimate them, whereas we cast it as an optimization
problem and solve it. While their approach is more general,
in that it can be applied to convolutional layers in addition
to RoI pooling layers, the solutions we propose in this paper
are more controllable and can be tuned to specific purposes.

Ourwork is based onR-FCN (Dai et al. 2016b),which also
uses a FCN to achieve a great efficiency. Compared to pre-
vious Fast R-CNN model (Girshick 2015), the subnetworks
after RoI pooling are here reduced at minimum to have very
light per-region computation. Classification and localization
for each region is then achieved by encoding information
into several feature maps, processed by a position-sensitive
RoI pooling layer, rather than in the following corresponding
subnetworks. We improve upon it by learning more flexible
representations than with fixed box geometry. It allows our
model to align parts of objects to bring invariance into classi-

fication and to exploit geometric information from positions
of parts to refine localization.

A previous version of this work was presented byMordan
et al. (2017), which we extend here with new contributions.
Our new model, named DP-FCN2.0, improves upon the first
version by explicitly modeling interactions between parts, in
both the part alignment and localization refinement stages. It
is then able to learn more accurate representations of objects.
Inspired by DPM (Felzenszwalb et al. 2010), deformable
part-based RoI pooling from DP-FCN (Mordan et al. 2017)
uses a star graphical model to move parts: displacements of
parts only depend on the global region proposals, i.e. they are
conditionally independent from each other given the posi-
tions of the region proposals. In contrast, DP-FCN2.0 uses
a fully connected graph, i.e. where all parts relate to each
other. By relaxing the conditional independence assump-
tion, deformations for all parts are optimized jointly, and
the model can exploit correlations between displacements to
improve part alignment and recognition. The joint optimiza-
tion is performed with a CRF integrated within the network,
and its inference is carried out at each forward pass, allow-
ing end-to-end learning similarly to what is done by Zheng
et al. (2015). The othermajor contribution deals with refining
localization predictions with computed deformations. Again,
DP-FCN2.0 outperforms its predecessor by encoding richer
information. While DP-FCN only refines global predictions
with features computed from deformations, DP-FCN2.0 lets
predictions and displacements of all parts interact with each
other through bilinear products to yield final predictions. By
learning interactions between parts, the localization is much
more effective in leveraging deformations of regions to iden-
tify shapes of objects.

3 Deformable Part-Based Fully
Convolutional Networks

In this section, we present our model Deformable Part-based
Fully Convolutional Network (DP-FCN), a deep network for
object detection. It represents regions with several parts it
aligns by explicitly optimizing their positions. This align-
ment improves both classification and localization: the
part-based representations are more invariant to local trans-
formations and the configurations of parts give important
information about the geometry of objects. This idea can be
inserted into most of state-of-the-art network architectures.
The model is end-to-end trainable without part annotation
and adds a small computational overhead only.

The complete architecture is depicted in Fig. 2 and is
composed of three main modules: (i) a Fully Convolutional
Network (FCN) applied on whole images, (ii) a deformable
part-based RoI pooling layer, and (iii) two sibling prediction
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Fig. 3 Deformable part-based RoI pooling with independent defor-
mations. Each input feature map corresponds to a part of a class (or
background). Positions of parts are optimized separately within detec-
tion maps with deformation costs as regularization, and values are

pooled within parts at the new locations. Output includes a map for
each class and the computed displacements of parts, to be used for
localization

layers for classification and localization. We now describe
all three parts of our model in more details.

3.1 Fully Convolutional Feature Extractor

Our model relies on a FCN (e.g. He et al. 2016; Zagoruyko
and Komodakis 2016; Xie et al. 2017) as backbone archi-
tecture, as this kind of network enjoys several practical
advantages, leading to several successful models, e.g. Dai
et al. (2016b), Li et al. (2017) and Durand et al. (2017).
First, it allows to share most computation on whole images
and to reduce per-RoI layers, as noted in R-FCN (Dai et al.
2016b). Second and most important to our work, it directly
provides feature maps linked to the task at hand (e.g. detec-
tion heatmaps, as illustrated in themiddle of Fig. 2 and on the
left of Fig. 3) fromwhich final predictions are simply pooled,
as done byDai et al. (2016b) andDurand et al. (2017).Within
DP-FCN, inferring the positions of parts for a region is done
with a particular kind of RoI pooling that we describe in
Sect. 3.2.

The fully convolutional structure is therefore suitable for
computing responses of all parts for all classes as a single
map for each of them. A corresponding structure is used for
localization. The complete representation for a whole image
(classification and localization maps for each part of each
class) is obtained with a single forward pass and is shared
between all regions of the same image,which is very efficient.

Since relocalization of parts is done within feature maps,
the resolution of these maps is of practical importance. FCNs
contain only spatial layers and are therefore well suited for
preserving spatial resolution, as opposed to networks ending
with fully connected layers, e.g. Krizhevsky et al. (2012) and
Simonyan and Zisserman (2015). Specifically, if the stride
is too large, deformations of parts might be too coarse to
describe objects correctly. We reduce it by using dilated con-
volutions (Chen et al. 2015; Long et al. 2015; Yu and Koltun
2016) on the last convolution block and skip pooling (Bell
et al. 2016; Kong et al. 2016; Zagoruyko et al. 2016) to com-
bine the last three.

3.2 Deformable Part-Based RoI Pooling

The aim of this layer is to divide region proposals into sev-
eral parts and to locally relocalize these to best match shapes
of objects (as illustrated in Fig. 1). Each part then models
a discriminative local element and is to be aligned at the
corresponding location within the image. This deformable
part-based representation is more invariant to transforma-
tions of objects because the parts are positioned accordingly
and their local appearances are stable (Felzenszwalb et al.
2010). This is especially useful for non-rigid objects, where
a box-based representation must be sub-optimal.

The separation of a region R into parts is done with a
regular grid of fixed size I × J fitted to it (Girshick 2015;
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Dai et al. 2016b). Each cell (i, j) is then interpreted as a
distinct part Ri, j . This strategy is simple yet effective (Zhu
et al. 2010; Wan et al. 2015). Since the number of parts (i.e.
I J ) is fixed as a hyper-parameter, it is easy to have a complete
detection heatmap zi, j,c already computed for each part (i, j)
of each class c (left of Fig. 3). Part locations then only need
to be optimized within corresponding maps.

The deformation of parts allows them to slightly move
around their reference positions (partitions of the initial
regions), selects the optimal latent displacements, and pools
values fromselected locations.During training, deformations
are optimized without part-level annotations, i.e. only box-
level annotations are needed, just as in the traditional object
detection task. Displacements computed during the forward
pass are stored and used to backpropagate gradients at the
same locations. We further note that the deformations are
computed for all parts and classes independently. However,
no deformation is computed for the background class: they
would not bring any relevant information as there is no dis-
criminative elements for this class. The same displacements
of parts are used to pool values from the localization maps.

We present two different strategies for computing defor-
mations in the next sections. The first one, already introduced
in (Mordan et al. 2017), considers each part independently
from others.While this is highly efficient, it might miss com-
plex relations between parts. In contrast, the second method
performs a joint optimization on all parts simultaneously and
takes interactions between parts into account by leveraging a
CRF formulation. It is then able to model object geometries
more finely.

3.2.1 Independent Deformations of Parts

This first approach (Mordan et al. 2017) draws ideas from
the original DPM (Felzenszwalb et al. 2010) and is applied
separately to all parts. For a part (i, j) of a region R and a
class c, the set ΔR

i, j of possible displacements δ = (δx, δy)
is such that the part Ri, j still stays within the feature map
z after moving by δ. We then define the score SR

i, j,c(δ) of

these part and class for a displacement δ ∈ ΔR
i, j as the value

pooled at the new location (Ri, j offset by δ) and penalized
by the magnitude of the displacement:

SR
i, j,c(δ) = Pool

(x,y)∈Ri, j
zi, j,c(x + δx, y + δy)

−λde f ‖δ‖22 (1)

where λde f represents the strength of the regularization (bias
toward small deformations), andPool is an averagepooling as
in (Dai et al. 2016b), but any pooling function could be used
instead. Here, the deformation cost is the squared distance
of the displacement on the feature map, but other func-
tions could be used equally. The deformable part-based RoI

layer consists in maximizing this quantity with respect to the
displacement, and therefore optimizes a trade-off between
maximizing the score on the corresponding feature map and
minimizing the displacement from the reference position (see
Fig. 3). Its output pRc (i, j) then writes:

pRc (i, j) = max
δ∈ΔR

i, j

[
SR
i, j,c(δ)

]
(2)

= max
δ∈ΔR

i, j

[
Pool

(x,y)∈Ri, j
zi, j,c(x + δx, y + δy)

−λde f ‖δ‖22
]
. (3)

While Eq. 3 is used to compute the output of the layer
for part (i, j) of region R and class c, it also gives the dis-
placement dR

c (i, j) = (
dx Rc (i, j), dyRc (i, j)

)
for that part: it

is the argmax of Eq. 3, i.e. the δ = (δx, δy) maximizing it.
Those displacements are extracted from the layer to be used
for localization thereafter (see Sect. 3.3). We emphasize that
this formulation does not require any annotations about posi-
tions of parts, and can therefore be used in the standard object
detection setup (i.e. with bounding boxes only).

λde f is directly linked to the magnitudes of the displace-
ments of parts, and therefore to the deformations of RoIs too,
by controlling the squared distance regularization (i.e. pref-
erence for small deformations). Increasing it puts a higher
weight on regularization and effectively reduces displace-
ments of parts, but setting it too high prevents parts from
moving and removes the benefits of our approach. It is
noticeable this deformable part-based RoI pooling is a gen-
eralization of the position-sensitive RoI pooling from Dai
et al. (2016b). Setting λde f = +∞ clamps all displacements
dR
c (i, j) to (0, 0), leading to the formulation of position-sen-
sitive RoI pooling:

pRc (i, j) = Pool
(x,y)∈Ri, j

zi, j,c(x, y). (4)

On the other hand, setting λde f = 0 removes regulariza-
tion and parts are then free to move. With λde f too low, the
results decrease, indicating that regularization is practically
important. However, the results appeared to be stable within
a large range of values of λde f . Additionally, optimization of
δ is performed by brute force in a limited range and not the
whole image, i.e. the setsΔR

i, j are restricted to their intersec-

tions with a centered ball of small radius. With λde f not too
small, the regularization effectively restricts displacements
to lower values, leaving the results of pooling unchanged. In
all experiments, we use λde f = 0.3.

We further normalize the displacements dx Rc and dyRc by
the heights and widths of parts respectively to make the layer
invariant to the scales of the images and regions. Indeed,
the parts should move to the same positions relative to the

123

Author's personal copy



International Journal of Computer Vision

objects, regardless of the scales at which they appear in the
images and irrespective of any scaling factor applied to the
images. We also normalize the classification feature maps
before forwarding them to deformable part-based RoI pool-
ing layer to ensure classification and regularization terms are
comparable. We do this by L2-normalizing at each spatial
location the block ofC +1 maps for each part separately, i.e.
replacing z from Eq. 3 with

z̄i, j,c(x, y) = zi, j,c(x, y)√∑
c′ zi, j,c′(x, y)2

. (5)

3.2.2 CRF-Based Joint Deformations of Parts

The second strategy to compute deformations jointly consid-
ers all parts in a single optimization problem. All displace-
ments are inferred simultaneously, so that it is possible to
model dependencies between them and enforce consistency.
We then have a fully connected graphical model, i.e. dis-
placement of a given part is influenced by those of all other
parts. This is in contrast with the independent deformations
from Sect. 3.2.1 which uses a star model, i.e. parts are condi-
tionally independent from each other given the whole region,
like the original DPM (Felzenszwalb et al. 2010).

Wedo this by casting the optimization problem into aCon-
ditional Random Field (CRF) inference over displacements
of partswithin regions.We define original unary and pairwise
potentials by hand so that theCRFs act as a regularization and
lead to a more robust part alignment stage. By integrating the
CRF inference algorithm within the deformable part-based
RoI pooling layer, i.e. the inference is carried out for all
regions at each forward pass, we are still able to perform
end-to-end training on GPU with a moderate overhead.

A different CRF is instantiated for each region R and class
c (but for the background class as no deformations are com-
puted), and they are all optimized in parallel during forward
passes. There are I × J variables DR

c (i, j) considered here,
each associated with a given part (i, j) and indicating its dis-
placement dR

c (i, j). TheGibbs probability distribution of the
CRF conditioned on an image I is then

P
(
DR
c = dR

c |I
)

= 1

Z R
c (I )

exp
(
−ER

c (dR
c |I )

)
(6)

with Z R
c the partition function and ER

c the corresponding
Gibbs energy (Lafferty et al. 2001). From now on, we drop
the R and c notations as well as the conditioning on image I
for convenience.

We use the fully connected CRF formulation of Krähen-
bühl and Koltun (2011) to model dependencies between all
pairs of parts. The Gibbs energy E for displacements d then
takes the form

Fig. 4 Visualization of pairwise potentials of CRF between parts for
a region of a class c. Interactions between all I J parts are taken into
account through pairwise potentials φp . These are composed of two
main terms: a kernel k controlling the strength of the interactions
according to the distances between parts, and a compatibility function
μ encouraging similarity of displacements

E(d)=
∑
i, j

φu (d(i, j)) +
∑

(i, j)<(i ′, j ′)
φp

(
d(i, j), d(i ′, j ′)

)

(7)

where φu and φp are the unary and pairwise potentials.
The unary potential φu is computed independently for

each part, and is based on the visual features (i.e. the fea-
ture maps z) only. It does not consider any relations between
parts nor produce consistency between their displacements.
For each part (i, j), it gives a negative log-probability distri-
bution over possible displacements for that part. We use the
score function Si, j from the independent deformation model
(defined in Eq. 1 from Sect. 3.2.1) as unnormalized probabil-
ity distribution and apply a Sof tMax function to it to obtain
a valid distribution, yielding

φu (d(i, j)) = −LogSof tMax
[
Si, j

]
(d(i, j)) . (8)

The main purpose of using a CRF is to use a pairwise
potential φp to relate pairs of displacements in order to
enforce consistency between them (see Fig. 4). We use it
here to smooth the deformation field over the region by intro-
ducing the constraint that nearby parts should have similar
displacements, through the design of a specific form for the
potential φp. Doing so, it increases the robustness of the part
alignment stage. Following Krähenbühl and Koltun (2011),
we use a potential of the form

φp
(
d(i, j), d(i ′, j ′)

) = w0 k
(
(i, j), (i ′, j ′)

)

×μ
(
d(i, j), d(i ′, j ′)

)
(9)
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where w0 is the weight of the pairwise component, k is a
gaussian kernel and μ is a compatibility function between
displacements.

We define dedicated functions k and μ suited to our par-
ticular problem of computing deformations of a region. The
kernel k controls the weights of the pairwise links according
to how far apart the parts are, and has the following expres-
sion:

k
(
(i, j), (i ′, j ′)

) = exp

(
−|i − i ′|2 + | j − j ′|2

2σ 2

)
(10)

with σ giving thewidth of the kernel. The compatibility func-
tion μ gives the penalty assigned to a pair of displacements,
and we choose it so that the deformation field over the region
tends to be smoother, then acting as a regularization:

μ
(
d(i, j), d(i ′, j ′)

) = |dx(i, j) − dx(i ′, j ′)|2
σd

+|dy(i, j) − dy(i ′, j ′)|2
σd

(11)

with σd controlling the strength of the penalty according to
how similar the displacements are. Other norms can also be
used in μ (i.e. changing the exponent of the power), but they
experimentally do not yield any improvement. In summary,
the pairwise potential φp takes the form

φp
(
d(i, j), d(i ′, j ′)

) = wp exp

(
−|i − i ′|2 + | j − j ′|2

2σ 2

)

×
(
|dx(i, j) − dx(i ′, j ′)|2 + |dy(i, j) − dy(i ′, j ′)|2

)

(12)

where wp = w0
σd
.

We run T iterations of a Mean Field algorithm to perform
approximate inference on the CRF, and use an efficient gaus-
sian filtering in order to speed it up (Krähenbühl and Koltun
2011). This is done simultaneously for all classes c and all
regions R at each forward pass, i.e. all theCRFs are optimized
in parallel, in order to obtain all the deformations dR

c . These
are then used to backpropagate gradients at selected loca-
tions, as done with independent deformations. While there
are multiple CRFs to optimize at the same time, they are all
rather small since the number of variables (i.e. the number
of parts I J ) is limited. Therefore, this only adds a moderate
overhead compared to having independent deformations. In
all experiments, we use wp = 0.3, σ = 1.3 and we perform
a single Mean Field iteration (i.e. T = 1), as doing more
iterations does not lead to significant improvement.

We note that this CRF-based formulation of deformable
part-based RoI pooling is a generalization of the inde-
pendent deformation formulation of Mordan et al. (2017)

(Sect. 3.2.1). Indeed, setting the pairwise weight wp = 0
or doing no iteration of Mean Field inference (i.e. T = 0)
results in maximizing Si, j , which is exactly Eq. 2.

3.3 Classification and Localization Predictions with
Deformable Parts

Predictions are performed with two sibling branches, for
classification and relocalization of region proposals, as is
common practice (Girshick 2015). The classification branch
is simply composed of an average pooling followed by a
SoftMax layer. This is the strategy employed in R-FCN (Dai
et al. 2016b), but the deformations introduced before (with
deformable part-based RoI pooling) bring more invariance
to transformations of objects and boost classification.

Regarding localization, the same approach is used by R-
FCN, i.e. a simple average of pooled localization values.
However, this is not adapted to DP-FCN as it is for classi-
fication, due to the presence of deformations. Indeed, while
the positions and dimensions of input bounding boxes are
implied by the pooling regions (i.e. parts) in R-FCN, it is no
longer the case when those are moved by a deformable part-
based RoI pooling layer. With the same strategy as R-FCN,
the network would not keep track of the displacements of
parts (which are never made explicit in this architecture) and
would therefore be unaware of the exact input bounding box
to be relocalized, leading to approximate localization.

To solve that issue, we introduce a deformation-aware
localization module, explicitly taking deformations of parts
into account. Since we want bounding boxes to tightly
enclose objects, localization should not be invariant to local
transformations but adapt accordingly. The configuration of
parts (i.e. their positions relative to each other) is obtained as
a by-product of the alignment of parts performed before, and
can then be exploited to refine naive localization predictions
obtained from pooling at deformed locations, so that exact
geometries of bounding boxes are recovered. It also gives
rich geometric information about the appearances of objects,
e.g. their shapes or poses, that can be used to further enhance
localization accuracy.

In the following sections, we introduce two versions of
localization refinement module. The first approach computes
naive, deformation-unaware predictions, then uses displace-
ments of parts to improve them; it is already presented in
Mordan et al. (2017). Rather than considering global pre-
dictions only, the second method exploits partial predictions
made by all parts individually, and directly combines them
with displacements of parts to yield final predictions. That
way, interactions between both positions and outputs of all
parts can be expressed, resulting in a more accurate localiza-
tion.

For both modules, the refinement is mainly geometric
rather than semantic, i.e. it depends only on the displace-
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ments of parts and not on the classes of objects. Therefore,
the same configuration of parts should give the same refine-
ment. For this reason, the localization is applied for each
class separately and parameters are shared between classes.
Additionally, sharing parameters can act as a regularization
for classes with fewer examples.

3.3.1 Global Localization Refinement

This localizationmodule (Mordan et al. 2017) separately pro-
cesses outputs and displacements of parts, for a class c and
a region R, before merging them with a simple operation
(see Fig. 5). It exploits the strategy of R-FCN, i.e. an average
pooling of partial predictions from parts, to compute a first
deformation-unaware prediction (upper path in Fig. 5). This

Fig. 5 Deformation-aware global localization refinement. Relocaliza-
tions of bounding boxes obtained by averaging pooled values from
localization maps (upper path) do not benefit from deformable parts. To
do so, displacements of parts are forwarded through two fully connected

layers (lower path) and are element-wise multiplied with the previous
output to refine it, separately for each class. Localization is done with 4
values per class, following Girshick et al. (2014) and Girshick (2015)

Fig. 6 Deformation-aware bilinear localization refinement. For each
region and class, both predictions and displacements from all parts are
separately embedded into lower dimensional features before feeding a
bilinear product layer (i.e. a Tucker decomposition) to yield final local-

ization prediction of size 4, followingGirshick et al. (2014) andGirshick
(2015). This kind of refinement naturally learns relations between pairs
of parts, and so describes shapes of objects more finely
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Table 1 Main results of DP-FCN2.0 on PASCAL VOC 2007 test in average precision (%)

Model Independent
deformations

Joint
deformations

Global
localization
refinement

Bilinear
localization
refinement

mAP@
0.5

mAP@
0.75

mAP@
[0.5:0.95]

R-FCN (Dai et al. 2016b) 74.1 39.4 40.0

DP-FCN (Mordan et al. 2017) � � 76.1 40.9 41.3

DP-FCN2.0 (ours) � � 76.5 45.3 43.2

Best results are highlighted in bold
Without deformable part-based RoI pooling nor localization refinement module, it is equivalent to R-FCN (the reported results are those of our
implementation with the given setup)

Table 2 Ablation study of DP-FCN2.0 in mAP@0.5 on PASCAL VOC 2007 test in average precision (%)

(mAP@ 0.5) No localization refinement Global localization refinement Bilinear localization refinement

No deformation (R-FCN) 74.1 – –

Independent deformations 75.8 (+1.7) (DP-FCN) 76.1 (+2.0) 76.4 (+2.3)

Joint deformations – 76.4 (+2.3) (DP-FCN2.0) 76.5 (+2.4)

Results are given with absolute performances, with improvements with respect to R-FCN between parenthesis

Table 3 Ablation study of DP-FCN2.0 in mAP@0.75 on PASCAL VOC 2007 test in average precision (%)

(mAP@0.75) No localization refinement Global localization refinement Bilinear localization refinement

No deformation (R-FCN) 39.4 – –

Independent deformations 38.8 (−0.6) (DP-FCN) 40.9 (+1.5) 45.0 (+5.6)

Joint deformations – 40.5 (+1.1) (DP-FCN2.0) 45.3 (+5.9)

Results are given with absolute performances, with improvements with respect to R-FCN between parenthesis

Table 4 Ablation study of DP-FCN2.0 in mAP@[0.5:0.95] on PASCAL VOC 2007 test in average precision (%)

(mAP@ [0.5:0.95]) No localization refinement Global localization refinement Bilinear localization refinement

No deformation (R-FCN) 40.0 – –

Independent deformations 40.4 (+0.4) (DP-FCN) 41.3 (+1.3) 42.9 (+2.9)

Joint deformations – 41.6 (+1.6) (DP-FCN2.0) 43.2 (+3.2)

Results are given with absolute performances, with improvements with respect to R-FCN between parenthesis

output is based on visual features only, without considering
deformations, as noted before.

For that reason, we extract the feature vector dR
c of nor-

malized displacements (dx Rc , dyRc ) of all parts, computed by
the deformable part-based RoI pooling layer (as shown in
the bottom right corner of Fig. 3), and use it to refine previ-
ous naive prediction. dR

c , of size 2I J (i.e. a 2D displacement
for each part), is forwarded through a simple sub-network
(lower path in Fig. 5) to yield a feature vector of size 4 (the
same as the prediction, following Girshick et al. (2014) and
Girshick (2015)) encoding the positions of parts. The sub-
network is composed of two fully connected layers with a
ReLU between them. The size of the first layer is set to 256
in all our experiments. The result is then element-wise mul-
tiplied with the first prediction to adjust it accordingly to

the exact locations where it was computed, yielding the final
localization output.

3.3.2 Bilinear Localization Refinement

While the previous method computes a prediction and only
globally refines it with deformations, this second approach
to localization refinement jointly considers all partial predic-
tions and displacements of parts in a single operation. That
way, it expresses interactions between parts more effectively
and at a finer level.

To do this we use a bilinear product between predictions
and displacements, that directly outputs the final localization
(see Fig. 6), which is of size 4 as before. With that operation,
all pairs of prediction and displacement, even from different
parts, contribute to the output. It can therefore model richer
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Fig. 7 Comparison of detections from R-FCN (red) and DP-FCN (blue). DP-FCN tightly fits objects (first two rows) and separates close instances
(last two rows) better than R-FCN (Color figure online)

and more complex shapes than the global relocalization, and
the final detections are more accurate.

To reduce computation here, we use a Tucker decom-
position (Tucker 1966): we compute two feature vectors
uR
c and vR

c of lower size s for both partial predictions and

displacements, with a simple fully connected layer applied to
each input, and only feed these two vectors into the bilinear
layer. Each of the four localization output values yRc is then
obtained with
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Fig. 8 Comparison of detections from DP-FCN (blue) and DP-FCN2.0 (green). Predictions of DP-FCN2.0 are better localized in general (Color
figure online)

Table 5 Runtime analysis of
DP-FCN2.0. Values reported are
computed with ResNet-50 on
images at scale of 600px, and
averaged over PASCAL VOC
2007 test

Model Number of parameters Number of FLOPs Forward time (s)

R-FCN (Dai et al. 2016b) 32.26 M 133.6 G 0.167

DP-FCN (Mordan et al. 2017) 32.28 M 134.3 G 0.299

DP-FCN2.0 (ours) 32.27 M 152.5 G 0.492

Fig. 9 Examples of deformations of parts from DP-FCN. Initial region proposals are shown in yellow and deformed parts in red. Only 3× 3 parts
are displayed for clarity (Color figure online)

yRc (l) =
s∑

m=1

s∑
n=1

uR
c (m)T(m, n, l)vR

c (n) + b(l) (13)

whereT is a tensor of size s×s×4 andb is a bias of size 4, both
learned within the layer and shared between classes. In all
experiments, we use a reduced size of s = 32, which keeps

memory and computation requirements low. While having
bigger features yields slightly better results, we think this
is a good trade-off between performance and computation.
More complex combination operations could be used instead
of theTucker decomposition to further improve performance,
e.g. MUTAN (Ben-Younes et al. 2017).
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Fig. 10 Examples of deformations of parts from DP-FCN2.0. Initial region proposals are shown in yellow and deformed parts in red. Only 3 × 3
parts are displayed for clarity (Color figure online)

4 Experiments

4.1 Main Results

Experimental setupWe perform this analysis with the fully
convolutional backbone architecture ResNet-50 (He et al.
2016) whose model, pre-trained on ImageNet (Russakovsky
et al. 2015), is freely available. The network is trained with
SGD for 60,000 iterations with a learning rate of 5 ·10−4 and
for 20,000 further iterations with 5 · 10−5. The momentum
parameter is set to 0.9 and the weight decay to 10−4. Each
mini-batch is composed of 64 regions from a single image at
the scale of 600px, selected according to Fast R-CNN (Gir-
shick 2015). Horizontal flipping of images with probability
0.5 is used as data augmentation. We exploit the region pro-
posals computed by AttractioNet (Gidaris and Komodakis
2016a, b) released by the authors. The top 2000 regions are

used for learning and the top 300 are evaluated during infer-
ence.We use I× J = 7×7 parts, as advised by the authors of
R-FCN (Dai et al. 2016b). As is common practice, detections
are post-processed with NMS with the standard threshold of
0.3.

All experiments in this section are conducted on PASCAL
VOC 07+12 dataset (Everingham et al. 2015): training is
done on the union of the 2007 and 2012 trainval sets and test-
ing on the 2007 test set. In addition to the standardmAP@0.5
(i.e. PASCAL VOC style) metric, results are also reported
with the mAP@0.75 and mAP@[0.5:0.95] (i.e. MS COCO
style) metrics to thoroughly evaluate the effects of proposed
improvements.

Performances of models Performance of our implemen-
tation of R-FCN (Dai et al. 2016b) with the given setup is
shown in the first row of Table 1. Using independent defor-
mations and global localization refinement,DP-FCN (second

Table 6 Comparison of different FCN architectures used with DP-FCN (Mordan et al. 2017) on PASCAL VOC 2007 test in average precision (%)

FCN architecture for DP-FCN (Mordan et al. 2017) mAP@0.5 mAP@0.75 mAP@[0.5:0.95]

ResNet-50 (He et al. 2016) 76.1 40.9 41.3

ResNeXt-50 (32x4d) (Xie et al. 2017)� 76.3 40.8 41.4

Wide ResNet-50-2 (Zagoruyko and Komodakis 2016) 77.9 43.3 42.9

ResNet-101 (He et al. 2016) 78.1 44.2 43.6

ResNeXt-101 (32x4d) (Xie et al. 2017)� 78.6 45.2 44.4

ResNeXt-101 (64x4d) (Xie et al. 2017)� 79.5 47.8 45.7

Best results are highlighted in bold
Entries marked with � do not use dilated convolutions
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row of Table 1) outperforms R-FCN in all three metrics with
large margins. In particular, it gains 2.0 points in mAP@0.5
over R-FCN. Then, with the improved joint deformations
and bilinear localization refinement, DP-FCN2.0 (last row of
Table 1) has better results, with an significant improvement
of 4.4 points in mAP@0.75 with respect to DP-FCN. These
results validate the effectiveness of deformations within net-
works to enhance detection, and also that richer models of
deformations (i.e. with interactions between parts) lead to
better performance.

4.2 Ablation Study

Experimental setup For this ablation study, we use the same
experimental setup as before (Sect. 4.1) so that results are
directly comparable.

Analysis of models We present a detailed analysis of
results for each new module in Tables 2, 3 and 4 for the
three metrics mAP@0.5, mAP@0.75 and mAP@[0.5:0.95]
respectively. In each table, R-FCN is shown in the top left cor-
ner as the baseline. Adding the deformable part-based RoI
pooling with independent deformations to R-FCN (second
rows of tables) improves mAP@0.5 by 1.7 points. Indeed,
this metric is rather permissive so the localization does not
need to be very accurate. On the other hand, we see a nega-
tive effect on mAP@0.75. That is due to the uncertainty in
the positions of parts, leading to an imprecise localization
as already noted in Sect. 3.3. Overall, this is still beneficial,
with a gain of 0.4 points in mAP@[0.5:0.95]. The improve-
ments are therefore mainly due to a better recognition, thus
validating the role of deformable parts.With the global local-
ization refinement module (second columns of tables), the
mAP@0.5 has only a small improvement, because localiza-
tion accuracy is not a issue. However, it further improves
mAP@0.75 by 2.1 points (i.e. 1.5 points with respect to R-
FCN) andmAP@[0.5:0.95] by 0.9 points, validating the need
for such a module. This confirms that it solves the previ-
ous issue of approximate localization and that aligning parts
brings geometric information useful for localization.

We then change the independent deformations to use the
joint CRF-based ones (last rows of tables), which brings an
additional improvement of 0.3 points for bothmAP@0.5 and
mAP[0.5:0.95] metrics with respect to Mordan et al. (2017).
This therefore confirms that deformations play an important
role in recognition, as already noted.When using the bilinear
localization refinement (last columns of tables) in place of the
global one, it yields great improvements of 4.1 and 1.6 points
in mAP@0.75 and mAP@[0.5:0.95] respectively, while it is
smaller in mAP@0.5. This again confirms that this module is
mainly dealing with the accuracy of the localization, but not
with the recognition of the object categories. By combining
both improved modules (bottom right corners of tables), DP-
FCN2.0 has additional gains in all three metrics, showing

that the two contributions are complementary, and validates
the importance of taking interactions of parts into account
for accurate predictions.

4.3 Further Analysis

Comparison with R-FCN Some examples of detection out-
puts are illustrated in Fig. 7 to visually compare R-FCN and
DP-FCN, and evaluate proposed improvements. It appears
that R-FCN can more easily miss extremal parts of objects
(see first two rows, e.g. the woman’s left arm or the ears
of the horse), and that DP-FCN is better at separating close
instances (see last two rows, e.g. people or boats next to each
other), thanks to deformable parts. While detections from
DP-FCN and DP-FCN2.0 are often rather similar, the latter
generally fits objects more tightly. We show some examples
of that in Fig. 8.

Runtime analysis We present some statistics about R-
FCN, DP-FCN and DP-FCN2.0 in Table 5. The first column
shows that all models have roughly the same number of
parameters, i.e. our approaches do not bring many addi-
tional parameters and so should not need significantly more
examples to be learned. The average number of FLOPs
(multiply-adds) and times of network forward passes are dis-
played in the following two columns. It is noticeable that
DP-FCN yields a moderate overhead compared to R-FCN,
while the more computational intensive inference carried out
by DP-FCN2.0, because of the CRFs introduced, leads to a
heavier model.

Interpretation of parts As in the original DPM (Felzen-
szwalb et al. 2010), the semantics of parts is not explicit in
our model. Part positions are instead automatically learned
to optimize detection performance, in a weakly supervised
manner. Therefore the interpretation in terms of semantic
parts is not systematic, especially because our division of
regions into parts is finer than in DPM, leading to smaller
part areas. Some deformed parts are displayed on Fig. 9 for
DP-FCN and Fig. 10 for DP-FCN2.0, with a 3× 3 part divi-
sion for easier visualization. It is noticeable that the models
are able to better fit to objects with deformable parts than
with simple bounding boxes.

Network architecture We compare DP-FCN with sev-
eral FCN backbone architectures in Table 6, in particular the
50- and 101-layer versions of ResNet (He et al. 2016), Wide
ResNet (Zagoruyko andKomodakis 2016) andResNeXt (Xie
et al. 2017).We see that the detectionmAPofDP-FCNcan be
significantly increased by using better networks. ResNeXt-
101 (64x4d) gives the best results among the tested ones,with
large improvements in all metrics, despite not using dilated
convolutions. We expect DP-FCN2.0 to behave similarly, in
particular to give the best results with ResNeXt-101 (64x4d)
too.
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Table 9 Detection results on MS COCO test-dev in average precision (%)

Method mAP@ [0.5:0.95] mAP@ 0.5 mAP@ 0.75 mAP@ Small mAP@ Medium mAP@ Large

MultiPath (Zagoruyko et al. 2016) (on val) 31.5 49.6

R-FCN (Dai et al. 2016b) 31.5 53.2 14.3 35.5 44.2

ION (Bell et al. 2016) 33.1 55.7 34.6 14.5 35.2 47.2

DP-FCN (Mordan et al. 2017) 34.0 54.7 37.2 15.9 36.4 47.5

DP-FCN2.0 (ours) 34.8 54.8 38.4 15.8 37.2 49.0

FPN (Lin et al. 2017a) 36.2 59.1 18.2 39.0 48.2

Deformable ConvNet (Dai et al. 2017) 37.5 58.0 19.4 40.1 52.5

RetinaNet (Lin et al. 2017b) 39.1 59.1 42.3 21.8 42.7 50.2

Best results are highlighted in bold
All methods are trained on the bounding box detection trainval set (except MultiPath which is trained on the 115k train set) and are single model

Fig. 11 Example detections of DP-FCN trained on VOC 07+12 data (Sect. 4.4) on unseen VOC 2007 test images, using VOC color code for classes.
All detections with score above 0.6 are shown (Color figure online)
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Fig. 12 Example detections of DP-FCN trained on VOC 07+12 data (Sect. 4.4) on unseen VOC 2007 test images, using VOC color code for classes.
Last row shows some failure cases. All detections with score above 0.6 are shown (Color figure online)

4.4 Comparison with State of the Art

Experimental setup In order to achieve the best results pos-
sible, we bring the following improvements to the setup
of Sect. 4.2: we first replace ResNet-50 by ResNeXt-101
(64x4d) (Xie et al. 2017) and increase the number of itera-
tions to 120,000 and 40,000 on PASCAL VOC datasets, and

to 480,000 and 160,000 onMSCOCO dataset, with the same
learning rates, using 2 images per mini-batch with the same
number of regions per image. We include common tricks:
color data augmentations (Krizhevsky et al. 2012), bounding
box voting (Gidaris and Komodakis 2015) with a threshold
of 0.5 on PASCALVOC and 0.75 onMSCOCO, and averag-
ing of detections between original and flipped images (Bell
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Fig. 13 Example detections of DP-FCN2.0 trained on VOC 07+12 data (Sect. 4.4) on unseen VOC 2007 test images, using VOC color code for
classes. All detections with score above 0.6 are shown (Color figure online)

et al. 2016; Zagoruyko et al. 2016).We set the relative weight
of the multi-task (classification/localization) loss (Girshick
2015) to 7 and enlarge input boxes by a factor 1.3 to include
some context.

PASCAL VOC 2007 and 2012 Results of DP-FCN and
DP-FCN2.0, alongwith those of recentmethods, are reported
in Table 7 for VOC 2007 and in Table 8 for VOC 2012. For
fair comparisonswe only report results ofmethods trained on
VOC 07+12 and VOC 07++12 respectively, but using addi-
tional data, e.g. MS COCO images, usually improves results
(He et al. 2016; Dai et al. 2016b). DP-FCN achieves 83.1

and 80.9% on these two datasets, yielding large gaps with
all competing methods. In particular, DP-FCN outperforms
R-FCN (Dai et al. 2016b), the work closest to ours, by signif-
icant margins (2.6 and 3.3 points respectively). DP-FCN2.0
yields 83.3% and 81.2% on VOC 2007 and 2012 respec-
tively, which are small additional improvements of 0.2 and
0.3 points with respect to Mordan et al. (2017). As studied
in Sect. 4.2, the main improvement of this model lies in the
accuracy of localization, which is not reflected here with the
official PASCAL VOC metric, i.e. mAP@0.5. We note that
these results could be further improved with additional com-
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Fig. 14 Example detections of DP-FCN2.0 trained on VOC 07+12 data (Sect. 4.4) on unseen VOC 2007 test images, using VOC color code for
classes. Last row shows some failure cases. All detections with score above 0.6 are shown (Color figure online)

mon enhancements, e.g. multi-scale training and testing (He
et al. 2015) or OHEM (Shrivastava et al. 2016).

MS COCO In order to validate the effectiveness of
deformations for object detection, we present the results of
DP-FCN, DP-FCN2.0 and other concurrent methods on the
challenging and large-scale MS COCO dataset (Lin et al.
2014) in Table 9.While more recent approaches, e.g. Feature
Pyramid Network (FPN) (Lin et al. 2017a), RetinaNet (Lin
et al. 2017b), have better results, we see that DP-FCN is still
competitive with the state of the art, showing the generality
of our approach. It notably outperforms R-FCN again on this
dataset. Again, DP-FCN2.0 yields better results than Mor-

dan et al. (2017), with improvements of 0.8 and 1.2 points
in the official and mAP@0.75 metrics, which are strict in
localization. However, training on this dataset is rather com-
putational expensive, and all the leading methods use heavy
GPU resources for that. It allows them to be parameterized
directly onMS COCO, while we do it on PASCALVOC and
then transfer selected values, which might be suboptimal.
By training longer, tuning hyper-parameters more carefully
or by integrating our ideas into newer architectures, e.g. FPN
(Lin et al. 2017a), we expect higher results.
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4.5 Examples of Detections

Some example detections of the final DP-FCNmodel trained
on VOC 07+12 data (Sect. 4.4) on unseen VOC 2007 test
images are shown in Figs. 11 and 12. We note that DP-FCN
can successfully detect objects under simple as well as chal-
lenging conditions.The last rowofFig. 12 shows some failure
caseswhere some objects aremisclassified, although they are
accurately localized. Example detections are illustrated in the
same way for DP-FCN2.0 in Figs. 13 and 14.

5 Conclusion

In this paper, we propose DP-FCN2.0, an extension of
our previous work DP-FCN (Mordan et al. 2017). These
two models for object detection learn latent deformable
part-based representations thanks to two new modules: a
deformation part-based RoI pooling layer aligning parts with
discriminative elements of objects, thus increasing invari-
ance to local transformations, and a localization refinement
module exploiting configurations of parts to accurately iden-
tify shapes of objects. These contributions are then naturally
integrated within FCNs for high efficiency. In this extension,
we further make interactions between parts explicit, so that
they are learned by our model. This yields finer represen-
tations of objects, and both recognition and localization are
improved. This is done by casting alignment as a CRF infer-
ence with custom potentials, optimizing all parts jointly, and
by using a bilinear deformation-based refinement for local-
ization. Deformations make our models more flexible than
traditional region-based detectors, restricted to extract fea-
tures from generic bounding boxes only. Moreover, this is
done without part annotations during training and the joint
CRF-based optimization is wrapped within the deformable
part-based RoI pooling layer in order to enable end-to-end
learning, which makes deformations easy to integrate into
any region-based architecture. Finally, experimental valida-
tion shows significant gains on the standard PASCAL VOC
datasets with several common metrics, and especially with
the ones more strict on localization. Our models also achieve
state-of-the-art results with VOC data only. However, using
deformations with recent state-of-the-art network architec-
tures should boost performance even more.
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