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Il arrive souvent en enalyse discriminante que l‘appartenance des individus aux
classes d'uns partition de la population ne soit pae connue avec certitude, ou
qu’il moit délicat d'attribuer strictement un individu & une catégorie lorsquse
la partition est définie & partir d‘une variable numérique découpée en classes,
Il semble alors plus raisonnable de se donner une distribution de probabilité
sur les classes qu'une fonction booléenne d'appartenance surtout si un individu
est proche de la frontidre entre deux classes.

On établit alors les modifications A apporter aux techniques usuelles de discri-
mination (factorielle et décisionnelle) ainsi que les consfguences de ces modi~
fications sur les indices usuels de qualité d'une diserimination.
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Discriminant anslysis is the replicative or predic¢tive atudy of a qualitative
variable over a set of predictors that are generally numerical.

In certain situations, one cannot attribute with certainty a category of the
variable to be explained to certain (even to all) individuals in the sample, Thia
is particulerly the case if :

~ The classes are poorly defined, e.g., imprecise nomenclature or else
discrete coding of a quantitative variable {1).
- The class to which an individual belongs cannot be determined with cer-
tainty, e.g., appearance of asymptomafter abzorption of a medicine. There is
nothing to prove that the symptomcould not have appeared naturally. g

But it may also be that the determination of the claes is too costly, and that
one is content with an estimate.

From the formal viewpoint, we will therefore suppose that with each individual,
there is associated a probability distribution Pj (1) for the classes j = 1l,. . .,
k of the variable to be explained, rather than a set of mutually exclusive indi-
cative variables.

(1) In this case, the quantitativs varisble being divided up into classes, an
individual in the neighborhood of the border between 2 classes probably cannot
be attributed to a aingle one of the classes, if only becaune of possible mea~-
suring errors.
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we will denote by X the matrix (n, p) of the p numerical predietorn. n being the
sample size

Henhce we are going to deacribe how to extend to this mituation the various -
resenrch results of discriminant analysis, i.e., seek the best separation between
theé clamsea in the sense of a particular criterion (geometrical methods), or
attempt directly to eatimate the Pj (1) for every individuaml for which one sums

up the p predictors (Bayesian research).

For geometrical research, thia extension is made by introducing weightings into
the calculations and by counting each observation 1 as an element of all of the
classes j for which : Py (!) £ 0. The weighting of observation i in cless Jj is

then Djtl). Ve nor.u.(3 - I-I pj(i) the weight of the class J.
It will be shoun that in reality, it is not neceassary to work on matrices of di-

mansion k.n, but only n (on condition of having written the programs on an ad hac
basis).

The various quality measures of the discrimination are affected by the fuzziness
of the clasases of the variable to be exaplained, and for certain ones of theae
criteria, we will propose a limit calculation that will make it possible to judge
the real discriminating power of a variable, or of a set of varlnblen, relative
to this limit.

As to the bayesian methods, if one excepts the case in which one considered the
Py(1) as a sample of a random variable, the generalization is carried out in the
same fashion 28 for the geometrical methods, since the only things ‘affected by
the fuzziness of the classification are the estimators of the parametsrs of the
conditional distributions.

However, another approach is possible : a direct search for a formula for adjust-
ment of the Py by means of explanatory variables : logistic regression or linear
regresaion with constraints. .

I. GEOMETRICAL METHODS

I.1 Evaluation of the center of gravity of the classea

We will denote by P{ the diagonal matrix (n xn} of the Py (1) asmocisted with
the group j, and 1 the vector of which the n components ara equal to 1.

Since the classes are fuzzy. the centera of gravity Bi of each one of them are

obtained by taking the average, weighted by the Py {1), of the coordinates of
the observations, hence 3 . :

3

1.2 Expression of the matrices of variance

The total matrix of variance would then be :

l 3 ] l [}
”Z’lx Py X a g XX

if the data are centered
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The utrlf of varlmci of the classe j is written ;
! Slxipatrx
Yyt MR XM RS

The intra-class matrix of variance ¥ is then :

k k -
"'l'i‘ §_‘ﬁ VIj aince ?j'-x“j n

Its current term is worth :

) ): 1 ) )
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The inter-class matrix of variance B is therefore equivalent to :

1.0
Begx (I Llrp 1 20 P X

And its current term is :

1 i) x
b -1 x { P, (i) P (3
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1.3 Calculation of the distance from a point to the center of gravity of the
classes

Let ¢ be a point of Rp 3 if the matrices V, are not nignificant{y different, one

uses the Mahalanobis metric W1 to calculate these distances :

) =
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If the V, are significantly aifferent, one applies V' inetead of W >
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{Sebentyen's method).
We perceive that these formulas hardly from thoss of the ¢lassic case.

Their main interest is that they supply & method of direst eslculation not brine
ging in matrices of dimension kn.

I.4 Criteria of thu'ggali‘ty of the discriminatigrl

The first criterion that comes to mind ig the one of the percentage bf correct

classification by the method of reassignment (about which it is known, incidens
tally, that it yields biased results). In the classic case, this percentage can
reach 100 % ; here it 18 quite ohviously limited by :

L mx Py (1) x 100
FOR )

In the cese of 2 groups, the Mahalanobis distance p? between the two centers
often serves as a criterion for separability, in particular for the selection of
the variables, other criteria such as the F, can be deduced from $t for a
monotonic transformation :

-1

L L

In the usual case, this distance is not bounded above and may theoretically be
infinite if and only if each group is reduced to a point projected onto straight
line g; gy« Here this distance is always limited, and this.limit can be calcu-
lated by the following procedure :

L d
D2 is a maxlmunq if, in projection on straight line g1 By all the points such
tha Py (1) > P, (1) are confused in & point Xj, and ali the others in X3. Hence
one i5 led back to a uni-dimensional problem on straight line g; gz. Let us place
ourselves in this case. D2 being invariantfor change of radius and of scale on
the variables, one may suppose that on straight line ﬂ;l g2y the total variance
is equal to 1, and that the variable is centered. From this, one deduces at
the values of X; and Xp and the value of ¢2,which is not zero, since the varian-
ces of each group cannot be zero if there ta at leaat one i in which P, (1) is
different from O or from 1, 4

whence D2 <& - 8;)2
: 2

L

If we denote by P1 the proportion of individual i affected in group 1,
such that p, (1) p, (1) :
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The calculation of az. 2, and -2 depends on. the 3 parameters : Pys. By = Z P 1) ,
, = 3 py (1),

In the case of k groups, a uaable criterion is the sum of the Mahalanchis
distances of the groups taken two by two ; ae previously, the sum of the
p2 (aj H 51) is maximum if in the space created by the k centers of gravity,

" all of the observations such that p, (1) is a maximum are projected onto the
same point 5‘1 . One may always supp!lue that the obaervations nro centered and

that the matrix of over-all variance is Ik.i' which leads to a eingle-confi~
guration of the EJ neglecting an isometry. One can then calculate the criterion
that supplies the deslrad increase, which depends only on the distribution of
the weightings. .

One concrete calculation method coneists in takings any set of k points

By eee p_k and in carrying out the linear transformation that ‘lndn to the 55'

II. PROBABILISTIC METHODS

II.1, Bayesian methods with hypothesis of normalitz
See Altchieon and Bagg (1976).

If one makes the h,ypothuis of & normal distribution N Z ) in each
class, the only problem consimts in estimating the pur Jra of the model
before applying Baye:‘ formula (cf. Anderson).

The estimators of the #y and of > nmre preciaaly the g, and W
previously defined. )

I11.2. Direct estimation of the PJ

Since one has a mample of P, and eéxplanatory variables X, one may use the
regression techniques in thé broad sense, or :

a) Logistic regression

This method reduces to supposing that Log ‘:1 is a linear function of the
Py

explanatory variables. The coefficients of these functicna belng astimated

then hy the method of maximum likelihood (Cox's model).

b) Linear regression under constraint

One regreeses each pj on the explanatory variable while imposing the constraint
S Pj=1 (which is sasy) and the conatraints PJ>0 vy» which leads to
p, 20

J .

optimization programs on cones. In other worda, it is & question of carrying
out the canonical analysis between a convex cone and a vectorial sub-space.
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