
Master TRIED
Reconnaissance des formes et méthodes neuronales
(US330X) - Neural Networks and Deep Learning

Nicolas Thome
Conservatoire Nationnal des Arts et Métiers (Cnam)

Laboratoire CEDRIC - équipe Vertigo



Outline

1 Deep Learning for Localized Tasks

2 New Tasks in Artificial Intelligence

3 Ongoing Issues in Deep Learning



Localized Tasks New AI Perspectives

Deep Features: Domain Adaptation for Localized Tasks

From [Noh et al., 2017] From [Cao et al., 2017]

● Local information needed: various applications,
e.g. localization, segmentation, retrieval, pose estimation, etc
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Localized Tasks New AI Perspectives

Deep Features for Localized Tasks

● Core (simple) idea: deep features for local information in
image regions

Crop given image sub-area
Rescale → ImageNet input size, e.g. 224 × 224
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Localized Tasks New AI Perspectives

Deep Features for Localized Tasks

● Core idea: deep features for local information in image regions
Extract Deep Features with ConvNet pre-trained on ImageNet
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Localized Tasks New AI Perspectives

Example: Object Localization

● Object Localization: rectangular Bounding Box (BB) aroud
each object in the image

● Localization as classification: classify each region into K+1
(background) classes
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Localized Tasks New AI Perspectives

Localization with Region-CNN [Girshick et al., 2014]

1 R-CNN, 1st step: extract a set of region proposal candidates
Goal: pre-select candidates based on their "objectness"
Low-level, unsupervised
Many approaches,e.g. selective search [Uijlings et al., 2013]
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Localized Tasks New AI Perspectives

Localization with Region-CNN [Girshick et al., 2014]

2 R-CNN, 2nd step: classifiy each regions proposal
Rescale proposal & extract deep feature
Add transfer layer with K + 1 classes

+BB regression, i.e. remap proposal (red) → GT BB (green)
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Localized Tasks New AI Perspectives

Semantic Image Segmentation

● Label each image pixel into K + 1 (background) classes
● Extract deep features on regions centered at each pixel (cf localization)?

Naive solution very inefficient , does not scale!
Ex: 500 × 500 image ⇒ 25000 regions with a single scale!
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Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● 224 × 224 input image: apply [Conv-FC], e.g. VGG
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Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● Conv layer directly applicable to bigger image, size w × h
● How to transfer FC layers? (direct with base FCN, e.g. ResNet)
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Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● FC ⇔ conv with 7 × 7 × 512 filters
● Ex: input image = 5122, w ′ = 10,h′ = 10

nicolas.thome@cnam.fr TRIED - US330X / Deep Learning 10/ 68

mailto:nicolas.thome@cnam.fr


Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● Ex: input image = 512 × 512, w ′ = 10,h′ = 10
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Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● Ex: input image = 512 × 512, w ′ = 10,h′ = 10
● Receptive field, features extracted ≈ rescaled region and apply ConvNet
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Localized Tasks New AI Perspectives

Semantic Segmentation with Fully Convolutionnal Networks

● Add transfer layer (C = K + 1 classes) to classify each of the w ′ × h′ regions
● Fully connected layer on each region: 1 × 1 convolution + softmax
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Localized Tasks New AI Perspectives

Semantic Segmentation: DeepLab [Chen et al., 2015b]

● Fully Convolutional Network outputs w ′ × h′ × C tensor
● How to train it from w × h × C annotations?
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Localized Tasks New AI Perspectives

Semantic Segmentation: DeepLab [Chen et al., 2015b]

● DeepLab: simply interpolate maps → w × h × C
● Cross-entroy loss for each pixel
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Localized Tasks New AI Perspectives

Deep Learning and Structured Prediction

● Structured prediction: graphical model in general (e.g. SSVM
or CRF specific models)

Model correlation between output variables

● Structured Prediction models (previous weeks): limited to log
linear models with handcrafted features

● Combining Deep Learning & Structured Prediction
Solution: add a structured layer on top of your favorite deep
model (e.g. ConvNet)
Issue : computational issue with Inference (and LAI for SSVM)

Methods for discrete outputs [Chen et al., 2015a]
Recent models for continuous outputs
[Belanger and McCallum, 2016, Wang et al., 2016]
Approches to unroll inference: forward and backward passes of
these deep structured models expressed as a set of standard
layers [Zheng et al., 2015, Belanger and McCallum, 2016,
Wang et al., 2016]
⇒ fast end-to-end training on GPUs.
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Localized Tasks New AI Perspectives

DL & Structured Prediction: Semantic Segmentation

DeepLab [Chen et al., 2015b]
● Per-pixel cross entropy loss ⇒ classify each pixel independently
● CRF: post-processing to model correlation between outputs
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Localized Tasks New AI Perspectives

Deep Learning and Structured Prediction
Ex: Semantic Segmentation
● Extension: incorporate the CRF during training

Pair-wise term modeling correlation
End-to-end training with backprop

● CRF as RNN [Zheng et al., 2015]: mean filed inference in CRF
written as RNN
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Localized Tasks New AI Perspectives

CNN and invariance
CNN and invariance
● Standard ConvNets: limited invariance capacity (small shifts)
● ImageNet: single centered object ≠ other datasets (VOC, MS COCO)

⇒ Learn shift invariance: region alignment !
⇒ Deep learning + structured prediction !
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Localized Tasks New AI Perspectives

CNN and invariance
● Use regions to have images that look like ImageNet
● Using bounding box annotations [Oquab et al., 2014]

Naive Region

PASCAL VOC 2012 70.9% 78.7%

● Regions ⇒ better prediction
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Localized Tasks New AI Perspectives

CNN and invariance

Weakly Supervised Learning
● Full annotations expensive ⇒ training with weak supervision

[Bearman et al., 2016]

● Incorporating latent variables h ∈H, e.g. training object detector
from global image labels

Variable Notation Space Train Test
Input x X observed observed

Output y Y observed unobserved
Latent h H unobserved unobserved
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Localized Tasks New AI Perspectives

Weakly Supervised Learning

How to pool? Pooling schemes

● Max [Oquab et al., 2015]

y c = max
i ,j

zcij (1)

● GAP [Zhou et al., 2016]

y c = 1
N
∑
i ,j

zcij (2)

● Soft-max [Pinheiro and Collobert, 2015, Kulkarni et al., 2016]

y c = 1
β
log

⎛
⎝
1
N
∑
i ,j

exp(β ⋅ zcij )
⎞
⎠ (3)
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Localized Tasks New AI Perspectives

Average pooling limitation

● Classifying with all regions
● Not efficient for small objects: lots of “noisy” regions
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Localized Tasks New AI Perspectives

Max pooling limitation

● Classifying only with the max scoring region

● Loss of contextual information
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Localized Tasks New AI Perspectives

Max pooling limitation

● Classifying only with the max scoring region

● Loss of contextual information
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Localized Tasks New AI Perspectives

MANTRA [Durand et al., 2015]: max+min pooling

● h+: presence of the class → high h+
● h−: localized evidence of the absence of class

original image bedroom

airport inside dining room
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Localized Tasks New AI Perspectives

WELDON [Durand et al., 2016] Pooling

● max+min strategy
● Top instances: using several regions, more robust region
selection [Vasconcelos, CVPR15]

k=1 k=3
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Localized Tasks New AI Perspectives

WELDON [Durand et al., 2016] Pooling

● max+min strategy
● Top instances: using several regions, more robust region
selection [Vasconcelos, CVPR15]

y c = stopk+ (zc) + s lowk− (zc) (4)

stopk+ (zc) = 1
k+

k+

∑
i=1

i-th-max(zc) (5)

s lowk− (zc) = 1
k−

k−

∑
i=1

i-th-min(zc) (6)
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Localized Tasks New AI Perspectives

WILDCAT [Mordan et al., 2017] Pooling

● max+min: complementary information
● Different kind of information

y c = stopk+ (zc) + α ⋅ s lowk− (zc) (7)

● α: trade off parameter.

Pooling k+ k− α

Maximum 1 0 0
GAP n 0 0
WELDON k k 1

nicolas.thome@cnam.fr TRIED - US330X / Deep Learning 27/ 68

mailto:nicolas.thome@cnam.fr


Outline

1 Deep Learning for Localized Tasks

2 New Tasks in Artificial Intelligence

3 Ongoing Issues in Deep Learning



Localized Tasks New AI Perspectives

Ongoing Issues in Deep Learning

New Tasks in Artificial Intelligence
● Vision and language: leverage deep learning advances

Vision: use of Convolutional Neural Networks (ConvNets)
Language: use of Recurrent Neural Networks (RNNs)

Credit: M. Malinowski [Malinowski et al., 2015]
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Localized Tasks New AI Perspectives

New Tasks in Artificial Intelligence
● Vision and language: tasks requiring some form of high level reasoning

Detecting concepts/objects in images, but also
Relationships between them
NLP descriptions/understanding of these relationships
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Localized Tasks New AI Perspectives

Recurrent Neural Networks (RNNs): Recap

● Input vector x(t), e.g. word (text) or image representation (CNN).
● Input/Output h(t): vector representing model "short-term memory"
● Output vector y(t) : task dependent
● All parameters trained with backpropagation through time.
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Localized Tasks New AI Perspectives

Recurrent Neural Networks (RNNs)

Sequence modeling with RNNs
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Localized Tasks New AI Perspectives

One to Many - Image captioning

● Input: image
● Output: a sentence in natural language
● Approaches inspired by works in machine
translation,e.g. [Sutskever et al., 2014]

Encoder-decoder: encode image, decode into words
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Localized Tasks New AI Perspectives

Image captioning

● Show and Tell,CVPR’15 [Vinyals et al., 2015]
Image input represented by a deep feature, e.g. GoogLeNet FC
Text input with dense embedding from one-hot encoding
Different architectural variants
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Localized Tasks New AI Perspectives

Image captioning: Practical Session

Model

● Using image & text (word) input at each time step
Image: VGG deep feature ⇒ 100 dim (PCA)
Text word: Glove embedding (100 dim + 2 for ’<start>’, ’<end>’)

● RNN layer + FC and soft-max
● No fine-tuning of image/text embeddings
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Localized Tasks New AI Perspectives

Image captioning: Practical Session

Training

● Trained with cross-entropy-loss for predicting next word
● Use masking for handling sequence of different lengths
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Localized Tasks New AI Perspectives

Image captioning: Practical Session
● Evaluation on FlickR8k : http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html

Each image ⇔ 5 captions
Training: 6000 images, testing : 1000 images, validation: 1000 images
For speeding up limiting vocabulary size 100⇒ 1000

● Caption generation: soft-max (temperature) sampling (previous course)
Improvement: Beam search
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Localized Tasks New AI Perspectives

Image captioning: Practical Session

Evaluation on FlickR8k
● Some results with 1000 words, LSTM

● Qualitative evaluation: compute a caption for each test image
● Compare each prediction to the five reference captions with BLUE score

nicolas.thome@cnam.fr TRIED - US330X / Deep Learning 37/ 68

mailto:nicolas.thome@cnam.fr


Localized Tasks New AI Perspectives

Image captioning: Spatial Information
● Aligning Image regions with words [Karpathy and Li, 2015], CVPR

● Using object detector, e.g. R-CNN, top-19 detections (+whole) selected
● Compute max similarity between region embedding and word RNN outputs

nicolas.thome@cnam.fr TRIED - US330X / Deep Learning 38/ 68

mailto:nicolas.thome@cnam.fr


Localized Tasks New AI Perspectives

Image captioning: Spatial Information

● Attention: Show, Attend and Tell (SAT) [Xu et al., 2015], ICML
● Motivation: extends Show and Tell [Vinyals et al., 2015] by aligning
image regions with word predictions

Use fully convolutional layer instead of full connected

● Hard attention: binary selection of region, non differentiable ⇒ reinforce
● Soft attention: weighted average of image region features
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Localized Tasks New AI Perspectives

Show, Attend and Tell: Soft Attention

● ai region feature (L ×D), (ai ,ht−1) ⇒ MLP et,i = fatt(ai ,ht−1)
+ soft-max : αt,i = softmax(et,i)

● LSTM ẑt representation: context vector: ẑt = φ(ai , αt,i) = ∑
i
αt,iai
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Localized Tasks New AI Perspectives

Many to One - Visual Question Answering (VQA)
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Localized Tasks New AI Perspectives

Visual Question Answering (VQA)

● Very complex task, that requires :
Precise image and text models
High level interaction modeling
Full scene understanding
Reasoning (e.g. spatial ...)
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Localized Tasks New AI Perspectives

Visual Question Answering (VQA)

● Input: question & image
● Output: answer
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Localized Tasks New AI Perspectives

VQA : Multi-modal Fusion

● Mono-modal representations:
Visual representation: ResNet-152
Question representation: pre-trained GRU

● How to perform multi-modal fusion ⇒ Tucker
decomposition [Ben-younes et al., 2017]
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Localized Tasks New AI Perspectives

VQA : Attention
● Attention (glimpses) also used in VQA to bias spatial region
analysis depending on question
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Localized Tasks New AI Perspectives

Ongoing Issues in Deep Learning

New Tasks in Artificial Intelligence
● But still a long way to go toward real AI ...

Credit: M. Malinowski [Malinowski et al., 2015]
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Localized Tasks New AI Perspectives

Datasets and Biaises

● Many datasets have been used, especially for VQA
● Important biases, e.g. textual: What sport is? ⇒ Tennis (41%)
● VQA 1.0 ⇒ VQA 2.0: makes image needed to answer

VQA-CP: different prior distributions in train / test to limit biaises
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Localized Tasks New AI Perspectives

Datasets and Reasoning

● Synthetic CLEVR dataset: spatial and relational reasoning
● Counterfactual reasoning: important primitive?
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Localized Tasks New AI Perspectives

Unsupervised Learning

● Standard criterion for unsupervised training: reconstruction error,
e.g. Mean Squared Error (MSE), Maximum likelihood etc

● Ex: Auto-encoders: z = f (Wx), x̃ = g(Wtx)
Auto-encoder objective function: C =

N

∑
i=1

∣∣xi − x̃∣∣2
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Localized Tasks New AI Perspectives

Unsupervised Learning

● Success of deep learning essentially for supervised tasks,
e.g. classification

● Unsupervised deep learning no comparable breakthrough, WHY?
⇒ Classification: clear objective (discrimination) vs
⇒ Reconstruction: questionable

Fitting data well: what if ultimate goal is classification,
generalization to a set of examples ?
Reconstruction not required, or even not a good idea

Deeper representation ⇔ more abstract representations
⇔ generalization ⇔ loss of information

● Two current alternatives to unsupervised learning:
1 Objective without reconstruction
2 Casting unsupervised training as classification
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Localized Tasks New AI Perspectives

Beyond Reconstruction: Ladder
Networks [Rasmus et al., 2015]
● "An autoencoder which can discard information"
● Layer above does not reconstruct layer below only with its activation
● Solution: Provide the details to learn only the abstract features

Decoder has a noisy version of the input to reconstruct
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Localized Tasks New AI Perspectives

Beyond Reconstruction: HybridNet [Robert et al., 2018]

Separation of discriminative and complementary information
for reconstruction into two branches
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Localized Tasks New AI Perspectives

Beyond Reconstruction: HybridNet [Robert et al., 2018]

Controls the behavior of information separation

● Encourage invariant features in Ec
Classification + stability loss

● Additional info.
Reconstruction loss + branch
balancing
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Localized Tasks New AI Perspectives

Auto-Supervision & Predictive Learning

● Transformed unsupervised problem to a supervised one
● Automatically creating labels, exploiting "neighborhood", e.g.

Spatial
Temporal
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Localized Tasks New AI Perspectives

Word2Vec [Mikolov et al., 2013]

● Embedding of words, i.e. assign each one-hot word ∈ RV a vector ∈ Rd

● Word2Vec principle: predict a word given its context
Assumption: similar words appears in similar contexts
Input: Bag of Words of context
Project to a given space, apply soft max to classify the central word
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Localized Tasks New AI Perspectives

Context-Encoders [Pathak et al., 2016]: Word2Vec for
Images
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Localized Tasks New AI Perspectives

Ongoing Issues in Deep Learning

Unsupervised Training
● Standard ways to perform unsupervised: learning representations
fitting data well, e.g. Maximum likelihood, reconstruction error, etc

● Success of deep learning essentially for supervised problem
● Solution: cast unsupervised problem as a supervised one
⇒ auto-supervision

Trendy example: Generative Adversarial Networks
(GAN) [Goodfellow et al., 2014]
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Localized Tasks New AI Perspectives

Ongoing Issues in Deep Learning
Unsupervised Training: GAN
● Unsupervised problem ⇒ 2-player game theory problem
● Interesting results: optimal generator learns data distribution
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Localized Tasks New AI Perspectives

Ongoing Issues in Deep Learning: DL Theory

● Deep Learning: huge impact in terms of experimental results
● BUT: formal understanding still limited,

Optimization: non-convex problem
Model: ability to untangle manifold
Robustness to over-fitting & generalization
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Localized Tasks New AI Perspectives

Non-Convex Optimization

● One of the main historical shortcoming of deep neural networks
● In pratice, not really an issue with modern neural networks, WHY?
● Some preliminary answer elements:

In high dimension, few local minima
but many saddle points [Dauphin et al., 2014]

Empirically, gradient descent methods manage to
escape [Goodfellow and Vinyals, 2015] saddle points
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Localized Tasks New AI Perspectives

Non-Convex Optimization
● WHY non-convex optimization ist not a major practical issue for deep
learning?

● Some preliminary answer elements:
Most of local minima have about the same objective
value [Haeffele and Vidal, 2015, Choromanska et al., 2014]
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Localized Tasks New AI Perspectives

Deep Learning and generalization
● Rademacher complexity: capacity of a model to fit random label :

Rn(H) = Eσ [suph∈H 1
n

n

∑
i=1
σih(xi)]

● Rethinking generalization: Zhang et. al. ICLR17 [Zhang et al., 2017]

Deep models easily fits random labels !!
Rn(H) ≈ 1 ⇒ no theoretical guarantee on generalization performances

● Classical learning theory insufficient to explain the good
generalization behavior of deep models
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Localized Tasks New AI Perspectives

Generalization and over-parametrized models

● Double U-curve phenomena observed with deep
models! [Belkin et al., 2019]
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Localized Tasks New AI Perspectives

Deep Learning (DL) & Stability

● Deep Models not necessarily robust to input variations
● Ex: Adversarial Examples
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Localized Tasks New AI Perspectives

Deep Learning (DL) & Uncertainty

Softmax output in deep neural network ≠ confidence (uncertainty)
measure!

● Often wrong prediction ↔ unjustified high confidence
● Uncertainty however crucial in major applicative domains:

Healthcare
Autonomous driving
Nuclear
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Localized Tasks New AI Perspectives

Deep Neural Networks: Black Boxes
● Lack of confidence estimate (uncertainty): how (un)certain about
decision?

● Softmax classification: probability distribution over output given input?

Only with single layer model, i.e. logistic regression
Bayesian Neural Nets: scalability issues
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Localized Tasks New AI Perspectives

Deep Learning Theory

Formal theory explaining deep learning success: infancy

● Optimization: preliminary results for non-convex
functions [Dauphin et al., 2014, Choromanska et al., 2014,
Goodfellow and Vinyals, 2015, Haeffele and Vidal, 2015]

● Regularization: to be established

● Stability: studies under signal processing
perspective [Bruna and Mallat, 2013],
kernel methods [Bietti and Mairal, 2017]

● Uncertainty: preliminary connections between
Bayesian models and dropout [Gal and Ghahramani, 2016]

TO BE CONTINUED ...
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