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Nowadays, the huge worldwide mobile-phone penetration is increasingly turning the
mobile network into a gigantic ubiquitous sensing platform, enabling large-scale analysis
and applications. Recently, mobile data-based research reached important conclusions
about various aspects of human mobility patterns. But how accurately do these conclusions
reflect the reality? To evaluate the difference between reality and approximation methods,
we study in this paper the error between real human trajectory and the one obtained
through mobile phone data using different interpolation methods (linear, cubic, nearest
interpolations) taking into consideration mobility parameters. Moreover, we evaluate the
error between real and estimated load using the proposed interpolation methods. From
extensive evaluations based on real cellular network activity data of the state of Massachu-
setts, we show that, with respect to human trajectories, the linear interpolation offers the
best estimation for sedentary people while the cubic one for commuters. Another impor-
tant experimental finding is that trajectory estimation methods show different error
regimes whether used within or outside the ‘‘territory’’ of the user defined by the radius
of gyration. Regarding the load estimation error, we show that by using linear and cubic
interpolation methods, we can find the positions of the most crowded regions (‘‘hotspots’’)
with a median error lower than 7%.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction In recent years, mobile data-based research reaches
Human mobility and behavior pattern analysis has long
been a prominent research topic for social scientists, urban
planners, geographers, transportation and telecommunica-
tion researchers, but the pertinence of results has thus far
been limited by the availability of quality data and suitable
data mining techniques. Nowadays, the huge worldwide
mobile-phone penetration is increasingly turning the
mobile network into a gigantic ubiquitous sensing plat-
form, enabling large-scale analysis and applications.
important conclusions about various aspects of human
characteristics, such as human mobility and calling pat-
terns [1–3], virus spreading [4,5], social networks [6–8],
content consumption cartography [9], urban and transport
planning [10,11], network design [12].

Nevertheless, in such user displacement sampling data,
a high uncertainty is related to users movements, since
available samples strongly depend on the user-network
interaction frequency. For instance, Call Data Records alone
do not provide a sufficiently fine granularity and accuracy,
exhibiting a vast uncertainty about the periods when the
user is not active, i.e., not communicating. This represents
an issue for applications or analyses assuming ubiquitous
and continuous user-tracking capability.
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Some modeling techniques have been proposed in the
literature to predict user movement between two places.

Authors in [13,14] infer the top-k routes traversing a gi-
ven location sequence within a specified travel time from
uncertain trajectories; they use check-in datasets from
mobile social applications.1 Their proposed methods permit
to identify the most popular travel routes in a city, but they
do not allow constructing time-sensitive routes.

Authors in [15] propose a space–time prism approach,
where the prism represents reachable positions as a
space–time cube, given user’s origin and destination points
– i.e., the assumption of knowing the location of a user at
one time and then again at another time fits well mobile
phone data in which we only know users’ position during
their communication events – as well as time budget and
maximum speed. Spatial prisms so allow evaluating of bin-
ary statements, such as the potential of encounter between
two moving users. However, the maximum speed cannot
be set for all users in general, which limits the model
applicability.

Similarly, the authors in [16] propose a probabilistic
extension of the space–time approach, applying a non-uni-
form probability distribution within the space–time prism.
A strong assumption made therein is that users move line-
arly over time. This hypothesis is in a high contrast with
the results obtained in [17] that show the tendency of
users to stay in the vicinity of their call places. Authors in
[17] propose a probabilistic inter-call mobility model,
using a finite Gaussian mixture model to determine users’
position between their consecutive communication events
(call or SMS) using Call Data Records. The model evaluates
the density estimation of the spatio-temporal probability
distribution of users position between calls, but it does
not give an approximation of the fine-grained trajectory
between calls. User displacements using GPS traces have
been analyzed in [18]; the authors find the displacement
behavior show Levy walk properties (i.e., random walk
with pause and flight lengths following truncated power
laws). While very interesting in order to model inter-con-
tact time distributions and general massive mobility, such
random-based approaches cannot give precise approxima-
tions between given points on a per-user basis.

The objective of this paper is to assess the pertinence of
different conceivable trajectory estimation approaches in
terms of error from real available trajectories, via the anal-
ysis of real data from the state of Massachusetts. These esti-
mated trajectories are then used to determine cells load in
the considered region. By subsampling data-plan smart-
phone user position samplings, and applying various inter-
polation methods, we assess the error between real human
trajectories and estimated ones. We evaluate simple inter-
polation method such as linear, nearest and cubic interpola-
tions taking into consideration mobility parameters the
network operator may associate with each user.

In particular, we highlight the dependence on the
human mobility characteristic, with the user’s radius of
1 In recent years, mobile social applications have become so popular that
they generate huge volume of social media data, such as check-in records or
geo-tagged photos. In a check-in service, users note their locations via a
mobile phone to share photos, activities, etc.
gyration as user mobility index. Our analysis proves that
the linear interpolation shows the best performance for
sedentary people (with a small radius of gyration) whereas
the cubic one outperforms the others for commuters (hav-
ing a big radius of gyration). On the other hand, the nearest
interpolation presents the smallest error for a set of popu-
lation movements we identify as ‘‘ordinary moves’’, with
long stops. In addition, we experimentally find that inter-
polations are more accurate when performed within the
territory of the user, defined by the user’s radius of gyra-
tion. Finally we show that the usage of linear and cubic
interpolations for modeling human trajectories allows us
to determine the hotspot positions with a median error
of less than 7%.

The paper is organized as follows. Section 2 presents the
dataset used in our study and describes a user ranking with
the radius of gyration as mobility pattern parameter. Sec-
tion 3 presents the different interpolation methods evalu-
ated in this paper. Section 4 summarizes the results of
the comparison between the different methods. Section 5
evaluates the load estimation error. Finally, Section 6
draws some perspectives and discusses possible future
work.
2. Dataset description

We use a dataset consisting of anonymous cellular
phone signaling data collected by Airsage [19], which con-
verts the signaling data into anonymous locations over
time for cellular devices. The dataset consists of location
estimations – latitude and longitude – for about one
million devices from July to October 2009 in the Massachu-
setts state.

These data are generated each time the device connects
to the cellular network including:

� When a call is placed or received (both at the beginning
and end of a call).
� When a short message is sent or received.
� When the user connects to the Internet (e.g., to browse

the web, or through email synch programs).

The location estimations2 not only consist of ids of the
mobile phone towers that the mobile phones are connected
to, but an estimation of their positions generated through
triangulation by means of the Airsage’s Wireless Signal
Extraction technology [19] that aggregates and analyzes
wireless signaling data3 from mobile phones to securely
and privately monitor the location and movement of
populations in real-time, while guaranteeing acceptable user
anonymity and privacy.

In this paper, we select anonymized signaling data of all
users during a single day (the observation period is limited
to one day because the anonymized user identifiers change
for day to another to ensure user privacy).
2 Each location measurement is characterized by a position expressed in
latitude and longitude and a timestamp.

3 The location measurements are generated based on signaling events,
i.e., when a cellphone communicates with the cellular network’s elements
through control channel messages.



Fig. 1. PDF of the inter-event time empirical distribution.

Fig. 2. Cumulative distributive function of the radius of gyration.
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2.1. Trajectory modeling

In order to qualify the precision of different interpola-
tion methods, we have to determine the deviation of an
estimated trajectory from the real one, being able to fix
only few real positions along the estimated trajectory.

To determine real user trajectories, we fine-select data
of those smartphone holders with a lot of samplings, typi-
cally those data-plan users with persistent Internet con-
nectivity due to applications such as e-mail synch. By
selecting users with more than 1000 connections (position
samplings) during a given day, we can filter out 707 smart-
phone users from the whole dataset.

In order to reproduce ‘‘normalphone user’’ sampling, we
subsample4,5 real trajectories (i.e. smartphone user trajecto-
ries) according to an experimental inter-event statistical dis-
tribution as given in Fig. 1. We determine it by analyzing real
normalphone user samplings (for which the real trajectory is
unknown), available in the Airsage original dataset. There-
fore, we extract, from the real trajectory, a first random
position Piðlongitudei; latitudei; timeiÞ, then the corresponding
next positions are extracted according to the inter-event
time distribution values.

Hence, given a real trajectory with a high number of
positions, and its subsampling that reproduces normal
user’s activity, we apply an interpolation method (see next
section for the different interpolation methods) to estimate
the trajectory across the subsampled points. Given the real
trajectory points Piðlongitudei; latitudei; timeiÞ, we estimate
its corresponding position in time, in the estimated trajec-
tory, P0iðlongitude0i; latitude0i; timeiÞ. Then we determine the
deviation between the two points Pi and P0i as the distance
separating the exact position Pi to the estimated position P0i
in the interpolating curve joining the samples.
2.2. Mobility ranking

People do not behave similarly, each person has differ-
ent mobility habits in general and shows different mobility
patterns during the particular day we consider in our
4 The ratio between the number of the sampled positions to the total
number of known positions (data-plan smartphone user) is defined by the
subsampling ratio. We evaluate in the paper different subsampling ratios.

5 The subsampling process is independent and identically distributed.
study. Many studies have been conducted to find mobility
patterns from network sampling, from very complex and
complete ones able to determine precise motifs (e.g.,
[20]), to more aggregated and synthetic ones extracting a
single parameter to characterize user mobility. A suffi-
ciently precise, synthetic and easy to compute parameter
is the radius of gyration, e.g., analyzed in [2]; it is defined
as the deviation of user positions from the corresponding
centroid position. More precisely, it is given by:

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ð~pi �~pcentroidÞ
2

vuut ð1Þ

where ~pi represents the ith position recorded for the user
and~pcentroid is the center of mass of the user’s recorded dis-
placements obtained as:

~pcentroid ¼
1
n

Xn

i¼1

~pi:

To explore the statistical properties of the population’s
mobility patterns, the cumulative distribution function
(CDF) of the radius of gyration for the smartphone users
is represented in Fig. 2. It is easy distinguish four main cat-
egories6 based on steep changes in the CDF slope.

� Users with rg 6 3 km, who can be identified as the most
sedentary people.
� Users with 3 km 6 rg 6 10 km. They might be identified

as urban mobile people as the diameter of the Boston
urban area is very approximately around 10 km.
� Users with 10 km 6 rg 6 32 km. They might be identi-

fied as peri-urban mobile people as the diameter of
the Boston peri-urban area is very approximately
around 32 km.
� Users with rg P 32 km, who can be identified as com-

muters spinning the whole Massachusetts state area.
6 This categorization depends on city size, economic degree and other
parameters. Comparing different sorts of human settlements on different
levels of social and economical development, might be an interesting
objective for the further studies but unfortunately, for now, we have access
only to data covering Massachusetts’ state in USA and not elsewhere.



Fig. 3. Total trajectory length with respect to the radius of gyration.
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This ranking seems appropriate as the total traveled
length increases with the radius of gyration,7 as displayed
in Fig. 3. Moreover, this correlation may be interpreted by
the fact that the radius of gyration can be viewed as a proper
‘‘territory’’ of each user, and thus increasing the territory
area means that the person is able to move over longer
distances.

3. Trajectory interpolation methods

Different interpolation methods have been proposed in
the literature to describe moving object trajectories. We
present in the following a selection of classical ones, show-
ing how they approximate the real trajectory (see an
example in Fig. 4).

� The Linear Interpolation, is a popular interpolation used
in movement objects databases [21]. It is presented in
Fig. 4(b). It is obtained by joining straight interpolating
lines between each pair of consecutive samples. Users
are supposed to move at a constant speed along the
straight lines. One limitation of the linear interpolation
is that it can fail in some situations where the interval of
time between interpolated points is high. For example,
suppose there are two points A and B in the road net-
work with a curved path connecting them while with
the linear interpolation we always assume the user
drives on a straight line.
� The Nearest-neighbor Interpolation, is an interpolation

often used in mapping programs [22], also known as
proximal interpolation. It consists of taking, for each
position, the value of the nearest sampling position in
time (not plotted because of the simplistic decision).
Therefore, if we detect the same user in two different
instants, at points A and B respectively, the nearest
interpolation attaches the user to position A for the first
half period of time, and to position B for the second half.
� The Piecewise Cubic Hermite Interpolation is often used in

image processing studies (see [23]). It is depicted in
Fig. 4(c). It is a third-degree spline that interpolates
7 The absolute length is of course overestimated with respect to the real
one. After looking into details, we discover that this is due to handover
flipping among close antennas. The important aspect here remains the
relative (and not the absolute) increasing trend.
the function by a cubic polynomial using values of the
function and its derivatives at the ends of each subinter-
val. This method interpolates the samples in such a way
that the first derivative is continuous, but the second
derivative is not necessary continuous. The slopes are
chosen in a way that the function is ‘‘shape preserving’’
and respects monotonicity. Suppose a subinterval
½x1; x2�, with the function values: y1 ¼ f ðx1Þ; y2 ¼ f ðx2Þ
and the derivative values d1 ¼ f 0ðx1Þ and d2 ¼ f 0ðx2Þ are
given. The cubic polynomial function in this subinterval
is given by:
8 i.e.,
outliers
figure f
CðxÞ ¼ aþ bðx� x1Þ þ c x� x1ð Þ2 þ d x� x1ð Þ2ðx� x2Þ
ð2Þ
satisfying Cðx1Þ ¼ y1;Cðx2Þ ¼ y2; C0ðx1Þ ¼ d1 and C0ðx2Þ ¼ d2.
This interpolation determines the coefficients a; b; c and d
noting that:
C 0ðxÞ¼ bþ2cðx�x1Þþd½ðx�x1Þ2þ2ðx�x1Þðx�x2Þ�
ð3Þ
is also continuous. The solution to this system is given by:

a ¼ y1; b ¼ d1; c ¼ y01�d1

x2�x1
and d ¼ d1þd2�2y01

ðx2�x1Þ2
, where y01 ¼

y2�y1
x2�x1

.

4. Results

In this section, we present the main results obtained by
applying the interpolation methods introduced in
Section 3.

First, we quantify the error, given by the ratio of the
overall position deviation (computed as described in Sec-
tion 2.1) to the radius of gyration, for the different interpo-
lation methods. Then, we further investigate the statistical
distribution of the errors with respect to mobility parame-
ters in order to understand what method performs better
for each particular category of users.

4.1. Interpolation error

Fig. 5 reports boxplot8 and average (the star) statistics
about the interpolation error (trajectory deviation to the
radius of gyration), for the linear, nearest and cubic interpo-
lations. Boxplot statistics give a compact and rich enough
view on the data to support the following analysis.

At a first view, looking at the error averages, we can
assess that:

� The error is decreasing with the increase of the subsam-
pling ratio, for whatever interpolation, which is reason-
able as one can get more accurate computations with
more samples.
� The gap between the three interpolation methods

decreases with the increase of the radius of gyration,
especially for those users with a radius of gyration
higher than 10 km, i.e., those who could be considered
as peri-urban users and commuters (see Section 2.2).
first quartile, median, third quartile, maximum, minimum and
. It is worth noting that some maximum and outliers are cut in the
or the sake of readability.
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� The lowest mean error among different interpolation
methods depends on the category to which the user
belongs. Indeed, for those users having a radius of gyra-
tion less than 3 km, i.e., sedentary users, the linear
interpolation method presents the smallest mean error
when compared to other methods. Instead, for those
users having a higher radius of gyration, especially for
commuters (i.e., those with a radius of gyration of more
than 32 km), the cubic interpolation presents the small-
est mean error. Finally, for urban users with a radius of
gyration between 3 and 10 km, the linear and cubic
interpolations show close performance.

Therefore, we can confirm that the trajectory deviation
strongly depends on the mobility category, i.e., the user ra-
dius of gyration. In order to determine the correlation
function between the deviation and the radius of gyration,
Fig. 6 shows for each user (one point), given by its radius of
gyration, the trajectory deviation (just for the linear inter-
polation, knowing that other interpolation methods give a
very similar trend). The trend being generally increasing,
we have positive correlation. Indeed, with the increase of
the radius of gyration, users are able to move over longer
distances, the distance between two samples increases,
hence finding a good interpolation method that accurately
approximates the real trajectory traversed by the user gets
more challenging.

Finally, further looking into the whole statistics of the
errors, including median and quartile lines, we can deter-
mine that:

� The median is always lower than the average, which
indicates that the population contains an important
part of users with much higher errors than the rest of
the population.
� Overall, the nearest interpolation shows better median

statistics than all the other interpolations for all user
categories with different radius of gyration.
� The median error becomes very low for subsampling

ratio of more than 0.1 for peri-urban and commuter
users.

4.2. Interpolations’ probability density function

How to explain the huge gap between averages and
medians, and the performance inversion indicating that
nearest interpolation is on median the best interpolation,
whatever the user category and the subsampling ratio
are, is a matter of discussion.



Fig. 5. Boxplots of the deviation to the radius of gyration error for classical interpolation methods.

Fig. 6. Mean deviation with respect to the radius of gyration.
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We interpret it with the fact that the median does not
weight, as the average does, the error of those users’ moves
for which a trajectory interpolation, whatever the type is,
is not appropriate; that is, those extraordinary moves that
deviate too much from conventional paths. For example,
the moves of users having a backward path behavior
(e.g., tourist moves coming back to already visited places,
etc.) can hardly be modeled by intuitive interpolations.
The majority of ordinary moves, with long stops at visited
places, are instead captured by the median. For ordinary
moves, the nearest interpolation (introducing long stops
at each sample and instantaneous displacement) is the
best approximation.

The presence of a subset of the population which
behaves very differently than the rest is confirmed by the
fact that the average is often close and sometimes higher
than the third quartiles in Fig. 5, and by the presence of
many outliers especially for high subsampling ratios. The
ordinary moves represent therefore more than 75% of the
whole moves, and the extraordinary ones (around 25% of
the whole moves) have so high errors that the average is
pushed close to the third quartile.

In order to further explore the statistical properties of
the trajectory error, Fig. 7 shows the probability density



Fig. 7. Probability density function of error – (subsampling ratio: 0–0.05).

Fig. 8. Joint probability of the deviation to the radius of gyration error
with the normalized distance to the centroid.
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function (PDF) of the error for the linear, cubic and nearest
interpolations.

It is easy to notice that there are two regimes. The dis-
tribution of errors over all users’ positions is well approx-
imated by a combination of two power law distributions
joined by a breakpoint. It is surprising to notice that the
breakpoint is the same (approximately equal to 2.2) for
the different interpolation methods. In practice, what does
this power law breakpoint really mean? We interpret it as
the point after which the interpolation error properties
change abruptly. The value, around 2, corresponds to two
times the user’s radius of gyration, which in practice repre-
sents the user’s ‘‘territory’’ (the circle of radius equal to the
radius of gyration). This is a meaningful result: trajectory
interpolations are more appropriate within the territory
of a user than outside it.

In order to further evaluate this dependency, we nor-
malize the user position by the corresponding radius of
gyration, and we plot in Fig. 8 the joint PDF of the normal-
ized distance of users’ positions to the centroid of the tra-
jectory with the trajectory error. The figure shows that
when the smallest errors occur, it is highly probable
that the user is within the radius of gyration (when the
normalized distance to the centroid is less than 1), i.e.,
the user’s territory; when the highest errors occur, it is
highly probable that the user is outside the territory.

These values can alternatively be analyzed by the
conditional cumulative density distribution of the two
variables, error and the normalized distance to centroid,
as presented in Fig. 9. We can determine therein that:



Fig. 9. Conditional cumulative density function.

Fig. 10. Real block load.
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� When small errors occur, we have a high probability
(80.78%) that the user is inside the territory, and a low
probability (19.22%) the user is outside it.
� When big errors occur, we have a probability of 40.25%

that the user is inside its radius of gyration and a prob-
ability of 59.75% that the user is outside its radius.

Therefore, we have an additional experimental proof
that the trajectory error increases and its characteristics
change when the user moves beyond the territory area
roughly approximated by the radius of gyration.
5. Estimation of hotspot positions

A fundamental issue to be taken into account for the
management of broadband mobile cellular networks is
finding the best location for the deployment of adaptive
content and Cloud distribution solutions at the base station
and backhauling network level. Intuitively, an adaptive
placement of content and computing resources in the most
crowded regions can grant important traffic offloading,
improve network efficiency and user quality of experience.
We use thereafter the term ‘‘hotspots’’ to denote these



Fig. 11. Estimated block load.
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regions. A limited amount of work exists in the literature
for the estimation of hotspots and rendez-vous points in
wireless access networks. E.g., in [24] vehicular data is
exploited to determine accident-risk points. Many other
works, such as [25–27,12], while assuming the availability
of mobility information, focus in user-profile aware QoS
provisioning, load balancing and network signaling
improving techniques.

Traffic load forecasting has also been investigated from
an analytical and mathematical modeling perspective. For
example, authors in [28] show how under certain condi-
tions periodic sinusoidal functions can be used as cellular
traffic profile. Unfortunately the simplicity and the too the-
oretical approaches fail from precisely matching with the
actual real traffic load, which is a strict requirement of
our investigation.

Motivated by the usage of signaling mobile phone data
that give real trajectories of smartphone users, we extract
in this section real hotspot positions and compare them
with the estimated positions that one can get by applying
the interpolation methods defined above.

Decomposing the state of Massachusetts into census
blocks9 [29], we compute the real load of each block in the
region (i.e., expressed as the users’ number of visits to each
block) as shown in Fig. 10.

The small map in the upper right corner is a zoom in of
the Boston urban area, the state’s largest city where small
blocks exist. The figure clearly shows the load difference
among the blocks and the existence of crowded blocks that
define the most visited places where large masses of peo-
ple usually visit.
9 A census block is the smallest geographic unit used by the United States
Census Bureau. Blocks are typically bounded by streets, roads or creeks.
Then, we estimate the load of each of these blocks by
choosing for each user category the best interpolation
method obtained in the results before (i.e. for sedentary
and urban mobile users, we use the linear interpolation
method to join the samples, while for peri-urban mobile
users and the commuters we follow the cubic
interpolation).

After these, we compute the estimated block load. The
results are obtained in Fig. 11, one can notice that the load
is overestimated especially for the less crowded blocks. But
what about the hotspots? How does the estimation error
vary for the most crowded places?

Fig. 12 represents the variation of the estimation error
with respect to the real load. In-line with ones exceptional
for a statistically good estimation, we can state that:

� The estimation error is very high for the less visited
blocks in the region.
� The estimation error rapidly decreases with the

increase of the real load.
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� For the most crowded blocks, we notice that the estima-
tion error is significantly smaller.

By choosing different thresholds beyond which we
identify the hotspot blocks (i.e., if a block has a load,
expressed by the total number of users’ visits during the
day, that exceeds the chosen threshold it is considered as
a hotspot block.), we plot for each case the cumulative dis-
tribution function of the block load estimation error. The
results are shown in Fig. 13. We can state that:

� The median estimation error decreases with the
increase of the real block load.
� The median estimation error reaches 7% for blocks of

more than 2000 visits per day while for those with more
than 100 visits per day, we get an error of 36%.

As a conclusion we can clearly confirm that the interpo-
lation methods we have evaluated in this paper are able to
find the hotspot positions with a small median error. We
should note here that the proposed hotspot estimation
method is scalable in a way that, taking a sample of users
instead of the whole population enables us to find the hot-
spot positions in a relatively accurate way.

The online estimation of hotspot positions we propose is
therefore very accurate and shows interesting properties in
support of advanced urban computing services. A context of
application could be that of content offloading [30] or Cloud
offloading in mobile access networks: detecting hotspot
positions in the backhauling network can allow adaptively
allocating content caches or dimensioning CloudLet
resources [31] for location-sensitive services. The availabil-
ity of such an adaptive urban network sensing and related
network management techniques can pave the way to
advanced mobile application design, for example perform-
ing adaptive mobile Cloud computation offloading [32].
6. Conclusion

Motivated by recent research on human mobility char-
acterization based on cellular network log and probe data,
we study in this paper the appropriateness of using such
data in order to estimate the trajectory of people across
metropolitan areas. The applications are manyfold, ranging
from content delivery network design to urban planning,
yet our study is application independent and is of a funda-
mental nature.

Using data for millions of users from the Massachusetts
state, we select data-plane smartphone users to get very
precise localization data for a few hundreds of users. Then,
we subsample these paths following the experimental nor-
mal user inter-event distribution, and apply to the subsam-
pled position different interpolation methods. Finally, we
analyze their errors to better understand the appropriate-
ness of the different methods in detail, and of interpolation
methods in general, for different mobility classes.

The major findings of our work can be summarized as
follows.

� The radius of gyration is an appropriate, compact and
easy to compute parameter to qualify user mobility in
a metropolitan area network scope.
� The linear interpolation is the best approximation for

sedentary users, linear and cubic interpolations work
well for urban users, and the cubic interpolation is the
best for peri-urban users and commuters.
� Separating ordinary moves following conventional

paths from the minority of user moves with unpredict-
able displacements, the nearest interpolation is by far
the best approach whatever the mobility class is.
� Interpolation methods clearly work better when

applied within the territory of the user defined by the
radius of gyration.
� Interpolation methods are able to find the hotspot posi-

tions of the most crowded places with a very high
precision.

As already mentioned, we believe the applications are
manyfold. We are in particular interested in determining
how content and Cloud delivery points in an urban and
peri-urban environments can be identified and adapted
online by inferring basic user mobility properties from
big data log coming from cellular networks.
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