
About an implementation "detail" : a few ideas to speed up the 

execution and the C++ programming (in Operations Research)

Daniel Porumbel1

1 Conservatoire National des Arts et Métiers, CEDRIC, 75003, Paris, France. daniel.porumbel@cnam.fr

[…]  so  for  the  most  part  the  Commodore  on  the
quarter-deck  gets  his  atmosphere  at  second  hand
from  the  sailors  on  the  forecastle.  He  thinks  he
breathes it first; but [this is] not so.
Chapter 1 "Looming", Moby-Dick

Introduction

The execution speed of any practical algorithm clearly depends on a constant
complexity factor δ closely related to the quality of the implementation. After ten
years of talks at this annual (Roadef) congress,  I finally realized that all of my
talks  invariably  end  with  a  line  like  "And  finally,  I  will  spare  you  the
implementation details because I prefer to focus on the essentials and on the
high level concepts". Despite its merits, this sentence is too simplistic. It is likely
to divert a fast reader from the truth. Like a backdoor in software, an unspoken
consequence is that the (constant complexity factor associated with) the quality
of the implementation has no relevant impact on the total computational cost
and can  be  ignored.  This  constant  complexity  factor  δ is  also  invisible  when
calculating theoretical complexities such as O(n²), O(n² log n), etc. But imagine a
salesman saying that the cost to pay is 1000$ multiplied by a some constant
factor δ=3 or δ=6 that has no importance in absolute terms. With all due respect
to all rich people for whom 1000$ or 3000$ is more or less the same, I would not
let  myself  be convinced so easily. I  am even very grateful  to  my destiny for
having spared me the emptiness of an existence in such disproportionate luxury.

Some years ago many used to belittle the constant complexity factor δ  because
they honestly thought the clock frequency of CPUs will never stop to increase
exponentially.  But this proved to be simply a mirage partly fueled by a superficial
interpretation of the law of Moore. Although the number of transistors in a CPU
can indeed double every 18 months, the clock frequency has tended to stagnate
since 2004 and some physical limits have been reached. I must confess I have
also written papers with no implementation that contain only complexity proofs
(e.g., in the theory of sub-modular functions). Still, I really do not want to forget
about the constant complexity factor δ nor about the programming time needed
to  implement  practical  algorithms.  If  an  algorithm is  great  in  theory  but  too
difficult to implement, it will never be successful (think of the ellipsoid method).



Although the theory proposes many tools to determine the computation time, the
practice  is  far  more  complex  and  easily  escapes  the  simplifications  and
axiomatizations  of  the theory.   The number of  factors  that  come into play  is
incalculable.  I  usually  indicate  in  my  articles  a  few  factors  such  as:  the
programming  language  (C++),  the  clock  frequency,  the  amount  of  RAM,  the
operating system, etc. It is easy to understand I am used to overlook many other
aspects, such as the cache hierarchy, the compiler optimizations, the speed of
the  system  bus  that  manages  the  access  of  the  CPU  to  the  memory,  the
hardware quality, and so on -- this list could grow endlessly.  

This list is actually so long that it is impossible to enumerate all these practical
factors  and  alll  their  interactions  to  determine  the  value  of  the  constant
complexity  factor  δ.  There  is  only  one  fact  that  can  ease  the  task  of  a
programmer  working  in  (optimization)  research:  we  do  not  necessarily  need
advanced  optimization  programming  tricks;  the  functionalities  of  a  rather
minimalist language like C are sufficient, at least for writing prototypes.  We do
not actually need any high-sounding or esoteric programming concept, such as
denotational  semantics,  multiple  dispatch,  factory  methods  continuations
polymorphism, auto-boxing, complex inheritance relationships, friendly classes,
etc – this list may also grow endlessly .

However,  I  can  recall  that  object-oriented  programming  was  invented  by
researchers  in  optimization  and  Operations  Research  (OR)  who  needed  more
organization and more structure in their code. This led to the Simula language
which greatly influenced Stroustrup to design C++. It  cannot be said that the
field of optimization and OR can never have a positive influence on computer
science, or that it would be useless to focus on ideas/practices that would ease
the burden of OR programmers.

A few programming practices and the age-old advantage of learning by yourself

My talk will also address a few programming practices , that I use to develop C++
applications in optimization and OR (cedric.cnam.fr/~porumbed/CODE_GUIDELINES).
Here's a first principle: performance is a priority in optimization and you have to
write a code that is as transparent as possible, i.e. you have to exactly know what
happens when a block of code is executed.  I'm not going to give advices on how
you should write code. The designer of C++ solved this question unequivocally:
"C++ is deliberately designed to support a variety of styles rather than a would-
be 'one true way' ". In addition, I assume that I have a rather atypical C++ style.
In fact, I am living proof that Linus Torvalds was (almost) right when he said "the
only way to do good, efficient, and system-level and portable C++ ends up to
limit yourself to all the things that are basically available in C."

These practices enabled me to write many optimization algorithms quite rapidly.
For example, my second paper proposed this year (at Roadef) relies on a code of
about  14000 lines and the programming task took about  a  third  of  the total
working  time  (2-3  months).  Although  I  programmed  myself  the  algorithms
associated to most of my papers, the coding time was never too important. By
programming all  algorithms by myself,  I  realized I  benefited from an  age-old
advantage concerning all experiences we may have under the sun. Anything that
you discover by yourself is unforgettable ; the best way to discover all things is
always  through direct  experience  and not  through the explanations  given by
someone else - in the spirit of the motto of this paper.


