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Abstract

This paper addresses the problem of time series forecasting for non-stationary
signals and multiple future steps prediction. To handle this challenging task, we
introduce DILATE (DIstortion Loss including shApe and TimE), a new objective
function for training deep neural networks. DILATE aims at accurately predicting
sudden changes, and explicitly incorporates two terms supporting precise shape
and temporal change detection. We introduce a differentiable loss function suitable
for training deep neural nets, and provide a custom back-prop implementation for
speeding up optimization. We also introduce a variant of DILATE, which provides
a smooth generalization of temporally-constrained Dynamic Time Warping (DTW).
Experiments carried out on various non-stationary datasets reveal the very good
behaviour of DILATE compared to models trained with the standard Mean Squared
Error (MSE) loss function, and also to DTW and variants. DILATE is also agnostic
to the choice of the model, and we highlight its benefit for training fully connected
networks as well as specialized recurrent architectures, showing its capacity to
improve over state-of-the-art trajectory forecasting approaches.

1 Introduction

Time series forecasting [6] consists in analyzing the dynamics and correlations between historical data
for predicting future behavior. In one-step prediction problems [39, 30], future prediction reduces to
a single scalar value. This is in sharp contrast with multi-step time series prediction [49, 2, 48], which
consists in predicting a complete trajectory of future data at a rather long temporal extent. Multi-step
forecasting thus requires to accurately describe time series evolution.

This work focuses on multi-step forecasting problems for non-stationary signals, i.e. when future data
cannot only be inferred from the past periodicity, and when abrupt changes of regime can occur. This
includes important and diverse application fields, e.g. regulating electricity consumption [63, 36],
predicting sharp discontinuities in renewable energy production [23] or in traffic flow [35, 34],
electrocardiogram (ECG) analysis [9], stock markets prediction [14], etc.

Deep learning is an appealing solution for this multi-step and non-stationary prediction problem,
due to the ability of deep neural networks to model complex nonlinear time dependencies. Many
approaches have recently been proposed, mostly relying on the design of specific one-step ahead
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(a) Non informative prediction (b) Correct shape, time delay (c) Correct time, inaccurate shape

Figure 1: Limitation of the euclidean (MSE) loss: when predicting a sudden change (target blue step
function), the 3 predictions (a), (b) and (c) have similar MSE but very different forecasting skills. In
contrast, the DILATE loss proposed in this work, which disentangles shape and temporal decay terms,
supports predictions (b) and (c) over prediction (a) that does not capture the sharp change of regime.

architectures recursively applied for multi-step [24, 26, 7, 5], on direct multi-step models [3] such as
Sequence To Sequence [34, 60, 57, 61] or State Space Models for probabilistic forecasts [44, 40].

Regarding training, the huge majority of methods use the Mean Squared Error (MSE) or its variants
(MAE, etc) as loss functions. However, relying on MSE may arguably be inadequate in our context,
as illustrated in Fig 1. Here, the target ground truth prediction is a step function (in blue), and we
present three predictions, shown in Fig 1(a), (b), and (c), which have a similar MSE loss compared to
the target, but very different forecasting skills. Prediction (a) is not adequate for regulation purposes
since it doesn’t capture the sharp drop to come. Predictions (b) and (c) much better reflect the change
of regime since the sharp drop is indeed anticipated, although with a slight delay (b) or with a slight
inaccurate amplitude (c).

This paper introduces DILATE (DIstortion Loss including shApe and TimE), a new objective
function for training deep neural networks in the context of multi-step and non-stationary time series
forecasting. DILATE explicitly disentangles into two terms the penalization related to the shape
and the temporal localization errors of change detection (section 3). The behaviour of DILATE is
shown in Fig 1: whereas the values of our proposed shape and temporal losses are large in Fig 1(a),
the shape (resp. temporal) term is small in Fig 1(b) (resp. Fig 1(c)). DILATE combines shape and
temporal terms, and is consequently able to output a much smaller loss for predictions (b) and (c)
than for (a), as expected.

To train deep neural nets with DILATE, we derive a differentiable loss function for both shape and
temporal terms (section 3.1), and an efficient and custom back-prop implementation for speeding
up optimization (section 3.2). We also introduce a variant of DILATE, which provides a smooth
generalization of temporally-constrained Dynamic Time Warping (DTW) metrics [43, 28]. Exper-
iments carried out on several synthetic and real non-stationary datasets reveal that models trained
with DILATE significantly outperform models trained with the MSE loss function when evaluated
with shape and temporal distortion metrics, while DILATE maintains very good performance when
evaluated with MSE. Finally, we show that DILATE can be used with various network architectures
and can outperform on shape and time metrics state-of-the-art models specifically designed for
multi-step and non-stationary forecasting.

2 Related work

Time series forecasting Traditional methods for time series forecasting include linear auto-
regressive models, such as the ARIMA model [6], and Exponential Smoothing [27], which both fall
into the broad category of linear State Space Models (SSMs) [17]. These methods handle linear
dynamics and stationary time series (or made stationary by temporal differences). However the
stationarity assumption is not satisfied for many real world time series that can present abrupt changes
of distribution. Since, Recurrent Neural Networks (RNNs) and variants such as Long Short Term
Memory Networks (LSTMs) [25] have become popular due to their automatic feature extraction abili-
ties, complex patterns and long term dependencies modeling. In the era of deep learning, much effort
has been recently devoted to tackle multivariate time series forecasting with a huge number of input
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series [31], by leveraging attention mechanisms [30, 39, 50, 12] or tensor factorizations [60, 58, 46]
for capturing shared information between series. Another current trend is to combine deep learning
and State Space Models for modeling uncertainty [45, 44, 40, 56]. In this paper we focus on deter-
ministic multi-step forecasting. To this end, the most common approach is to apply recursively a
one-step ahead trained model. Although mono-step learned models can be adapted and improved
for the multi-step setting [55], a thorough comparison of the different multi-step strategies [48] has
recommended the direct multi-horizon strategy. Of particular interest in this category are Sequence
To Sequence (Seq2Seq) RNNs models1 [44, 31, 60, 57, 19] which achieved great success in machine
translation. Theoretical generalization bounds for Seq2Seq forecasting were derived with an addi-
tional discrepancy term quantifying the non-stationarity of time series [29]. Following the success
of WaveNet for audio generation [53], Convolutional Neural Networks with dilation have become a
popular alternative for time series forecasting [5]. The self-attention Transformer architecture [54]
was also lately investigated for accessing long-range context regardless of distance [32]. We highlight
that our proposed loss function can be used for training any direct multi-step deep architecture.

Evaluation and training metrics The largely dominant loss function to train and evaluate deep
models is the MAE, MSE and its variants (SMAPE, etc). Metrics re�ecting shape and temporal
localization exist: Dynamic Time Warping [43] for shape ; timing errors can be casted as a detection
problem by computing Precision and Recall scores after segmenting series by Change Point Detection
[8, 33], or by computing the Hausdorff distance between two sets of change points [22, 51]. For
assessing the detection of ramps in wind and solar energy forecasting, speci�c algorithms were
designed: for shape, the ramp score [18, 52] based on a piecewise linear approximation of the
derivatives of time series; for temporal error estimation, the Temporal Distortion Index (TDI) [20, 52].
However, these evaluation metrics are not differentiable, making them unusable as loss functions
for training deep neural networks. The impossibility to directly optimize the appropriate (often
non-differentiable) evaluation metric for a given task has bolstered efforts to design good surrogate
losses in various domains, for example in ranking [15, 62] or computer vision [38, 59].

Recently, some attempts have been made to train deep neural networks based on alternatives to
MSE, especially based on a smooth approximation of the Dynamic time warping (DTW) [13, 37, 1].
Training DNNs with a DTW loss enables to focus on the shape error between two signals. However,
since DTW is by design invariant to elastic distortions, it completely ignores the temporal localization
of the change. In our context of sharp change detection, both shape and temporal distortions are
crucial to provide an adequate forecast. A differentiable timing error loss function based on DTW on
the event (binary) space was proposed in [41] ; however it is only applicable for predicting binary
time series. This paper speci�cally focuses on designing a loss function able to disentangle shape and
temporal delay terms for training deep neural networks on real world time series.

3 Training Deep Neural Networks with DILATE

Our proposed framework for multi-step forecasting is depicted in Figure 2. During training, we
consider a set ofN input time seriesA = f x i gi 2f 1:N g. For each input example of lengthn,
i.e. x i = ( x1

i ; :::; xn
i ) 2 Rp� n , a forecasting model such as a neural network predicts the future

k-step ahead trajectorŷy i = ( ŷ 1
i ; :::; ŷ k

i ) 2 Rd� k . Our DILATE objective function, which compares
this predictionŷ i with the actual ground truth future trajectory

�
y i = (

�
y i

1; :::;
�
y i

k) of lengthk, is
composed of two terms balanced by the hyperparameter� 2 [0; 1]:

L DILAT E (ŷ i ;
�
y i ) = � L shape (ŷ i ;

�
y i ) + (1 � � ) L temporal (ŷ i ;

�
y i ) (1)

Notations and de�nitions Both our shapeL shape (ŷ i ;
�
y i ) and temporalL temporal (ŷ i ;

�
y i ) distor-

tions terms are based on the alignment between predictedŷ i 2 Rd� k and ground truth
�
y i 2 Rd� k

time series. We de�ne a warping path as a binary matrixA � f 0; 1gk � k with Ah;j = 1 if ŷ h
i is associ-

ated to
�
y i

j , and0 otherwise. The set of all valid warping paths connecting the endpoints(1; 1) to (k; k)

1A Seq2Seq architecture was the winner of a 2017 Kaggle competition on multi-step time series forecasting
(https://www.kaggle.com/c/web-traffic-time-series-forecasting )
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Figure 2: Our proposed framework for training deep forecasting models.

with the authorized moves! ; #; & (step condition) is notedA k;k . Let � (ŷ i ;
�
y i ) := [ � (ŷ h

i ;
�
y i

j)]h;j

be the pairwise cost matrix, where� is a given dissimilarity between̂y h
i and

�
y i

j , e.g.the euclidean
distance.

3.1 Shape and temporal terms

Shape term Our shape loss function is based on the Dynamic Time Warping (DTW) [43], which

corresponds to the following optimization problem:DTW (ŷ i ;
�
y i ) = min

A 2A k;k

D
A ; � (ŷ i ;

�
y i )

E
.

A � = arg min
A 2A k;k

D
A ; � (ŷ i ;

�
y i )

E
is the optimal association (path) betweenŷ i and

�
y i . By temporally

aligning the predicted̂y i and ground truth
�
y i time series, the DTW loss focuses on the structural

shape dissimilarity between signals. The DTW, however, is known to be non-differentiable. We use
the smooth min operatormin 
 (a1; :::; an ) = � 
 log(

P n
i exp(� ai =
 )) with 
 > 0 proposed in [13]

to de�ne our differentiable shape termL shape :

L shape (ŷ i ;
�
y i ) = DTW 
 (ŷ i ;

�
y i ) := � 
 log

0

@
X

A 2A k;k

exp

0

@�

D
A ; � (ŷ i ;

�
y i )

E




1

A

1

A (2)

Temporal term Our second termL temporal in Eq (1) aims at penalizing temporal distortions

between̂y i and
�
y i . Our analysis is based on the optimal DTW pathA � between̂y i and

�
y i . A �

is used to register both time series when computing DTW and provide a time-distortion invariant
loss. Here, we analyze the form ofA � to compute the temporal distortions betweenŷ i and

�
y i . More

precisely, our loss function is inspired from computing the Time Distortion Index (TDI) for temporal
misalignment estimation [20, 52], which basically consists in computing the deviation between the
optimal DTW pathA � and the �rst diagonal. We �rst rewrite a generalized TDI loss function with
our notations:

TDI (ŷ i ;
�
y i ) = hA � ; 
 i =

*

arg min
A 2A k;k

D
A ; � (ŷ i ;

�
y i )

E
; 


+

(3)

where
 is a square matrix of sizek � k penalizing each elementŷ h
i being associated to an

�
y

j

i , for

h 6= j . In our experiments we choose a squared penalization,e.g.
 (h; j ) =
1
k2 (h � j )2, but other
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Figure 3: DILATE loss computation for separating the shape and temporal errors.

variants could be used. Note thatprior knowledge can also be incorporated in the
 matrix structure,
e.g.to penalize more heavily late than early predictions (andvice versa).

The TDI loss function in Eq (3) is still non-differentiable. Here, we cannot directly use the same
smoothing technique that for de�ningDTW
 in Eq (2), since the minimization involves two different
quantities
 and� . Since the optimal pathA � is itself non-differentiable, we use the fact that
A � = r � DTW (ŷ i ;

�
y i ) to de�ne a smooth approximationA �


 of thearg min operator,i.e. :

A �

 = r � DT W 
 (ŷ i ;

�
y i ) = 1 =Z

P
A 2A k;k

A exp�

�
A ; � ( ŷ i ;

�
y i )

�


 , with Z =
P

A 2A k;k
exp�

�
A ; � ( ŷ i ;

�
y i )

�




being the partition function. Based onA �

 , we obtain our smoothed temporal loss from Eq (3):

L temporal (ŷ i ;
�
y i ) :=



A �


 ; 

�

=
1
Z

X

A 2A k;k

hA ; 
 i exp�
hA ; � ( ŷ i ;

�
y i ) i


 (4)

3.2 DILATE Ef�cient Forward and Backward Implementation

The direct computation of our shape and temporal losses in Eq (2) and Eq (4) is intractable, due to
the cardinal ofA k;k , which exponentially grows withk. We provide a careful implementation of the
forward and backward passes in order to make learning ef�cient.

Shape loss RegardingL shape , we rely on [13] to ef�ciently compute the forward pass with a variant
of the Bellmann dynamic programming approach [4]. For the backward pass, we implement the
recursion proposed in [13] in a custom Pytorch loss. This implementation is much more ef�cient
than relying on vanilla auto-differentiation, since it reuses intermediate results from the forward pass.

Temporal loss For L temporal , note that the bottleneck for the forward pass in Eq (4) is to com-

puteA �

 = r � DTW 
 (ŷ i ;

�
y i ), which we implement as explained for theL shape backward pass.

RegardingL temporal backward pass, we need to compute the Hessianr 2DTW 
 (ŷ i ;
�
y i ). We use

the method proposed in [37], based on a dynamic programming implementation that we embed in a
custom Pytorch loss. Again, our back-prop implementation allows a signi�cant speed-up compared
to standard auto-differentiation (see section 4.4).

The resulting time complexity of both shape and temporal losses for forward and backward isO(k2).

Discussion A variant of our approach to combine shape and temporal penalization would be to
incorporate a temporal term inside our smoothL shape function in Eq (2),i.e. :

L DILAT E t (ŷ i ;
�
y i ) := � 
 log

0

@
X

A 2A k;k

exp

0

@�

D
A ; � � (ŷ i ;

�
y i ) + (1 � � )


E




1

A

1

A (5)
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We can notice that Eq (5) reduces to minimizing
D

A ; � � (ŷ i ;
�
y i ) + (1 � � )


E
when
 ! 0+ . In

this case,L DILAT E t can recover DTW variants studied in the literature to bias the computation
based on penalizing sequence misalignment, by designing speci�c
 matrices:

Sakoe-Chiba DTW hard band constraint [43]
( h; j ) = + 1 if jh � j j > T , 0 otherwise
Weighted DTW [28] 
( h; j ) = f (ji � j j), f increasing function

L DILAT E t in Eq (5) enables to train deep neural networks with a smooth loss combining shape
and temporal criteria. However,L DILAT E t presents limited capacities for disentangling the shape
and temporal errors, since the optimal path is computed from both shape and temporal terms. In
contrast, ourL DILAT E loss in Eq (1) separates the loss into two shape and temporal misalignment
components, the temporal penalization being applied to the optimal unconstrained DTW path. We
verify experimentally that ourL DILAT E outperforms its "tangled" versionL DILAT E t (section 4.3).

4 Experiments

4.1 Experimental setup

Datasets: To illustrate the relevance of DILATE, we carry out experiments on 3 non-stationary time
series datasets from different domains (see examples in Fig 4). The multi-step evaluation consists in
forecasting the future trajectory onk future time steps.
Synthetic (k = 20) dataset consists in predicting sudden changes (step functions) based on an input
signal composed of two peaks. This controlled setup was designed to measure precisely the shape
and time errors of predictions. We generate 500 times series for train, 500 for validation and 500
for test, with 40 time steps: the �rst 20 are the inputs, the last 20 are the targets to forecast. In each
series, the input range is composed of 2 peaks of random temporal positioni 1 andi 2 and random
amplitudej 1 andj 2 between 0 and 1, and the target range is composed of a step of amplitudej 2 � j 1
and stochastic positioni 2 + ( i 2 � i 1) + randint (� 3; 3). All time series are corrupted by an additive
gaussian white noise of variance 0.01.

ECG5000(k = 56) dataset comes from the UCR Time Series Classi�cation Archive [10], and is
composed of 5000 electrocardiograms (ECG) (500 for training, 4500 for testing) of length 140. We
take the �rst 84 time steps (60 %) as input and predict the last 56 steps (40 %) of each time series
(same setup as in [13]).
Traf�c (k = 24) dataset corresponds to road occupancy rates (between 0 and 1) from the California
Department of Transportation (48 months from 2015-2016) measured every 1h. We work on the �rst
univariate series of length 17544 (with the same 60/20/20 train/valid/test split as in [30]), and we
train models to predict the 24 future points given the past 168 points (past week).

Network architectures and training: We perform multi-step forecasting with two kinds of neural
network architectures: a fully connected network (1 layer of 128 neurons), which does not make
any assumption on data structure, and a more specialized Seq2Seq model [47] with Gated Recurrent
Units (GRU) [11] with 1 layer of 128 units. Each model is trained with PyTorch for a max number of
1000 epochs with Early Stopping with the ADAM optimizer. The smoothing parameter
 of DTW
and TDI is set to10� 2. The hyperparameter� balancingL shape andL temporal is determined on a
validation set to get comparable DTW shape performance than theDTW 
 trained model:� = 0 :5
for Synthetic and ECG5000, and 0.8 for Traf�c. Our code implementing DILATE is available on line
from https://github.com/vincent-leguen/DILATE .

4.2 DILATE forecasting performances

We evaluate the performances of DILATE, and compare it against two strong baselines: the widely
used Euclidean (MSE) loss, and the smooth DTW introduced in [13, 37]. For each experiment, we
use the same neural network architecture (section 4.1), in order to isolate the impact of the training
loss and to enable fair comparisons. The results are evaluated using three metrics: MSE, DTW
(shape) and TDI (temporal). We perform a Student t-test with signi�cance level 0.05 to highlight the
best(s) method(s) in each experiment (averaged over 10 runs).

Overall results are presented in Table 1.
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Fully connected network (MLP) Recurrent neural network (Seq2Seq)
Dataset Eval MSE DTW
 [13] DILATE (ours) MSE DTW
 [13] DILATE (ours)

MSE 1.65� 0.14 4.82� 0.40 1.67� 0.184 1.10� 0.17 2.31� 0.45 1.21� 0.13
Synth DTW 38.6� 1.28 27.3� 1.37 32.1� 5.33 24.6� 1.20 22.7� 3.55 23.1� 2.44

TDI 15.3� 1.39 26.9� 4.16 13.8� 0.712 17.2� 1.22 20.0� 3.72 14.8� 1.29
MSE 31.5� 1.39 70.9� 37.2 37.2� 3.59 21.2� 2.24 75.1� 6.30 30.3� 4.10

ECG DTW 19.5� 0.159 18.4� 0.749 17.7� 0.427 17.8� 1.62 17.1� 0.650 16.1� 0.156
TDI 7.58� 0.192 38.9� 8.76 7.21� 0.886 8.27� 1.03) 27.2� 11.1 6.59� 0.786
MSE 0.620� 0.010 2.52� 0.230 1.93� 0.080 0.890� 0.11 2.22� 0.26 1.00� 0.260

Traf�c DTW 24.6� 0.180 23.4� 5.40 23.1� 0.41 24.6� 1.85 22.6� 1.34 23.0� 1.62
TDI 16.8� 0.799 27.4� 5.01 16.7� 0.508 15.4� 2.25 22.3� 3.66 14.4� 1.58

Table 1: Forecasting results evaluated with MSE (� 100), DTW (� 100) and TDI (� 10) metrics,
averaged over 10 runs (mean� standard deviation). For each experiment, best method(s) (Student
t-test) in bold.

MSE comparison: DILATE outperforms MSE when evaluated on shape (DTW) in all experiments,
with signi�cant differences on 5/6 experiments. When evaluated on time (TDI), DILATE also
performs better in all experiments (signi�cant differences on 3/6 tests). Finally, DILATE is equivalent
to MSE when evaluated on MSE on 3/6 experiments.

DTW 
 [13, 37] comparison: When evaluated on shape (DTW), DILATE performs similarly to
DTW
 (2 signi�cant improvements, 1 signi�cant drop and 3 equivalent performances). For time (TDI)
and MSE evaluations, DILATE is signi�cantly better than DTW
 in all experiments, as expected.

We display a few qualitative examples for Synthetic, ECG5000 and Traf�c datasets on Fig 4 (other
examples are provided in supplementary 2). We see that MSE training leads to predictions that are
non-sharp, making them inadequate in presence of drops or sharp spikes.DTW
 leads to very sharp
predictions in shape, but with a possibly large temporal misalignment. In contrast, our DILATE
predicts series that have both a correct shape and precise temporal localization.

Figure 4: Qualitative forecasting results.
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Evaluation with external metrics To consolidate the good behaviour of our loss function seen in
Table 1, we extend the comparison using two additional (non differentiable) metrics for assessing
shape and time. For shape, we compute the ramp score [52]. For time, we perform change point
detection on both series and compute the Hausdorff measure between the sets of detected change
pointsT � (in the target signal) and̂T (in the predicted signal):

Hausdorff(T � ; T̂ ) := max(max
t̂ 2 T̂

min
t � 2T �

j t̂ � t � j; max
t � 2T �

min
t̂ 2 T̂

j t̂ � t � j) (6)

We provide more details about these external metrics in supplementary 1.1.
In Table 2, we report the comparison between Seq2Seq models trained with DILATE,DTW
 and
MSE. We see that DILATE is always better than MSE in shape (Ramp score) and equivalent toDTW

in 2/3 experiments. In time (Hausdorff metric), DILATE is always better or equivalent compared to
MSE (and always better than DTW
 , as expected).

MSE DTW 
 [13] DILATE (ours)
Hausdorff 2.87� 0.127 3.45� 0.318 2.70� 0.166

Synthetic Ramp score (� 10) 5.80� 0.104 4.27� 0.800 4.99� 0.460
Hausdorff 4.32� 0.505 6.16� 0.854 4.23� 0.414

ECG5000 Ramp score 4.84� 0.240 4.79� 0.365 4.80� 0.249
Hausdorff 2.16� 0.378 2.29� 0.329 2.13� 0.514

Traf�c Ramp score (� 10) 6.29� 0.319 5.78� 0.404 5.93� 0.235
Table 2: Forecasting results of Seq2Seq evaluated with Hausdorff and Ramp Score, averaged over 10
runs (mean� standard deviation). For each experiment, best method(s) (Student t-test) in bold.

4.3 Comparison to temporally constrained versions of DTW

In Table 3, we compare the Seq2Seq DILATE to its tangled variants Weighted DTW (DILATE t -W)
[28] and Band Constraint (DILATE t -BC) [43] on the Synthetic dataset. We observe that DILATE
performances are similar in shape for both the DTW and ramp metrics and better in time than both
variants. This shows that our DILATE leads a �ner disentanglement of shape and time components.
Results for ECG5000 and Traf�c are consistent and given in supplementary 3. We also analyze the
gradient of DILATEvsDILATE t -W in supplementary 3, showing thatDILATE t -W gradients are
smaller at low temporal shifts, certainly explaining the superiority of our approach when evaluated
with temporal metrics. Qualitative predictions are also provided in supplementary 3.

Eval loss DILATE (ours) DILATEt -W [28] DILATE t -BC [43]
Euclidian MSE (� 100) 1.21� 0.130 1.36� 0.107 1.83� 0.163
Shape DTW (� 100) 23.1� 2.44 20.5� 2.49 21.6� 1.74

Ramp 4.99� 0.460 5.56� 0.87 5.23� 0.439
Time TDI (� 10) 14.8� 1.29 17.8� 1.72 19.6� 1.72

Hausdorff 2.70� 0.166 2.85� 0.210 3.30� 0.273
Table 3: Comparison to the tangled variants of DILATE for the Seq2Seq model on the Synthetic
dataset, averaged over 10 runs (mean� standard deviation).

4.4 DILATE Analysis

Custom backward implementation speedup: We compare in Fig 5(a) the computational time
between the standard Pytorch auto-differentiation mechanism and our custom backward pass imple-
mentation (section 3.2). We plot the speedup of our implementation with respect to the prediction
lengthk (averaged over 10 random target/prediction tuples). We notice the increasing speedup with
respect tok: speedup of� 20 for 20 steps ahead and up to� 35 for 100 steps ahead predictions.

Impact of � (Fig 5(b)): When� = 1 , L DILAT E reduces toDTW
 , with a good shape but large
temporal error. When� �! 0, we only minimizeL temporal without any shape constraint. Both
MSE and shape errors explode in this case, illustrating the fact thatL temporal is only meaningful in
conjunction withL shape .
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