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MULTIODIMENSTONAL DATA ANALYSIS
AND QUANTIFICATION OF CATEGORICAL VARIABLES

Gilbert SAPORTA

IUT de Paris ) .
143 Avanue de Versailles, 75016 Paris

Quantification 1s a powarful taol for dealing
with qualitative variables in data analysls
it 1s both an afficlant way for dascription
"and prediction with nominal data and a concep-
tual framework for prasenting many techniques.
This paper. attempts to be a survay- of this
topic. :

1. USE AND ﬂEFINITIDN-ﬂF,QUANTIFICATIUN

By "quantification® (tha words "scaling” or "scoring" are also
often used) wa mean a transformation of one or sevefal categori-
cal variables into numerical ones, Baefore describing the way to
achieves a quantification (and the problems it involwves) it 1s
nacessary to argue about the rationale of this approach.

1) Quantification : a davice or a fundamantal method ?

a} Numerical methods for data which are not numerical.

The main consequence of quantlfying qualitative varianles is
to allow the use of usual statistical technlques such as prin-
cipal componasnts analysis, multipls regressian or discriminant
analysis for instanca, by coming down to the usual situation
of numerical variables, ‘

That convenience was during a long tima the only justificatlan
of the quantification technigues, what may seem a somewhat
poor argumant from a theoretical point of view ; isn’t it by
lack of imagination or lazinass that opa does not develop
methods which would be fitted to the qualitative nature af
data ?

Let us notice hara that the quantification is a way of praces-
sing variables of different kinds (numarical and categorical)
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by plving the same part to each variable. Let us suppose that
we have a first set of m numerical veriasbles x,...x and a
sgcond set of f gqualitativa variables x1. Xo» »esnas X BN
that we want to make a descriptive data ana?ysis»of al

the (m+p) variables hy'nBanB'of a component-like analysis ¢
There are actually four possibilities, the first two giving
non symmetrical parts to the two sets @

- Perform a principal component analysis with the x, §=1.,2,..m
and use the X, as additional variables by represeAting
the categories of each X, by thas averages of the individuals
which belongs to them . he have here a representation of
tha Xy in the space of the individuals.

-~ Perform & multiple correspondence analysis of the x, and
use the x, as additional variables by computing the corre-
lation coefficient of the x, with the principal components.

The representation of the xi is hers in the space of
. variables.

- Split into categories the numerical variables and perform
a multiple correspondence analysis with [m+p) qualitative
variables,

- Quantify the X, into X and perform a principal components
analysis with fnwpl nuherlcal variablas.

This last possibility is what we proposed above ; the third

. one seams different but we will ses that it is also a quanti-

fication technique.

b) Multivariate analysis as quantification technigues.

Actually many classical methods which are dealing with cate-
gorical yarlables may be considered as quantification techni-

‘ques.

For instance analysis of variance or covariance are perform-
ing quantification of the nominal "factors of varisbility"
whan estimating the effects upon the dependent variable (in
the case of the no-interaction model). Canonical discriminant
analysis is merely s regression of the quantified group-
variabla upon & sat of predictors with an "optimal® quantifi-
cation i.e. giving the largest determination coegfficient

among all possible quantifications (see for ingtance Mc Donald
and Cailliez-Pages). -

Furthermore any multidimensional scaling method for gualita-
tive variables [such as cgorrespondence analysis) which gives
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coordinates for the categories of a set of gualitative varia-
bles 1s in fact & multidimensional quantification technique :
tha coordinates along an axis are numarical values (scores)
to be assigned to a qualitative variable.

c) An approximation of non-linear analysis.

Multidimensional data analysis is mostly a set of methods
using linear algebra and the vector-space structure of the
sats of variables and individuals : these methods can only
place in prominent position linear relationships betwesn
variables what 1s well fitted to the case of multinormal
distribution which is exceptional in most applications.

In most cases, the study of linear relationships is not
sufficient and a non-linear analysis is actually necessary.

-The guantification of qualitative variables provides an appro-

ximation of non linear analysis : let us transform a numerical
variable x into a qualitative one X by simply splitting into
classei the set of its values and then. lat us guantify X

into x,

The set of all possible guantifications of X is an spproxima-
tion, by piecewise constant functions, of the aet of all
functions of x f (x),

As the study of linear relationships between any functions
f(x) and gly) of two variables x and y is nothing else than’
the study of non-linear relationships between x and y, we
therefore get a tool for non linear multivariate analysis
(Masson), In fact it is possible to defins less sifple
transformation of variables to get non-linesarity, such as
transtormation by spline-functions of higher order (splitting
and quantifying is equivalent to splines of degree zero)
[Van Rijckevorsel and De Leeuw, Lafaye de Michaux), but 1t
is slightly more complicated (spline functions are a kind of
regular functions, very popular in the field of interpola-
tion).

A Dauxois and Pousse quoted it, these technigues are not
purely non-linear but only semi-linear 1nxtha following
sanse : 1f we use transformed variables x, instead of raw
variablas xj in a multidimensiunﬂ; analysls we will deal
with linear”combinaticns of the x| but not with any func-

tions of thse xJ. 3
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How to guantify ?

If we accept quantification as a justifiable practice we have
however to make clear some points such as 3 amoog all possi-
ble quantifications of a variable how much must we choose and
according to which criteria 7

a) Quantification and type of variables

When a qualitative variable X is purely nominal (without any
structure upon the set of its categuries) a guantification is
a transformation of ¥ into a discrete numerical variable :

we will assign the same numerical value, say ajg. to all indi-
viduals belonging to the ith category of X.

1f the variahle X is ordinal (there is a total natural ordar
for its categories such as level of education for instancel,
people often suggest to uss only quantifications respecting
the vrder of the categories : the numerical values to be
assigned to the m orderad categories of X must be such as

a, €a, € ... <a . Some authors (Nishisato mainly) copsidsr

the more generél'situation of a partial order of the cate-
gories.

Quantification under order restrictions leads to a mora
sophisticated theory than quantification without constraints,
using convex cones instead of vector subspaces (ses Barlow
and al. or Tenenhaus) and to more difficult computations. But
we get essentially a one-dimensional quantification as wa
will =ee below. :

Apart from these difficulties we may wondar if it is actually
necessary to respect order constraints : for instance in a
prediction problem where an explanatory variable 1s ordinal
and the variable to be predicted is numarical,quantification
with order restrictions comes down to postulate the sxistencs
of a monotonic relationship. Oo we have te introduca such

an a priori bafore having studied the relationship ? It may

be more interesting to make an analysls without order restric-
tions and see afterwards if we get a quantification which
raspects tha ordinal nature of the categories. If not, it

wlll be a proof of & non monotonic relationship provided there
is no sampling errors. Of courss if we have strong reasons
for a monotonic relationship we need to use this information.
Conversely 1f it is the dependant variable which is ardinal

wa must respect its nature, as in the situation where we have

to dascribe ths relationships betwesn several ordinal variables.
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In most cases the quantification of a qualitative variable
involves the assignment of a single numarical value to each
category. F.W. Young and his team have attracted notice to

the difference between the underlying process and the measure-
ment level : for instance a phenomenon may bs continuous
(wave-length for colour perception) and the obsarvation
discrste (colour}. 5o why guantify a category by a single
value ? A more general quantification implies that a category
may be represented by an interval aof values, the diffsrent
intervals belng a partition of an interval of R.

For ordinal measurements associlated to continuous process
there is in addition a constraint to order for the intervals.

We may notice that we are looking in fact for a quantifica-
tion of observations more than of categoriss. Apart of the
tachniques proposed by Young, Ue Leeuw.and Takane, quantifi-
cation with intervals is not widely ussd and wea will not
refer to it in the remaining of this paper.

b) Mathematical formulation of quantification.

Let X be a qualitative variable with m catagorias and E the
set of its categories. '

If 2 13 the usual universe, X i1s a mapping of Q onto E.
A quantification of X is defined by a mapping & of E onto R;
the guantified variable being @ o X : '

S
}——aE = (1, 2, «.i0, ml

IR

The variable aoX takes only at most m values 61. 8,0« @
corresponding to the m categories of X. m

If we introduce the m following indicator variables of the
categories llj = 1.,2,...,m such that :

1 1f X (w) = 3

1 D 1f not for we R

3 {w) ={

we have the slamantary but capital result ; ths guantified
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variable aoX is nothing else than the linear combination of
the indicator variables defined by the scores a, :

J

m

aoX = L a, I
PR

Therefore the quantification of variables belongs to the
field of linear multidimensional analysis.

If there is no restriction upon the scores a, (purely nominpal
variablaes]) the set of numerical variables which are g quanti-
fication of X is a closed subset of dimension m of L~ (Q),
the vector subspace spanned by the HJ.

If X is an ordinal variable with the natural order upon its
categories a guantification of X must varify\e1 $a, S.. 8.

This set of constraints may be written as follows with the
non negative numbars bU' b1. ves bm

51 = h1 - bD
az = b, + b2 - bD
a = b1 + b2 L bm - b0

The quantified variable a . X is then equal to :

m . m
g a i, = g (b1 + b2 * o +'bj - bD] |

I T B 3
m ~
=L Db, N, withb, >0
joo 39 3
where i = M, and i, o= -1.
3 1>} i ]

The N, are the "indicator variables” of the order (Bouroche,

Duponé-Getalmand, Tenenhaus) in the sense where @

- D 1f X (w) < j .
"j (w) = 3 =1, 2, vus m.
11F X (w) > ]
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The set of all possible quantificetions of X with the order
restriction is_thus the polyedric convex cone [ apanned by
the variables fi,.

3 -

| x* =z by EJ by 20}

c={ x¥

If the variable X has heen observed upon n individuals we
have the following matrix representation of the data and of
the guantification :

for a purely nominal variable X may be represented as the

matrix with n rows and m columns of the indicator varilables.
o100 ‘
1000

X =§.... A numerical variable 5* obtained by a quantifica-
«essl tion of N .

1

% ‘
is expressed by x = X a where s = is the vector of

We~e®

the scores of the categories

The set of all guantified variables is W, the subspace of {R"
of dimansion m defined by :
[ x*=xa acR"

For an ordinal variable X with 3 categories we have for
instance for the following five individuals and a, € a_ s a

1 2% %
s, 100 a, -~ 1100 o b,b,

a, 010] la, -1110) (b, b, *byby
a, . [oon ag) L[ - 1111 b, | = by*by*byD
a, 100 -1100] \bg by = by
a, 010 1110 by +b,-by

Yhe set of all possible 5! is the cone § defined by

€ =~ {x = Xb b, z 0]

3
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Frequently ong has to deal only with zero-mean variables : if
1 is the constant variabls which components are all equfl to
1. the get of all possible x reduce toWn 1 or 1 n }
where 1" is the vector subspace orthogonal for 1 (i.e. made
of zero-msan variables). .

! For nominal variables the equivalence between a quantifica-
| tion and a linear combinstion of indicator variables shows
| that the study of relationships between a set of quantifiad
i ‘ varianles comes down to canonical analysis problems for it
is nothing else than tha study of linear relations between

sets of numerical variables (taking only values 0 or 1).

c) Uni or multidimensional quantification ?

variable is not of dimension one, it may.be necessary to use
sevaral gquantifications in order to describe a single guali-
tative variable. Thus it 1is not obvious that a nominal varia-
ble may be reduced to a single dimension ; correspondsnca
analysis of contingency tables is an example of such a

i ’ situation : we get two sequences of quantificationg for

i . taking into account the dependency between the two cross-

\ : classified variables. . :

I
|
‘ As the set of all possible guantifications of a qualitative
I
[

In many cases, however, the complexity of a multidimensional
; quantificatian may be considered as a drawback and thu

1 practitioner would like to satisfy himself with a single
quantification but this leads to soms difficulties, as we
will see below, except for two situations. The first one is
that of prediction problems where there is only one best
possible gquantification and tha second one is that of ordinal
! variables in dascriptive studies : multidimensional quanti-

| fications are generally obtained by search of orthogonal

i , basis (uncorrelated variables). But, 1f we have a total order
| . upon the categories of X, the ndmissible quantifications of

i ] zero mean belong to the cone en 17: whan 8 variable x belongs
to this conas. the variables which are orthogonal to x do not
belong to tha cone and do not fill tha order restrictions.

d) "Optimal* quantification.

g ‘ In order to quantify quslitative variebles we thus have to

: respect the naturs of tha variables but there remains an

‘ P infinite number of possible guantifications : guantification
is maaningful only if we have & precise aim which consists
generally in the meximisation of some criterium of fit. For

|

i
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instance if we deal only with two nominal variables, it seems
natural that the two guantified variables should be maximally
correlated what allows the best prediction of ong by the othar
in-the least-square sense. :

In thé same way if we have to predict ope variable (qualita-
tive or not) by sevaral variables which may also be qualita-
tive or not, there is a natural criterium of quantification:
the maximisation of the square corrselation between tha depen-
dent (possibly quantified) and a linear combination of the
(possibly quantified) explanatory ones.

But if we have to quantify simultaneously more than two
nominal variebles without an external dependent variabla,
there is no uniqus criterium and there will be many "optimal”
quahtiflcationsas we will see in the next part.

iI.SIHULTANEDUS QUANTIFICATION DF SEVERAL QUALITATIVE VARIABLES

1 1) The cese of two variables

Analyzing contingency tabléa by means of a quantification of
the margins is very classical and lesads to an unigue solu-
tion, whatever is the criterium, that one gives by correspan-
dence enalysis or by canonical analysis.

Without diséuasing about rather uninteresting questions of
anteriority, it seems instructive te remind briefly cf the
di fferent points of view appeared along the years.

For mors details the readar may refer to publications of
Banzecri or De Leeuw.

In 1935 Hirschfeld, remarking that the analysis of the corre-
lation between two variables gives the best rasults if the
two lines of ragrsasion'are linear, sottles and soclves tha
following problem :

"Given a discontinuous distripution, is it alwaya possible
to introduce new values for the variates such as both
regressions are linear ?*

He then proves that for an array of aize (m,p), there exists
min {{p-1) ;3 (m-1)} orthogonﬂl solutions and gives the equa-
lity between tha Pearson*s B~ and the sum of squares of
correlation between the pairs of quantified variables.
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This result remained apparently ignored during more than
twenty years until the work of Lancaster (1958) who generali-
zed it to continuous variables and made tha synthesis of the
papers of Fishar (1940) Maung (1941) and Williams (1952).

Fisher introduced ths quantification in order to apply his
linear discriminant function when the predictor is itself
nominal and settled the equivalance with Hotelling's canoni-
cal analysis. His algorithm to get the simultaneous guanti-
fication is interesting by its closeness to Hirschfeld's
problem and to the alternate least squares mathod of Young,
De Lesuw and Takana : in a first step we give an arbitrary
quantification to one variable, then the second variable 1is
quantified according to the means of the first in each of its
categories. The first varisble is now quantified again.
according to this principle of "reciprocal averaging” (Hill),
dpart from a factor of normalization to avold degenerate
solution, and so on until convergence (dus to the fact that
at the optimum the two quantified variables have both linear
regressions). . .

Formally the solution is given by the canonical analysis of
the two sets of indicator varisbles X, and X, : the guantified
variables are the canonical variablas and the optimal scores
are giveh by the eigenvectors of the products of the two
arrays of conditional frequencies. . :

The case of p nominel variables

The simultaneous guantification of mare than two nominsal
variablas have as many solutions as criteria, on the contrary
of the case where p=2 where all criteria were equivalent.
This is due to the fact that there does not exist & single
measure of correlation betwsen more than two variablss.

However there are two main kinds of quantifying p varisbles,
leading both to relative simple computations. The first comas
down to an eigenvector problem and provides multidimensional
guantifications of the variebles, the second looking for a
aingle quantification of each variable such as we gest an
optimal representation of the set of individuale upon a
subapace of fixed dimension.

We will need tha following matrices 1

X=X, } X, | oo X)) disjunctive array with n rows and.

Im c31umng of the inﬂicetnr variables of the catsegories of
all " the Xi,
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x

(x1 5 )

x

X = 1} i | array of size (n,p) of the guantified
variables. ) -

The so-called Burt’s matrix :
z [ .o C
11 2

12 ¢

B = X'X = C21 C22 2p where CiJ is the contingency

C cvses O

table between X and X =
< 1.e. C .
B is a8 square Sy"l"Etl ical matrix of size im .

i
D is the diagonal matrix with the sams diagonal terms ags B.

a) From Guttman to Benzecril ; or the long story of multipls
corraespondence analysis,

Following L.L. Guttman, various authors (Horst, Lord, Bock,
Nishisato, de Leeuw ...) have introduced the problem accor-
ding to the following formulation : "Find the quantification
of X1; Kz. o X 2uch &4s_the measures of the p quantified
variables x_, px , »« X_"be as homogeneous as possible for
any 1individual and as acabterad as possible between indivi-
duals”. This is a very clear criterium from the w«lassical
point of view of factor analysis which comes down to an opti-
mal analysis of variance : we have to maximize thse dispersion
of the means pf each row of X in relation to the total
variance of X'.

x
If the xj are of zero maan, we have i

n p n _ n P N
Iz (x’J"‘unz-pz Fan? vz ofu-R*an?
121 3e1 1=1 =1 3=1 3
- p
whera x*(i) el £ x; {1).
=1

x 2

As 53 - Xj Ej' if a i1s the supaervector of all scores 8 ={a,
e

we may write again this analysis of variance equatian B

in matrix notations, the lefthand side is squal to a‘'Da
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and E((i"(i]]2 as 1 a' Ba. Thus the problem is the maxinisa-

p
a'Ba

-f 2 B e
tion of n° = SSH

The solution is given by the eigenvactor g1ralﬂted to the
first non extransous eigenvalue A1 of 157 'g,

This is the same eigen-eguation as that of correspondence
analysis of X and that of Carroll's generalized canonical
analysis of the p sets of indicator variables (see Bourocha-
Saporta-Tenenhaus). Furthermors, as Gultman guoted it, th
variable x" is even the first principal component of the x
hence the name of "principal cumgonant of scale”. In other
words we have a gquantification »x” of esch X such asxthe
first esigenvalue of the corrslation matrix of the x is maxi-
mal. (For an historical survey and other criteria leading

to the same result see Tenenhaus 1981).

3

To the other eigenvalues of 1 o 1B correspond different prin-
cipal components sagh one cu?responding to a different guan-
tification of the X 8 : so we get actually a multidimensional
quantification of the nominal variables., but the guantifica-
tions of various orders of a variable are non uncorrelated ;
we have only the following mean and wesak orthogonality pyo-

perties between guantification of order k and 1 :

p p (1)
cov (I (M X} )0
=1 © 3=
P : .
L cov [x; (k]' x; tll) =0
J=1

{see Saporta 19749}. -

There are many computer programs parforming that kind of
quantification, the best known being MULTM by Lebart-Morineau-
Tabard, HOMALS by De Leeuw and Van Rijckevorsel and OPSCAL

by Nishisato. )

b) Obtaining a single quantification.

The prablem here may be considared as a modification of the
*principal component of scale” property of tha above me thod:
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we look for & guantification of the variables such as we get
the best principal component analysis of the quantified varia-
bles i.e. that the sum of the variances af the first k prin-
clpal componsnts be maximised. "

If kK = 1 we obtain again the gsolution of multiple correspon-
dance analysis i.s. thg principal 5omgqnant of scale assoO-~
ciated to the first eigenvalue of = D 8. If k » 1. The
problem may be formalised simply 1H,geometr1cal terms : we
try to force the set of individuals to be in a k-dimensional
subspace.

As we have no longer an eigenvector problem if k > 1, tha
solution is bpbtained by iterative algorithms. The three best
‘known computer programs use alternating least sguarss methods
and are chronologically PRINCIPALS (Young. De Leeuw, Takane),
PRINQUAL (Tenenhaus). PRINCALS (De Leeuw, VapyRijchevnrsel).

PRINQUAL processes only nominal variableé while the two othars
(PRINCALS supersedes PRINCIPALS) accept ordinal variables
and missing data (for PRINCALS). .

Compared to the first method of guantification (Guttman-

Hayashi-Benzecri..) this approach has the following advan-
tages

. the configuration of the individuals upon the k-dimensional
subspace is optimal in the meaning of explained varisnce
while the principal components of scale do not fulfill
this condition. The first component of scale is the firat
principal component of the quantified variables, but the

following components are not principal componasnts for the
same quantification.

It is possible to compute correlation coefficient between
quantified variables and principal components for instance.
for we have here representation of the variables itself
and not only of the catsgories.

The method is well fit to ordinal variablea for, as we have
already seen, a single quentification is necassary. Conver-
saly there are soms drawbacks :

. The most important being in our sense that the quantifica-
tion changes with the number of desired principal components
and that the configuration of individuals is not tha same
while in the first method the coordinates of the indivi-

duals along the first k principal axis remain unalterad
when wa need further axis,
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., If K increases, the solution becpmes undetermined for k = p

. If there are two variables the second method doss not come
down to canonical analysis as it would have been desirable.

a) Extension to an infinite number of variables

The first method of guantification has besn generalizsd
(Seporta-Oeville 1973) to nominal stochastic processes 1.8.
in the situation where one knows the avolution of a categori-
cal variable (for instance hierarchical status or place of
1iving) through the time betwsen two instants O and T.

The mathod comes down basically to a gquantification of the
nominal process X, into a numerical ona X  such as the
Karhunan-Loeve decomposition (P.C.,A. of processes) of the
standardized process X, /& gives a maximal first eigenvalue
for ths covariance opsrator. '

b} Mixture of nominal and numerical variables.

It is very easy to genaralize P.C.A. to that situatibn by ’ . 1
quantifying the nominal variables. |

Suppose that we have a set of numericel sarisbles y, ...y

and p nominal variables X, KZ‘ «es X . To abtain the

best P.C.A. of all variabigain the sePse of the first method
of guantification (X, maximal) we just have tn perform a
P,C.A. upon the array : (Y | X, | X2 b owea xp)

52 "1
15
8 0 0
¢]
with the metric M ={ 0 X)X, 0
0 0 X ¥
PP

Again in the first method of quantification the followling
components will be sssociated to other quantifications of
the X_ which may be uninteresting. PRINCIPALS, PRINUUAL and
PRINC?PALS give single guantification and accept numerical
variables.
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111. QUANTIFICATION WITH CEPENDENT VARIABLES (Optimal scaling
for prediction) -

The problem is now to guantify qualitative veriables in order
to predict an external variable or criterium which may itself
be nominal or ordinal.

Let X,_. XZ. .+ X be the explanatory veriables and Y the
crite;iu , the geﬁeril probiem is thua to obtain a quantifi-
cation X, ., X_, ... X nd y© such_that the square multiple
currelatlnn Eetween y and the xJ be maximised.

Diffarences bestween algorithms are due esssntially to the
numbsr and the nature of variables.

We will briefly give a few indications sbout ths main situa-
tions.

1) numerical criterium : regression with quélitative pradictors

If all the explanatnry variables are nominal we have here a
particular case of the linear madel which can be described
as the estimation of effects in an analysis of variance wit
p factors of variahility without interaction. :

Mathematically this comes down to the multiple regression of
the dependant varieble y over the set af indicator variables
of all the categories of the X s.

As the sum of indicator variables of the catsgories of each
X is equal to 1, the problem is not of full rank and thers

is an infinite number of equivalent quantifications leading
to the same prediction.

To get a solution wa need linear constraints : the most usual
being that the quantified variables should be of zero-mean.
It 18 worth noting here that solution with zero-mean quenti-
fication may be obtained by regreasing y onto all the

[Em,-p) principal components of the multiple correspondence
snalysis of the X’s. An approximate solution is then given
by the regression of y onto the first & principal components
{or onto the k components bgst correlated with yl.

If onp or several explanstory variables are ordinal we get
s problem of monotonic regression to obtailn quantifications
respecting the ordar.
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b for a single ardinal X, the Kruskal's algorithm is wall known. : REFERENCES
for several variables computer programs AUDALS and MORALS ‘ .
{Young, De Laeuw, Takane) provide good solutions using an ‘ BARLOW, R.E., BARTHOLOMEW, D.J., BREMMER, J.M., BRUNK, H.D.,
altarnating least aquares algorithm fguantification, regres- f Statistical inference under oder restrictions,Willay,Naw York,1972.

sion, new quantification and so on).

BENZECRI 1.P., L'analyse des données, Ounod Paris, 1979,
2) Nominal criterium, discrimination with qualitative predictors

EENZECRI J.P., Histoire st préhistoira de 1'analyse des donnges,

This situation 1s very common in many applications such as CAD wol. I, 19725.°
credit-scoring aor risk-evaluation where we have to predict
the velonging of an individual to some group (good or bad BOWROCHE J.M., DUPONT-GATELMAND C, TENENHAUS M., L'analyse cano-
behaviour for instance) with qualitative wvariables. nique das préférences, in Data Analysis and Informatics,
E. Diday (ed.}, 631-649, North-Holland, 1980.
Like in regression, we cannot use without caution the classi- . .
cal procedures of discriminant analysis with indicator varia- BOURDCHE J.M., SAPORTA G., TENENHAUS M., Generalized canonical
bles for they are linearly dependent and one usually need | analysils of qualitative data - U.S.-Japan, Saeminar on Theory,
constraints of zero-mean quantification. i Methods and Applications of Multidimensional Scaling, 1975.
; i
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APFENDIX

An example of discrimination with nominal predictors by DISQUAL :
risk estimation of accident for young drivers

5814 customers of less than 25 years or having thair driving
licence from lass than 2 yaars have been selected from the fllas
of an important 1insurance coinpany.

3843 were good drivers, i.a. without accident during the past
three years.

2325 were bad drivers, 1.e. rasponsible of three or more acci-
dents duripg the same thrse years or of more than two the first
year.

The true proportion of bad drivers was 4%, but in order to gst
goad sstimates this category was overrepraséntad in the sample.

After primary statistical 1nvest1gatiuna 11 axplanatory variablas
were gelected

FRAC kind of payment (yearly, each 6 months, each 3 months)

AG age at tha date of licence {7 categories)

AN number of years since the licence (less than 2 years or
more than 2 years) V

SEXE (male, female}

MATR matrimonial status (bachelor or other)

ZONT area of tariff (3 categories)

USAG type of use of the car {9 categorias)

CLGR tariff group {5 categories)

RAFR gapecial payment for a policy without deduction (yes, no)

CRED car bought with a credit or not

CAPD 1ife insured or not.

Among these variables some may present interactions concarning
the category of drivers (good or bad) and it is necessary to
create crossed variables befors a linear (additive farmula}
discrimination.

A asystematic study of interactions by means of a log-linear modsl
showsd that therse was a significant interaction between AG and
AN. It was thus necessary to create a new variable AGAN,repla-
cing the two praceding ones according to the following diagram :
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AG AN < 2 > 2

18
.
19 0

20
3
21 2

22 3
25

26
5
29

There is now 10 predictors with a totsl number of categories 3B.
"A multiple correspondence analysia will provide 36-10 = 26 non-
trivial components.

Here is the output of DISQUAL

Results of diagonalisation

Non trivial eigenvalues :

.

1.897 1.529 1.312 1,126 1.119 1.103 1.092 1.046 1.026 1.022
1.013 1.002 0.484 0,981 0.960 0.915 0.933 1.932 0.912 0.902

0,860 D.756 0,703 0.878 0.615 0.541

Number of factors to be selected (amount of accounted variance
superior to 1%) = 26,

frank Number

Multidimensional Data Analysis

Selection of factors

Relati{ve discriminant power

1 1 0.624
2 8 0.101
3 2 0.077
L] 10 0.035
S 11 0.032
6 6 0.019
7 12 0.018
8 4 0.014
9 16 0.013
10 5 0.011
1 15 0.010
12 26 0.010
13 22 0.010
14 24 0.005%
15 7 0.005%
Number of selected factors 15
Cumulated % of discriminant power 98,22
Cumulated % of variance 60,75
Scoring rule
FRAC 0 3.68 (yearly)
1 0.50 (each 6 months)
brd -4,75 (each 3 months)
AGAN 0 -1.73
1 4,40
2 -1.25
3 3.51
4 0.40
5 -4.83
SEXE 0 -1.56 (male)
1 5.50 (female)
MATR 0 -1.01 (bachelor)
1 2.53 [other}
ZONT 0 3.24
1 -1.06
2 ~-3J.85

P
%

95

of variancs accounted

0.073
0.029
0.059
0.043
0.043
0.026
0.042
0.050
0.040
0.024
0.035
0.039
0.039
0.038
'0.027
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-7.05 : classified in
D0.57 ! trug group good bad
1.72
0.91 gaod 2830 659

~1.82
D.80 bad 518 1807

-B.64 :
0.99

-7.68

USAG

NS WwN=O

There is an amount of about 80% of correct clasaifications
288 and 78% of bad drivers are detected.

-1.48
-4.,58
-7.20
-6.10

CLGR

S W20

RAFR

o

-6.80 {yas)
10.20 {no) ' i :

-

CRED 0 - 0,09 (yes) . ‘
1 ~2.75 {no)

CAPD 0 0.17 (yas)
1 -4.35 (no)

Thrashold value . -4.27.
We use the scoring rules as follows :

Let us teke a mals driver who wants to pay each 3 months if he
is bachelor and of category 2 of wvarliable AGAN {20 or 21 years
old and licence from lsgss than 2 years) llving in ZONT number 0
for the USAG category 5., the CLGR category 3, taking a no-
deduction policy (RAFR = 0} with & car bought with a credit and
without & life insurence. His score will be

~4.75 -1.25 -1.56 -1.0 +3.24 +01.60
-7-.20 -6.80 +0.08 ~4.35 =-12.26

As this score is less than the threshold value -4.27, be will be
classified 1nto the "bad drivers” population.

The efficiancy of this scoring rule is described by the following
table obtained by classifying the individuals of the sample :




