6th International Symposium on Applied Stochastic Models and Data Analysis Hania, Crete, Greece, May 3-6, 1993

ABOUT THE SELECTION OF THE NUMBER OF COMPONENTS IN CORRESPONDENCE ANALYSIS

Gilbert SAPORTA

Narcisa TAMBREA

CEDRIC

Conservatoire National des Arts et Métiers 292 rue Saint Martin, 75141 Paris Cedex 03,France

ABSTRACT

Selecting the right number of axes in correspondence analysis is usually done by using empirical criteria such as :

- detection of an inflexion in the diagram of eigenvalues
- getting an arbitrary amount of the cumulated percentage of inertia

We examine the application of a chi-square goodness of fit test between the data table and its reconstitution with k eigenvalues. This test which has been proposed by E.Malinvaud, then by E.Andersen and G.Saporta has a good behaviour for frequency tables but fails to apply to multiple correspondence analysis. This failure, however enlightens some properties of this test and of correspondence analysis.

Keywords: correspondence analysis, eigenvalues, dimensionality

I THE RECONSTITUTION FORMULA FOR A CONTINGENCY TABLE

Let N be a contingency table with p rows and n columns of frequencies η_j , coreespondence analysis provides $r = \min (p-1, q-1)$ non trivial eigenvalues. We will denote by a_k et b_k the coordinates of the rows and of the columns along the k th axis normalised by the relationship:

$$\sum_{i} \left| a_{ik} \right|^2 = \sum_{i} \left| b_{jk} \right|^2 = \mathbf{m}_k$$

We then get the reconstitution formula, which is a weighted singular value decomposition of N:

$$n_{ij} = \left(|n_{i,n_{,j}} / n| \right) \left(1 + \sum_{i,j} a_{ik} b_{jk} / \sqrt{\mathbf{m}_{k}} \right)$$

We may notice that k=0 gives the independence table; we get the best approximation of rank k, \tilde{n}_{ii} , when using only the first k terms of the sum.

II GOODNESS OF FIT TESTS

II.1 The usual chi-square test

It consists in comparing the observed η_j from a sample of size n to the expected frequencies under the hypothesis H_k of only k axes for the whole population(p_j table). Weighted least squares estimates of these expectations are precisely the \tilde{n}_{ij} of the reconstitution formula with its first k terms.

We then compute the classical chi-square statistic:

$$Q_k = \sum_{i,j} \frac{\left(n_{ij} - \widetilde{n}_{ij} \right)^2}{\widetilde{n}_{ij}}$$

If k=0, i.e the independence case, this quantity Q_0 is compared to a chi-square with (p-1)(q-1) degrees of freedom.

If k=1, Q_1 is compared to a chi-square with (p-2)(q-2) degrees of freedom. In the general case it is easy to proove that under hypothesis H_k , Q_k is asymptotically distributed like a chi-square with (p-k-1)(q-k-1) degrees of freedom.

So we perform a sequence of chi-square tests beginning with k = 0 until hypothesis H_k be accepted with a specified significance level. In other words we accept H_k if the difference between the data table and its reconstitution is not significantly different from a random noise.

II.2 A modified version

For the previous test, we need to compute the estimates \tilde{n}_{ij} for each value of k which is not a standard output of CA software

If following E.Malinvaud, we use for the denominators of Qk $n_i n_j / n$ instead of \tilde{n}_{ij} , les no special computations ares required since the modified test statistic

$$Q_{k}^{'} = \sum_{i,j} \frac{\left(n_{ij} - \widetilde{n}_{ij} \right)^{2}}{\frac{n_{i} n_{.j}}{n}}$$

is equal to n times the sum of the discarded eigenvalues:

$$Q'_{k} = = n(I - \mu_1 - \mu_2 - ... - \mu_k) = n(\mu_{k+1} + \mu_{k+2} + ... + \mu_r),$$

For tables with reasonably high frequencies there is only a slight difference between Q and Q' and the same sequence of chi-square tests than in II.1 may be applied.

Extensive Monte-Carlo experiments by L.Zater have shown that this test recovers the right dimension of a table more often than the other empirical techniques

II.3 example

The analyzed data table, which was not actually a real contingency table, gives the number of times where each of a thousand respondents associates an item (among 19) to 13 brands of diet butters. Due to multiple answers n=21900.

```
269
                                                  89
     70 69 223 14 21 153 118 165 168 23 36
178
     74 46
            138
                 12
                    13
                        128
                                158 131
                                          20
                                              23
                                                  82
                              90
124
     22
         25
             84
                         70
                              46
                                  86
                                       61
                                               7
                                                  22
                  6
                      7
                                           6
184
     95
         74 184 12 26
                        158
                              96
                                 162
                                     229
                                          20
                                              31
                                                 138
214
     80
         59 192 18
                    25
                        168 114
                                177
                                     172 21
                                             31
                                                 102
201
         32 153
                 15
                    17
                        115
                              90 138 130
                                          13
     65
110
                              55
                                          12 15
     58
         30 105
                  8
                    13
                         98
                                114
                                     105
                                                  55
243 115
         68 217
                 20
                    21 231 138
                                          33
                                                 113
                                 227
                                     247
                                              43
303 137
        95 286
                 24 39
                        271 165 251 327
                                          36
                                              51
                                                 146
253 117
         77 244
                 20
                    31
                        210
                            132
                                 217
                                     282
                                          26 43
                                                 124
121
                    18
                                 101
                                     134
                                                  95
     60
         35 117
                  8
                         98
                              65
                                          15
                                              21
 73
     20
         12
             61 11
                      5
                         88
                              31
                                  44
                                       54
                                           6
                                               2
                                                  23
                                             15
         29
                    12 146
 86
     46
             88
                  9
                              38
                                  82 112
                                         11
                                                  49
158
     74
         39 127
                 10 13
                        121
                              85 149
                                     175
                                          18
                                              19
                                                  84
240 113
         98 216
                 21
                    33
                        196 134
                                 197
                                      276
                                          26
                                              45
                                                 124
     38 20
                  7
 76
             92
                    13
                         60
                              46
                                  70
                                       75
                                            9 13
                                                  54
215
     93
         55
            193 17
                    26
                        173 110
                                 173 194
                                          27
                                                  92
167
            162
                    22
                        130
                              93
                                 142 155
                                              29
                                                  82
     76 49
                 16
                                          17
 85
     51 27
             82
                  7 10
                         77
                              43
                                  87
                                       83 12 13
                                                  49
```

Here are the eigenvalues and the percentages of inertia

```
= 0.0064
                     39.37%
\mu_1
                     27.93%
     = 0.0045
\mu_2
     = 0.0017
                     10.24%
μς
\mu_4
     = 0.0014
                      8.32%
     = 0.0008
                      4.65%
\mu_{5}
     = 0.0006
                      3.45%
\mu_6
     = 0.0004
                      2.21%
\mu_7
       0.0003
                      1.82%
μ8
     = 0.0001
                      0.80%
                      0.73%
     = 0.0001
\mu_{10}
     = 0.0001
                      0.44%
\mu_{11}
\mu_{12} = 0.0000
                      0.03%
```

n times the inertia is equal to 356.28 which is a too high value for a chi-square with 12x18 = 216 degrees of freedom; so the hypothesis H_0 is rejected, and at least one axis is necessary.

The following results lead clearly to keep 2 axes, which perfectly fits to the habits of marketing people!

k	Qk	Degrees of freedom	significance level
1	215.357	187	0.07604
2	116.935	160	0.99569
3	82.249	135	0.99990
4	51.564	112	1.00000
5	35.017	91	1.00000
6	22.867	72	1.00000
7	14.476	55	1.00000
8	7.567	40	1.00000
9	4.586	27	1.00000
10	1.691	16	1.00000
11	0.121	7	1.00000

Q' gives similar results:

k	Q_k	Degrees of freedom	significance level
1	214.84	187	0.08
2	115.33	160	0.9969
3	78.85	135	0.9999
4	49.21	112	1.0000

The computer program written with the SAS language by two students (B.Dang Tran et F.Tico) gives also the sequence of the approximations of N. Here is the approximation with two axes:

														LULAI
	264.0	79.0	58.6	209.6	16.6	21.5	147.6	122.6	189.1	167.5	21.4	30.9	89.7	1418.0
	179.9	66.5	46.2	153.3	12.7	17.6	125.9	88.3	140.3	145.0	17.1	24.3	75.7	1093.0
	121.5	25.6	20.2	87.6	8.3	6.8	70.5	50.4	78.3	54.4	8.1	9.9	24.4	566.0
	175.1	103.0	66.7	180.8	13.3	27.2	154.6	104.2	169.4	228.2	23.6	36.5	126.3	1409.0
	194.0	60.3	44.0	155.8	12.7	16.2	116.2	90.7	141.1	129.0	16.2	23.0	67.8	1067.0
	115.4	50.0	33.1	104.5	9.3	12.9	99.2	59.2	96.8	111.5	12.5	17.3	56.4	778.0
	251.4	109.9	71.7	228.3	21.4	27.9	232.3	128.0	212.3	247.1	27.7	37.0	121.2	1716.0
	303.7	140.5	91.9	282.2	24.9	36.1	273.0	159.5	262.5	314.2	34.6	48.1	159.7	2131.0
	253.1	118.3	78.0	236.1	19.9	30.8	216.0	134.5	219.3	262.8	28.9	41.3	137.1	1776.0
	114.8	64.0	42.0	115.6	8.3	17.0	93.6	67.1	107.8	141.0	14.8	23.0	78.9	888.0
	71.1	22.1	13.3	57.2	8.1	4.7	88.8	29.3	53.5	53.7	6.7	5.5	16.1	430.0
	83.4	48.4	27.3	85.7	11.5	10.9	141.8	43.5	82.8	116.6	12.2	12.7	46.2	723.0
	153.0	71.7	47.5	142.9	11.7	18.8	126.6	81.8	132.6	158.8	17.4	25.3	83.9	1072.0
	235.2	118.4	77.8	226.3	18.0	31.0	199.0	129.8	210.7	262.2	28.2	41.8	140.7	1719.0
	83.8	38.7	26.3	77.7	5.6	10.4	58.6	45.4	71.7	84.2	9.3	14.3	47.1	573.0
	216.5	88.1	59.3	191.2	16.7	22.9	174.6	108.8	176.4	195.2	22.3	30.9	99.2	1402.0
	174.6	73.2	49.7	155.9	12.7	19.3	131.0	89.7	143.6	160.6	18.2	26.4	85.1	1140.0
	88.0	41.9	27.5	82.7	7.1	10.9	77.5	47.0	77.0	93.4	10.2	14.5	48.4	626.0
		++		++	+			+		+	+	+		++
ı	3300.0	1404.0	939.0	2964.0	255.0	365.0	2691.0	1689.0	2740.0	3110.0	351.0	493.0	1599.0	21900.

Notice that all the approximations have the same margins than the data matrix.

III. SOME TRIALS FOR MULTIPLE CORRESPONDENCE ANALYSIS

Multiple correspondence analysis of p categorical variables with m_1 , m_2 ,... m_p categories is nothing else than usual correspondence analysis applied to the (n, Σ m_i) matrix of indicator variables (the so-called disjunctive table) X or to the Burt's table B = X'X.

Burt's table being a concatenation of all cross-tabulations, and the sum of its eigenvalues being related to all the chi-square measures of departure from independence, the first idea was to apply the chi-square test presented here to $\bf B$ rather than to $\bf X$ since the approximation of a matrix filled with 0 and 1 leads to special problems.

We used for our experiments a real-life data set of 11 variables with respectively 2,4,3,4,4,2,4,5,6,3 categories (41 in the whole) observed upon 308 units. The number of non-trivial eigenvalues is thus equal to 30.

At eye a jump may be detected after the first two axes.

eigenvalue	inertia	cumulative	diagram of eigenvalues
	%	inertia	
0.036053	12.43	12.43	
0.029648	10.22	22.66	
0.020160	6.95	29.61	
0.018235	6.28	35.90	
0.016864	5.81	41.72	
0.014471	4.99	46.71	
0.014132	4.87	51.58	
0.012439	4.29	55.87	
0.012310	4.24	60.12	
0.011316	3.90	64.02	
0.010244	3.53	67.56	
0.009832	3.39	70.95	
0.009451	3.25	74.21	
0.007957	2.74	76.95	
0.007768	2.67	79.63	
0.007222	2.49	82.12	
0.006763	2.33	84.46	
0.006058	2.08	86.55	
0.005566	1.91	88.47	
0.004858	1.67	90.14	
0.004523	1.56	91.70	
0.004267	1.47	93.17	
0.003774	1.30	94.48	
0.003286	1.13	95.61	
0.002802	0.96	96.58	
0.002592	0.89	97.47	
0.002150	0.74	98.21	
0.001877	0.64	98.86	
0.001773	0.61	99.47	
	0.036053 0.029648 0.020160 0.018235 0.016864 0.014471 0.012439 0.012310 0.011316 0.010244 0.009832 0.009451 0.007768 0.007768 0.007222 0.006763 0.006058 0.004566 0.004858 0.004523 0.004267 0.003286 0.002592 0.002592 0.002150 0.001877	% 0.036053 12.43 0.029648 10.22 0.020160 6.95 0.018235 6.28 0.016864 5.81 0.014471 4.99 0.012439 4.29 0.012310 4.24 0.011316 3.90 0.010244 3.53 0.009832 3.39 0.009451 3.25 0.007957 2.74 0.007768 2.67 0.007768 2.67 0.007222 2.49 0.006763 2.33 0.006058 2.08 0.005566 1.91 0.004858 1.67 0.004523 1.56 0.004267 1.47 0.003774 1.30 0.003286 1.13 0.002802 0.96 0.002592 0.89 0.002150 0.74 0.001877 0.64	% inertia 0.036053 12.43 12.43 0.029648 10.22 22.66 0.020160 6.95 29.61 0.018235 6.28 35.90 0.016864 5.81 41.72 0.014471 4.99 46.71 0.014132 4.87 51.58 0.012439 4.29 55.87 0.012310 4.24 60.12 0.011316 3.90 64.02 0.010244 3.53 67.56 0.009832 3.39 70.95 0.009451 3.25 74.21 0.007957 2.74 76.95 0.007768 2.67 79.63 0.007222 2.49 82.12 0.006763 2.33 84.46 0.006058 2.08 86.55 0.005566 1.91 88.47 0.004858 1.67 90.14 0.004523 1.56 91.70 0.004267 1.47 93.17 0.003774 1.30 94.48 0.003286 1.13 95.61 0.002592 0.89 97.47 0.002150 0.74 98.21 0.002150 0.74 98.21 0.001877 0.64

30 0.001523 0.52 100.00 __

III.1 Approximations of the complete Burt's table

Here is the list of values of the test statististics Q_k and Q'_k :

k	Q_k	$\mathbf{Q}_{\mathbf{k}}^{'}$		
0	10804.52	10804.52		
1	7898.63	9460.91		
2	5326.73	8356.00		
3	4808.80	7604.69		
4	5057.26	6925.12		
5	4031.73	6296.64		
6	4073.94	5757.34		
7	2868.33	5230.66		
8	4370.22	4767.10		
9	11460.66	4308.33		
10	2444.09	3886.62		
11	5367.80	3504.85		
12	485.04	3138.42		
13	547.68	2786.18		
14	2046.96	2489.62		
15	969.23	2200.12		
16	1241.42	1930.99		
17	942.12	1678.93		
18	577.63	1453.14		
19	2037.66	1245.69		
20	-2351.46	1064.66		
21	-1567.51	896.10		
22	548.17	737.07		
23	623.76	596.42		
24	720.79	473.97		
25	435.80	369.56		
26	2382.90	272.95		
27	93.80	192.83		
28	98.84	122.86		
29	37.54	56.78		
30	0.00	0.00		

The remarkable and disappointing feature is that the behaviour of Q_k is not monotonic and even takes negative values. This is due to the diagonal blocks of ${\bf B}$. Since they are diagonal and contain the marginal frequencies of the variables, the approximations of the zeros are in some respects difficult and give some time negative values. The consequence is that the denominators of Q_k may be very small or negative giving inappropriate values for a chi-square.

The values of Q'_k are more satisfactory but they decrease very slowly. The comparison with a chi-square is not relevant however ,because the Burt's table being symmetric, the subarrays are counted twice . Problems with small values may also occurr in contingency tables and since the modified chi-square Q'_k is less sensitive to this phenomenon, it is certainly preferable to Q_k

III.2 Approximations of a half Burt's table

The second attempt to evaluate the approximation of **B** by k axes was to consider only the p(p-1) upper blocks of **B**. Here are the values of both statistics Q_k and Q'_k :

k	$Q_{\ k}$	Q_k		
0	782.26	782.262		
1	698.41	672.562		
2	143.96	581.456		
3	334.41	590.556		
4	709.02	596.225		
5	522.91	615.386		
6	740.67	618.754		
7	284.11	636.605		
8	1182.12	648.825		
9	4845.17	648.632		
10	452.43	655.125		
11	2009.92	655.822		
12	-356.07	632.389		
13	-245.42	599.383		
14	556.24	578.680		
15	80.98	533.695		
16	267.84	505.081		
17	162.43	461.973		
18	7.92	415.608		
19	774.75	377.015		
20	-1390.42	326.520		
21	-971.49	284.893		
22	112.54	237.191		
23	183.20	196.155		
24	250.52	161.617		
25	132.12	131.376		
26	1124.84	99.648		
27	-4.22	70.648		
28	21.93	47.585		
29	5.31	22.292		
30	0.00	0.000		

It is still impossible to interpret the values of Q_k , since they are not decreasing nor positive. Q_k suffers also from a slight non monotonicity, and has in the average a very low rate of decrease. The explanation of the non monotonicity here is that there are cells with small frequencies: the approximation for all cells is not monotonic and this time there no compensation due to the diagonal blocks.

The degree of freedom for Q'₀ is easy to calculate : it is equal to :

$$\sum_{i>i} (m_i - 1)(m_j - 1) = 396$$

Despite the fact that it is not clear which degree of freedom we have to use when k is greater than zero, we may use the 5 % percentile of a chi-square with 396 df as an indicator of the goodness of fit of the approximation of **B.** Since this percentile is equal to 442, we may see that at least 19 axes are necessary which shows how difficult it is to approximate **B** and that this kind of approach might be irrelevant.

III.3 Approximation of the disjunctive table X

Since a direct approximation of $\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2 | \dots | \mathbf{X}_p]$ by k axes is meaningless we transformed the approximated table $\mathbf{X}^{[k]}$ into the closest disjunctive table $\hat{\mathbf{X}}^{[k]}$ as follows:

for each variable s=1,...,p and for $\sum_{t=1}^{s-1} m_{t} + 1 \le j_{0} \le \sum_{t=1}^{s} m_{t}$, we put

$$\hat{x}_{ij_0}^{\parallel_k \parallel} = \begin{cases} 1; & \text{if} \quad x_{ij_0}^{\parallel_k \parallel} = \max_{s=1}^{s} \max_{m_t + 1 \le j \le \sum_{t=1}^{s} m_t} x_{ij}^{\parallel_k \parallel} \\ 0; & \text{otherwise} \end{cases}$$

where $1 \le i \le n$.

To compare the two tables \mathbf{x} and $\hat{\mathbf{X}}^{\parallel_k\parallel}$ we counted the differences:

$$D^{k} = \frac{1}{2} \cdot \sum_{i,j} \left| x_{ij} - \hat{x}_{ij}^{j_{k}} \right|$$

For k=0 the upper relationship is:

$$D^0 = \sum_{s=1}^p \ln - \hat{n}_s$$

where \hat{n}_s is the maximal marginal frequencies of the s variable since the 0-order approximation of each cell is equal to the marginal frequency of the corresponding category.

We can, also, compute the differences for each variable s=1,...,p if we count only for

$$\sum_{t=1}^{s-1} \, m_{_t} \, + 1 \, \leq j \leq \sum_{t=1}^{s} m_{_t} \, .$$

Here is the list of the differences $D_1^k + D_2^k + ... + D_p^k = D^k$:

```
D_1^k D_2^k
                                                                      D_{11}^{k}
                                                                              D^{k}
                         . . . . . .
k
0
         82 + 195 + 99 + 161 + 131 + 177 + 50 + 122 + 221 + 216 + 94 = 1548
         77 + 180 + 98 + 105 + 125 + 100 + 50 + 122 + 219 + 189 + 89 = 1354
1
2
         76 + 168 + 89 + 97 + 120 + 89 + 47 + 122 + 172 + 161 + 92 = 1233
3
         48 + 128 + 85 + 95 + 121 + 89 + 38 + 120 + 146 + 158 + 86 =
4
         36 + 115 + 90 + 66 + 89 + 91 + 35 + 121 + 142 + 132 + 79 =
5
         36 + 90 + 75 + 62 + 91 + 91 + 40 + 107 + 122 + 106 + 75 =
         36 + 78 + 67 + 57 + 77 + 91 + 40 + 106 + 109 + 100 + 75 =
6
                                                                        836
7
         35 + 74 + 51 + 43 + 77 + 90 + 32 + 104 + 98 + 93 + 74 =
                                                                        771
8
         36 + 70 + 48 + 37 + 67 + 89 + 32 + 67 + 100 + 83 + 70 =
                                                                        636
9
         36 + 64 + 45 + 34 + 66 + 80 + 32 + 40 + 93 + 75 + 71 =
10
         31 + 51 + 33 + 31 + 64 + 69 + 31 + 38 + 66 + 70 + 55 =
                                                                        539
         35 + 33 + 27 + 29 + 60 + 59 + 27 + 27 + 63 + 55 +
11
                                                                 34 =
                                                                        449
12
         23 + 26 + 30 + 32 + 51 + 33 + 29 + 15 + 61 + 41 +
                                                                        367
13
         22 + 26 + 16 + 27 + 39 + 20 + 29 + 16 + 49 + 29 + 10 =
                                                                        283
         19 + 22 + 14 + 21 + 38 + 19 + 11 + 16 + 37 + 28 + 10 =
14
                                                                        235
15
         19 + 24 + 10 + 15 + 19 + 18 + 10 +
                                                 5 + 27 + 21 +
                                                                         179
16
         12 + 26 + 12 + 14 + 12 + 16 +
                                            1 + 
                                                 6 + 17 + 10 +
                                                                         135
                                                             8 +
17
         10 + 14 +
                     6 + 14 +
                                4 + 15 +
                                                 7+
                                                       7 + 
                                                                   5 =
                                                                          91
                                            1 + 
                     6 + 13 +
                                 3 + 15 +
18
         10 + 17 +
                                            1 + 
                                                  3 + 
                                                       4 + 
                                                             6+
                                                                          82
19
          7 + 15 +
                     4+
                          15 +
                                 3 + 
                                      8 + 
                                            1 + 
                                                  1 + 
                                                       1 + 
20
                     3 + 12 +
                                 3 + 
                                       8 +
                                            0 +
                                                 0 +
                                                       1 + 
                                                             3 + 
                                                                          48
21
                6+
                     2 + 10 +
                                       6 + 
                                            0 + 
                                                 0 + 
                                                                          32
                                 1 + 
                                                       0 + 
                                                             1 + 
                                 0 + 
                                       5+
22
                6 +
                     1 + 
                           6 +
                                            0+
                                                  0 + 
                                                       0 +
                                                             0 +
                                                                          23
23
                     0 + 
                           5+
                                 0 + 
                                       6+
                                            0+
                                                  0 + 
                                                       0 +
                                                             0 +
24
                1 +
                     1 + 
                           6 +
                                 0 + 
                                       3+
                                            0+
                                                                   0 =
          3 +
                                                  0 + 
                                                       0 +
                                                             0 +
                                                                          14
                                      4+
25
                0 +
                     0 + 
                           5+
                                 0 + 
                                            0 +
                                                             0 + 
                                                                   0 =
                                                                           9
                                                 0 +
                                                       0 +
26
                0 +
                     0 +
                           5 + 
                                 0 + 
                                       0 + 
                                            0 +
                                                 0 + 
                                                       0 +
                                                             0 +
                                                                   0 =
                                                                           5
27
                0 +
                     0 +
                           4+
                                 0 +
                                      0 + 
                                            0 + 
                                                 0 +
                                                       0 +
                                                             0 +
                                                                           4
28
                     0 +
                           0 + 
                                 0 + 
                                      0 + 
                                            0 + 
                                                 0 +
                                                       0 +
                                                             0 +
                                                                           0
29
                     0 + 
                           0 + 
                                 0 + 
                                      0 + 
                                            0 + 
                                                 0 + 
                                                       0 +
                                                             0 +
                                                                   0 =
                                                                           0
30
                     0 + 
                           0 + 
                                 0 + 
                                      0 + 0 +
                                                 0 +
```

The values of D^k decrease very slowly and the empirical criteria about the detection of an inflexion in the diagram of D^k does not give conclusive results. If we apply the same criteria for each diagram D^k_s and consider the maximal number of the axes, we need at least 10 axes.

CONCLUSION

The modified chi-square statistic Q'_k has a good behaviour for contingency tables . However one has to be careful when some frequencies are low. On the other hand, the application to multiple correspondence analysis is disappointing.

A possible interpretation is that MCA is not an adequate method to approximate either Burt's table (see Greenacre 1991) or a disjunctive table, but should be considered from an other point of view.

REFERENCES

E.Andersen, "Statistical analysis of categorical data", Springer Verlag, 1990

M.Greenacre, "Interpreting multiple correspondence analysis", *Applied Stochastic Models and Data Analysis*, 7, 195-210, 1991

E.Malinvaud, "Data analysis in applied socio-economic statistics with special consideration of correspondence analysis", *Marketing Science Conference*, Jouy en Josas, 1987

G.Saporta, "Probabilités, analyse des données et statistique" Technip, 1990

L.Zater,"Contribution à l'étude de la variabilité des valeurs propres et au choix de la dimension en analyse des correspondances " Thése de doctorat, Université Paris-Dauphine,1989