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Abstract—Cloud networking imposes new requirements in
terms of connection resiliency and throughput among virtual
machines, hypervisors and users. A promising direction is to
exploit multipath communications, yet existing protocols have
a so limited scope that performance improvements are often
unreachable. Generally, multipathing adds signaling overhead
and in certain conditions may in fact decrease throughput due
to packet arrival disorder. At the transport layer, the most
promising protocol is Multipath TCP (MPTCP), a backward
compatible TCP extension allowing to balance the load on
several TCP subflows, ideally following different physical paths,
to maximize connection throughput. Current implementations
create a full mesh between hosts IPs, which can be suboptimal.
For situation when at least one end-point network is multi-
homed, we propose to enhance its subflow creation mechanism
so that MPTCP creates an adequate number of subflows con-
sidering the underlying path diversity offered by an IP-in-IP
mapping protocol, the Location/Identifier Separation Protocol
(LISP). We defined and implemented a cross-layer cooperation
module between MPTCP and LISP, leading to an improved
version of MPTCP we name Augmented MPTCP (A-MPTCP).
We evaluated A-MPTCP for a realistic Cloud access use-case
scenario involving one multi-homed data-center. Results from
a large-scale test bed show us that A-MPTCP can halve the
transfer times with the simple addition of one additional LISP-
enabled MPTCP subflow, hence showing promising performance
for Cloud communications between multi-homed users and multi-
homed data-centers.

I. INTRODUCTION

In Internet-working research, multipath communication ca-
pabilities are becoming an increasingly popular subject as
Wide Area Network (WAN) multipath protocol features and
implementations become more and more tangible. Indeed,
to reap the benefit of multipath forwarding - that is in our
perspective to gain in resilience and throughput - one needs at
some point to have different data flows following physically
disjoint paths.

From a physical network perspective, the competition be-
tween telecommunication operators resulted in the construc-
tion of parallel physical networks till the home, be it wired
(xDSL, optical fiber links) or wireless (3G, 4G, etc...). At the
same time, enduser laptops and cellphones got equipped with
concurrent interfaces such as Wi-Fi, Bluetooth, 4G. On the
server side, data-centers tend to connect to the Internet through
several ISPs to improve their resiliency, i.e. data-centers are
more often multihomed. In the end, networks may well provide
physically disjoint paths between the servers and its endusers,
both ends still need to be able to use these different paths

concurrently to improve the performance. The exploitation by
the transport layer of this path diversity available end-to-end
at the IP layer is actually not easily attainable. What is left to
use these paths simultaneously is an adequate protocol stack,
flexible and compatible enough with the existing environment,
able to stitch transport-layer multipath capabilities to different
IP-layer paths.

A significant amount of work has already been done into de-
vising the Stream Control Transmission Protocol (SCTP) [1],
as transport-layer multipath protocol. Yet its later equivalent
Multipath TCP (MPTCP) [2] is more retro-compatible and
hence is more likely to be largely deployed (there are already
many MPTCP servers connected to the Internet). Indeed
MPTCP is compatible with TCP, both at the header and at
the congestion mechanism levels; more precisely:

• if one of the endhost is not MPTCP compliant or if there
are middleboxes preventing MPTCP use, then the TCP
connection falls back to legacy TCP;

• an MPTCP connection can coexist with other TCP con-
nections, i.e., the MPTCP connection does not get more
capacity than the TCP connections.

The congestion mechanism objectives set in the specifi-
cations also state that MPTCP must get at least as much
capacity its TCP equivalent would get. Thus, the conges-
tion mechanism and the subflow management system appear
tightly intertwined; when to create new subflows or to delete
them become critical questions. The MPTCP stack has a
poor knowledge of the underlying network to adopt efficient
decisions, but lower layers may share useful knowledge to sup-
port MPTCP for an efficient subflow selection. For instance,
creating several subflows for a data-center communication
with a layer 2 bottleneck, e.g., due to a shared spanning tree
segment, might prove counterproductive in terms of processing
overhead vs increase in throughput; similarly, an Internet
Cloud-access multipath communication with a server in a data-
center through a single external path (single provider) could
offer no performance gain.

The purpose of our study concerns the establishment of
additional subflows between MPTCP servers and users in a
Cloud network where, at least at one side, path diversity is
available at the IP layer, but not usable with native protocols.
More precisely, we propose a specific cross-layer signaling to
allow a MPTCP endpoint to profit from path diversity offered
by a Locator/Identifier Separation Protocol (LISP) [4] network.



Fig. 1. Simplified representation of MPTCP signaling. Source: [5]

LISP can give hints to MPTCP about the WAN paths diversity
between two MPTCP endpoints. By allowing sharing of such
an information among endpoints, we influence the number
of subflows to create. Our proposition leads to an improved
version of MPTCP we name Augmented MPTCP (A-MPTCP).
A preliminary version of this work was presented as a poster
at IEEE ICNP 2013 [3].

The paper is organized as follows. In Section II we present
the MPTCP and LISP protocols. Our cross-layer cooperation
proposal is described in Section III. Then we present the exper-
imentation framework and the simulation results in Section IV.
Section V concludes the paper drawing future work in the area.

II. PRESENTATION OF MPTCP AND LISP

We describe in this section the MPTCP and LISP protocols
highlighting the basic features our proposal relies on.

A. Multipath TCP

As already mentioned in the introduction, MPTCP is a
TCP extension enabling end-to-end multipath communica-
tions, with an emphasis on backward compatibility, leverag-
ing on multiple connection subflows concurrently used for
connection data forwarding. Without entering excessively into
technical details, the MPTCP signaling relies on the use of
one TCP option in the three-way handshake, and of another
TCP option during the connection to open and close subflows
as a function of connection, subflow and network states, as
depicted in Figure 1.

As explained in [5], nowadays, many middleboxes (e.g.,
TCP Optimizers, firewalls, PAT/NAT) are able to inspect
packets either to modify their content (e.g., change sequence
number) or to drop them (e.g., if it detects unknown protocols),
and thus can hinder TCP extensions deployement [2]. As a
consequence, MPTCP refers to IPs with an identifier rather
than by the IP in order to prevent the confusion induced by
Address Translators (PAT/NAT). If any problem of the kind
is detected by MPTCP, it falls back to legacy TCP, as it is
the case if the remote endhost is not MPTCP compliant. Once
an MPTCP connection is established, endhosts can advertise

Fig. 2. LISP communications example

their IPs, add or remove MPTCP subflows anytime. These
subflows, which we could define as TCP connections children
of a more comprehensive parent TCP connection, can be used
to achieve greater throughput or resiliency (indeed with the
“backup” flag, MPTCP can create a subflow used only in case
other subflows stop transmitting). It is worth noting that a host
can create/advertise subflows with a same IP address, but with
a different port number. The main challenge of such a protocol
is the congestion control mechanism. It should not be more
aggressive than MPTCP, but at the same time it should use
the unused capacity; it should balance the load over different
paths, but without causing too much packet disordering so that
TCP buffering can reorder them. Adequate path discovery is
part of the solution and that is where LISP can help.

B. Locator/Identifier Separation Protocol (LISP)

IP addresses assume today two functions: localization and
identification of its owner, which induces a few problems one
of which is scalability. IP addresses need to be distributed
according to the network topology, which conflicts with ease
of use. Provider independent addresses as well as the Internet
growth tend to increase global Border Gateway Protocols
forwarding information databases, thus slowing lookups and
increasing device costs.

The Locator/Identifier Separation Protocol (LISP) [4] splits
up localization and identification functions into two IP ad-
dresses. In this way, only the localization IP addresses, named
Routing LOCators (RLOCs), depend on the topology; RLOCs
typically belong to border routers of the endpoint network.
The IP address used to identify an endpoint is named Endpoint
Identifier (EID). LISP is a network-level solution, i.e., there
is no need to change the endhost configuration in a LISP
network. Upon reception of a packet from the local network
to an outer EID, the border router acts as an Ingress Tunnel
Router (ITR): it retrieves the EID-to-RLOC mapping from
a mapping system (similar to DNS), then it prepends to
the packet a LISP header and an outer IP header with the
destination RLOC as destination IP address. As the outer
packet is a traditional IP packet, it can be routed on the legacy
Internet. One should pay attention to the Maximum Transfer
Unit (MTU) though, since the LISP encapsulation adds a 36
bytes overhead in IPv4 (56 bytes with IPv6), i.e., 8 bytes for



Fig. 3. Example of a multihomed data center and associated MPTCP subflows

the LISP header, 8 bytes for the UDP header and 20 (IPv4)
or 40 (IPv6) bytes for the outer IP header. The packet should
reach at some point its destination RLOC acting as an Egress
Tunnel Router (ETR), i.e., it decapsulates the prepended LISP
header and forwards the inner packet to the destination EID.

Consider the example in Figure 2: the traffic sent to the
2.2.2.2 host is encapsulated by the source’s ITR toward one
of the two destination’s RLOCs. The one with the best (lowest)
priority metric is selected, which at reception acts as ETR and
decapsulates the packet, before sending it to the destination.
On the way back to 1.1.1.1, RLOC4 queries a mapping system
and gets two RLOCs with equal priorities, hence performs
load-balancing as suggested by the weight metric (RLOC1 is
selected in the example’s packet). In order to guarantee EID
reachability, LISP uses a mapping system that includes a Map
Resolver (MR) and a Map Server (MS). Typically merged as a
single MS/MR node as depicted in Figure 2, a Map Resolver
holds a mapping database, accepts MAP-REQUESTs from xTRs
and handles EID-to-RLOC lookups. A Map Server receives
MAP-REGISTERs from ITRs and registers EID-to-RLOC in the
mapping database. In practice, many MRs are geographically
distributed and relay MAP-REQUEST messages using a specific
protocol called LISP Delegated Database Tree (LISP-DDT)
protocol. This is the case of the LISP Beta Network testbed1.

As a backward compatibility feature, if a source (or desti-
nation) site is not yet LISP compliant, the traffic might get
encapsulated (or decapsulated) by a Proxy ITR (or ETR).
Furthermore, the usage of RLOC priorities and weights in the
mapping system allows inbound traffic engineering, suggesting
a best RLOC or an explicit load-balancing. In short, LISP
routers are border nodes that advertise their RLOCs so that
a remote LISP site knows it needs to tunnel packets to
those routers to reach hosts in that remote site (i.e. an EID).
LISP allows IP mobility (i.e., a machine keeps its EID but
updates its RLOCs, for both mobile users and mobile virtual
machines [6]), and also give hints if the site is multihomed
or not, i.e., if the site is reachable by different providers. In
the case the RLOCs of a site belong to different prefixes, they
could belong to different providers, and the site is said to
be multihomed. In this case, it would be interesting to have
additional MPTCP subflows, whose path is splitted at the LISP

1LISP Beta Network testbed (website): http://www.lisp4.net

site border, since they could follow different Internet paths, if
not end-to-end, at least along a segment of the Internet path.

III. PROPOSED CROSS-LAYER MPTCP-LISP
COOPERATION

The current MPTCP path discovery does not explicitly limit
the number of subflows to create, so current implementations
create by default a mesh of subflows between two hosts’
IPs. Most of the times, the more the subflows, the higher
connection throughput, under appropriate congestion control.
(note that there are also cases in which this default mechanism
would prevent MPTCP from increasing the throughput, and
cases where fewer subflows could provide the same gain by
using fewer network resources). We target the specific case
where more subflows could be created if intermediate multi-
path forwarding nodes (at the border between the local site and
the WAN) can be used to split subflows over different WAN
paths, under the hypothesis that the connection throughput is
limited by WAN capacity rather than by LAN capacity.

In the following, we describe how the MPTCP path discov-
ery can be augmented in this sense in a LISP network. Then
we present the required signaling between MPTCP and LISP
network elements, and the possible methods to perform the
required multipath subflow forwarding.

A. Augmented MPTCP path discovery

The MTPCP specification – see the path management
section in [2] – states that the path discovery mechanism
should remain modular so that it can be changed with “no
significant changes to the other functional components”. We
leverage on this specific part of the MPTCP protocol to define
an augmented subflow discovery module taking profit of LISP
capabilities, to augment MPTCP performance while preserving
endhost resources.

Figure 3 presents a Cloud access situation where MPTCP
could perform better if its path discovery module were in-
formed of LISP path diversity and forwarding capability when
creating subflows. In the example situation, there is one IP on
the client host and one IP on the server; as such, the legacy
MPTCP mechanism creates only one subflow. Under the
assumption that commonly connection throughput is limited
by WAN capacity rather than by LAN capacity, limiting
to a single subflow prevents from benefiting of the WAN



path diversity and the likely greater throughput achievable if
forms of multipath forwarding at intermediate nodes exist.
A LISP network offers the signaling capabilities to retrieve
path diversity information, and the switching mechanisms to
ensure multipath forwarding. In the Fig. 3 example, this is
possible establishing two subflows instead of one, assuming
each subflow is forwarded to a different IP transit path (guar-
anteed as explained next) thanks to the LISP-capable border
router. It is worth highlighting that as of the specifications -
and as implemented in the MPTCP Linux implementation [9]
- different MPTCP subflows can share the same source IP
provided that they use different TCP ports. This subflow
identification mode should be used to create the additional
LISP-enabled subflows.

More generally than the Fig. 3 example, the number of
MPTCP subflows can be significantly increased thanks to
LISP capabilities in the case the endpoints dispose of multiple
interfaces. We assume communications between hosts are
strongly asymmetric, the largest volume being from server to
client, so that the client-to-server flow essentially consists in
acknowledgments. Let l1 and l2 be the number of interfaces
of server endpoint (or of the hosting hypervisor in case of VM
server) and client endpoints, respectively. A LISP site can be
served by one or many LISP routers, each disposing of one
or many RLOCs. Let Lr

1 and Lr
2 be the number of locators

of the rth LISP border router at site 1 (Server side) and 2
(Client side), respectively. Therefore, the maximum number
of subflows that can be opened by legacy MPTCP is l1l2.
Following the design choice to route only one subflow over
one RLOC-to-RLOC inter-site path to avoid bottlenecks and
other management issue in the WAN segment, the number of
maximum number of subflows that could be opened thanks to
LISP multipath forwarding is (

∑
r L

r
1)(

∑
r L

r
2). Then we can

distinguish two cases:
1) if the LISP site network allows full reachability between

endpoints and corresponding ITRs, and endpoint’s traffic
reaches any corresponding ITR in a non deterministic
way, then the maximum number of subflows that shall
be opened is:

Na = max{l1l2; (
∑
r

Lr
1)(

∑
r

Lr
2)}. (1)

LISP-based augmentation would likely be effective only
if the second term is higher than the first. The non
deterministic interconnection between the endpoint and
its ITRs can be due, for instance, to adaptive L1/L2/L3
traffic engineering changing routes and egress points
from time to time even for a same application flow,
or load-balancing such as equal-cost multipath L2/L3
routing so that different subflows may exit by different
ITRs. It is worth highlighting that (1) is only a sug-
gested upper bound; in the case the right term is the
maximum, in such non deterministic situations there is
no guarantee the Na WAN paths will be used, especially
if l1 <

∑
r L

r
1 or l2 <

∑
r L

r
2.

2) if each of the endpoint’s interfaces can have its traffic

routed via one single RLOC each, then we can take a
much larger profit from the LISP path diversity. The best
situation is when l1 ≥

∑
r L

r
1 and l2 ≥

∑
r L

r
2. So, if the

number of the interfaces is at least equal to the number
of the RLOCs, then the desired feature is to explicitly
link each interface to the right ITR. Such a setting is the
de-facto setting when the user is a LISP mobile node
MPTCP-capable user; for the Cloud server side, it is
technically relatively easy to create a number of virtual
interfaces and bind them to different ITRs via virtual
LAN mechanisms and the like. In such configurations,
the maximum number of subflows that shall be opened
is:

Nb = (
∑
r

Lr
1)(

∑
r

Lr
2) (2)

The situations described in the previous points can hold
only at one site or even only partially within each site. (1)
and (2) are indeed upper bounds. Nevertheless, it does not
hurt creating a number of subflows higher than the number of
paths than Na or Nb, at the expense of a higher processing and
signaling burden on the network, with a probably limited and
in any case non-deterministic gain. Therefore, (1) or (2) can be
used to compute the number of subflows for the MPTCP-LISP
augmentation, depending on the situation, upon appropriate
customization of the path discovery module settings.

B. Signaling requirements and implementation aspects

From a mere signaling perspective, the requirement is
therefore that the MPTCP endpoint be able to query the LISP
mapping system to get the RLOCs of the other endpoint (the
number of interfaces being already transported via MPTCP
options). Standard LISP control-plane messages can natively
assume this task (i.e., MAP-REQUEST and MAP-REPLY mes-
sages). Once this information is obtained, the number of
subflows to be opened can be computed, and the MPTCP
endpoint can either advertise these possible subflows to the
other endpoint or initiate the required subflows following a
procedure such as the one we propose hereafter.

Let us describe in higher detail the different steps, depicted
in Figure 4, needed by the MPTCP host to retrieve the
adequate number of local and remote RLOCs, allowing to
compute the number of subflows to create. In our imple-
mentation, these communications are managed by a specific
module at the kernel level. In the case of servers hosted
in VMs, the MPTCP logic and our path discovery module
could be implemented via an MPTCP proxy (see [8]) at the
hypervisor level. In the following, we also give necessary hints
on implementation aspects related to each step.

1) endpoint C (Client) first establishes an MPTCP con-
nection with endpoint S (Server). Once endpoint S
is assessed as MPTCP compliant, the path discovery
process can start.

2) The kernel of endpoint C calls a function of the previ-
ously loaded MPTCP kernel module, with as parameters
the current MPTCP connection identifier and the EID we
want to find the RLOCs associated to.



Fig. 4. Signaling process chronology

3) Upon reception, the kernel module translates it into a
Netlink message and sends it to the MPTCP Netlink
multicast group (Netlink is the networking protocol used
by the linux kernel space to communicate with user
space and vice-versa).

4) A specific daemon in the user space is registered with
the MPTCP netlink group. Upon reception of the Netlink
message, it sends a MAP-REQUEST to the LISP router
C, i.e., the daemon asks for the RLOCs responsible for
the EID (i.e., the IP of Server S). Note that normally one
should send a MAP-REQUEST to a Map Resolver, which
in existing vendors implementations can be colocated in
a LISP router; in our implementation, we modified an
open source LISP router for this purpose. Also note that
an ad-hoc DC network controller could do this job too.

5) The LISP router C queries its configured map-resolver if
the answer is not in its cache. It then sends to that user
space daemon a MAP-REPLY listing RLOCs responsible
for the requested EID, thus retrieving the number of
RLOCs.

6) Upon reception of the MAP-REPLY, the userspace dae-
mon forwards the answer via Netlink to the kernel
module.

7) Finally the module relays the information to the kernel,
triggering the creation of new TCP subflows.

It is worth mentioning that other strategies could be adopted
according to the level of control we have on the different
nodes. In case only the DC-side is under control, the server
could advertise the same IP until the client creates subflows
with adequate source ports. Or it could accept enough com-
munications to ensure that some of them will go through
different paths; the MPTCP congestion mechanism would then
send data only on the best subflows, which will likely follow
different paths.

Furthermore, it is worth noting that the described process is
expected to be efficient only for long-lived flows. Indeed, on
the one hand short flows may finish before the procedure; on
the other hand, the different requests sent from the hosts to
the routers consume bandwidth and add an avoidable load to
the router. Caching associations between endpoint identifiers
and the number of subflows to create mappings in the source
host could alleviate signaling traffic. To avoid applying our
proposed cross-layer interaction to any flow, a system that
triggers the procedure only for long-lived flows would be very
reasonable, for example based on a whitelist or a dynamic
recognition system such as the one described in [24]. In the
case of servers hosted in a VM, this could be implemented at
the hypervisor level.

C. LISP multipath forwarding requirements

In order to ensure that subflows indeed follow different
WAN paths, it is possible to implement both stateful and
stateless load balancing mechanisms.

• A possible stateful solution would be to resort to the
LISP-Traffic Engineering (LISP-TE) feature described
in [10]. This feature allows enforcing an “Explicit Locator
Path” via the LISP control-plane, i.e., with little or
no impact on data-plane packet crafting. For a given
EID, the mapping systems can build a LISP overlay
using intermediate LISP routers between the ITR and the
ETR, as re-encapsulating tunnel routers (RTRs), which
decapsulate the incoming LISP packet and re-encapsulate
it toward the next RTR (or the ETR) in a xTR path. In
the context of all subflows being addressed to the same
destination EID, the usage of options in the packet header
(e.g., using the LISP Canonical Address Format, LCAF,
features [11]) can allow routing concurrently multiple
subflows via different xTR paths. It is worth mentioning



that LISP-TE extensions are not yet implemented in
vendor routers (e.g., Cisco), and in the control-plane of
open source routers. However, in the case LISP is imple-
mented at the hypervisor level, hence without touching
the source host (VM), the LISP-TE encapsulation with
LCAF options can be defined as a switching rule in virtual
switches such as OpenVSwitch – knowing that Open-
VSwitch already implements basic LISP encapsulation
as switching rule since a few months2.

• A stateless solution could be to carefully choose IP or
TCP header fields so that IP packets follow a foreseen
IP path. The computation of these fields (for instance
the TTL value in IP packets or source port in TCP
packets) require the knowledge of both the topology
and the load-balancing algorithms running in the nodes
to be able to correctly choose the path. Nodes usually
use an hash function over IP and some TCP fields to
compute a unique flow identifier that decides the egress
interface. Hashing functions, by construction, make it
hard to foresee the egress interface of a packet. On
the contrary, invertible functions can prove helpful as
explained in [12].

In our implementation detailed hereafter, we opted for
the second option as the first is not yet available in any
LISP implementation to date. At the last step in the previous
subsection, subflows source ports are chosen so that their port
number modulo the number of disjoint paths are all different.
The LISP router can then deterministically route each subflow
to a specific path. For instance, in the case of 2 paths, we need
to have one subflow whose (source + destination port number)
% 2 equals 0 and the second subflow (source + destination port
number) % 2 equals 1. This mechanism could be replaced with
a more scalable solution as those described in [12], yet it was
easier to implement. The load balancing is fully effective when
installed on both remote and local sites (as in the experiment).
Still, in case communications are asymmetric, it can perform
well even if installed only on the side sending data (in this
case the server side).

The stateless approach is not limited to L3 routing; it can
also apply to L2 routing protocols disposing of additional
fields (e.g., the hop-count) such as the Transparent Intercon-
nection of a Lot of Links (TRILL) [14] and Shortest Path
Bridging (SPB) [15] protocols.

In DC controlled environments, for packet-based intra-DC
communications, the computation of the different fields could
be left to an advanced layer-2 fabrics allowing DC traffic
engineering such as TRILL, SPB or OpenFlow. As for the
extra-DC segment, stateless solutions do not allow enough
control to choose paths. The LISP-TE features could thus
prove helpful since it explicitly encodes some LISP nodes to
go through, but requires the usage of a wide enough WAN
operational LISP network to prevent packets from making
a prejudicial detour because they have to go through LISP
routers.

2See: http://openvswitch.org/pipermail/git/2013-February/003666.html.

IV. EXPERIMENTAL RESULTS

In this section, we report and discuss the results obtained
performing several MPTCP communications over the exper-
imental test bed. First, we present the test bed setting and
the developed node features we publish as open source code,
then we assess the achievable gain with our Augmented
MPTCP (A-MPTCP) solution. Finally we qualify the data-
plane overhead of the cross-layer interaction.

A. Network test bed

Let us illustrate the experimental test bed we used for the
experimentation of our solution, displayed in Fig. 5. It imple-
ments our basic reference augmented TCP scenario described
in Fig. 3. We used a MPTCP-capable virtual machine hosted
in the Paris-Est DC of the French NU@GE project [20],
disposing of two Internet Service Providers, Neo Telecom
(AS 8218) and Alphalink (AS 25540). On the other side,
we use a single-homed and MPTCP-capable Cloud user. The
Internet-working between the VM and user is such that two
disjoint Internet paths are used down to the user’s ISPs, and
such that the two intra-DC paths between the VM’s hypervisor
and the DC border LISP router are disjoint ones.

In such a configuration, the highest improvements can be
reached when the Cloud user’s provider access and transit links
are not congested. The test bed scenario can be considered as
quite representative for real cases, where typically Cloud users
are not multihomed and the DC has a few ISPs. Moreover, by
targeting the more basic configuration with only two subflows
we can more precisely demonstrate the benefit of our LISP-
MPTCP cross-layer cooperation solution.

B. Open Source Nodes

In terms of open source software, we used the open source
MPTCP Linux implementation [9] and the LISPmob [19]
implementation (preferred over the faster BSD OpenLISP
router [22] [23] because more easily customizable). We then
applied these necessary modifications to the open source
nodes. We published the patches in an open source reposi-
tory [25]. More precisely,

• to the MPTCP kernel, to add our path discovery feature
that retrieves the number of local and remote RLOCs for
each destination it is talking to as previously described;

• to the LISPmob router so that: (i) it acts as a Mapping Re-
solver too; (ii) it balances the two subflows deterministi-
cally between its two RLOCs. For (ii), instead of resorting
to a hash of the tuple (source IP, destination IP, Source
port, Destination Port, Time To Live), we replaced the
load balancing mechanism by a single modulo (number
of remote RLOCs) on the TCP source port and force
MPTCP to start TCP subflows with certain source port
numbers.

To ease the development and to decorrelate the path dis-
covery mechanism from other MPTCP mechanisms a stated
in [13], we minimized the modifications to the kernel and
instead created a kernel module called by the kernel each
time MPTCP establishes a new connection. We also integrated



Fig. 5. Cloud network test bed scenario

an existing user space program named LIG (LISP Internet
Groper, [16], [17]) to request EID-to-RLOC mappings (equiv-
alent of the Domain Information Groper DIG but for LISP
networks), using MAP-REQUEST and MAP-REPLY control-
plane messages. The LISP nodes were connected to the LISP
Beta Network test bed [18]. In order to retrieve a list of
RLOCs responsible for an EID (and implicitly their number),
we created a user space python daemon listening to requests
transmitted by the kernel module, which then interacts with
the LIG program. In the following, we do not differentiate
between the two user space programs since it is just a matter
of implementation.

C. Transfer times
In order to demonstrate the previously described architec-

ture, we worked on the same topology as in Figure 3. A single
homed client (with one link to AS3215) downloads 30 files
from a single homed server (one link to a LISP software
router) in a dual-homed data center (both links active, one
towards AS25540, another one towards AS6453). Each trans-
ferred file is set bigger than the previous one by an increment
of 256 KB to assess the performance for different volumes.
We record 20 transfer completion times for each file, and plot
in the following maximum-minimum error bars. We conduct
the experimentations using four different configurations:

1) legacy TCP: with no cooperation with LISP, and a single
TCP flow.

2) MPTCP: with no cooperation with LISP, and a single
MPTCP subflow.

3) A-MPTCP: with cross-layer cooperation, creating as
many subflows as the product of remote and local
RLOCs, i.e., 2 subflows.

4) A-MPTCP overridden: we manually override the dae-
mon result to create 3 subflows instead of 2

One can reasonable expect the cases 1 and 2 to be very
similar in the provided configuration since MPTCP should
use one flow only. During our tests, the server upload speed

could fill the client download speed (8 Mbit/sec, corresponds
to RLOC 3 in Figure5) with a single TCP connection. In order
to exhibit an increase in throughput via the use of several
subflows, we limited RLOC 1 and 2 throughput via the linux
QoS utilities so that each each RLOC could send no more
then 4 Mbit/sec. On Figure 6, we see that unassisted MPTCP
(i.e., MPTCP without LISP support) and TCP transfer times
are quite close, as expected, MPTCP being a little slower than
TCP: the primary cause is the additional 20 bytes overhead
per packet introduced by MPTCP. More importantly, we can
see that our A-MPTCP solution combining MPTCP and LISP
performs significantly better. For almost all file sizes, we get
a gain close to 90%, i.e., with the additional LISP-enabled
subflow we can nearly halve the transfer time. This very
clearly shows the important benefit we can reach with our
Augmented MPTCP - LISP cross-layer cooperation module.

We also get an interesting result by forcing the creation of
three MPTCP subflows even if there are only two RLOCs at
the server side. We notice that the throughput is on average
worse than for the suggested A-MPTCP behavior with two
subflows, but it sometimes does perform better than with
two subflows only. The decreased throughput makes sense
as having three subflows going out two RLOCs means that
at least two of the subflows compete for bandwidth in some
part of the WAN. The improvement is likely due to some
further load-balancing occurring on the WAN (on the outer
header) and of transient bottleneck free subpaths, hence not
as deterministic as for the the two subflows case.

It is worth noting that due to the use of linux QoS utilities to
cap the bandwidth, it could induce from times to times some
latency (the RTT changing between 60ms to 300ms on each
path) during the transfers without much impact on MPTCP.

D. Data-plane overhead

From a data-plane forwarding perspective, we recall that
LISP performs an IP-in-IP encapsulation with shim UDP and
LISP headers. In order to get an idea of the LISP header



Fig. 6. Completion times for different file sizes

Fig. 7. Transfer times for two subflows with and without LISP

overhead, we recorded the transfer times in two cases. A
first case with two MPTCP subflows enabled via LISP, and
a second case with the same two MPTCP subflows, but
manually configured, without LISP, hence avoiding data-plane
encapsulation overheads. The results are shown in Figure 7.
At a first look one can immediately notice that the overhead
is most of the time negligible. It is worth noting that neither
our connection or LISPmob allowed us to test higher rates.
Nevertheless, we suspect that at higher rates, we might see a
more important processing overhead of LISP traffic since the
UDP encapsulation prevents the system from offloading TCP
segmentation to the NIC.

V. CONCLUSIONS

We have shown that the current MPTCP specification can
be refined, adding features to its path discovery, and that the
resulting Augmented MPTCP (A-MPTCP) can achieve better
performance thanks to a better knowledge of the underlying IP
topology gathered via LISP protocol in a LISP-based Cloud
network.

Our experimentations on a real large-scale test bed involving
one data-center network show that the throughput, hence the
transfer time, can be greatly improved, thanks to the cross-
layer A-MPTCP protocol cooperation we propose in this paper.
Our proposition consists in allowing an MPTCP endpoint to

gather information about the IP Routing Locators using LISP
control-plane messages to query the LISP mapping system.
We show that with just one additional LISP-enabled subflow,
a transport-layer connection spanning the Internet via disjoint
AS paths can terminate file transfers twice faster. It is therefore
reasonable to generalize these results stating that, in absence
of middle-boxes filtering the MPTCP signaling, the achievable
gain is directly proportional to the number of additional LISP-
enabled subflows. Hence the higher the multi-homing degree
of Cloud clients and data-centers, the higher the achievable
gain.

It is worth stressing that one data-center does not require
a worldwide pervasive LISP deployment to offer this perfor-
mance to its clients, but just need to enable LISP (and MPTCP)
at user’s endpoints (e.g., using LISPmob [19]) for mobile
users, or client’s border routers (e.g., using OpenLISP [22]
[23]) for enterprise/business customers. It is also worth noting
that the proposed A-MPTCP solution does readily apply to
inter-DC communications spanning an IP WAN and also the
Internet, provided that at least one DC is multi-homed, with
no modification to the signaling process between MPTCP and
LISP nodes.

As a future work we plan to extend this cross-layer protocol
architecture and the related prototype to take into account
Local Area Network (LAN) and intra-DC path diversity in-
formation. This would allow the solution to cover intra-DC
MPTCP communications as well. Indeed, instead of consulting
a LISP mapping resolver, one could interrogate a Link State
Protocol database or mapping directory (such as ISIS in
TRILL or SPB), or ad-hoc DC controllers.
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