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Correspondence analysis is a technique for studying the relationship between two nominal 
variables which uses mainly simultaneous graphical displays. It has been generalized to more 
than two variables under the name of ‘multiple correspondence analysis’. ‘Qualitative harmonic 
analysis’ is an other extension towards individual time-series where one observes the evolution of 
a nominal variable through a fmite period of time. The present paper is based essentially on the 
concept of multidimensional scaling by means of barycentric representation. 

1. Introduction 

Correspondence analysis is perhaps the most popular method of 
multidimensional data analysis in France: for J.P. Benztcri and his school, 
correspondence analysis has even become almost synonymous with data 
analysis. 

The reasons of such a success are multiple and are due mainly to the 
suggestive power of the graphical displays. A whole set of interpretation rules 
using specific measures such as the contributions and the practice of 
additional points has been developed. Moreover, correspondence analysis 
proved to be a robust method as its results are remarkably stable if the data 
are perturbated [Lebart et al. (1977)]. 

Correspondence analysis handles only categorical data (numerical variables 
have to be discretized). Its initial field of application is that of contingency 
tables where data are cross-classified according to two categorical variables. 
This is the topic of section 2. Although the principles are not new 
[Hirschfeld (1935), Fisher (1940)] as, mathematically, correspondence analysis 
is identical to canonical analysis of contingency tables [Kendall and Stuart 
(1961, pp. 568-574)-J, its rediscovery as a method of exploratory data analysis 
is recent (J.P. Benztcri in the sixties). The fundamental point is the use of the 
various canonical variables - not only of the first one - to obtain 
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graphical displays for the categories of the variables or, in other words, of 
the rows and columns of a contingency table in a common space of low 
dimension. 

Instead of the classical derivations of the correspondence analysis as a 
canonical correlation analysis or as two simultaneous principal components 

analyses of rows and columns proportions, we propose here a presentation 
based upon the graphical displays of categories over a ‘good’ system of axes. 
This presentation has the advantage of facilitating, in section 3, the 
presentation of multiple correspondence analysis, that is, the case where 
more than two categorical variables have been observed for a set of II 
individuals. Once more we arrive at known results: the equations are that of 
the principal components of scale [Guttman (1941)] but the use is different 
and is similar to that of HOMALS [see Gifi (1981)]. Finally, in section 4, we 
present a continuous extension of multiple correspondence analysis to an 
infinite number of categorical variables associated to the different states of a 

set of individuals through the time [Deville and Saporta (1979)]. 

2. Correspondence analysis of a contingency table 

Let N be a contingency table with m, rows and m2 columns whose 
elements are n,,; x1 and x2 will be the two related nominal variables with m, 
and m, categories, and n is the total number of individuals. We suppose 

m, sm2. Let X, and X, denote the matrices of size (n,m,) and (n,m,), 
associated with x1 and x2 respectively, of the indicator variables of their 

categories, 

X,(i,k)= 1 if individual i belongs to category k of x1, 

=0 if not. 

So, N =X;X,. Denote by D, and D, the diagonal matrices of marginal 
frequencies of x1 and xZ, 

D, =x;x,, D, = xix,. (1) 

0; ‘N and ND;’ are therefore the two arrays of conditional frequencies 
whose elements are nL,/nk, and n,,/n.,, respectively, where a dot denotes 
summation over an index. 

2.1. Simultaneous representation of the categories of x1 and x2 

The categories of x1 and x2 define subgroups of size nk, or n.[ of the 
population. If, by hypothesis, we know a numerical variable z measured for 



J.-C. De&e and G. Saporta, Correspondence analysis 171 

each of the n individuals, we are able to compute the average value of z for 
each subgroup; the different means for the m, categories of xi can be 
arranged as an m,-vector al, such that 

a, =(X;X,)_‘x;z=D;‘x;z, (2) 

and for x2, 

a,=D;'X;z. 

It is then easy to display simultaneously the (m, +m,) categories of x1 and x2 
on an axis according to the category means. If z has zero mean, the 
dispersion of the categories of x1 along this axis (i.e., the variance due to x1) 
is 

(3) 

where A, =X,(X;X,)-'Xi is the orthogonal projector (regression operator) 
onto the subspace spanned by the columns of X,. The greater this quantity 
is, the better the categories x, will be separated on the axis associated with z. 
Of course the correlation ratio $(z 1 x,)=a;Dla,/z'z is maximum and equal 
to 1 if z=X,a,, that is to say if all the individuals of each category of x1 
have the same value of z. Such a variable t would be optimal for x1. 

Actually we do not know such a variable z and we just have x1 and x2. 
We will now try to tind an artificial variable z that is optimal for both x1 
and x2. Since it is generally impossible to have simultaneously ~~(2 1 xl) = 1 
and u2(z 1 x2) = 1 we will look for a variable z with fixed variance such that on 
aoeruge the variance of z due to x1 and x2 be maximum. So the problem is 
to maximize 

~z'A,z+z'A,z) with Z’Z=C, 

the solution of which is to take for z the eigenvector of $A, +A2) associated 
with its greatest non trivial eigenvalue p=p,. This artificial variable provides 
the ‘best’ representation of the categories of x1 and x2 along a unique axis 
and the coordinates of the categories x1 and x2 are given by the components 
of a,=D;'X;z and a2=Dy1X;z. 

Notice that, from $A, + A2)z= plz, 

~z=~X,D;'X;+X,D;'X;)z (4) 

implies that pz=$(X,a, +X2a2). The variable z takes the same value for all 
the nkl individuals of the cell (k, I) of N. Since p,, = 1 is always the greatest 
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eigenvalue of $4, +Az) associated with a constant z, this trivial solution 
must however be eliminated. 

Suppose now that we want to display the categories of xi and xz in a 
plane and not just along a single axis (for there is no reason why the 
phenomenon might be represented by a single dimension). We then need a 
second variable z uncorrelated with the first one, like in principal 
components analysis, providing an other extremum of &‘(A+A,)z. The 
solution is then provided by the second non-trivial eigenvector of $4, + AZ) 
associated with the second largest eigenvalue p2, and so on. 

Since t is an n-vector the solution of the preceding eigenequation is 
cumbersome and it is simpler to obtain the coordinates of the categories 
directly along the axes. This is simply done by substituting ai = D; ‘X;z and 
a2 = Di ‘X;z into ,uz=$X,a, +X,a,). As Xix, = N, we have 

(2p-l)a,=D;‘Na, and (2~ - l)a, = D; ’ N’a,. (5) 

Hence, by substituting again, 

(6) 

As 0; ‘N and D; ‘N’ are the two arrays of conditional frequencies we now 
have established the following property: 

Property 1. The vectors al and a2 of coordinates of the categories of 
variables are eigenvectors of the product of the two matrices obtained by 
multiplication of the arrays of conditional frequencies. 

If we define ,4=(2~-- l)‘, we have 0 s 15 1 since 0 5~ 5 1. Omitting the 
trivial eigenvalue &, = 1, there exist at most m, - 1 non-trivial eigenvalues (as 
m, sm,). Knowing a1 we simply get az by 

a2 =A-*D;‘N’a,. (7) 

Usually a, and a2 are normalized as follows (see subsection 2.2): 

(l/n)a;D,a, =(l/n)a;D,a, =A. (8) 

Since 2, = 1, and 

IJI-1 

l+ C &=tr D;‘ND,‘N’=~5:(~~~/n,,n,,), 
i=l 

(9) 
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we have: 

Property 2. The sum of the non-trivial eigenvalues is equal to Pearson’s c52 
of dependence, that is to say the usual chi-square divided by n. 

We also have [see Kendall and Stuart (1967, p. 574)]: 

Property 3. Reconstruction of N: 

[ 

ml - 1 

nkt =(r~~,n,~/n) 1 + i& ).-+a$a’,‘) 1 . (10) 

These two properties illustrate the fact that correspondence analysis is an 
analysis of the departure from independence in a contingency table. 

2.2. How this presentation can be linked to other ones 

Correspondence analysis may be considered as a special case of canonical 
correlation analysis between the two sets of indicator variables associated 
with the categories x1 and x1 [Cailliez and Pages (1976)]. It is also a method 
of assigning scores to the categeries (the scores are the coordinates derived in 
the preceding subsection), such that the following holds: 

-the bivariate distribution of (ri =Xiar, gZ =X2a2) has both regressions 
linear [Hirschfeld (1935)], that is to say: the conditional means of cl given 
Tz (or x2) are linear functions of c2 and vice versa; 

-the linear correlation coefficient between {i and cZ is maximal (and equal 
to Ai) [Lancaster (1957), Williams (1952), Kendall and Stuart (1967)]; 

-the discrimination of the categories of x1 by means of c2 is maximal 
[Fisher (1940)]. 

The most popular presentation in France, used by J.P. Benzecri and his 
team, is related with principal components analysis. Consider the array 
0; ‘N as a data matrix of m, ‘individuals’ (the rows) described by fn2 
variables, the row frequencies nk,/nk. (l= 1,2,. . .,m2) being the variable values. 
The ‘individuals’ here are weighted according to the matrix (l/n)D, of the 
row-marginal frequencies. The distance between rows is the so-called chi- 
square distance [Guttman (1941)], 

d2(k 4 = f W.Jhdn~. - nhlld2, 
I=1 

(11) 

i.e., the metric in Rm2 is nD; I. We therefore obtain directly the coordinates of 
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the rows, a,, on the principal axis by solving the following equation 
[principal coordinate analysis, see Mardia et al. (1979)]: 

(12) 

where the four matrices at the left-hand side are the data matrix, the metric, 
the transposed data matrix and the weights, respectively. This reduces. to 
D;‘ND;‘N’~,=~JL,. 

Conversely, the coordinates of the columns are obtained by submitting to 
a principal coordinate analysis the data matrix ND;’ with the weights 
(l/n)D, and the metric D[ ‘n; the eigenequation then is D~‘N’D;‘Na,=hz,. 
There is a duality between these two principal components analyses, but here 
the simultaneous representation is merely a device and has no strong 
theoretical background because the categories of xi and x2 belong to two 
different vectorspaces. 
As the eigenvalues 1 are the variances of the principal components, the 
natural normalization of the coordinates is 

(l/n)a;D,a,=(l/n)a;D,a,=i, 

but this holds only for the analysis of a contingency table and not for 
multiple correspondence analysis (see section 3). 

2.3. Use and interpretation of correspondence analysis 

Let us take the following demographic example as an illustration. N is the 
table (omitted here) giving the distribution of the population of twelve 
European countries (West Germany, France, Italy, The Netherlands, 
Belgium, Luxemburg, Great Britain, Ireland, Denmark, Greece, Portugal, 
Spain) over sixteen age groups (O-4,5-9,. . .,75 and over) in 1979. Of the 
eleven non-trivial eigenvalues the first three explain 90% of the 42: 61.4%, 
17.4% and 10.7x, respectively. The simultaneous representation of the first 
two dimensions is given in fig. 1. 

Table 1 helps us.to know which categories have contributed mainly to the 
determination of the axes. As 

~=C(nkln)(4k)2 =~(n.l/4h)2~ 
k 1 

(13) 

(14) 

the contribution of category k to ;C is defined by 
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Table 1 

Contributions to the eigenvalues. 

Eigenvalues 
Marginal 

2, (61.4%) 1, (17.4%) 1, (10.7%) frequencies 

Countries 
West Germany 
France 
Italy 
The Netherlands 
Belgium 
Luxemburg 
Great Britain 
Ireland 
Denmark 
Greece 
Portugal 
Spain 

Age 
O-4 
5-9 

lo-14 
15-19 
2@24 
25-29 
30-34 
35-39 
4&44 
45-19 
5&54 
55-59 
6&64 
65-69 
7G-74 
75 and over 

(-)0.478 (-)0.170 
0.012 0.211 
0.001 (-)0.066 
0.019 0.023 

(-)0.003 0.019 
(-)O.OOl 0.000 
(-)0.016 0.213 

0.072 (-)O.OOl 
0.000 0.073 
0.004 (-)0.021 
0.110 (-)0.096 
0.284 (-)0.098 

1. 1. 

0.377 
0.160 
0.008 
0.003 
0.010 
0.001 
0.004 

(-)0.096 

(;‘Z:Z 
(-)0.003 
(-)0.021 

0.000 
(-)0.076 
(-)O.OSS 
(-)0.093 

(-)0.026 
0.001 

(-)0.030 
(-)0.004 

0.008 
0.069 
0.192 

(-)0.212 
(-)0.195 
(-)0.030 
(-)0.005 

0.029 
0.007 
0.001 
0.008 
0.182 

1. 1. 

(-)O.Oll 0.1939 
(-)0.456 0.1688 

0.000 0.1797 
(-)0.005 0.0442 
(-)0.016 0.0311 
(-)O.OOl 0.0011 

0.460 0.1769 
0.007 0.0106 
0.028 0.0159 
0.001 0.0298 
0.013 0.03 10 
0.002 0.1169 

1. 1. 

(-)O.OOO 0.0664 
0.001 0.0758 
0.022 0.0832 
0.000 0.08 11 

(-)0.043 0.0747 
(-)0.148 0.0719 

0.000 0.0690 
(-)0.000 0.0626 
(-)0.017 0.0630 
(-)0.038 0.0609 
(-)0.007 0.0594 

0.050 0.0555 
0.616 0.0410 
0.024 0.0470 
0.002 0.0385 

(-)0.032 0.0499 

1. 1. 
- 

which may be compared for instance to the importance of category k in the 
population, n,Jn. It is also useful to write the contribution with the sign of 
the coordinate as some contributions may be of opposite meaning. 

We can see that the first dimension reveals a strong difference between 
West Germany (on the left of the figure) and Ireland, Spain and Portugal (on 
the right), which is mainly due to the difference between the age groups over 
65 on the one side and the age groups under 10 on the other. This dimension 
may be identified as a fertility one which is closely related with birth-rate. 

On the vertical axis, France, Great Britain and Denmark stand apart from 
the other countries and this phenomenon is due to the fact that the 35-39 
and 40-44 age groups are less numerous (in percentages) in these three 
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countries than in the others. One may observe too that the 30-34 age group 
has a great positive contribution to this dimension; the second dimension 
may be explained by the diminution of the birth-rate during the years 1935- 
1939 combined with the baby-boom after the Second World War. 

The third dimension reveals a difference between France and Great Britain 
due to the 60-64 age group, which may be explained by a gap in the birth- 
rate in France during the First World War, which did not occur in Great 
Britain. 

Of course, much more could be said; for instance about the large 
contribution of the ‘75 and over’ age group to the second eigenvalue, but we 
only intended to show that the essential information about the structure of a 
contingency table can be given very quickly by correspondence analysis. 

3. Multiple correspondence analysis 

3.1. Extension to p variables 

Suppose now that the n individuals are described by p nominal variables 
with m,, m,, . . . , mp categories. Let X denote the supermatrix (X,, X,, . . ,X,) 
of all indicator variables and D = diag(D,, . . . , DJ the diagonal supermatrix of 
all marginal frequencies. Let z be again a zero-mean numerical variable 
providing an unidimensional scale for the n individuals. 

The criterium presented in section 1 may be generalized as follows. The 
best representation of categories of all variables will be obtained if 

(I/P) jil a;Dj aj is maximum, (1% 

in other words, if the p possible analyses of variance are maximized on 
average. We have obviously the following results: z is the eigenvector of 
(l/p)1 Aj associated with the greatest non-trivial eigenvalue /J and 

Z=(l/PP) i Xjaj. 

j=l 

(16) 

A multidimensional configuration is then obtained with the other 
eigenvectors. The total number of non-trivial eigenvalues is Cmj--p, as we 
have p- 1 linear relationships between the indicator variables. 

Unlike p= 2, it is not possible to find an eigenequation for each aj but 
only for the whole set of the aj, that is to say, for the supervector a 

(a;,..., a;)’ with cmj 
(T/n) C Ajz = ~LZ gives 

components: substituting (16) in the equation 

(17) 
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The preceding equation is the expansion in a partitioned form of 
(l/p)XD-‘X’Xa=pXa, as X=(X,,X2,...,Xp); hence, 

(l/p)D-‘x’xQ=/UZ, (18) 

where X’X is the super-array of all 2 x 2-contingency tables of the x;s. The aj 
are normalized by 

(l/np)Q'DQ=(l/np)CQ(iDjQj=~. 
i 

(19) 

We notice that except for p=2 the aJDjaj do not necessarily have the same 
value. As 

the sum of each row of X equals p, and terms of D are the sums of the 
columns of X. Property 1, given in subsection 2.1, applies here and we have 
the fundamental result: 

Property 4. Multiple correspondence analysis of x1, x2,. . . , xp is identical to 
the formal correspondence analysis of the disjunctive array X considered as a 
contingency table. 

It must be pointed out here that the sum of non-trivial eigenvalues equals 

(l/p)C(mj- 1) and h as no statistical importance: not much meaning can be 
attached to the percentage of explained variance, since, as a matter of fact, 
ps 1: if for instance, the average number of categories is 5 for the p variables, 
pi s25%. The interpretation of the axes will be based essentially upon the 
contributions of the categories and the variables. 

Finally, notice that the same coordinates of all categories (apart from the 
multiplicative constant p*) may be obtained by performing a correspondence 
analysis of X’X. In this case the eigenvalues are $ instead of p, and we have 

the average value of all K. Pearson’s 4’ between xk and x1 for k = 1,2,. . . , p 
and 1=1,2,..., p. This clearly shows that multiple correspondence analysis is 
a method for studying the relationships between p variables xj using only the 
two-by-two-dependencies. 

3.2. Some other enlightening presentations 

The preceding solution may be obtained in various ways. The first one is 
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related with Guttman’s principal components of scale, or homogeneity 
analysis. One of the main ideas of factor analysis is that different variables 
may measure the ‘same thing’ and can thus be represented by a unique scale. 
When the variables are nominal, Guttman (1941) proposed the following 
quantification technique: assign a numerical value to each category of the xi 
such that the scores of the individuals be as homogeneous as possible for the 
p variables and as different as possible between individuals. 

Let cj (vector of length n) be a zero-mean quantification of xj: tj =Xjaj, 
where aj is the mj-vector of scores for xi. Let {, be the vector of average 
scores, which will be taken as the unique desired scale, 

t. =(1/P) jil Cj =(llP) j$l xjaj =(llp)Xa. 

For each individual i, the heterogeneity of his scores is measured by 

(llP)C (tij- ti.)*, 
j 

which, averaged over all individuals, is equal to 

(22) 

(23) 

The problem is to minimize the latter quantity. Since we have the classical 
analysis of variance equation, 

an equivalent problem is to maximize the correlation ratio 

~Vt~~~~./(llnp~~~ Ci’j =(llnP*)a’X’Xa 
I I’ 

(l!nPlT4D,aj 

= (l/p)(a’X’Xa/a’Da). (24) 

The maximum is attained if a is the eigenvector of (l/p)D-‘X’X 
corresponding to its maximal eigenvalue and we find again the first 
dimension of multiple correspondence analysis. 

A second and closely connected way of obtaining the multiple 
correspondence analysis is based upon principal components analysis of 
nominal variables. It is well known that the first principal component z of a 



180 J.-C. Deuille and G. Saporta, Correspondence analysis 

set of p numerical variables provides the best unidimensional configuration 
of n individuals in the sense of var(z) being maximal. Hence, the idea of 
quantifying the xj’s into cj =Xjaj such that the first principal component of 
the Tj’s be of maximal variance. In other words, we look for U~‘S such that 
the first eigenvalue pi of the correlation matrix of the ci can be maximized. 

The result is that the uj are the coordinates of the categories of xj on the 
first axis of multiple correspondence analysis. For any set of known cj their 
first principal component z maximizes 2 r’(z; CJ. When looking for the best 
set of cj, we have to maximize that quantity over Cj and z. Since cj=Xjuj, 
the problem may be formulated as 

max max C r’(z; Xjaj). 
aj L j 

But the maximum over the aj of r2(z;Xiaj) for fixed z is equal to the squared 
multiple correlation coefficient between z and the columns of Xj, R2(z;Xj), 
which is equal to the correlation ratio ~~(21 xi)=z’Ajz, since Xj is the , , 
indicator matrix of xj. Thus the problem reduces to 

maxxz’Ajz subject to z’z = 1, 
2 i 

and the solution is given by the first eigenvector 
criteria of optimality, 

max C r’(z; ej) for numerical variables, 
i 

max 1 q2(z 1 xj) for nominal variables, 
j 

(25) 

of Cj Aj. Since the two 

(26) 

are similar, we may consider multiple correspondence analysis equivalent to 
principal components analysis for nominal data, and since ~“(z ) xi) = R2(z; Xj), 
as a special case of Carroll’s (1968) generalized canonical analysis. 

The method of reciprocal averaging is another approach very classical in 
psychometric literature and is one of the easiest way of presenting 
multidimensional scaling of nominal variables [Kuder and Richardson (1933), 
Nishisato (198O)J It consists of a simultaneous representation of individuals 
and of categories of the nominal variables such that: 

(1) the coordinate of a category be equal to the average coordinate of 
individuals who belong to that category; and 

(2) the coordinate of an individual be equal to the average values of the 
coordinates of the categories to which he belongs. 



J.-C. Deville and G. Saporta, Correspondence analysis 181 

Starting from an arbitrary set of values for the individuals, say z, we may 
obtain by an iterative process the coordinates of the categories and then a 
new variable z, and so on. Provided we impose a normalization constraint, 
the algorithm converges very quickly and is the basis of some alternating 
least squares quantification techniques such as HOMALS [see GiIi (1981)]. 
Actually the two conditions mentioned above cannot both be satisfied as 
aj=D -‘XJz and z=(l/p) 1 Xjaj do not hold simultaneously; we need a 
constant a as small as possible (since it may be shown that al l), such that 

a=aD-‘X’Z and r=(l/p)aXa. 

By substituting we find 

(l/a’)z=(l/p)XD-‘X’z and (l/a’)a=(l/p)D-‘X’Xa, 

and we have again the first solution of multiple correspondence analysis, 
since p1 = l/a2 must be maximized: 

3.3. Use and interpretation of multiple correspondence analysis 

This technique is widely used for the screening of surveys. The graphical 
representation of all response categories allows for a very fast detection of 
the more interesting relationships and directs the researcher towards the 
more interesting cross-tabulations. 

A major practice is to use additional variables. Usually the set of variables 
is split up into two groups: the working variables, with which the axes are 
computed, and the passive ones, which may be easily represented on the 
system of axes as usual. The categories of the passive variables are 
represented through the z variables by the mean-value of individuals which 
belong to them. If the additional variables are numerical, we can compute of 
course the product-moment correlation coefficient with the z variables. 

The use of additional variables may serve two different goals. First it 
provides a quick approximate regression in the sense that we actually project 
the passive variables upon the subspace spanned by the z variables. We may 
interpret this as an ‘explanation’ of some dependent variables by nominal 
predictors. For instance [Bouroche and Saporta (1980)], a sample of 6,083 
individuals are described by a set of twelve sociological and cultural 
variables with a multiple correspondence analysis. Then the subgroup of 
individuals who have seen a certain movie may be projected upon the system 
of the first axes, which allows us to determine quickly the average pattern of 
these individuals. 

The second feature is concerned with the validation of the results. 
Interpreting the outcome of an analysis using the working variables may be 



182 J.-C. Deville and G. Saporta, Correspondence analysis 

subject to criticism: maybe the results are nothing but an artefact due to the 
mathematical technique that has been used. If, however, the meaning of an 
axis is obtained by a correlation with a variable that has not contributed to 
its determination the interpretation will be more convincing; moreover some 
approximate statistical significance tests may be performed such as a one- 
way analysis of variance to test equality of means of an additional 
categorical variable over an axis. 

4. Individual time-series: Qualitative harmonic analysis 

Correspondence analysis can also be extended to qualitative data varying 
over a finite time interval T. For convenience, we will assume that T is [0, l] 
and that all the time-data are expressed within this interval by means of a 
linear transformation. The category space is finite with elements k numbered 
from 1 to m. For every individual i (i= 1,. . . ,n), the data consist of the 
records of the successive states in which he has been, with the exact dates 
when he has moved from one state to another. We are able, therefore, to 
compute for each time t the matrix X,, with n rows and m columns, 
indicating the state k to which the individual i belongs at time t. In the same 
way as correspondence analysis dealt with two nominal variables, and 
multiple correspondence analysis dealt with p variables, we now have to deal 
with a continuous infinity of nominal variables indexed by time. 

4.1. The equations 

We try, once more, to define an artificial variable z, independent of time 
which describes the trajectories of each individual over time ‘as well as 
possible’. Formally, z is an n-vector having one coordinate per individual. At 
time t, we can compute the mean of the coordinates of z corresponding to 
individuals being in state k. Those means can be arranged in the m-vector 4, 
given by 

fz, = (xix,) - ‘xjz. (29) 

It is well-known that this vector minimizes the sum of the squres of the 
coordinates of z-XXra, and that we have the identity (with the notation 
\lxll’ =x)x for every n-vector x) 

llz(12 = (lmtl12 + IIz-mtl12~ 
Integrating over ‘I; and considering the second term at the right-hand side as 
a residual, we get, using (29), 

1 

z’z = j z’X,(X;Xz)- ‘Xiz dt + mean of residuals. 
0 

(31) 
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The variable z we want to compute maximizes the quantity 

z’Qz/z’z, (32) 

with 

Q=$X,(X;X,)-‘X;dt, (33) 

the mean over time of the projection operator onto the subspace generated 
by the columns of X,. 

The matrix Q is symmetric positive definite and its elements are easy to 
compute. If individuals i and j are not in the same state at time t, the 
corresponding element in X,(X:X,)- ‘Xi is 0; if they are in the same state at 
time t, say k, its value is I/n:, with ni denoting the number of individuals 
who are in state k at time t. The matrix Q appears to be a measure of 
similarity between the individuals, integrating elementary similarities indexed 
by the time. 

The problem to solve remains formally the same as in the previous 
sections and its solution is given by the eigenvector of Q associated with the 
largest non-trivial eigenvalue. Notice that the vector I with all its coordinates 
equal to 1, is an eigenvector of Q associated with eigenvalue 1. This solution 
has no statistical interest; it shows, however, that all its other solutions 
satisfy l’z=O and that we could, without any loss of generality, impose on z 
the restriction of zero mean. 

The relations between z and the vector valued function (I, are of interest. 
Starting from the eigenvalue equation AZ= Qz, we get by straightforward 
calculation 

hz, = j(X;X,) - ‘X:X,a, dt. 
0 

(34) 

The matrix N,,=XLX, is the m x m array of numbers n$ of those 
individuals who were in state k at time s and in state 1 at time t. Of course, 
N,, is the diagonal matrix of the number n: of individuals who were in state 
k at time t. The matrix (X:X,)- ‘X:X, is the array of conditional frequencies 
with entries p$:, the probability of being in state I at time t, knowing that 
one was in state k at time s. Therefore, the II, function is the solution of the 
equations 

m 1 

Aa: = C j pt,!af dt. 
I=10 

(35) 

It is formally equivalent to solve this set of equations or to solve llz=Qz, 
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but, curiously, the former turns out to be easier from a computational point 
of view. 

4.2. Practical solution: Approximation procedure 

The matrix Q is generally too large to be handled numerically. In practice 
we will try to compute an approximation of the a,-function in a prescribed 
form. Here, we will outline an approach that satisfies the usual practical 
needs, although it is not the most general one. We look for a solution in the 
form 

where Q~ is a family of unknown m-vectors, and jr(t) a family of known 
numerical functions, chosen to be easy to handle. As a matter of fact, we 
replace the set of all m-vector valued functions on T by a finite-dimensional 
subspace generated by (36). The functions fi(t) must of course be linearly 
independent. It is also convenient that the subspace generated by the fi 
contains the constant function. The reason is that the vector function having 
all its coordinates equal to 1 is a trivial solution of (34), since z= 1 is the 
solution of the initial eigenvalue problem. It is useful not to lose this solution 
in the approximation procedure in order to be sure, by orthogonality, that 
the non-trivial solutions will be centered and uncorrelated. The a vectors 
may satisfy some other constraints such as nullity of some specific 
coordinates. 

We look for the ‘best substitute’ that satisfies (34) for the true solution of 
(34). It turns out to be also the solution of a ‘projected statistical problem’ in 
a finite-dimensional space. Under some mild assumptions it can be shown 
that the approximate solution converges to the true ones, when the 
dimension I of the approximation increases. 

The problem is now to find a z and u, that satisfy (36) and minimize 

(37) 

The simplest and most usual way to choose the ,fr(t) functions consists in 
choosing (L+l) points t, in ?: such that O=t,<...<tl<t,+,<...<tL=l, 
and to define 

fi(t)=l if t,_,st<tt,, 

= 0 elsewhere. 
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In this case u, =a[ if t belongs to [tL- i, tJ and we have simply to minimize 

t$l t fi [ - 2z'X,a, + a;XiXtat] dt. 
1-L 

Define 

r/;= fi X,dt and D,= i X;X,dt. (39) 
t1- I ‘I- I 

The m x m matrix r/; has as its entries the time spent by the ith individual in 
the kth state between t,_ I and tl. The m x m matrix D, is diagonal and has as 
its entries the total time spent by all individuals in the kth state during the 
Ith interval. It is clear that ai = 0;’ i$z and that the calculations are going on 
exactly as in subsection 2.1. Matrix D, plays the role of the Dj and l$ plays 
the role of the Xj. In fact the computation comes down to performing 
correspondence analysis on the table (VI, V,, . , V’). 

This table is no longer a disjunctive table, but a table of the Lx m new 
variables, ‘time spent during the Ith interval of time in the kth state’. For the 
computation we have only to create these variables and then to use standard 
correspondence analysis software. All the interpretations of multiple 
correspondence analysis can be utilized; see, for instance, Benzecri (1973) and 
Lebart et al. (1977). The time dimension, however, is especially useful to 
determine the meaning of the factors. 

The most general way to examine the question of approximation is to 
consider the II, as a numerical function of two variables: time and category. 
The solution is searched for, in a prescribed finite-dimensional subspace of 
this set of functions. The computation generally does not come down to 
correspondence analysis, but rather to principal components analysis with a 
special metric derived from the data [see Deville (1982)]. 

As in multiple correspondence analysis, there are many different ways to 
present qualitative harmonic analysis. One of them seems to be of special 
interest because it generalizes to qualitative data the Karhunen-Loeve 
expansion of a stochastic process. The point is to define an operator-valued 
covariance of two nominal variables by the product of their conditional 
expectation operator [Deville and Saporta (1980), Saporta (1981), Deville 
(1982)]. 

4.3. An application: Women who have been married at least three times 

The data come from two French retrospective surveys in fertility. 
Qualitative harmonic analysis has been performed using data about 423 
women who had been married three times or more for whom sufficient 
information was available, viz. the precise date of each marriage and 
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dissolution date of those marriages which were dissolved, and the cause, 
death or divorce. The time series under study are the marital status of each 
woman from age 15 to 45. The state space has four categories: single, 
married, widowed and divorced. Some other variables are also available for 
every individual, notably: the number of children and their dates of birth, 
social status of the successive husbands, place of residence, date of birth. 
They are used as supplementary variables in the analysis and proved 
powerful tools for the interpretation of the factors. 

Three different approaches have been used in the calculations and the 
three results are very similar [for a complete report, see Deville (1982)]. The 
main results are summarized in figs. 2 and 3. Only those given by the first 
approach (six intervals of five years) have been plotted. Fig. 2 presents the 
working variables of the analysis, i.e., the times spent in each state for every 
time interval. The coordinates are the value of the q-vectors for the first two 
factors. Straight lines connect points representing the same state at successive 
intervals. Fig. 3 shows passive variables in the same plane but with a larger 
scale. 

The horizontal axis draws apart women with several divorces from women 
who where widowed more than once. It appears also to be related to time. 
Women born before 1900 are associated with widowhood, women born after 
1925 with divorce. This is consistent with the decrease of mortality and the 

Fig. 2 
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rise of divorce during the 20th century. Women who married (at least once) a 
white-collar worker divorce more often than women who married only 
workers or men having an independent occupation (farmers of merchants). 
The marriages of women with four marriages end more frequently by divorce 
than by death of husband. 

The vertical axis is related with the age at the time of the first marriage. 
The ‘single’ state contributes for 75% in the determination of this factor. 
However, it opposes much more women without children (about 15% of the 
sample) - who generally got married late - to women having one or 
several children. Workers’ wives are here associated with the absence of 
children, although they are on the average more fertile than other women. 
The meaning of this association could be the following: in lower social 
classes, a divorced or widowed woman with a child has less chance to get 
remarried than a woman in the same situation belonging to the upper 
classes. 

The third factor also allows a clear interpretation. It is determined 
essentially by events occurring between the ages of 35 and 45. It splits the 
sample in two major groups. In the first one, there is a stable third marriage, 
very often with children. Women belonging to the second one continue to 
have a very eventful life, even after 35 years. 
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5. Conclusion 

Unlike other methods, correspondence analysis is not concerned with 
model building and is not oriented towards prediction. Its aim is essentially 
exploratory and consists in clarifying the essential structures of a large data 
set and, if these exist, the features that differentiate several subpopulations. 
Correspondence analysis may be applied at a very large scale to real data 
thanks to efficient software [such as SPAD of Lebart and Morineau (1982)] 
which is able to process arrays of very large dimension (several hundreds of 
variables and thousands of individuals). 
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