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Abstract—Nowadays, the explosion of cloud-based applications
is leading to a much higher demand on both computing and
network infrastructure resources than only a few years ago.
Enhancing the user experience, by reducing the latency and
increasing network stability, becomes an important challenge for
cloud operators. In this paper, we propose a unified protocol
architecture, based on the Locator/Identifier Separation Protocol
(LISP) and the Transparent Interconnection of a Lots of Links
(TRILL) protocol, to enhance the access performance and to
minimize the retrieval latency for services hosted in a distributed
data center (DC) fabric. LISP is used as a cloud access overlay
protocol, while TRILL is used as a geo-distributed DC virtual
network overlay protocol. We specify and design a cross-layer
protocol agent able to map virtual network embedding infor-
mation from TRILL (layer 2) to LISP (layer 3) in order to
allow cloud providers to let the client access the cloud by the
best DC entry point, assuming that the inter-DC site latency
dominates over the DC access latency. We tested our architecture
in a real testbed. We compared the proposed solution to the
legacy situation, highlighting the achievable gains in cloud access
latency.

I. INTRODUCTION

Cloud computing research is recently being re-centered
toward the needs of services requiring or benefiting from a
continuous and persistent virtual resource orchestration across
distributed data-centers. Geographically distributing DCs [10]
ensures network resiliency and high availability to applica-
tions, eventually guaranteeing a better user experience in terms
of availability and cloud data retrieval latency. In a distributed
DC, users shall be made able to access their virtual machines
(VM) through multiple access gateways without affecting the
established session. In order to be able to orchestrate comput-
ing and storage services and to chase resource optimization,
several effort have been made since a few years in protocol
design and experimentation.

In this paper, we report experiment results related to an
experimental distributed DC network. We present a way to
manage a distributed DC control-plane linking the control-
planes of two protocols already used in commercial networks
(LISP and TRILL) at the cloud access network and at the intra-
DC data-link layer. The unified control-plane is instrumental to
synchronize routing and mapping information related to VMs,
and improve cloud access latency.

The paper is organized as follows. In section II we give
an overview of the state of the art. In section III we describe

the proposed architecture. In section IV we detail the different
modules of our agent. In section V we present experimental
results. We conclude our work in section VI.

II. BACKGROUND

In this section, we overview the state of the art of protocols
for distributed DC architectures, and motivate our approach.

A. Virtual Embedding Protocols for Distributed Data centers

Today, large monolithic DCs can be too complicated to de-
ploy due to the increasing maintenance, logistical and environ-
mental costs of rapidly aging applications and infrastructures.
Moreover, the high demand for storage and computational
resources can cause severe strains on the underlying hardware,
leading to a deterioration of the quality of the user’s experi-
ence. Hence, distributing DC becomes a solution pushing the
cloud boundaries beyond the legacy geographical deployment
limits.

To improve cloud network performance and resiliency,
decentralized DCs provide a reliable infrastructure as a service
increasing the path diversity and the availability to hosted
applications. To this extent, several protocols have been im-
plemented to develop advanced control plane features that
support VM mobility and virtual network management such
as Transparent Interconnection of Lots of Links (TRILL) at
the Ethernet level and Locator/Identifier Separation Protocol
(LISP) at the IP level, improving the experience of users
accessing VMs that can be dynamically displaced as a function
of network and system states [16].

1) Transparent Interconnection of Lots of Links (TRILL):
TRILL is an Internet Engineering Task Force (IETF) standard.
Whenever an update is generated by a topology or a link-
state change, TRILL ensures new shortest paths which are
computed and taken at the Ethernet level, eliminating the
drawbacks of spanning tree protocols in terms of performance
and routing efficiency [14].

Devices implementing TRILL are called Routing Bridge
(RBridge). The TRILL data plane absolves the role of en-
capsulating incoming packets to a TRILL network toward a
destination layer-2 locator (or egress RBridge in the TRILL
jargon), supported by a partially out-of-band control-plane for
distributing the mapping information [6].

TRILL uses an adaptation of the Intermediate Systems
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calculate the shortest path at layer-2. To establish the neighbor-
hood topology, a RBridge sends Hello packets and a Link State
Packet (LSP) to all its neighbors to glean nodes’ information,
and calculates the path cost between two reachable RBridges.
As a result, the TRILL-ISIS forwarding table contains all
RBridge ‘nicknames’ associated to TRILL next hop(s) (as
MAC addresses) and the corresponding ISIS shortest path cost.

2) Locator/ID Separation Protocol (LISP): LISP relies on
the separation of the locator and the identification (in IP
networks). They are designated by two IP addresses: the first
one is a Routing Locator (RLOC) assigned to the edge router
and used for forwarding packets across the Internet. The
second address is used as an Endpoint Identification (EID)
and is allocated to the endpoint device. Each EID-prefix is
associated to a set of locators with different priorities and
weights to pilot the routing. One of the main advantages of
separating RLOCs from EIDs is to facilitate the mobility,
which means that hosts can keep their EIDs while changing
RLOCs [8].

When a LISP client wants to reach another LISP site, an
edge tunneling router is solicited. This tunneling router is
called xTR and has a double functionality: it is an Ingress
Tunneling Router (ITR) when it encapsulates packets toward
and the destination RLOC; it is an Egress Tunneling Router
(ETR) when it decapsulates the packets received from another
LISP site.

An EID-to-RLOCs mapping system is designed to support
LISP routing. The mapping system is composed of a Map-
Server (MS) and a Map-Resolver (MR). The MS learns the
authoritative mapping system from the ETR to publish the
mapping information in the EID-TO-RLOC database [9]. The
MR receives the Map-Requests sent from the ITR and resolves
them for the EID-to-RLOC mapping; to do this, the MR can
use the LISP Delegated Database Tree (LISP DDT) protocol
that works similarly to the DNS caching specification in order
to retrieve the correct mapping [12].

B. Orchestration Challenges

In this context, TRILL and LISP protocols share the same
philosophy in the method of associating an end-point identifier
(Ethernet or IP address) to a routing locator (egress RBridge
or egress tunneling router, respectively). This feature is very
interesting when support for seamless VM migration is needed
at the data-link and network layers. Since live VM migration
(a VM is migrated while running and used by clients) and VM
redundancy (a VM is kept synchronized at many virtualization
servers where it can be restored in case of failure) schemes are
available in recent hypervisors (also called Virtual Machine
Managers, VMMs) [17], it is interesting to investigate how
TRILL and LISP could interact to jointly managing VM map-
ping to virtualization servers at their corresponding segment,
i.e., intra-DC fabric and extra-DC, in a distributed DC fabric
scenario. Under the target scenario where a common TRILL
domain bridges the distributed DCs of a same cloud fabric,
a very interesting feature would be to export the shortest
path metric used by TRILL-ISIS into the RLOC priority to

allow cloud access traffic to be routed toward the RLOC that
corresponds to the best intra-DC path. The TRILL-ISIS path
cost toward a given destination VM can indeed change in the
following target situations: (i) when an intra-DC link fail; (ii)
when an intra-DC link state metric is modified manually, or
automatically by traffic engineering toolbox; (iii) once a VM
moves (i.e., migrates or is restored) from a virtualization server
to another, from a DC site to another site.

The first and the third actions are likely to happen more
often in a distributed DC fabric: a link failure between the DC
entry point and the VM can interrupt an ongoing session with
the user; a VM mobility can sometime decrease the quality
of experience especially when the network distance between
the user and the application gets larger upon VM mobility.
Under such link state changes, we need to establish a control-
plane linkage between the LISP and TRILL protocols in order
to update LISP mapping system, and improve the quality-of-
experience depending on the link and DC chosen by a LISP
user [16].

Our reference scenario is depicted in Fig. 1, where two
distant DCs use TRILL at the layer-2 intra-DC segment and
LISP protocol at the layer-3 extra-DC segment. In this context,
the challenge is to implement an agent that can transpose
the mapping and routing (also called in the literature virtual
network mapping) information from TRILL to LISP protocol,
in order to offer the best network support for VMs moving
across servers and DC sites. An important assumption justi-
fying our approach, inspired by the reference distributed DC
configuration the one of Alphalink1, is that the inter-DC site
latency dominates over the DC access latency, hence mapping
over LISP routing locator priority the intra-DC TRILL-ISIS
routing metric should lead to better performance.

Fig. 1: Reference distributed DC protocol architecture.

III. PROTOCOL ARCHITECTURE

In this section, we describe the functional diagram of
our solution at both the TRILL and LISP protocol levels.

1http://www.alphalink.fr
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The reference deployment of TRILL, considered by many
companies operating distributed DCs such as Alphalink, is
such that TRILL is present in each virtualization server, and
possibly also at the DC physical switch level (despite this is
not strictly required in TRILL as there is no need in TRILL
to have direct physical link between TRILL switches).

A. Functional Requirements

The migration or restoration of a VM for instance, generates
an automatic TRILL-ISIS path cost update, essentially because
the egress RBridge of a given VM, identified by a unique
MAC address, changes. In this context, our agent needs to
instantaneously detect whenever a VM migration or a link
state change (or path cost variation) occurs, to query the
TRILL-ISIS control-plane table to determine the next hop
RBridge, and to issue an update to the LISP control-plane.
More precisely, the LISP RLOC priorities should be set equal
or somehow proportional to the TRILL-ISIS path cost.

In order to support at best these operations, we need to
merge the ISIS forwarding table and the MAC mapping table
to get a direct correspondence between the computed ISIS
metric of the path and the MAC address of the related RBridge,
as shown in Fig. 2.

Fig. 2: Correspondence between TRILL and ISIS tables.

In fact, the MAC mapping table generated by TRILL shows
three VMs with different MAC addresses. The first two VMs
are trying to reach the RBridge 3 and the last VM is trying to
reach the RBridge 4. We suppose that these VMs are directly
linked to the RBridge 1. The ISIS database provides us the
required information about the path cost that links RBridge 1
(i.e., Ingress RBridge) to both destination RBridges (i.e.,
Egress RBridges). In order to calculate the distance between
a VM and the destination RBridge we use the mapping tables
to find the correspondence between destination RBridges IDs
and the related ISIS metric.

These new calculated metrics are considered as priorities
that can classify RLOCs from the most preferable to the
least one with respect to the ISIS/TRILL routing metric. After
receiving the notification from the agent, xTRs modify their
configuration by changing the content of the Map-Register
message and add the ISIS metric that corresponds to the
path’s cost linking of the migrated VM to the old and the

new destination’s xTR. The new generated message is sent to
the MS in order to make the required updates to the LISP
mapping system The signaling diagram in Fig. 3 represents
the corresponding message exchanges.

Fig. 3: LISP-TRILL Agent signaling steps triggered upon VM
detection.

B. Possible solutions

From a technical perspective, two main approaches could
be followed to meet the above requirements.

1) Centralized solution: A centralized solution can be
based on a Software Defined Network (SDN) architecture
where the SDN controller includes a LISP Mapping Service.
For instance, this is the case of the OpenDayLight controller.
In such a situation, the agent can be placed as a function of the
mapping service and can ensure the notification process when
a VM migration or restoration occurs. However, this solution
can generate a high load from and towards the SDN controller,
which can become a processing bottleneck.

2) Distributed solution: A distributed solution consists in
having the agent, creating the glue between TRILL and LISP
control-planes and sits at the hypervisor level. In such a way,
the agent can be directly notified of a VM migration or an
ISIS path cost variation change (e.g., due to network link
failure), triggering fast updates to xTRs (by a form of xTR
configuration API yet to be specified). When the agent detects
a new VM, it determines the cost from the LISP router to
the hypervisor and changes the mapping entry in the LISP
router. Then, each xTR sends a Map-Register to the MS (i.e.,
a message needed to register one or many mapping entries for
a same EID or EID prefix) with the appropriate EID and the
new priority. Ideally, this latter operation requires a form of
incremental Map-Register yet to be specified, in order to scale
up with the high number of VMs and high mapping granularity
for such scenarios.

IV. AGENT IMPLEMENTATION

In this section we detail the technical features required for
the agent implementation and its working states. We chose
to implement the distributed solutions as it better answers the
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reliability and retro-compatibility concerns of a distributed DC
operator such as Alphalink.

A. Features

The agent has the important role of synchronizing the LISP
and TRILL control-planes. We summarize its main actions as
follows:

• it detects the migration of a VM, recovering its main
information such as its name and its EID, or the change
of the ISIS path cost due to network link state changes.

• It gets the new ISIS path cost from the local LISP
router(s) to the VM virtualization server.

• It solicits to the LISP router a RLOC priority update
locally to the xTR and externally to the mapping sys-
tem [15].

1) States: The process of the agent across its possible states
and actions is represented in the functional diagram of Fig. 4.

Fig. 4: Diagram of the agent process.

We distinguish four main modules:
a) Module 1: VM detection: several open-source cloud

computing softwares are implemented to help administrators
monitor cloud network resources. For instance, Openstack [3]
is an open-source cloud computing platform that can manage
a large number of storage, infrastructure and networking
resources throughout a DC; Openstack can manage VM
migration and relocation within hypervisors, with shared or
dedicated storage, exposing to the administrator a rich API
to monitor hypervisors and their attached VMs. Moreover,
OpenStack can measure the performance of VM migration
according to fitness parameters [13] and can provide VM status
(running, stopped, paused, etc.), its addresses (MAC, IP) and
the corresponding hypervisor to which it is connected.

In this context, we simulated these information related to
the managed active VMs in the network and supplied by the

Openstack administrator. The agent, located at the hypervisor
level, periodically checks the status of VMs joining the hy-
pervisor local network. It compares the current list of local
VMs to an old saved list. Once the new entries are spotted,
it indicates the name and the IP address of the migrated VM
joining the new local hypervisor. Fig. 5 represents these VM
detection tasks. Then, the agent saves the IP address of the
detected VM, retrieves the MAC address of the xTR(s), and
looks for the Egress RBridges that are directly linked to them
in order to calculate the ISIS metric of the path separating the
VM from the xTR(s).

Fig. 5: VM detection process.

b) Module 2: identification of the destination RBridge:
In order to find the MAC address of the destination RBridge,
the agent solicits the TRILL node configuration and states,
retrieving TRILL topology and nicknames of the active
RBridges in the network. It can so get the MAC address of
the corresponding xTR and the MAC address of the attached
RBridges.

c) Module 3: ISIS path cost retrieval: At this stage,
the agent retrieves the path cost associated to the identified
RBridge from the ISIS routing table.

d) Module 4: mapping policy update: At last, the map-
ping entry can be changed accordingly to the retrieved ISIS
path cost from the xTR(s) to the RBridge beyond which the
VM has been detected. The agent has a way to reconfigure
the xTR though a dedicated API to set the RLOC priority,
triggering an explicit map-register signaling with the mapping
system.

The agent periodically repeats the whole process in order
to guarantee a continuous alignment between the TRILL and
LISP control-planes.

We detail in the following the precise software tools we
used to build the prototype.
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2) Used tools:
a) TRILL and Quagga nodes: Alphalink maintains a fork

of the TRILL Linux kernel implementation2 developed by
Gandi3. That implementation makes use of a modified version
of Quagga [4], and the ISIS version therein, for the link-
state signaling and routing table management. Our agent uses
telnet to connect to Quagga in order to get the TRILL node
configuration and retrieve ISIS information using a simple
command line interface offered by the TRILL implementation.

b) Ruby programming language: We chose to develop
the proposed agent in ruby language for the following reasons:
it is an open source programming language that helps us
getting a clear and concise code useful for production; it is an
object-oriented language that can be used to generate flexible
scripts for embedded systems; it owns an API that can easily
write C extensions [5].

c) Libvirt library: It is a software library capable to
handle the management of a set of VMs, under several
hypervisors [7]. In particular, we used the Libvirt manager
to manage the VM configuration and to test the different
settings [1].

d) OpenLISP router: We used the OpenLISP develop-
ment version [2], [11], maintained by LIP6, which includes
specific control-plane features to support VM migration with
LISP [15], [17].

V. EXPERIMENTAL EVALUATION

We conducted an experimental campaign on a real dis-
tributed DC testbed configuration, involving computing re-
sources in the cities of Pornic and Paris, in France.

The emulated scenario is represented in Fig. 6. We use a
simple topology with 4 RBriges, RB1, RB2, RB3 and RB4,
a VM directly attached to RB3 that has to stay reachable via
RB1. xTR1 represents the xTR of Pornic and xTR2 represents
the xTR of Paris. The ISIS metric configuration is represented
in Fig. 6. When all links operate normally, the VM reaches
RB1 via the direct link separating RB1 from RB3 with an ISIS
metric equal to 10. Then, we emulated a network link failure,
setting this direct link to down. At this stage, the VM sends
traffic to RB1 via RB2 and then the ISIS metric changes and
becomes equal to 40.

We put in place a geographically distributed LISP test bed
between Pornic DC (xTR1) and Paris DC (xTR2) to run the
scenario described above. We connected a LISP user to the
VM and then simulated a network impairment between RB1
and RB3. We compared our solution with the legacy situation
where TRILL metrics are not mapped into LISP priorities. We
then set the direct link between the VM and xTR1 to down. As
a result, TRILL generates the new ISIS metric and redirects
the traffic to the available link but with a higher ISIS metric
value. Therefore, a LISP client located in Paris still sends its
traffic using xTR1 through the new extra-DC path.
We then activated the agent and repeated the same scenario.

2http://gitlab.alphalink.fr
3https://github.com/Gandi/ktrill

Fig. 6: Representation of a topology change scenario.

After being notified with the new calculated TRILL topology,
the agent maps the TRILL metrics into LISP priorities. The
user traffic is then switched to xTR2.

Fig. 7: RTT performance before network impairment.

Fig. 8: RTT performance after network impairment.

To test the efficiency of the proposed solution, we focus
on the latency offered to the clients as the most important
performance metric. We repeated the scenario a few dozens
of times. We compare the legacy situation (agent deactivated)
to our solution (agent activated) for the two links states: before
and after network impairment respectively in (Fig. 7)(Fig. 8
- note that part of the vertical axis is cut from roughly 2 ms
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and 28 ms for the sake of readability). The results are shown
using boxplots indicating the minimum, first quartile, median,
third quartile and maximum values.

We can easily note that, before network impairment, the
maximum round-trip time is 14.1 ms for the legacy situation,
while it is 14.4 ms for our solution. A similar gap exists also
between the median and the other quartiles.

After network impairment, we can better appreciate the
benefit of our approach that, for the given setting, offers at
much lower round-trip-time.

VI. CONCLUSION

In this paper, we proposed a unified LISP-TRILL control-
plane solution to provide optimized access to Cloud Infras-
tructure as A Service (IaaS) VM-based services hosted in a
distributed DC network. The targeted framework is the one
where IaaS users access their hosted services by means of
the LISP protocol, across the Internet, when the distributed
DC fabric is managed by the TRILL protocol. We specified
the requirements and the implementation steps of a distributed
agent architecture that maps the TRILL-ISIS routing states to
reach hosted VMs into the LISP mapping metrics that guide
the choice on the access DC or routing locator in a distributed
DC fabric. We implemented the agent and run experiments
over a real geographically distributed DC testbed in France,
testing a proof-of-concept prototype and experimentally prov-
ing the interest of our solution.
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