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Most methods of data analysis have been conceived for numerical data (factor
analysis, canonical analysis...), sometimes for both numerical and nominal data
(analysis of variance and covariance, discriminant analysis). Dther methods
(multidimensional scaling, preferenmce analysis, isctonic regression) enable the
treatment of ordinal data but in a very restrictive and particular context.

Various statisticians have already proposed some methods for a mix of nominal
and ordinal cdata e.g: Benzecri [1], Bock [3], Bouroche, Saporta and
Tenenhaus {4], Carroll [5]. Kruskal [B E], Lebart [10], de Leeuw [11],
Masson [12]. Nishisato [13], Pagés [14 , Saporta [15}, Tenenhaus [15],

Young [19] .

In the C.0.R.E.F-D.G.R.S.T. n° 75 07 0230 project the authors of this paper
have attempted to achieve the following purposes

- to complete existing syntheses
- to propose new methods

- to apply methods of analysis of gualitative data on real date to make sure of
the value of results.

We present here a first synthesis of this project.

1.~ DATA AND PROBLEMS

Before analysing a set of data, two guestions arise :

- What is the nature of the data ?

- What are the problems to solve ?

The choice of a method derivesfrom the answers to these guestions.
1.1. Nature of data.

A variable is nominal if the set of its categories is finite and has no
-ordinal structure. . "L :

A variable is ordinal if the set of its categoriss 1s finite with an crdinal
structure. v :
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A variable is numerical if it takes its values in R.

Moreover F.W. Young DS] defines the concept of "underlying (or generating)
process” which can be either discrete or continuous.

So we have six types of measurements : for instance a variable will be
continuous-ardinal if the ordered set of its categories represents a
continuous underlying process.

In a first stage,we have to determine exactly the nature of each variable.
Even if a variable generally belongs to only one class, it may be interesting
to modify arbitrarily its nature.

For instance we may consider a discrete ordinal variable as either discrete
nominal (we neglect the ordinal structure) or continuous ordinal or discrete-
ordinal.

1.2, Problems.

There are two kinds of problems. Either we have few information about the
set of data and we are looking for a description, or we need a prediction of one
(or more) specified variable through the others. .

In the first case we shall use factor analysis or clustering techniques,
in the second case methods derived from least squaresand canonical analysis.

2.- METHODS

According to the nature of variables and to the problem, different methods are
available. Before guotinga few of them in§ 2.2., we present briefly the
principle of#pptimal scaling.

2.1. Quantification of gualitative data.

Roughly speaking, the guestion is to allot a numerical value tao each
category of a discrete nominal or ordinal variable. If the variable is ordinal
we require that the order of the numerical values represent the order of the
categories.

Let E be the set of individuals, X a nominal variable. X 1is a
mapping from E to % , set of categorles. Let & be a mapping from 3
to R. The variable &.X is then numerical : it is a gquantification (scaling)
of X. As there is an infinite number of scalings, the choice of an optimal sca-
ling is actually function of a criterion related to the method (cf. § 3).

If the variable X dis continuous nominal or continuous ordinal, an interval
of R corresponds to a category of X and the scaled observations are
required to fall in the interval but have not necessarily to be egual. If X is
ordinal, we require that the order of intervals cDrréspunds to the order of
categories, (cf. F.W. Young [19]].

2.2. Choice of methods.

We shortly guote some methods and their authors. For further details see
the reference list or the final C.0.R.E.F report.

2.2.1. Descriptive methods.

We deal only with methods of principal component analysis type.

a). All variables are nominal.
See Bock [d]. Bouroche, Saporta, Tenenhaus [4J Lebart [10] , Nishisato [ﬂdJ
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b). Nominal and numerical variables
gee Tenenhaus [18]| and § 3.

c). Ordinal variables
see Kruskal and Shepard [Q].

d). Mix of ordinal; nominal, numerical variables
see Young, de Leeuw, Takane [20], de Lesuw [11].

2.2.2. Predictive methods.

The method proposed by Young, de Leeuw and Takane [21]i5 the only
one avallable for the general case. Let us point out two particular cases :

a). One nominal dependent variable, all predictors nominal : Carroll [5],
Masson [12] Saporta [15]

b). One ordinal dependent variable, all predictors nominal : Kruskal [6].

Let us_emphasize on the great flexibllity of the Young, de Leeuw and
Takane [21] approach : their MORALS/CORALS algorithm allows the treatment of any
mix of variables in terms of regression analysis or canonical‘analysis-

More modestly, we shal} now present two methods based upon optimal scaling
of nominal data : a predic¥ive method (OISQUAL) and a descriptive one
(PRINQUAL) .

3.- TWO NEW METHOOS.

3.1. DISQUAL : a method and a program for stepwise_ discriminant analysis
of nominal variables [17].

p nominal variables with m m2,... mp categoriés are measured on

individuals and we attempt to predict the tategories of an outside nominal variable
with only k of these p predictors [k < p).

The medhod consists of two relatively separate parts : on the one hand the
selection of the predictors, on the other hand the discrimination performad
by means of the selected predictors.

3.1.1. Stepwisa selection with Escoufier's operators,

According to Escoufier [E] and Pagés [14] we assoclate to each of the p+1
nominal variables the orthogonal projector Pi on the subspace of

n

R of zero-mean varlables spanned by the indicator variables of its categories
This is the subspace of zero-mean discrete numerical variables obtained by
scaling the nominal variable.

Projecturé belong to the subset of the veu.or space of symetrical operators
in which we define an inner product and a norm by

<F’i ; P, > = TracelP, P,)

J i3]
2 _ 2
|’Pi[! = Trace 11.
In the case of nominal variables we know that Trace P P, = ¢2 where Q?

is the K-Pearson measure of dependence between variablas J 1 and J
{canonical or correspondence analysis of two' nominal variables).
2 .
Further T = Tr . =
hermore race Pi Trace P1 =my
between two operators assccilated to two nominal variables is nothing else than

and the cosine of the angle
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the Tschuprow coefficient

Tij =

which is thus eguivalent to a correlation coefficlent between nominal variables
if we identify a variable to its associated projector.

According to the usual geometry of correlation, we may then define the partial
Tschuprow coefficisnt betwesn naminal variables. For three variables 1i,],k
we have
Ty 7 Tak Mok

Tijrk = \/r”"j;——-—~;;-
(1-T7, ) (1-T5,)

Then stepwlse selectlon method is

and so on.

- The first predictor 1s the ane which maximizes Tschuprow's coefficient with
the dependent variable

~ The second predictor:1ls the ong which maximizes the partial Tschuprow .coefficient
with the dspendent variable, given the first predictor.

3.1.2, Discriminant analysis.

k predictors being selected we have now an arrayof 'data of the following
kind :

ALy 1%, T 1%,

k
where Xi (and A) are H * rni matrices where the columns are the indicators
of the catsgories. The rank of X = [X1!X2 . |Xk] is inferior or egual to
k
( Z my, - Kkl.
1=1 1

since the sum of the columrsof each Xi s the vector 1.

An ordinary discriminant analysis being impossible here, becauss X'X 1s
not regular, we substitute to X a new matrix of nearly eguivalent numerical
variables : these new variables are the Guttman ‘principal components of scale
of the k nominal variables (which are also the components of Carroll’s
geheralized ianonical analysils [4 or of corrsspondsnce analysis of XJ).

Amang the L mi~k principal components, we retain only those which
1=1

have a sufficlent discriminating power.

A discriminant factor analysis performed on the selected components gives
the discrimlnating scores of the nominal variables which we directly use for
the classification technigue if the dependent varilable is binary
(Fishar"s function) ; otherwise we use a claesical procedure based on the distances
to the centroids.
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3.2. PRINQUAL : a method and a program of principal component analysis of a
set of nominal and numerical variables [18].

We are looking for a scaling of the nominal variables in corder to get the
best principal component anelysis with factors in the sense of a maximum
explained variance.

3.2.1. Method
Let E be the set of individuals, D1.D2,... Dk nominal variables,
X1,X2,...Xl numerical variables. Let 6i°Di be the scaled variables. We know
that the first m principal components of éioDi (supposed known) and Xi

realize
k m 2 2 m 5
Max z I cor“(d8,.,D,, 7Z.) + L I cor (X, Z.)
24,2002 121 =1 o i=1 j=1 s

where the Z‘j are uncorrelated.

Thus the principle of the method consists in obtaining the optimal scaling

61 by maximizing the previous expression both on 61 and Zj.

3.2.2. Algorithm.

The algorithm is iterative and maximizes the criterion alternatively cn the
§ and on the Zj-

s e . 0 . . :
The initial solution ZE ) is optimally chosen by using generalized cano-

nical analysis [18].
At step t we get the ﬁitj by

Max £ T cor? (8,00, ,» 28"y w55 cor? (x, , zUET
171 ] 1 J

51,52.---5K

Let A(t) be the value of this maximum.

We have now the ZEt] by
Max £t ocor? (688000, , 2.0 + T 1 ocor? (X,,Z2,)
i i J 1]
2,2 5,000 2
1772 m

Let u(t) be the value of this maximum.

It is possible to show that :

Alt) < ult) < AlE+1) < k+g

Thus the algorithm converges and
L = lim A(t) : 1im p(t)
t > = t + >
Let

(t)

*
6, = 1lim &,
i i
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2% < 1im 2
J J
with %°Di and Zj of zero-mean and unit-variance.

3.3, Principal component analysis of the 6:°Di and Xi

The Z; are the first m principal components.

The part of explained variance 1s E%E .
We may represent observations and variables as usual in principal conponent

analysis.

The categories are represented in R" as follows

To the category k of variable Di we associate the vector :

*
Zq[el
Z*[e]

M = 1 z 2

i,k -1 .

EAOH e €D (k) :

1

7% (e)

m
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