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1. INTRODUCTION

Before fitting a model to empirical data, an exploratory phase seems
essential: a data analytic step where graphics play a major part in
understanding the structure of the data.

Until the last decade, not much attention has been paid to the case
of categorical variables, even though these occur very frequently
in social sciences. Apart from cross-tabulations, unidimensional
pie-charts and frequency diagrams, one could not find any other ex-
ploratory or descriptive technique for categorical variables in the
standard statistical software such as SPSS, BMDP or SAS. (However,
‘Gestalt allows correspondence analysis). It is worth noticing that
even the recent revival of exploratory techniques tends to ignore
multivariate categorical data (e.g., Tukey, 1977, Gnanadesikan,
1977) and is focused on metric variables.

However, statistical tools allowing the description of categorical
variables similar to principal component analysis for metric data
have existed for a long time in the psychometric literature. Re-
discovered under the name of correspondence analysis (Benzecri,
1973, Hi11, 1974, see for an historical survey, Nishisato, 1980)
this method is an efficient way of describing multidimensional
categorical data and may be associated successfully with other
techniques, such as cluster analysis.
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Section 2 is devoted to the bivariate case which is of theoretical
and practical importance since many data sets are presented under
the form of two-dimensional contingency tables, especially in offic-
jal statistics. An example concerning French agricultural land use
illustrates the use of correspondence and cluster analysis. 1In
Section 3 we show that the analysis of a data set consisting of n
individuals described by p categorical variables may be performed
by a variant of correspondence analysis which is identical to the
principal components of scales proposed by Guttman (1941). An ex-
ample is given concerning expenditures of consumers in 17 European
countries.

2. DESCRIPTION OF A CONTINGENCY TABLE

Let N be a two-dimensional contingency table with elements nij» re-

sulting from the cross-classification of two categorical variables
V X, and X, with m, and m, categories respectively; D1 = diag ("i)

and D2 = diag (nj) are the diagonal matrices of row and column totals.

As an illustration, consider the 22x9 array giving the distribution
of agricultural land use in 1979 for 22 French regions according to
9 categories of land use of holdings. The items represented at the
top of the table have the following meaning: CERE: cereals, AGRG:
other general agriculture, VINE: vineyards, FRUIT: fruit, MILK:

milk production (mainly), MEAT: beef and veal meat production {mainly)

SHEEP: sheep, AGSH: general agriculture with sheep.

CERE  AGRG VINE FRUIT MILK MEAT MIX SHEEP  AGSH

ILDF ILE:DE FRANCE 389.2 173.0 0.0 47 13 2.1 0.8 31 127
CHAM CHAMPAGNE -ARDENNE 328.3 514.6 32.1 1.2 49.1 29.5 75.0 27.2  142.6
PICA PICARDIE ©188.8 90.1 2.5 3.3 47,1 12.7 2.8 13,5 162.4
HNOR HAUTE NORMANDIE 78.0 200.0 0.0 2.8 50.9 359 87.6 31.7 955
CENT CENTRE 1155.1 378.1 14.1 15.4 14,1 84.4 37.8 103.3  256.C
BNOR VASSE NORMANDIE 26.3 76.8 0.0 2.3 587.1 94.6137.7 8.6  53.9
BOUR BOURGOGNE 325.6 135.2 -34.3 5.5 19.0 453.8 129.6 139.6  192.9
NORD NORD-PAS DE CALAIS 25.7 333.2 0.0 1.1 53.3 9.0 141 13.8 127.6
LORR LORRAINE 83.7 50.0 0.0 2.3 131.0 31.3103.0 47.4 134.3
ALSA ALSACE a5 3.2 17.1 1.7 2l.2 3.6 142 8.5 452
FRCO FRANCE=COMTE 2.8 16.5 1.1 0.8 279,2 19.7 40.3 43.0  29.9
LOIR PAYS DE LA LOIRE §9.9 48.9  30.1 20.2 337.6 266.3 477.9 129.3  92.7
BRET BRETAGNE 22.6 94.1 0.0 3.3 726.5 54.4 61.1 378  54.4
POIT POITOU-CHARENTES 178.6 105.6 0.9 4.9 37.1 95.8 84.7 311.9  156.2
AQUI AQUITAINE 166.5 134.7 134.3 27.7 94.2 81.5 32.8 130.3  135.9
MIDI MIDI-PYRENEES 262.5 227.0 6.3 30.0 165.7 237.0 26.7 421.7  170.2
LINO LIMOUSIN 1.7 2.9 0.0 3.7 43,5406.9 72.2 281.3 8.4
RHON RHONE-ALPES 84.0 87.5 51.2 47.2 341.5 77.8 96.5 248.1  77.5
AUVE AUVERGNE §7.1 38.4 0.2 2.1 455.3 294.4 115.9 257.0  42.2
LANG LANGUEDOC-ROUSILLON 25.9 351 1369 53.8 56.7 51.9 14.3 249.7 9.8
PROV PROVENCE-APLES-COTE D'AZUR 40.2 46.8 61.2 62.8 7.6 8.9 1.3 157.4  15.9
CORS CORSE 0.3 0.6 3.8 4.6 0.1 20.6 0.0 49.6 0.2

Table 1. Agricultural land use for 22 French regions (in 000 ha.)
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2.1. Simultaneous Graphical Display of Rows and Columns

One of the simplest ways of presenting correspondence analysis is
the following method of "reciprocal averaging" or "dual scaling"
(Hi11, 1974; Nishisato, 1980). Suppose that the 9 categories of
Tand use are displayed as points with coordinates b; (j=1,..9) over
an axis. It then seems natural to represent the itﬂ region by a
point a; which is the weighted mean of the bj, where the weights
are the conditional frequencies "ij/"i'

n.. ,
a. = I 17 .
Te
In vector notation with a = (a1 ..am«)' and b = (bl..b ). We have
1 m ,
-1
a=D) 'Nb : (2)

0f course the bj are arbitrary scores but we may skip this drawback

if we want conv%rse]y the bj to be centroids of the a;j with weights
n../n..
133

-1

b=D, " N'a (3)

and by substitution we will get two separate equations.

Unfortunately equations (2) and (3) do not hold simultaneously un-
less all coordinates are identical which is rather uninteresting:

we cannot have at the same time the bj's as means of the a;'s and

vice-versa,

S0 we need weaker conditions:

1 . - -1 ' 7
Nb;b=8D, N a (4)

a=ab a
where the constants a and 8 have to be as close as possible to one.

Then by substituting we get with A = (ozB)'1
1

>
w
i

- N -1 .
7 N D! N'a

' -1 -1
Ab =Dy N'DI"Nb (5)

1

The best solution is obtained when choosing the largest eigenvalue
less than 1 (ignoring the unit eigenvalue).
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The coordinates of rows and columns are given by }he correspgnding
eigenvectors a and b of the two matrices Dil N D,” N' and Dy~ N
Dil N which are the products of the two arrays of conditional fre-

quencies,

~-1/2 -
It is straightforward to prove that a= B =X ?/ and thgt the elimi-
mination of the extraneous solution A=1 provides solutions where
rows and colums are of zero mean:

tMja, =z lig b, =0 (6)
in j n.j

i.
So far we have obtained a one-dimensional display of. the categories
of the two variables X1 and Xop-

To obtain two- or higher dimensional plots we have just to take Fhe
eigenvectors associated with the second and.third 1arggst non-unit
eigenvalues of equations (5), as the following subsection will de-
monstrate.

2.2. Connection with Principal Components Analysis

Correspondence analysis is nothing else than two separate but dual
principal components analyses performed successively on the rows
and then on the columns of N. The difference from ordinary P.C.A.
consists in using weights for both rows and columns of N.

Let us consider the array Dil N, that is to say, the matrix of row
frequencies associated with N. Region i is described by mp varia-
bles (the row-frequencies) and must of course be weighted by its
marginal frequency ni/n. If we want to apply P.C.A. to get a low-
dimensional configuration of the 22 regions we have moreover to
specify some measure of distance between regions. In many respects
the so-called chi-square distance (Guttman, 1941):

m2 )
¢, (iiy =3 n (M - "3, (7)

is preferable to the usual one without the n terms since it avoids

n.
the implicit discarding of categories with sflall frequencies in
computing the distance.

Sl

But the importance of the chi-square distance relies on the follow-
ing property: the two possible P.C.A., for rows and for columns,
are in a strict duality when choosing chi-square distance for rows
and for columns respectively. ¢

More precisely, in the first analysis the matrix of weighted sums of
squares and products is

-1
1
Since we use the chi-square distance associated with the quadratic
form of matrix Dél, we have to pre-multiply N'D'l'1 N by DEI to get
the matrix which has as its eigenvectors u the Tinear combin§tions
providing the principal components, Dél N Dil. The values of the
principal components or coordinates along the principal axis are
thus given by a = Dil N u. Since

1 1

(07" M)* oy (07! W) = N o7t N

D, N' D] Nu=hu
1y -1

N' a = Aa

we have D1 N D2
The other P.C.A. comes down to exchange the principal coordinates
with the principal components loadings.

Since the vectors of coordinates are principal components they are
in a natural way normalized by:

| 2 2
Ing (a;) = § n.i(bs) = A (8)

n n

and the various eigenvectors of Dél N Dil N are orthogonal: the
scores of various order are uncorrelated variables.

The quantity n, (ai)z/x is called the "contribution of the jth

n
Ccategory to the eigenvalue”.

The reader will have noticed that the two P.C.A. are performed with-
out setting to zero the means of the variables: once the trivial
solution a; = b; = 1,¥ i, j, is discarded, the other solutions are
necessarily of Zero-mean.

The simultaneous representation of rows and columns of N is there-
fore nothing else than the superposition of the two separate scat-
ter-plots provided by the two P.C.A.
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The closeness of two row-points or of two column-points is easy to

Xy and X,. It may be proved too that the eigenvalue A is the
understand: they have roughly the same conditional distributions

squared correlation coefficient between the artificial variables

degree that the reduction of dimensionality is not misleading. ‘
ﬁgwgcgr,e?t seems more difficult to interpret the proximity between Eﬂk) and gﬂk) (Hirschfeld, 1935), ’
a row-point and a column-point, He wi]I'see further in §egtion 3
that this proximity can be interpreted in terms of proximity of 2.4, Example

: tegories, . .
means of categ : A correspondence analysis applied to the data of Table 1 gives the

2.3. Canonical Decomposition of Contingency Tables following results:

k)

cumulated

can give an exact re- eigenvalue percent  percent

The whole set of eigenvectors _ﬁk) and Qﬂ
construction of the table:

1. .407 .389 .389

2. .247 .236 .626

LT e SO 5: égg égé éig

ij = k=2 Var 6. .033 .031 971

(see Kendall and Stuart, 1961, for instance). ;: :85; :835 1:833

If we use only the first k eigenvecters (including the trivial
solution) we obtain the best approximation of the array N by a
matrix of rank k in the following sense:

n; n, k a.(l)b-(l)
f . (e i i )
LT B =1 X

Table 2: Results of correspondence analysis

Thus the first four dimensions "extract" near 90 percent of the
structure.

The decomposition of the first four eigenvalues according to rows
and columns (formula (8)) is useful for interpretative purposes

then the ®. . are such that they minimize: (Table 3).

J
2 Contributions of colums (with the sign of the coordinate)
rr (Mg - %y) (10)

i Thn CERE .278+ .000- .068- .460-
, 1 J ) AGRG 222+ .090+ .063+ . 330+
. - c - VINE .001-~ .116- .318+ .014-
Since tr (07" ND;' N') =Lz ij _, the sum of non trivial FRUI  .001-  .060-  .142+  .0l0-
) T3 ng 0y ) MILK .330- 331+ .034+ .075-
i i 1 to the Pearson's §¢, i.e., to the usual chi- MEAT  .056-  .123+  .295-  .061+
elgenvalues s equal to th , ided b MIX  .048-  .005-  .060-  .023+
square statistic for testing the independence divided by SHEEP  .039- .270~ .020+ .002+
AGSH 025+ .004+ .000~ .024+

Uz N - x? (11)

The preceding properties show that correspondence analysis is a way
of analyzing the structure of dependencies in a contingency table.
The scores a(k) and b(k) are pairs of artificial variables each
pair repres;ﬁting in_;ome sense a part of the association between
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Contributions of rows

ILDF .097 .004 .009 .109
CHAM .083 .019 .006 .026
PICA .108 .054 .027 .203
HNOR .008 .010 .000 .044
CENT .200 .000 .043 .281
BNOR .087 .102 .001 .009
BOUR .002 .044 .133 .005
NORD .030 .034 .021 . 166
LORR .001 .009 .004 .000
ALSA .003 .000 .004 .001
FRCO .041 .048 .004 .019
LOIR .068 .001 .052 .013
BRET .013 .183 .020 .033
POIT .001 .029 .005 .002
AQUI .002 .026 077 .005
MIDI .000 .030 .001 .002
LIMO .043 .133 .131 .062
RHON .028 .001 .040 .007
AUVE .082 .000 .019 .000
LANG .009 .152 .240 .006
PROV .000 .093 .164 .004
CORS .003 .031 .000 .002

Table 3: Decomposition of eigenvalues according to rows and columns

We see clearly on the diagram (Fig. 1) that the horizontal axis
separates the regions into two main categories: those specializing
in milk production at the left side (Bretagne, Basse-Normandie. )
and those specializing:.in cereals and general agriculture on the
right side (Ile de France, Centre, Picardie mainly). This repre-
sents the main feature of the data set.

The second dimension is characterized by milk production again,
opposed this time by "sheep", "wines" and "fruit". We find at the
bottom of the map regions of the Mediterranean coast.

The third axis is characteristic of an opposition between regions
devoted mainly to "wine production” and regions devoted to "meat
production". The fourth dimension provides no new information but
allows the separation between "cereals" and "general agriculture"
which was not distinguishable along the first axis.
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Figure 1: Joint representation of regions and agricultural land users.
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We may identify distinctly 5 clusters followed by their main charac- !
teristics:

wce the chi-square distance is an Euclidean distance, it is pos-

yle to use metric methods of cluster analysis in order to classify

{ identify common spatial patterns. For clustering regions,

~d's hierarchical technique seems appropriate because for contin-

wcy tables it comes down to the following algorithm: at each step !
merge the two lines of the contingency table that lead to the

vimal 1oss of the phi-square measure of association. The hierar-

1. Centre, Ile de France/ cereals "
2. Nord, Picardie, Haute-Normandie, Champagne/ general agriculture
3. Basse-Normandie, France-Comté, Bretagne, Lorraine, Loire, RhSne-
Alpes, Auvergne/ milk production

4. Provence, Languedoc/ fruits, wines g

ical level of a cluster is exactly equal to that loss and the
is of all levels is thus, of course, equal to the @2 statistic
~ the whole array (Benzecri, 1973; Jambu, 1978; Bouroche and
orta, 1980).

> reader should note that Ward's method consists of maximizing
each step the 1nter_~c1uster dispersion measured as the weighted
an of the squared distances between centroids, or equivalently

minimizing the within-cluster dispersion.

> result is the following tree diagram (Figure 2).

HANDHE-\EAL VATOY ‘ / LORF\’AI.NE
.} & A
,J/,I*BASSE L ‘i  NEUSL WELRTAE BAS-RiN .
; T o . L. . :
g 1 SNORMANDIE DE FRANCE YeHAMPAGRED, | CE I
FoutTERL \: [P ( N h oﬂscm AR‘DEN \E NP . H
BRETAGN; . {' . MAYENNE [S LORCETLORN, ; W si/ / / vosces © ’
* . NDRBHAN SALLEETVILAING * oy . . \ N T i A oxiy YL
/7 i FE ; - SAORE
REE < f DEWHPAYS\”‘ e k’-cni‘n\v - e * ,,B«E“
IMOUSIN ] : LA LOIRE SN o FRANCHE - COMTE
o LOIREATLANTIQUE, ot - it
- . \1} BAKE-ETL QIRE AN ENTRE CHE BOURGOGNE— l
e = B NN
- \ ~ . p DR N ELLORE |
DITAINE Cluster 1 venpfe B \ .
ovesc J ' \\ 7~ POITOU- e
N I S . ;
\WGUEDOC __J Z Cluster 2 ARENTES St :‘. rovocoMe R
JVERGNE A s 5 LIMOUSIN . LOSE | )
IONE-ALPES J o AUVERGNE
JIRE @‘\-\ TORRYTY R
h H H
IRRAINE l Cluster 3 Sl osonaE eANTAL RATIIORE 'x"
CTRGRE AQUITAINE ) A
RANCHE COMTE il l onE SRR ST /e :
» NORMANDIE ] . Cluster 4 ;’lorvn.mam«nz T —
RD | S A p T N 1» f
[CARDIE J i — = GAko) . fﬁ *lvcla l PROVCEg_?EE )
. NORMANDIE ALPES - )
IAMPAGNE :} Cluster 51— 5 UEHE ~f~su6¢‘n 4 1
INTRE - pengniEs % GaRounE
: <§§“umwa - e MANGUEDOC -
*F DE FRANCE - z ,g;~( f{ OUSSILLON
\,\i‘ \”“R—v-————-—m, s iy ?! L

jure 2: A tree diagram of French regions
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3. GENERAL CASE: p CATEGORICAL VARIABLES

3.1. Notation

N individuals are described by p categorical variables X1s Xoaeuns

J
i

Xp with Mys Mysenns mp categories. The data are usually presented

in the form of a nxp array with entries x% = "symbol of the cate-

gory of xJ for individual i".

For mathematical convenience only, it is interesting to use the fol-
lowing representation called dijunctive form: we associate with
each categorical variable xj the n x mj matrix Xj where the columns
are the indicator variables of xj:

Xj (i,k) = 1 if individual i belongs to category k
Xj (i,k) = 0 if not
X = (Xl’ Xos «eis Xp) is then the supermatrix with ij

columns, with the Xj as its blocks.

D is the diagonal matrix with, as its diagonal blocks, the matrices

Dj of marginal frequencies of the xj's.

The method that will be considered in the next subsection is used
in d1ffergnt countries under a great variety of names: homogeneity
ana1y§1§ 1n.the.Nether]ands (van Rijckevorsel and de Leeuw, 1979),
quantification in Japan (Hayashi, 1950), principal components of

scales in the U.S.A (Guttman, 1941), dual scaling in Canada (Nishisato,

1980), and so on. The pioneering work is indeed Guttman (1941), but
at that time the method was considered as a technique for obtaining

only a one-dimensional scale. (For a comprehensive monograph, see
McKeon, 1966).

In this paper we use the name "multiple correspondence analysis"
since it is the terminology used in France (Lebart Morineau and
Tabqrd, 19775 Deville and Saporta, 1983) but it is only for con-
venience since there is not yet an international agreement about
a unique name. Indeed, the presentation will be very similar to
what is commonly regarded as homogeneity analysis.

3.2. Multiple Correspondence Analysis

If the variables were metric, say x;, the method of principal com-
ponents would provide a graphical display of the individuals by

wLJd

means of the coordinates along the principal axes.

If Eﬂl) denotes the n-vector of coordinates along the first princi-

pal axis it is well known that Eﬁl) is the variable which maximizes:
P .
zr? @) (13)
j=i ’

If we want to make a similar analysis for categorical variables it
seems natural to modify the preceding criterion to take into account
the nature of the variables. This will briefly be described here.
Taking as a measure of relationship the squared correlation ratio
n2 (z 3 xj) instead of the squared correlation coefficient rz,

leads to a generalization of correspondence analysis.
n2(53 xj) is defined as a variance ratio:
variance of the m; means of z for the categories of x.

J J
variance of z

If z is zero-mean and of unit variance a straightforward matrix
calculation shows that
2., . - iy 1y
n (E ’ XJ) =z XJ‘ (XJXJ) XJ' Zz
Maximization of (13) then reduces to an eigenvalue problem and the
optimal z is the solution of -

P ox. (0 x)lx
j=i d (X5 X5) " X5 z=wnz
or
P -1 !
I X:D:" X, z=unz (14)
jop 43 =TS
P _ ' - .
Since £ Xj Djl Xj may be rewritten as X D 1X' if we divide both
J=i
sides by p
1xplx z=Ez=1z (15)
P - ps e



equation (15) looks Tike a correspondence analysis equation (cf.
equation (5)). Indeed, pI is the diagonal matrix of row totals of
X, D is the diagonal matrix of column totals of X and

1 XD Iy s the product of the two "conditional" arrays associa-

géd with X. Thus it is necessary simply to apply correspondence
analysis to X, formally considered as a contingency table.

Using the duality between solutions associated with rows and columns
it follows that:

A121 = ) . . 17
Z = =X a=2 ( X a) ‘ ( )

where vector a (made of subvectors Ed) is a solution of:

%D'lx'x§=xg (18)

which is a more convenient equation than (15) since it is of size
ij and not of size n.

Applying again the duality relations gives:

a=212p 1y z (19)

Apart from the constant A 1/2 the coordinate of a column of X along
an axis of correspondence analysis is just the mean value of variable
z for those individuals belonging to the category corresponding to
this column.

Equation (17) establishes conversely an analogous property for the
rows: we find again here the principle of dual scaling used in
section 2 which could have been taken as a definition of multiple
correspondence analysis.

It must be pointed out that here the sum of non-trivial eigenvalues
(there exist Emj—p such eigenvalues) is a constant equal to

(1

v-ij)-l and has no statistical meaning. One should not attach
much importance to the percentages of explained variance which are
generally small since A<l.

If p =2 multiple correspondence analysis gives the same results as

usual correspondence analysis: precisely the super vector a contains
as subvectors the two-vectors a and b of coordinates of rows and

(e R

and columns of the contingency table N = X1'X,. The eigenvalues,
however, are not the same: they are transformed by

1+ Vi ,

———

If in the data set some variables are numerical, it is possible to
handle them after splitting their values into categories.

Surprisingly enough, the discretization of numerical variables is
very efficient and does not lead to a loss of information: actually,
it is a way to avoid the linearity of classical treatments (Masson,
1974; Gifi, 1981).

3.3. An Example

From a study concerning the standard of living in Europe ("L'Expansion"
April, 1979) we have taken the following array giving the household
expenditure according to eight variables, each with three categories

(1 = Tow, 2 = medium, 3 = high). (see Table 4).

Since there are 8 variables, each with three categories, there are
24-8 = 16 non trivial eigenvalues the sum of which equals 2.

The first four eigenvalues are:
A = 0.380 Ao = 0.349 Ay = 0.219 Ag = 0.184

The first principal plane (Figure 4) reveals the following features:
the horizontal axis shows a strong difference between countries where
household expenditures for food are high (Greece, Portugal, Spain,
Italy, Ireland) and those where household expenditures for home are
high (Belgium, West Germany, France, Finland). The first principal
component is positively correlated with variable HOME and negatively
with variable FOOD as it can be seen with the order of categories
along the first axis.

The vertical axis isolates a group of three countries (Switzerland,
Sweden, Denmark) characterized by a high level of housing and heat-
ing expenditure and a low Tevel of clothing expenditures.

A cluster analysis using Ward's algorithm gives a confirmation of
the three clusters outlined in Figure 4.

Here cluster analysis, applied to the rows of the disjunctive array
with the chi-square metric, presents some interesting features.

The similarity measure associated with the chi-square metric is a
(weighted) scalar product between rows:
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In other words the similarity between i and i' for variable x is
greater if 1 and i' belong both to an uncommon category than if i
and i' belong to a commonene.This seems to be a nice property for
categorical variables.
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Figure 4. A tree diagram of nations

4. CONCLUSION

The techniques described above are, of course, only exploratory.
Nevertheless the use of additional variables and additional cases
may help us to test hypotheses in the following way. Suppose we
wonder if a particular group of individuals have a special behaviour
which differs from the average; if that group is defined by a cate-
gory of a variable which was not part of the analysis it is possible
to test if the mean value of that group for the various principal
components differs significantly from zero. The use of additional
variables is a major practice in the screening of opinion surveys
where one splits the variables into two groups. The first one,
genera]]y the sociological and cultural variables, is processed by
mu1F1p1e correspondence analysis, the second one with the opinion
variables is projected afterwards upon the principal axes allowing

a form of categorical regression (Lebart et al., 1977).

Are correspondence analysis and multiple correspondence analysis
rea]]x multivariate techniques? At first glance they are, and from
two d1fferenp points of view. The first one is that we use several
dimensions, i.e., several principal components for describing the
data, and the second is that data are multidimensional (for multiple
correspondence analysis).

Of course one may question the advantage of taking more than one
solution to the eigenequations (5) or (14);for the statistical
meaning of suboptimal solutions is not obvious. Our answer is that
all these analyses try, as a matter of fact, to reconstruct distances
between objects (rows or columns) and that this is not possible with
a single dimension,

However, even for multiple correspondence analysis the true multi-
variate nature of data is not used but only its bidimensional facets.
As Gifi (1981, p. 50) points out these techniques are essentially
bivariate for they "give the same results if we apply them to an-
other multivariate distribution with the same bivariate marginals",
that is to say, in our context of categorical variables with the
same 2x2 contingency tables. This is clear in equation (18). This
is certainly a limitation but the counterpart is that these tech-
niques may process a very large number of variables.

Finally, though these techniques may be applied without difficulty

to spatial data, there is a need for further extensions. When in-

dividuals are spatial units, the assumption of independence between
them is certainly inadequate and the phenomenon of spatial correl-

ation due to continguity must be taken into account.
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