
SD-Rtree: A Scalable Distributed Rtree

Cédric du Mouza Witold Litwin Philippe Rigaux
LAMSADE, Univ. Paris-Dauphine CERIA, Univ. Paris-Dauphine LAMSADE, Univ. Paris-Dauphine

Paris, France Paris, France Paris, France
cedric.dumouza@dauphine.fr witold.litwin@dauphine.fr philippe.rigaux@dauphine.fr

Abstract

We propose a scalable distributed data structure (SDDS)
called SD-Rtree. SD-Rtree generalizes the well-known
Rtree structure. It uses a distributed balanced binary spa-
tial tree that scales with insertions to potentially any num-
ber of storage servers through splits of the overloaded ones.
A user/application manipulates the structure from a client
node. The client addresses the tree through its image that
the splits can make outdated. This may generate addressing
errors, solved by the forwarding among the servers. Spe-
cific messages towards the clients incrementally correct the
outdated images.

1 Introduction

We aim at indexing large datasets of spatial objects, each
uniquely identified by anobject id(oid) and approximated
by the minimal bounding box (mbb). We generalize the
Rtree spatial index to aScalable Distributed Data Structure
(SDDS)that we call SD-Rtree. Our structure conforms to
the general principles of an SDDS [15]: (i) no central direc-
tory is used for data addressing, (ii) servers are dynamically
added to the system when needed and (iii) the clients ad-
dress the structure through a possibly outdated image.

An SD-Rtree avoids redundancy of objects references,
like Rtree or R*tree. The general structure is that of a dis-
tributed balanced binary spatial tree where each node car-
ries a mbb. We store an SD-Rtree at interconnectedserver
nodes, in a storage space usually termedbucket, each with
some predefined capacity. The buckets may be entirely in
the distributed RAM, providing potentially for much faster
access than to disks. If a bucket overflows, a split occurs,
moving some data to a dynamically appended bucket.

An application addresses an SD-Rtree only through the
client component. The address calculus requires neither a
centralized component nor multicast messages. A client
addresses the servers which are in itsimageof the struc-
ture. Some existing servers may not be in the image, due

to splits unknown from the client. The addressing may then
send a query to a server that is different from the one the
query should address. The servers recognize suchaddress-
ing errors and forward the query among themselves, until
it reaches thecorrect one. The client gets then a specific
image adjustment message (IAM). This improves the image
at least so that the addressing error does not repeat.

We present in this paper the distributed structure of SD-
Rtree and its algorithms for splitting, balancing and overlap-
ping management. Next, we discuss the search and insert
processing at the servers and the client. The nodes com-
municate only through point-to-point messages. We then
analyze the access performance of our scheme as the num-
ber of messages sent to the servers. Finally we assess the
effectiveness of the structure through experimental results.

In general, insert and point query operations into an SD-
Rtree overN servers cost one message to contact the correct
server. If the first message isout of range(i.e., the contacted
server is not the correct one), the cost is in general within
2 logN , unless an infrequent split adds anotherlog N . The
overlapping may add up toN messages but in practice it is
relatively negligible. The processing of window queries is
also efficient, as the maximal message path length to diffuse
a window query isO(log N). All these properties prove the
adequacy of the scheme to our goals.

Related work

Until recently, most of the spatial indexing design ef-
forts have been devoted to centralized systems [5] although,
for non-spatial data, research devoted to an efficient distri-
bution of large datasets is well-established [3, 14, 2]. The
architecture of the Many SDDS schemes are hash-based,
e.g., variants of LH* [15], or use a Distributed Hash Ta-
ble (DHT) [3]. Some SDDSs are range partitioned, starting
with RP* based [14], till BATON [9] most recently. There
were also proposals for the k-d partitioning, e.g. k-RP [13]
using distributed kd-trees for points data, or hQT* [11] us-
ing quadtrees for the same purpose. [8] presents a dis-
tributed data structure based on orthogonal bisection tree
(2-d KD tree). Each processor has an image of the tree.



The balancing needs to fully rebuild the tree using multi-
cast from all the servers. [12] describes an adaptive index
method which offers dynamic load balancing of servers and
distributed collaboration. The structure requires a coordina-
tor which maintains the load of each server.

The P-tree [2] is an interesting distributed B+-tree that
has a concept similar to our image with a best-effort fix
up when updates happen. Each node maintains a possibly
partially inconsistent view of its neighborhood in the dis-
tributed B+-tree. A major difference lies in the correction
which is handled by dedicated processes on each peer in the
P-tree, and by IAMs triggered by inserts in the SD-Rtree.

The work [10] proposes an ambitious framework termed
VBI. The framework is a distributed dynamic binary tree
with nodes at peers. VBI shares this and other principles
with the SD-Rtree. With respect to the differences, first,
SD-Rtree is a data structure worked out to its full extent. It
is partly in VBI scope, but fully roots instead in the more
generic SDDS framework [15]. Next, VBI seems aiming
at the efficient manipulation of multi-dimensional points.
SD-Rtree rather targets the spatial (non-zero surface) ob-
jects, as R-trees specifically. Consequently, an SD-Rtree
enlarges a region synchronously with any insert needing it.
VBI framework advocates instead the storing of the corre-
sponding point inserts in routing nodes, as so-called discrete
data. It seems an open question how far one can apply this
facet of VBI to spatial objects.

The rest of the paper presents first (Section 2) the struc-
ture of the SD-Rtree. Section 3 describes the insertion algo-
rithm and the point and window queries. Section 4 shows
the experimental performance analysis and Section 5 con-
cludes the paper. More details on related work and other
features discussed in this paper can be found in [4].

2 The SD-Rtree

The structure of the SD-Rtree is conceptually similar to
that of the classical AVL tree, although the data organiza-
tion principles are taken from the Rtree spatial containment
relationship [7].

Kernel structure

The SD-Rtree is a binary tree, mapped to a set of servers.
Each internal node, orrouting node, refers to exactly two
children whose heights differ by at most one. This ensures
that the height of a SD-Rtree is logarithmic in the number of
servers. A routing node maintains also left and rightdirec-
tory rectangles(dr) which are the minimal bounding boxes
of, respectively, the left and right subtrees. Finally eachleaf
node, ordata node, stores a subset of the indexed objects,

The tree hasN leaves andN − 1 internal nodes which
are distributed amongN servers. Each serverSi is uniquely
identified by an idi and (except serverS0) stores exactly a

pair (ri, di), ri being a routing node anddi a data node. As
a data node, a server acts as an objects repository up to its
maximal capacity. The bounding box of these objects is the
directory rectangleof the server.

b cd1d0

r1

a

b
c

A B C

b
e d

d

d0

a

The node and
its server

The spatial
coverage

r1

r2

d2d1

d0

a

b
c

c

e

Figure 1. Basic features of the SD-Rtree

Figure 1 shows a first example with three successive evo-
lutions. Initially (part A) there is one data noded0 stored on
server 0. After the first split (part B), a new serverS1 stores
the pair(r1, d1) wherer1 is a routing node andd1 a data
node. The objects have been distributed among the two
servers and the treer1(d0, d1) follows the classical Rtree
organization based on rectangle containment. The directory
rectangle ofr1 is a, and the directory rectangles ofd0 and
d1 are respectivelyb andc, with a = mbb(b ∪ c). The
rectanglesa, b andc are kept onr1 in order to guide insert
and search operations. If the serverS1 must split in turn,
its directory rectanglec is further divided and the objects
distributed amongS1 and a new serverS2 which stores a
new routing noder2 and a new data noded2. r2 keeps its
directory rectanglec and the dr of its left and right children,
d ande, with c = mbb(d∪ e). Each directory rectangle of
a node is therefore represented exactly twice: on the node,
and on its parent.

A routing node maintains the id of its parent node, and
links to its left and right children. Alink is a quadruplet
(id, dr, height, type), whereid is the id of the server
that stores the referenced node,dr is the directory rectangle
of the referenced node,height is the height of the subtree
rooted at the referenced node andtype is eitherdata or
routing. Whenever the type of a link isdata, it refers
to the data node stored on serverid, else it refers to the
routing node. Note that a node can be identified by its type
(data or routing) together with the id of the server where it
resides. When no ambiguity arises, we will blur the distinc-
tion between a node id and its server id.

The description of a routing node is as follows:

Type: ROUTINGNODE

height, dr: description of the routing node
left, right: links to the left and right children
parent_id: id of the parent routing node
OC: the overlapping coverage

The routing node provides an exact local description of
the tree. In particular the directory rectangle is always the
geometric union ofleft.dr and right.dr, and the

2



height is Max(left.height, right.height)+1.
OC, the overlapping coverage, to be described next, is an
array that contains the part of the directory rectangle shared
with other servers. The type of a data node is as follows:

Type: DATA NODE

data: the local dataset
dr: the directory rectangle
parent_id: id of the parent routing node
OC: the overlapping coverage

The image

An important concern when designing a distributed tree
is the load of the servers that store the routing nodes lo-
cated at or near the root. These servers are likely to receive
proportionately much more messages. In the worst case all
the messages must be first routed to the root. This is unac-
ceptable in a scalable data structure which must distribute
evenly the work over all the servers.

An application that accesses an SD-Rtree maintains an
imageof the distributed tree. This image provides a view
which may be partial and/or outdated. During an insertion,
the user/application estimates from its image the address of
the target serverwhich is the most likely to store the ob-
ject. If the image is obsolete, the insertion can be routed
to an incorrect server. The structure delivers then the inser-
tion to the correct server using its actual routing node at the
servers. The correct server sends back an image adjustment
message (IAM) to the requester. Point and window queries
also rely on the image to find quickly a server whose direc-
tory rectangle satisfies the query predicate. A message is
then sent to this server which carries out a local search, and
route the queries to other nodes if necessary.

An image is a collection of links, stored locally, and pos-
sibly organized as a local index if necessary. Each time a
serverS is visited, the following links can be collected: the
data link describing the data node ofS; the routing link de-
scribing the routing node ofS, and the left and right links
of the routing node. These four links are added to any mes-
sage forwarded byS. When an operation requires a chain of
n messages, the links are cumulated so that the application
finally receives an IAM with4n links.

Node splitting

When a serverS is overloaded by new insertions in its
data repository, a split must be carried out. A new serverS′

is added to the system, and the data stored onS is divided
in two approximately equal subsets using a split algorithm
similar to that of the classical Rtree [7, 6]. One subset is
moved to the data repository ofS′. A new routing noderS′

is stored onS′ and becomes the immediate parent of the
data nodes respectively stored onS andS′.

The management and distribution of routing and data
nodes are detailed on Figure 2 for the tree construction of

Server 0

A CB

0 1

null

left right

1

0 1
r1

parent

21

empty
d0

null

Server 1

d1

1

Server 0

d0
empty

1

Server 0

d0empty

Server 1

null

rightleft d1

2

r1

parent

1

rightleft d2

2

Server 2

r2

parent

routing link data link routing node data node parent

Figure 2. Split operations

Figure 1. Initially (part A), the system consists of a single
server, with id 0. Every insertion is routed to this server,
until its capacity is exceeded. After the first split (part B),
the routing noder1, stored on server 1, keeps the following
information (we ignore the management of the overlapping
coverage for the time being):

• theleft andright fields; both are data links that
reference respectively servers 0 and 1,

• its height (equal to 1) and its directory rectangle (equal
to mbb(left.dr, right.dr)),

• the parent id of the data nodes 0 and 1 is 1, the id of
the server that host their common parent routing node.

Since both theleft andright links are of typedata
links, the referenced servers are accessed as data nodes
(leaves) during a tree traversal.

Continuing with the same example, insertions are now
routed either to server 0 or to server 1, using a Rtree-like
CHOOSESUBTREE procedure [7, 1]. When the server 1 be-
comes full again, the split generates a new routing noder2

on the server 2 with the following information:

• its left andright data links point respectively to
server 1 and to server 2

• itsparent_id field refers to server 1, the former par-
ent routing node of the splitted data node.

The right child ofr1 becomes the routing noder2 and the
height ofr1 must be adjusted to 2. These two modifications
are done during abottom-up traversalthat follows any split
operation. At this point the tree is still balanced.

Overlapping coverage

We cannot afford the traditional top-down search in a

3



distributed tree because it would overload the nodes near
the tree root. Our search operations attempt to find di-
rectly, without requiring a top-down traversal, a data noded

whose directory rectangledr satisfies the search predicate.
However this strategy is not sufficient with spatial structures
that permit overlapping, becaused does not containall the
objects covered bydr. We must therefore be able to for-
ward the query to all the servers that potentially match the
search predicate. This requires the distributed maintenance
of some redundant information regarding the parts of the
indexed area shared by several nodes, calledoverlapping
coverage(OC) in the present paper.

A simple but costly solution would be to maintain, on
each data noded, the path fromd to the root of the tree,
including the left and right regions referenced by each node
on this path. From this information we can deduce, when a
point or window query is sent tod, the subtrees where the
query must be forwarded. We improve this basic scheme
with two significant optimizations. First, ifa is an ancestor
of d ord itself, we keep only the part ofd.dr which overlaps
the sibling ofa. This is the sufficient and necessary infor-
mation for query forwarding. If the intersection is empy, we
simply ignore it. Second we trigger a maintenance opera-
tion only when this overlapping changes.

Given a nodeN , let anc(N) = {N1, N2, . . . , Nn} be
the set of ancestors ofN . Each nodeNi ∈ anc(N) has two
children. One is itself an ancestor ofN or N itself, while its
sibling is not an ancestor ofN and is called theouter node,
denotedouterN (Ni). For instance the set of ancestors of
d2 in Figure 1 is{r1, r2}. The outer nodeouterd2

(r2) is
d1, the outer nodeouterd2

(r1) is d0.
The overlapping coverageof N is an arrayOCN of

the form [1 : oc1, 2 : oc2, · · · , n : ocn], such thatoci is
N.dr ∩ outerN (Ni).dr. Moreover an entryi is represented
in the array only ifoci 6= ∅. In other words the overlap-
ping coverage of a nodeN consists of all the non-empty
intersections with the outer nodes of the ancestors ofN .

Each node stores its overlapping coverage which is main-
tained as follows. When an objectobj must be inserted in
a subtree rooted atN , one first determines with CHOOS-
ESUBTREE the subtreeI whereobj must be routed.O, the
sibling of I, is therefore the outer node with respect to the
leaf whereobj will be stored. The nodeI must possibly
be enlarged to accommodateobj and this leads to check
whether the intersectionI.dr ∩ O.dr has changed as well,
in which case the overlapping coverage must be modified as
follows:

1. the OC entry[O.id : I.dr ∩ O.dr] is added to the in-
sertion message routed to the childI

2. a OC update message, containing the OC entry[I.id :
I.dr ∩ O.dr], is sent to the childO.

The operation is called recursively until a data node is
reached. The insertion message contains then the updated
information regarding the OC ofd. The top-down traver-
sal (if any) necessary to findd accesses some ancestors
for which the possible changes of the overlapping cover-
age must be propagated to the outer subtrees, thanks to the
UPDATEOC procedure below.

UPDATEOC (N , id, rect)
Input: a nodeN , theid of an ancestor node,

andrect, the directory rectangle ofouterN(id)
Output: update the local OC and forward to subtrees
begin

// Check whetherN.OC[id] has changed
if (rect ∩ N.dr differs fromN.OC[id]) N.OC[id] := rect

// Diffuse to subtree if the OC is non-empty
if (N is not a leaf)

// Compute and send to the left subtree
if (rect ∩ N.left.dr 6= ∅)

UPDATEOC (N.left.id, id, rect ∩ N.left.dr)
// Compute and send to the right subtree
if (rect ∩ N.right.dr 6= ∅) then

UPDATEOC (N.right.id, id, rect ∩ N.right.dr)
endif

end

The cost of the OC maintenance through calls to UPDA-
TEOC depends both on the length of the insertion path to
the chosen data noded, and on the number of enlargements
on this path. In the worst case, the insertion path starts from
the root node, and all the overlaps betweend and its outer
nodes are modified, which result at worse inN − 1 UPDA-
TEOC messages. However, in practice, the cost is limited
because the insertion algorithm avoids in most cases a full
traversal of the tree from the root to a data noded, and re-
duces therefore the number of ancestors ofd that can pos-
sibly be enlarged. Moreover the number of node’s enlarge-
ments lowers as soon as the union of the servers directory
rectangles cover the embedding space.

Regarding the second aspect, it suffices to note that no
enlargement is necessary as soon as there exists a server
whose directory rectangle fully contains the inserted object
o. It can be shown, assuming an almost uniform size of
objects, that it is very unlikely that a new inserted object
cannot find a server’s directory rectangle where it is fully
contained. Our experiments confirm that the overlapping
coverage remains stable when the embedding space is fully
covered, making the cost of OC maintenance negligible.

Balancing

In order to preserve the balance of the tree, a rotation is
sometimes required during the bottom-up traversal that ad-
justs the heights. The balancing of the SD-Rtree takes ad-
vantage of the absence of order on rectangles which gives

4



more freedom for reorganizing an unbalanced tree, com-
pared to classical AVL trees. The technique is described
with respect to arotation patternwhich is a subtree of the
form a(b(e(f,g),d),c) satisfying the following con-
ditions for somen ≥ 1:

• height(c) = height(d) = height(f) = n − 1

• height(g) = max(0, n − 2)

n−1

f c

n−1

e

c

n−1

e

n−1

dg

n−2 n−1

d g

n−2 n−1

f

n−1

f g

n−2

c

n−1

e

n−1

d

c

g

f e

a

b c

e
n−1

n−1

n−1

d

n−2

gf

n+1

n+2 n

n

d
f

n+1 n+1

d
f

e

n+1 n+1

e

a. The rotation pattern a(b(e(f,g), d), c)

d
f

e

n+1 n+1

d. Choice move(f)=b(e(g,d), a(f,c))

n n−1

b

a

b

a

b

a

c. Choice move(d)=b(e(f,g), a(d,c))

b. Choice move(g)=b(e(f,d), a(g,c))

b

d

c

g

c

g

c

g

a a

a

Figure 3. Balancing in the SD-Rtree

An example of rotation pattern is shown on Figure 3.
Note thata, b ande are routing nodes. Now, assume that a
split occurs in a balanced SD-Rtree at nodes. A bottom-up
traversal is necessary to adjust the heights of the ancestors
of s. Unbalanced nodes, if any, will be detected during this
traversal. The following holds:

Proposition 1 Let a be the first unbalanced node met on
the adjustment path that follows a split. Then the subtree
rooted ata matches a rotation pattern.

The proposition shows that the management of unbal-
anced nodes always reduces to a balancing of a rotation pat-
terna(b(e(f,g),d),c). The operation is as follows:

1. b becomes the root of the reorganized subtree,

2. The routing nodea becomes the right child ofb; e
remains the left child ofb andc the right child ofa,

3. One determines which one off, g or d should be the
sibling of c in the new subtree. The chosen node be-
comes the left child ofa, the other pair constitutes the
children ofe.

The choice of the moved node should be such that the
overlapping of the directory rectangles ofe anda is mini-
mized. Tie-breaking can be done by considering the mini-
mization of the dead space as second criteria. This rotation
mechanism can somehow be compared to the forced rein-
sertion strategy of the R*tree [1], although it is here limited
to the scope of a rotation pattern.

Any pairwise combination off, g, d and c yields a
balanced tree. The three possibilities, respectively called
move(g), move(d) and move(f) are shown on Fig-
ure 3. The choicemove(g) (Figure 3.b) is the best one
for our example. All the information that constitute a rota-
tion pattern is available from theleft andright links on
the bottom-up adjust path that starts from the splitted node.

The balancing can be obtained in exactly 6 messages for
move(f) andmove(g), and 3 messages formove(d)
because the subtree rooted ate remains in that case the
same. When a nodea receives an adjust message from its
modified child (b in our example), it knows the right link
c and gets the links fore, d, f andg which can be main-
tained incrementally in the chain of adjustment messages.
If a detects that it is unbalanced, it takes account of the in-
formation represented in the links to determine the subtree
f, g or d which becomes the sibling ofc.

The overlapping coverage must also be updated for the
subtrees rooted atf, d, g andc.

3 Algorithms

We present now the main algorithms of the SD-tree,
namely insertion, deletion, and point and window queries.
Recall that all these operations rely on animageof the struc-
ture (see above) which helps to remain as much as possible
near the leaves level in the tree, thereby avoiding root over-
loading. Moreover, as a side effect of these operations, the
image is adjusted through IAMs to better reflect the current
state of the structure.

The main SD-Rtree variant considered in what follows
maintains an image on the client component, although we
shall investigate in our experiments another variant that
stores an image on each server component. Initially a client
C knows only itscontact server. The IAMs allow to ex-
tend this knowledge and avoid to overflood this server with
insertions that must be forwarded later on.

Insertion

In order to insert an objecto with rectanglembb, C

searches its local image as follows:

5



1. all the data links in the image are considered first; if a
link is found whose directory rectangle containsmbb,
it is kept as a candidate; when several candidates are
found, the one with the smallest dr is chosen;

2. if no data link has been found, the list of routing links
are considered in turn; among the links whose dr con-
tains mbb, if any, one chooses those with the mini-
mal height (i.e., those which correspond to the smallest
subtrees); if there are still several candidates, the one
with the smallest dr is kept;

The rationale for these choices is that one aims at finding
the data node which can storeo without any enlargement. If
it happens that several choices are possible, the one with the
minimal coverage is chosen because it can be estimated to
be the most accurate one. If the above investigations do not
find a link that coversmbb, the data link whose dr is the
closest tombb is chosen. Indeed one can expect to find the
correct data node in the neighborhood ofd, and therefore in
the local part of the SD-Rtree.

If the selected link is of typedata, C addresses a mes-
sage INSERT-IN-LEAF to S; else the link refers to a routing
node andC sends a message INSERT-IN-SUBTREE to S.

• (INSERT-IN-LEAF message)S receives the message;
if the directory rectangle of its data nodedS covers
actually o.mbb, S can take the decision to inserto

in its local repository; there is no need to make any
other modification in the distributed tree (if no split oc-
curs); else the message isout of range, and a message
INSERT-IN-SUBTREE is routed to the parentS′ of dS ;

• (INSERT-IN-SUBTREE message) when a serverS′ re-
ceives such a message, it first consults its routing node
rS′ to check whether its directory rectangle coverso;
if no the message is forwarded to the parent until a sat-
isfying subtree is found (in the worst case one reaches
the root); if yes the insertion is carried out fromrS′

using the classical Rtree top-down insertion algorithm.
During the top-down traversal, the directory rectangles
of the routing nodes may have to be enlarged.

If the insertion could not be performed in one hop, the
server that finally insertso sends an acknowledgment toC,
along with an IAM containing all the links collected from
the visited servers.C can then refresh its image.

The insertion process is shown on Figure 4. The client
chooses to send the insertion message toS2. Assume that
S2 cannot make the decision to inserto, becauseo.mbb

is not contained ind2.dr. ThenS2 initiates a bottom-up
traversal of the SD-Rtree until a routing node whose dr cov-
erso is found (nodec on the figure). A classical insertion
algorithm is performed on the subtree rooted atc. Theout-
of-range path(ORP) consists of all the servers involved in

this chain of messages. Their routing and data links consti-
tute the IAM which is sent back toC.

...

...

a b

c

r

S1 S2 S3 S4 S5... ...s1 s2 s3 s4 s5

ORP

Image Adjustment Message

insertion message

image

Client

Figure 4. The insertion algorithm

Initially the image ofC is empty. The first insertion
query issued byC is sent to the contact server. More than
likely this first query is out of range and the contact server
must initiate a path in the distributed tree through a subset
of the servers. The client will get back in its IAM the links
of this subset which serve to construct its initial image.

An image becomes obsolete as splits occur and new
servers are added to the system. One expects that the out-
of-range path remains local and involves only the part of the
tree that changed with respect to the client image.

In the worst case a clientC sends to a serverS an out-
of-range message which triggers a chain of unsuccessful
INSERT-IN-SUBTREE messages fromS to the root of the
SD-Rtree. This costslog N messages. Then another set of
log N messages is necessary to find the correct data node.
Finally, if a split occurs, another bottom-up traversal might
be required to adjust the heights along the path to the root.
So the worst-case results inO(3 log N) messages. How-
ever, if the image is reasonably accurate, the insertion is
routed to the part of the tree which should host the inserted
object, and this results in a short out-of-range path with
few messages. This strategy reduces the workload of the
root since it is accessed only for objects that fall outside the
boundaries of the most-upper directory rectangles.

Deletion

Deletion is somehow similar to that in an R-Tree [7]. A
serverS from which an object has been deleted may ad-
just covering rectangles on the path to the root. It may also
eliminate the node if it has too few objects. The SD-Rtree
relocates then the remaining objects to its siblingS′ in the
binary tree. NodeS′ becomes the child of its grandparent.
An adjustment of the height is propagated upward as neces-
sary, perhaps requiring a rotation.

Point queries

The point query algorithm uses a basic routine, PQ-
TRAVERSAL, which is the classical point-query algorithm
for Rtree: at each node, one checks whether the point ar-
gumentP belongs to the left (resp. right) child’s directory
rectangle. If yes the routine is called recursively for the left

6



(resp. right) child node.
First the client searches its image for a data noded whose

directory rectangle containsP , according to its image. A
point query message is then sent to the serverSd (or to
its contact server if the image is empty). Two cases oc-
cur: (i) the data node rectangle on the target server contains
P ; then the point query can be applied locally to the data
repository, and a PQTRAVERSAL must also be routed to
the outer nodeso in the overlapping coverage arrayd.OC

whose rectangle containsP as well; (ii) an out-of-range oc-
curs (the data node on serverSd does not containP ). The
SD-Rtree is then scanned bottom-up fromSd until a rout-
ing noder that containsP is found. A PQTRAVERSAL is
applied fromr, and from the outer nodes in the overlapping
coverage arrayr.OC whose directory rectangle containsP .

This algorithm ensures that all the parts of the SD-Rtree
which may contain the point argument are visited. The over-
lapping coverage information stored at each node avoids to
visit the root for each query.

With an up-to-date client image, the target server is cor-
rect, and the number of PQTRAVERSAL which must be per-
formed depends on the amount of overlapping with the leaf
ancestors. In general the cost can be estimated to 1 message
sent to the correct server when the image is accurate, and
within O(log N) messages with an outdated image.

Window queries

Window queries are similar to point queries. Given a
windowW , the client searches its image for a link to a node
that containsW . The CHOOSEFROMIMAGE procedure can
be used. A query message is sent to the server that hosts the
node. There, as usual, an out-of-range may occur because
of image inaccuracy, in which case a bottom-up traversal is
initiated in the SD-Rtree. When a routing noder that actu-
ally coversW is found, the subtree rooted atr, as well as the
overlapping coverage ofr, allow to navigate to the appro-
priate data nodes. The algorithm is given below. It applies
also, with minimal changes, to point queries. The routine
WQTRAVERSAL is the classical Rtree window query algo-
rithm adapted to a distributed context.

WINDOWQUERY (W : rectangle)
Input: a windowW

Output: the set of objects whosembb intersectsW
begin

// Find the target server
targetLink := CHOOSEFROMIMAGE(Client.image,W )
// Check that this is the correct server. Else move up the tree
node := the node referred to bytargetLink;
while (W 6⊆ node.dr and node is not the root) // out of range

node := parent(node)
endwhile
// Now node containsW , or node is the root
if (node is a data node)

Search the local data repositorynode.data

else
// Perform a window traversal fromnode

WQTRAVERSAL (node, W )
end
// Always scan theOC array, and forward
for each (i, oci) in node.OC do

if (W ∩ oci 6= ∅) then
WQTRAVERSAL (outernode(i), W )

endif
end for

end

The analysis is similar to that of point queries. The num-
ber of data nodes which intersectW depends on the size
of W . Once a node that containsW is found, the WQ-
TRAVERSAL must be broadcasted towards these data nodes.
The maximal length of each of these broadcasted message
paths isO(log N). Since the requests are forwarded in par-
allel, and result each in an IAM when a data node is finally
reached, this bound on the length of a chain guarantees that
the IAM size remains small.

4 Experimental evaluation

We performed several experiments to evaluate the per-
formance of our proposed architecture over large datasets of
2-dimensional rectangles, using a distributed structure sim-
ulator written in C. Our datasets are produced by the GSTD
generator [16]. The experimental study involves the follow-
ing variants of the SD-Rtree:
BASIC. This variant does not use an image on the client
nor on the servers. Each request, whether it is an insertion,
a point query or a window query, is sent to the server that
maintains the root node. From there we proceed to a top-
down traversal of the tree to reach the adequate server. This
variant is implemented for comparison purposes, since the
high load of the root levels makes it unsuitable as a SDDS.
IMCLIENT. This is the main variant described in the previ-
ous sections. Each client component builds an image of the
SD-Rtree structure, and corrects incrementally this image
through adjustment messages. We recall that servers have
their actual routing nodes they use for query forwarding.
IMSERVER. The third variant maintains an image on each
server component and not on the client component. This
corresponds to an architecture where many light-memory
clients (e.g., PDA) address queries to a cluster of intercon-
nected servers. We simulate this by choosing randomly, for
each request (insertion or query) a contact server playing
the role of a services provider. The contact server uses its
own image.

We study the behavior of the different variants for inser-
tions ranging from 50,000 to 500,000 objects (rectangles).

7



We also execute against the structure 0-3,000 point and win-
dow queries. The cost is measured as the number of mes-
sages exchanged between server. The size of the messages
remains, as expected, so small (at most a few hundreds of
bytes) that this can be considered as negligible. The data
node on each server is stored as a main memory R-tree, and
the capacity of the servers is set to 3,000 objects.

Cost of insertions

For the three variants we study the behavior after an ini-
tialization of the SD-Rtree with 50,000 objects. This avoids
partially the measures distortion due to the cost of the ini-
tialization step which affects primarily the first servers.The
comparisons between the different techniques are based on
the total number of messages received by the servers, and
on the load balancing between servers.

Figure 5 shows the total number of messages for inser-
tions of objects following a uniform distribution. It illus-
trates the role of the images. While BASIC requires on av-
erage 8 messages when the number of insertions is 500,000,
IMSERVER needs 6 messages on average, thus a 25% gain.
The cost of each insertion for the BASIC variant is approx-
imately the length of a path from the root to the leaf. The
final, maximal, height of the tree is here 8. Additional mes-
sages are necessary for height adjustment and for OC main-
tenance, but their number remains low.

Figure 5. Number of messages for insertion

With IMSERVER, each client routes its insertions to its
contact server. When the contact server has an up-to-date
image of the structure, the correct target server can be
reached in 2 messages. Otherwise, an out-of-range occurs
and some forwarding messages are necessary along with an
IAM. We experimentally find that the average number of
additional messages after an out-of-range is for instance 5
with 252 servers and 500,000 insertions. The gain of 25%
is significant compared to the BASIC variant, but even more
importantly this greatly reduces the unbalanced load on the
servers (see below).

Maintaining an image on the client ensures a drastic im-
provement. The average number of messages to contact the
correct server decreases to 1 message on average. The con-

vergence of the image is naturally much faster than with
IMSERVER because a client that issuesm insertions will
get an IAM for the part of thesem insertions which turns
out to be out-of-range. Using the IMSERVERvariant and the
same number of insertions, a server will get onlym

N
inser-

tions requests (N being the number of servers), and much
less adjustment messages. Its image is therefore more likely
to be outdated. Our results show that the IMCLIENT variant
leads to a direct match in 99.9% of the cases.

Table 1 summarizes the characteristics of the SDR-tree
variants, initialized as above, for a large number of inser-
tions. With a uniform distribution, the tree grows regularly
and its height follows exactly the rule2height−1 < N ≤
2height. The average load factor is around70%, i.e., around
the well-known typicalln 2 value. The BASIC variant re-
quires a few more messages than the height of the tree, be-
cause of height adjustment and overlapping coverage main-
tenance. On the average, the number of messages per inser-
tion is equal to the final height of the tree. With IMSERVER

the number of messages is lower because (i) a few forward-
ing messages are sufficient if the contacted node has split, in
which case the correct server can be found locally, and (ii)
if no information regarding the correct server can be found
in the image, an out-of-range path is necessary.

nb objects nb serv. height load(%) BASIC IMSERV IMCL

50,000 58 6 57.5 6 3 5
100,000 64 6 78.1 6 3 3
150,000 108 7 61.7 6 3 3
200,000 125 7 66.7 7 4 3
250,000 127 7 78.7 7 4 3
300,000 166 8 70.3 7 4 3
350,000 207 8 64.4 8 5 3
400,000 233 8 64.4 8 5 3
450,000 240 8 69.4 8 5 3
500,000 243 8 75.4 8 5 3

Table 1. Number of messages per insertion

The length of an out-of-range path should be the height
of the tree on the average. But the heuristics that con-
sists in choosing the “closest” server in the image (i.e., the
one with the smallest necessary directory rectangle enlarge-
ment) turns out to be quite effective by reducing in most
cases the navigation in the SD-Rtree to a local subtree. Ta-
ble 1 shows for instance that with a tree of height 7 with 127
servers, only 4 additional messages are necessary to reach
the correct server (2 bottom-up, and 2 top-down messages).

Finally, the average number of messages for IMCLIENT

does no longer depend on the height of the tree. After a
short acquisition step (see the analysis on the image conver-
gence below), the client has collected enough information
in its image to contact either directly the correct server, or
at least a close one. The difference in the number of mes-
sages with the IMSERVER version lies in the quality of the
image, since a client quickly knows almost all the servers.

8



Figure 6. Messages distribution for insertions

Figure 6 analyzes the distribution of messages with re-
spect to the position of a node in the tree. Using the BA-
SIC variant, the servers that store the root or other high-
level internal nodes have much more work than the oth-
ers. Basically a server storing a routing node at leveln re-
ceives twice more messages than a server storing a routing
node at leveln − 1. This is confirmed by the experiments,
e.g., the server that manages the root handles 12.67% of
the messages, while the servers that manage its children re-
ceived 6.38%. Figure 6 shows that maintaining an image
(either with IMSERVER or IMCLIENT) not only allows to
save messages, but also distributes much more evenly the
workload.

The distribution depends actually on the quality of the
image. With IMSERVER, each serverS is contacted with
equal probability. If the image ofS is accurate enough,
S will forward the message to the correct serverS′ which
stores the object. Since all the servers have on average the
same number of objects, it is expected that each server re-
ceives approximatively the same number of messages. At
this point, for a uniform distribution of objects, the load
is equally distributed over the server. The probability of
having to contact a routing nodeN decreases exponentially
with the distance between the initially contacted data node
andN . The initial insertion of 50,000 objects results in a
tree whose depth is 5, hence the lower number of messages
for the nodes with height 1, 2 or 3, since they are newer.

Finally the last column illustrates the balancing of the
workload when the client keeps an image. Since a client
acquires quickly a complete image, it can contact in most
case the correct server. The same remark holds for nodes
whose level is 1, 2 or 3 as above.

There is a low overhead due to the balancing of the dis-
tributed tree. We perform several experiments to evaluate
this overhead. With our 3000-objects capacity and 500,000
insertions of uniformly distributed data for instance, we
need only 440 messages for updating the heights of the sub-
trees and 0 for rotations, to maintain the tree balanced,i.e.,

Figure 7. Cost of query answering

around 1 message for every 1000 insertions.
Experiments with skewed data (not reported here due to

space limitations) show a similar behavior of the structure.
The only noticeable difference is that more messages are
necessary for maintaining the height (640 instead of 440 for
500,000 insertions) and additional messages are required to
balance the tree (310). Nonetheless on average, only 1 mes-
sage per 500 insertions is necessary for maintaining the tree.
(in the worst caselog(nbservers) and for balancing since
the reorganization remains local.

Cost of queries

The following experiments create first a tree by inserting
200,000 objects uniformly distributed. One obtains a tree
composed of 107 servers with a maximal height of 7. Then
we evaluate 0-3,000 queries.

Figure 7 shows the gain of the image-aware variants
compared to the BASIC one. Since the tree remains stable
(no insertions), we need on average a constant number of
messages to retrieve the answer in BASIC. If there were no
overlap, this number could be predicted to be 7, the height
of the tree. The overlapping costs here 2 additional mes-
sages on average. As expected the variants which rely on
an image outperform BASIC. The number of messages per
query decreases with the number of queries, as the server
or the client, depending on the variant, acquires a more
faithful image and thus contacts more and more frequently
the correct server(s) directly. The convergence is faster for
IMCLIENT than for IMSERVER. IMCLIENT appears very
efficient even for a small number of queries. After 3,000
queries, the search with both variants become almost three
times faster than with BASIC.

Window queries experiments give similar results. The
higher cost reported, for all variants, is due to the overlap
between the window and the dr of the servers.

Figure 8 shows the ratio of correct matches when an im-
age is used for point query. With IMSERVER, after 1500
(resp. 2500) queries, any server has an image that per-
mits a correct match in 80% (resp. 95%) of the cases. For

9



Figure 8. Good matches for point queries

IMCLIENT, only 600 queries are necessary, and with 200
queries the structure ensures a correct match for 80% of the
queries. This graph confirms the results of Figure 7, with
very good results for IMCLIENT even when the number of
queries is low.

Figure 9. Messages distribution for queries

Finally Figure 9 confirms that using an image serves to
obtain a satisfying load balancing, for the very same reasons
already given in the analysis of the insertion algorithm.

5 Conclusion

The SD-Rtree provides the Rtree capabilities for large
spatial data sets stored over interconnected servers. The dis-
tributed addressing and specific management of the nodes
with the overlapping coverage avoid any centralized calcu-
lus. The analysis, including the experiments, confirmed the
efficiency of our design choices. The scheme should fit the
needs of new applications of spatial data, using endlessly
larger datasets.

Future work on SDR-tree should include other spatial
operations: kNN queries, distance queries and spatial joins.
One should study also more in depth the concurrent dis-
tributed query processing. As for other well-known data
structures, additions to the scheme may perhaps increase the
efficiency in this context. A final issue relates to the fanout

of our structure. The binary choice advocated in the present
paper favors an even distribution of both data and opera-
tions over the servers. A larger fanout would reduce the
tree height, at the expense of a more sophisticated mapping
scheme. The practicality of the related trade-offs remainsto
be determined.

References

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R*tree : An Efficient and Robust Access Method for Points
and Rectangles. InSIGMOD, pages 322–331, 1990.

[2] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying Peer-to-Peer Networks Using P-Trees. In
Proc. Intl. Workshop on the Web and Databases (WebDB),
pages 25–30, 2004.

[3] R. Devine. Design and Implementation of DDH: A Dis-
tributed Dynamic Hashing Algorithm. InFoundations of
Data Organization and Algorithms (FODO), 1993.

[4] C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtre, a Scal-
able Distributed Rtree. Technical report, Lamsade, 2006.
http://www.lamsade.dauphine.fr/rigaux/sdrtree.pdf.

[5] V. Gaede and O. Guenther. Multidimensional Access Meth-
ods.ACM Computing Surveys, 30(2), 1998.

[6] Y. Garcia, M. Lopez, and S. Leutenegger. On Optimal Node
Splitting for R-trees. InVLDB, 1998.

[7] A. Guttman. R-trees : A Dynamic Index Structure for Spa-
tial Searching. InSIGMOD, pages 45–57, 1984.

[8] S. E. Hambrusch and A. A. Khokhar. Maintaining Spatial
Data Sets in Distributed-Memory Machines. InProc. Intl.
Parallel Processing Symposium (IPPS), 1997.

[9] H. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced
Tree Structure for Peer-to-Peer Networks. InVLDB, pages
661–672, 2005.

[10] H. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou.
VBI-Tree: A Peer-to-Peer Framework for Supporting Multi-
Dimensional Indexing Schemes. InProc. Intl. Conf. on Data
Engineering (ICDE), 2006.

[11] J. S. Karlsson. hQT*: A Scalable Distributed Data Structure
for High-Performance Spatial Accesses. InFoundations of
Data Organization and Algorithms (FODO), 1998.

[12] V. Kriakov, A. Delis, and G. Kollios. Management of Highly
Dynamic Multidimensional Data in a Cluster of Worksta-
tions. InEDBT, pages 748–764, 2004.

[13] W. Litwin and M.-A. Neimat. k-RP*S: A Scalable
Distributed Data Structure for High-Performance Multi-
Attribute Access. InProc. Intl. Conf. on Parallel and Dis-
tributed Inf. Systems (PDIS), pages 120–131, 1996.

[14] W. Litwin, M.-A. Neimat, and D. A. Schneider. RP*: A
Family of Order Preserving Scalable Distributed Data Struc-
tures. InVLDB, pages 342–353, 1994.

[15] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
A Scalable, Distributed Data Structure.ACM Trans. on
Database Systems, 21(4):480–525, 1996.

[16] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On
the Generation of Spatiotemporal Datasets. InProc. Intl.
Conf. on Large Spatial Databases (SSD), 1999.

10


