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Abstract

Given a point x inside a polytope P and a direction d ∈ Rn, the projection of x along d asks
to find the maximum step length t∗ such that x + t∗d is feasible; we say x + t∗d is a pierce point
because it belongs to the boundary of P. In [13], we only explored the idea of projecting the origin
0n along integer directions, focusing on dual polytopes P in Column Generation models. In this work,
we address a more general projection (intersection) sub-problem, considering arbitrary interior points
x ∈ P, arbitrary non-integer directions d ∈ Rn, and we solve problems beyond the scope of Column

Generation, e.g., robust optimization or Benders decomposition problems. Generalizing the standard
separation sub-problem of the widely-used Cutting-Planes, the above projection sub-problem serves as
the main building block for designing a new Projective Cutting-Planes algorithm to optimize over
polytopes P with prohibitively-many constraints. At each iteration, the Projective Cutting-Planes

selects a point xnew on the segment joining the points x and x+ t∗d determined at the previous iteration.
Then, it projects xnew along the direction dnew pointing towards the current optimal (outer) solution (of
the current outer approximation of P), so as to generate a new pierce point xnew + t∗newdnew and a new
constraint of P. By re-optimizing the linear program enriched with this new constraint, the algorithm
finds a new current optimal (outer) solution and moves to the next iteration by updating x = xnew

and d = dnew. The Projective Cutting-Planes improves upon the standard Cutting-Planes in the
sense that it generates a feasible inner solution x + t∗d (a primal bound) at each iteration. These inner
solutions converge to an optimal solution opt(P) and, in this sense, the Projective Cutting-Planes is
more similar to an interior point method than to the Simplex algorithm. Numerical experiments on four
problems in different optimization settings confirm the potential of the proposed ideas.

1 Introduction

Optimizing Linear Programs (LP) with prohibitively many constraints has a long and rich history in math-
ematical programming. The well-established Cutting-Planes algorithm proceeds by iteratively removing
infeasibility. It maintains at each iteration it an outer approximation Pit of the feasible polytope P,
i.e., a polytope Pit defined only by a subset of the constraints of P, so that Pit ⊇ P. The standard
Cutting-Planes can be seen as an outer method in the sense that it converges towards an optimal solution
opt(P) through a sequence of outer (infeasible) solutions; as such, for a maximization problem, it generates
a convergent sequence of upper bounds optVal(P1) ≥ optVal(P2) ≥ optVal(P3) ≥ · · · ≥ optVal(P). The
most canonical Cutting-Planes has no general built-in mechanism to generate a convergent sequence of fea-
sible inner solutions. In contrast, an inner method constructs a convergent sequence of inner feasible solutions
xit that converge towards opt(P) along the iterations it. We can say the Projective Cutting-Planes

algorithm proposed in this paper is both an inner and an outer method, in the sense that it generates a
convergent sequence of both inner and outer solutions. We refer the reader to (Section 1.1 of) [13] for a
review of existing work concerning inner methods, outer methods, the intersection sub-problem and related
ideas.

The proposed Projective Cutting-Planes is based on an iterative operation of projecting an interior
point onto facets of P, as illustrated in Figure 1. At each iteration it, an inner solution xit ∈ P is
projected towards the direction dit of the current optimal outer solution opt(Pit−1), i.e., setting dit =
opt(Pit−1) − xit. This is referred to as the projection (or intersection) sub-problem: determine t∗it =
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Figure 1: The first three iterations of the Projective Cutting-Planes on a linear program with 2 variables.
At the first iteration, the projection sub-problem projects x1 = 0 = [0 0]> along the objective function, as
depicted by the black dashed arrow. At iteration it = 2, the midpoint x2 of this black arrow is projected
towards the direction of the optimal outer solution opt(P1) — at iteration 1, the outer approximation
P1 ⊃ P only contains the largest triangle. This generates a second facet (blue solid line) that is added to
the facets of P1 to construct P2. The third sub-problem (in red) takes the midpoint x3 between the blue
square and the blue circle (the last pierce point) and projects it towards opt(P2).

max {t : xit + tdit ∈P}. By solving this sub-problem, one determines a pierce (hit) point xit + t∗itdit and
a new (first-hit) constraint of P, which is added to the constraints of Pit−1 to construct Pit. At next
iteration it + 1, the Projective Cutting-Planes takes a new interior point xit+1 on the segment joining
xit and xit + t∗itdit, and it projects xit+1 along dit+1 = opt(Pit)− xit+1.

To solve the intersection sub-problem and determine t∗ = max {t : x + td ∈P}, one has to find a (first-
hit) constraint satisfied with equality by x + t∗d. This implicitly solves the separation sub-problem for all
points x + td with t ∈ R+, because this first-hit constraint separates all solutions x + td with t > t∗ while
the points x + td with t ∈ [0, t∗] can not be separated. A simplified version of the projection sub-problem
limited to x = 0n was already studied in our previous work related to Column Generation [13] or Benders
decomposition models [14]. In the current work, we seek maximum generality in terms of projections: we
will project arbitrary interior points x ∈P along arbitrary directions d ∈ Rn, and we will report numerical
experiments on more problems than in [13] and [14] together.

In loose terms, the proposed algorithm is reminiscent of an Interior Point Method (IPM) because it
produces a sequence of interior points that converge to the optimal solution. An IPM moves from solution to
solution by advancing along a Newton direction at each iteration, in an attempt to solve first order optimality
conditions [7]. In principle, performing a Newton step in this direction is similar to solving a projection sub-
problem, although the projection is different because it executes a full step-length, i.e., it advances along the
given direction up to the pierce point where it intersects a first-hit constraint. On the other hand, an IPM
does not advance on the Newton direction to fully solve the first order conditions at each iteration, since
these conditions correspond to a primal objective function penalized by a barrier term (that only vanishes at
the last iteration). A primal-dual Column Generation IPM generates well-centered dual solutions along the
iterations, by keeping them in the proximity of a central path [8, § 3.3], which bears certain similarities to
the construction of the feasible solutions x1, x2, x3, . . . of the Projective Cutting-Planes. However, the
central path in IPM consists of solutions which are interior with regards to the current outer approximation
Pit ⊃P at iteration it, but they do not necessarily belong all to P.

By generalizing the separation sub-problem, the projection sub-problem is inherently more difficult. It
might even seem computationally far more expensive, but we will show this is not always the case. In fact,
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we will present four techniques that can bring us very close to designing a projection algorithm that is as
fast as the separation one.

– A first approach consists of generalizing the main ideas underlying the separation algorithm without
increasing the computational complexity. This is used in Section 3.1 in the context of a robust optimiza-
tion problem with prohibitively-many robust cuts [6]. In a nutshell, solving the separation sub-problem
on a given x ∈ Rn reduces to minimizing a difference of the form ca − (a + â)>x over a set of nom-
inal constraints (a, ca) ∈ Anom and over all possible deviations â of the nominal coefficients a. The

intersection sub-problem project(x→ d) reduces to minimizing a ratio
ca − (a + â)>x

(a + â)>d
over the same

nominal constraints Anom and over the same deviations â of a. Both sub-problems can be solved by
iterating over the nominal constraints Anom; for each (a, ca) ∈ Anom, the separation sub-problem tries to
minimize the above difference while the projection sub-problem tries to minimize the above ratio. So
asking to minimize a ratio instead of a difference, one does not change the nature of the sub-problem
iterative algorithm and does not significantly increase its running time.

– A second technique is applicable to the (numerous) problems in which the constraints of P are given
by the feasible solutions of an auxiliary LP. This is the case for the Benders decomposition models
from Section 3.2 for which the separation sub-problem reduces to an LP. We will show that in such a
case the intersection sub-problem can be formalized as a linear-fractional program: minimize a ratio of
two linear functions subject to linear constraints. Using the Charnes–Cooper transformation [3], it is
possible to translate this linear-fractional program to an equivalent LP of similar size. As such, both
the separation and the projection sub-problems have the computational complexity of solving an LP.

– The above technique can be generalized to the (numerous) problems in which the constraints of P are
given by the feasible solutions of an Integer LP (ILP). We will develop this idea in Section 4.1, where
P is the dual polytope of a Column Generation model for graph coloring; the constraints of P are
given by the primal columns, which are associated to the 0–1 stables of the considered graph. The
separation sub-problem can be formulated as an ILP with all constraints defined by edge inequalities.
The projection sub-problem reduces to an integer linear-fractional program with the same constraints as
the above ILP; by applying a new discrete version of the Charnes-Cooper transformation, this program
can be translated to a Disjunctive LP. This latter Disjunctive LP has a discrete feasible area and can
be solved with the same techniques as the separation ILP, i.e., by a Branch and Bound algorithm
with bounds determined from continuous relaxations. We will argue in Section 4.1.3.1 that there is no
in-depth reason why such a Disjunctive LP should be harder in absolute terms than a similar-size ILP,
especially when both are solved with very similar Branch and Bound methods.

– Finally, we used Dynamic Programming for the Column Generation model for Multiple-Length Cutting-
Stock in Section 4.2. Typically, in Column Generation, if the separation sub-problem can be solved by
Dynamic Programming, so can be the projection sub-problem. The main difference is that the projection
sub-problem usually requires minimizing a ratio instead of a difference. Such a change of objective
function does not always induce an important slowdown because it does not necessarily generate an
explosion of the number of states (subproblems respecting the Bellman’s principle of optimality). Recall
that the most computationally difficult task in Dynamic Programming is to generate all states; once
all states are generated, it is not difficult to return the state of minimum objective value (either for a
linear objective function or for a fractional one).

The remainder is organized as follows. Section 2 is devoted to a detailed description of the proposed
Projective Cutting-Planes. Section 3 illustrates the application of this algorithm on two problems in
which P is defined as a primal (master) polytope, i.e., a robust linear program in Section 3.1 and a Benders
reformulation model in Section 3.2. Section 4 presents the application of the Projective Cutting-Planes on
two Column Generation models (for graph coloring and Multiple-Length Cutting-Stock), where P is defined
as a dual polytope. Section 5 is devoted to numerical results on all above problems, followed by conclusions
in Section 6. Two appendices provide additional insight into the projection algorithms and describe the
experimental settings (and the instances) in greater detail.
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2 Algorithmic Description of the Projective Cutting-Planes

The proposed algorithm is designed to solve a large-scale LP of the following form:

max
{
b>x : a>x ≤ ca, ∀(a, ca) ∈ A

}
= max

{
b>x : x ∈P

}
, (2.1)

where A is a set of (unmanageably-many) constraints. In fact, we will also address a few generalizations and
variations of (2.1). For instance, in the Benders reformulation model (3.2.2a)–(3.2.2c) from Section 3.2 we
will use integer variables x ∈ Zn+. In Section 4, when (2.1) is a dual LP obtained after relaxing an integer
Column Generation model, the goal is actually to find the best rounded-up objective value, i.e., “max b>x”
can be replaced by “max

⌈
b>x

⌉
”. In other cases, “max b>x” can be replaced by “min b>x”, but the proposed

algorithm works exactly in the same manner regardless of the optimization direction.
Let us first briefly recall the standard Cutting-Planes for the above LP (2.1). This method maintains

at each iteration it an outer approximation Pit of P obtained by restricting the constraint set A to a
subset Ait, corresponding to a larger polytope Pit ⊃P. To (try to) separate the current optimal solution
xout = opt(Pit) of this polytope Pit, the most standard Cutting-Planes usually solves the separation sub-
problem min

(a,ca)∈A
ca − a>xout. If the optimum value of this sub-problem is less than 0 for some (a, ca) ∈ A,

then xout is infeasible. In this case, the Cutting-Planes method inserts a>x ≤ ca into the current constraint
set (i.e., it performs Ait+1 = Ait ∪ {(a, ca)}), so as to construct a new more refined outer approximation
Pit+1 and to separate xout /∈ Pit+1. The process is repeated by (re-)optimizing over Pit+1 at the next
iteration, until the current optimal outer solution xout becomes optimal (non-separable).

This work is devoted to a Projective Cutting-Planes method that replaces the above separation sub-
problem with the following one.

Definition 1 (Projection sub-problem) Given an interior point x ∈P and a direction d ∈ Rn, the projection
sub-problem project(x→ d) asks to find:

– the maximum step length t∗ such that x + t∗d is feasible, i.e., t∗ = max {t ≥ 0 : x + td ∈P}. The
solution x + t∗d is referred to as the pierce point. If x + td is a ray of P, the sub-problem returns
t∗ =∞.

– a first-hit constraint (a, ca) ∈ A satisfied with equality by the pierce point, i.e., such that a> (x + t∗d) =
ca; such a constraint certainly exists if t∗ 6=∞.

At the very first iteration, the Projective Cutting-Planes can start by performing a projection along
d1 = b, so as to directly advance along the direction with the fastest rate of objective function improvement,
without forbidding using a problem-specific direction d1. An initial feasible (inner) solution x1 is always
needed because we do not focus on problems for which it is difficult to decide whether (2.1) is feasible or not.
For instance, when possible, we initialize x1 = 0n as in the Column Generation models from Section 4.1 In
certain cases one can also provide a set of initial constraints A0, for example, to impose simple bounds on
the variables (e.g., non-negativity constraints like x ≥ 0n).

By solving project(x1 → d1) at iteration it = 1, the Projective Cutting-Planes determines the first
pierce point x1+t∗1d1 and generates a first-hit constraint (a, ca) ∈ A. After updating A1 = A0∪{(a, ca)}, the
first outer approximation P1 is constructed. Then, the Projective Cutting-Planes executes the following
steps at each iteration it ≥ 2:

1. Select an inner solution xit, usually by taking a point on the segment joining xit−1 and xit−1 +
t∗it−1dit−1, i.e., on the segment between the previous inner solution and the last pierce point.

2. Consider the direction dit = opt(Pit−1) − xit pointing towards the current optimal (outer) solution
opt(Pit−1). Notice that the objective function value can not deteriorate by advancing along xit → dit

because xit is a simple feasible solution and dit points to the optimal (outer) solution of Pit−1 ⊇P
such that we have optVal(Pit−1) ≥ optVal(P) ≥ b>xit for a maximization problem.

1If 0n is infeasible, one has to find other methods to generate an initial feasible solution x1. For example, one can take
a feasible solution in a smaller LP (with fewer constrains) whose feasible area is a subset of P, as in the case of the robust
optimization problem from Section 3.1.2.
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3. Solve the projection sub-problem project(xit → dit) to determine the maximum step length t∗it, the
pierce point xit + t∗itdit, and a first-hit constraint (a, ca) ∈ A.

4. If t∗it ≥ 1, return opt(Pit−1) as the optimal solution of the initial LP (2.1) over P.

If t∗it < 1, then current optimal solution opt(Pit−1) can be separated, and so, the Projective

Cutting-Planes performs the following:

– set Ait = Ait−1 ∪ {(a, ca)} to obtain a new enlarged constraint set, corresponding to a more
refined outer approximation Pit that excludes opt(Pit−1);

– determine a new current optimal outer solution opt(Pit) by (re-)optimizing the polytope Pit.

– if xit + t∗itdit and opt(Pit) are close enough, stop and return opt(Pit). For instance, if (2.1) is
a relaxation of an integer program (as in Column Generation), the stopping condition is to reach
the same rounded-up value of the lower and the upper bounds.

– repeat from Step 1 after updating it← it + 1.

The above algorithm is finitely convergent because it implicitly solves a separation sub-problem on
opt(Pit−1) at each iteration it, generalizing the standard Cutting-Planes. As hinted at Step 4, if the
intersection sub-problem returns t∗it < 1 at iteration it, then the solution opt(Pit−1) is certainly sepa-
rated by the first-hit constraint (a, ca). In pure theory, in the worst case, the proposed algorithm ends up
enumerating all constraints of P and it then eventually returns opt(P). The fact that this convergence
proof is very short is not completely fortuitous. Building on previous work [13, 14] with longer (convergence)
theorems, the new Projective Cutting-Planes has been deliberately designed to simplify all proofs as
much as possible. As in the case of the most standard Cutting-Planes, we do not envisage proving that the
Projective Cutting-Planes converges in a polynomial number of iterations for any instantiation of (2.1).

2.1 Choosing the interior point xit at each iteration it

Just as the standard Cutting-Planes, the proposed Projective Cutting-Planes can actually be seen as
a rather generic methodology that allows a number of problem–specific adaptations.

A key question for any implementation is the choice of the interior point xit at (Step 1 of) each iteration
it. One might attempt to define xit as the best feasible solution found up to iteration it (the last pierce
point), which actually reduces to assigning xit = xit−1 + t∗it−1dit−1. While this aggressive strategy does
perform well in certain settings, for many problems it may also lead to poor results in the long run — partly
because xit can fluctuate too much from iteration to iteration (this is referred to as the bang–bang effect, see
Section 5.5 for examples). In practice, the best results have often been obtained with a formula of the form
xit = xit−1 +αt∗it−1dit−1, using α = 0.1 for the robust optimization problem (Section 3.1.2), or α = 0.2 for
the Benders reformulation model (Section 3.2.2), or a value of α below 0.5 in the Column Generation model
for Multiple-Length Cutting-Stock. This is reminiscent of interior point algorithms for linear programming
that usually avoid touching the boundary of the polytope before fully converging [7].

The only problem for which we do use the most aggressive definition xit = xit−1 + t∗it−1dit−1 is the
graph coloring Column Generation model from Section 4.1. This xit choice has the advantage of enabling
the resulting Projective Cutting-Planes to improve the objective value b>xit at each new iteration it,
because each projection xit → dit can only increase the objective value, as indicated at Step 2 above.
This way, the lower bounds of this most aggressive Projective Cutting-Planes variant are monotonically
increasing (see Figures 4–5), i.e., they do not exhibit any “yo-yo” effect with ups and downs (as it happens in
many Column Generation algorithms for example). Graph coloring also differs from the other three problems
studied in this paper in the sense that the above aggressive xit definition does not make the inner solutions
xit generated along the iterations it exhibit strong oscillations (i.e., the bang–bang effects are reduced, see
Section 5.5).

More generally, the difference between an aggressive choice (large α) and a “cautious” or well-centered
choice (small α) is intuitively illustrated in Figure 2. The red circle represents an aggressive definition of x2

associated to a large α, so that x2 is very close to the last pierce point x1 + t∗1d1. Such a choice enables the
projection sub-problem at iteration 2 to easily exceed the objective value of the last pierce point x1 + t∗1d1
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Figure 2: Intuitive illustration of two different choices of the interior point x2 at iteration 2. The red choice
is more aggressive while the blue one is more cautious.

by only advancing a little from x2 towards opt(P1) — see how rapidly the red dashed arrow crosses the
black dotted line, i.e., the level set of the last pierce point

{
x ∈ R2

+ : b>x = b> (x1 + t∗1d1)
}

. The blue circle
represents a definition of a point x2 closer to 0n, so that it might be difficult to exceed the objective value of
the last pierce point x1 + t∗1d1 by advancing from this x2 towards opt(P1), see the blue dashed arrow. The
advantage of the blue projection is that it can lead to a stronger (blue) constraint, in the sense that the blue
solid line cuts off a larger area of P1 (i.e., of the largest triangle) than the red solid line.

2.2 Techniques for designing a fast projection algorithm

A challenging aspect when implementing the new method is the design of a fast projection algorithm, be-
cause the iterations of a successful Projective Cutting-Planes should not be significantly slower than the
iterations of the standard Cutting-Planes. For instance, if the projection iterations were two–three times
slower than the separation iterations, the overall Projective Cutting-Planes would probably be too slow,
i.e., it could remain slower than the standard Cutting-Planes even if it converged using half iterations.
Given that the projection sub-problem generalizes the separation one, one could reasonably assume that any
projection algorithm has to be (considerably) slower than the separation algorithm. However, we present
below four techniques that can enable one to design a projection algorithm that competes (very) tightly with
the separation algorithm in terms of computational speed.

Before presenting these four techniques, let us first explain how the projection sub-problem project(x→
d) reduces to minimizing the following fractional program (for any feasible x ∈P and for any d ∈ Rn):

t∗ = min

{
ca − a>x

a>d
: (a, ca) ∈ A, d>a > 0

}
. (2.2.1)

Given the value t∗ that minimizes the above ratio, one can directly check that a>(x + td) ≤ ca holds for
all t ∈ [0, t∗] and for all (a, ca) ∈ A, independently on whether a>d > 0 or not. First, if a>d ≤ 0, then
a>(x + td) ≤ a>x ≤ ca actually holds for all t ∈ [0,∞], simply because a>x ≤ ca follows from x ∈ P.

Secondly, if a>d > 0, then a>(x + td) ≤ ca is equivalent to t ≤ ca−a>x
a>d

which is true for any t ≤ t∗, because
t∗ minimizes the above ratio in (2.2.1). This also shows that it is enough to focus only on the constraints
(a, ca) ∈ A that satisfy a>d > 0 when designing the projection algorithm.

A first projection technique is based on the idea that the separation algorithm can sometimes be generalized
to a projection algorithm without increasing the computation time by a (very) large factor. This can not be
achieved by simply calling the separation algorithm multiple times because such approach would increase the
computation time by a factor of at least 2, or often 3 or 4 in practice (see the last paragraph of Section 3.1.3.1).
This technique is exemplified on the robust optimization problem from Section 3.1. The constraints A of this
problem are defined by extending an initial set of nominal constraints Anom as follows: define a robust cut
(a + â, ca) for each nominal constraint (a, ca) ∈ Anom and for all deviations â of a, i.e., for all vectors â ∈ Rn
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with at maximum Γ non-zero components such that âi ∈ {−0.01 · ai, 0, 0.01 · ai} ∀i ∈ [1..n]. To solve the
separation sub-problem on a given x ∈ Rn, one has to minimize ca − (a + â)>x over all (a, ca) ∈ Anom and

over all deviations â of a. The projection sub-problem (2.2.1) asks to minimize
ca − (a + â)>x

(a + â)>d
over the same

(a, ca) and over the same â as above. The two sub-problems become similar in the sense that the objective
function change (minimize a ratio instead of a difference) does not substantially change the nature of the
subproblem algorithm. More exactly, both sub-problems are essentially solved by iterating over all nominal
constraints Anom, attempting at each element (a, ca) ∈ Anom to decrease either the difference ca − (a + â)>x

or resp. the ratio
ca − (a + â)>x

(a + â)>d
; this distinction (decrease a ratio instead of difference) is not important

enough to drastically alter the running time of the iterative sub-problem algorithm.
The second technique to solve (2.2.1) applies when the constraints A are associated to the (extreme)

solutions of an auxiliary polytope P . This is the case for most Benders decomposition models (Section 3.2)
because the separation sub-problem of such models is often formulated as an LP over a Benders sub-problem
polytope P . In this case, (2.2.1) reduces to a linear-fractional program that can be reformulated as a pure
LP using the Charnes–Cooper transformation [3]. This leads to an algorithm of the same complexity as the
separation one, i.e., they both have the complexity of solving an LP over P .

A third projection technique actually generalizes the above one to the case in which A is given by the
integer feasible solutions of a polytope, as it happens in the Column Generation model for graph coloring
from Section 4.1. In this model, each constraint (a, ca) = (a, 1) ∈ A is associated to a primal column, which,
in turn, is given by the incidence vector a ∈ {0, 1}n of a stable in the considered graph. The stables of the
graph can be seen as the integer solutions of a (stable set) polytope defined by edge inequalities. In this
case, we can use a discrete Charnes-Cooper transformation to reduce (2.2.1) to a Disjunctive LP, i.e., the
integrality constraints ai ∈ {0, 1} are translated to disjunctive constraints of the form ai ∈ {0, α}, where α is
an additional decision variable. In Section 4.1.3.1, we will argue that there is no fundamental reason why such
a Disjunctive LP should always be harder in absolute terms than the ILP used for the separation sub-problem,
especially when both programs are solved with similar Branch and Bound methods (with bounds determined
from continuous relaxations). To show this technique can work on more combinatorial optimization problems
in which the columns are given by the solutions of an ILP, we will also provide brief experiments on a different
coloring problem with different constraints.

The fourth technique can be useful when the constraints A can be (implicitly) enumerated by Dynamic

Programming, as in numerous Column Generation formulations of combinatorial optimization problems.
In many such cases, if the separation sub-problem can be solved by Dynamic Programming, so can be the
projection sub-problem. To solve the separation sub-problem on a given x, the Dynamic Programming scheme
has to enumerate all possible values of ca and a>x, over all feasible (a, ca) ∈ A. If all these values can be listed

in reasonable time, so can be the values of the numerator and the denominator of the ratio ca−a>x
a>d

from the
intersection sub-problem (2.2.1). To reduce the potential values of the numerator for the (Multiple-Length)
Cutting-Stock problems from Section 4.2, we will need however to use truncated solutions x, i.e., such that
each component of x is a multiple of 0.2 (see Section 4.2.3.2).

Finally, if the projection sub-problem is too difficult to be solved exactly in reasonable time, it could
be enough (at certain iterations it) to determine an underestimated feasible step length thit ≤ t∗it, so that
xit + thitdit does not necessarily belongs to the boundary of P. We will implicitly apply this approach in
Section 4.1.4, where we will use an artificial, overly-constrained, graph coloring model, but with a simpler
projection sub-problem. More generally, to certify that such thit represents a feasible step length, one can
simply call the separation sub-problem on xit + thitdit, so that a feasible thit can be seen as a heuristic
step length. Given that the inner solutions xit are not usually chosen from the boundary points of P (see
Section 2.1 above), such an underestimated step length could be useful in certain problems, but such ideas
lie outside the scope of the current paper.
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3 Adapting the New Method for Robust Optimization and Ben-
ders Decompositions Models

This section presents two models that define P as a primal (master) polytope, instantiating the general LP
(2.1) with unmanageably-many constraints. The first model (Section 3.1) is devoted to a robust optimization
problem and the second one explores the Benders’ Cutting-Planes method (Section 3.2).

3.1 A robust optimization problem with prohibitively many cuts

The main idea in robust optimization is that one seeks an optimal solution that has to remain feasible
if certain constraint coefficients deviate (reasonably) from their nominal values. The robust optimization
literature is now constantly growing and the acceptable coefficient deviations can be defined in many ways,
e.g., using linear or ellipsoid uncertainty sets. However, to avoid unessential complication, we here focus only
on the robustness model from [6]; the reader may refer to this paper for more references, motivations and
related ideas. There are two main principles behind this robustness model: (i) the deviation of a coefficient
is at most δ = 1% of the nominal value (ii) there are at most Γ coefficients that are allowed to deviate in
each nominal constraint. The underlying assumption is that the nominal coefficients of a given constraint
can not change all at the same time, always in an unfavorable manner.

3.1.1 The model with prohibitively-many constraints and their separation

Let us first consider a set Anom of nominal constraints that is small enough to be enumerated in practice,
i.e., there is no need of Cutting-Planes to solve the nominal version of the problem (with no robustness).
We then associate to each (a, ca) ∈ Anom a prohibitively-large set DevΓ(a) of deviation vectors â, i.e., vectors
â ∈ Rn that have at maximum Γ non-zero components and that satisfy âi ∈ {−δai, 0, δai} ∀i ∈ [1..n],

using δ = 0.01 in practice. Each such deviation vector â yields a robust cut (a + â)
>

x ≤ ca, so that we
can state (a + â, ca) ∈ A. In theory, each âi (∀i ∈ [1..n]) might be allowed to take a fractional value in the
interval [−δai, δai], thus leading to infinitely-many robust cuts (semi-infinite programming); however, the
strongest robust cuts are always obtained when each non-zero âi is either δai or −δai. One might find at
most

(
n
Γ

)
2Γ deviation vectors for each nominal constraint (a, ca) ∈ Anom, because there are

(
n
Γ

)
ways to choose

the non-zero components of â and each one of them can be either positive or negative, hence the 2Γ factor.
The general large-scale LP (2.1) is instantiated as the following robust optimization problem:

min
{

b>x : (a + â)
>

x ≤ ca ∀(a, ca) ∈ Anom ∀ â ∈ DevΓ(a); ai ∈ [lbi, ubi] ∀i ∈ [1..n]
}

(3.1.1)

Although this problem has a minimization objective unlike general LP (2.1), the main steps of the (stan-
dard or new) Cutting-Planes method described in Section 2 remain exactly the same. The only difference
is that the feasible solutions (pierce points) determined by Projective Cutting-Planes represent upper
(primal) bounds instead of lower bounds. The last condition ai ∈ [lbi, ubi] of (3.1.1) constitutes the initial
constraints A0, most instances using lbi = 0 ∀i ∈ [1..n], i.e., the variables are most often non-negative.

We consider a canonical Cutting-Planes for the above (3.1.1), based on the following separation sub-

problem: given any x ∈ Rn, minimize ca − (a + â)
>

x over all (a, ca) ∈ Anom and over all â ∈ DevΓ(a). For
a fixed nominal constraint (a, ca) ∈ Anom, the strongest possible deviation â>x x of (a, ca) with respect to x
is determined by maximizing âx = arg max

{
â>x : â ∈ DevΓ(a)

}
. To find this âx, one needs to determine

the largest Γ absolute values in the terms of the sum a>x =
∑n
i=1 aixi; this way, â>x x can be written as a

sum of Γ terms of the form δ|aixi|. We next describe how these largest Γ values can be determined by a
partial-sorting algorithm of linear complexity.

Remark 1 If Γ is a fixed parameter, the largest Γ entries in a table of n values (e.g., such as
|a1x1|, |a2x2|, . . . |anxn| above) can be determined in O(n) time. We use a partial-sorting algorithm es-
sentially described as follows: iterate over i ∈ [1..n] and attempt at each step to insert the ith entry in the
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list of the highest Γ values; this operation takes constant time using the appropriate list data structure.2 In
practice, the repeated use of this algorithm takes around 15% of the total running time for Γ ≥ 10. �

Compared to our Cutting-Planes described above, the algorithm from [6] is slightly different because
it returns multiple robust cuts at each separation call. This idea might be very effective in practice, both
for the standard Cutting-Planes and the Projective Cutting-Planes. However, for now, the goal of this
study is to compare the projection and the separation sub-problems in a standard setting, and so, we prefer
a canonical approach with a unique (robust) cut per iteration.

3.1.2 The Projective Cutting-Planes for the robust optimization problem

Before presenting the projection algorithm for the intersection sub-problem (Section 3.1.3 next), let us first
discuss the overall Projective Cutting-Planes for the robust optimization problem (3.1.1). In fact, if we
consider the projection algorithm as a black-box component, the implementation of the remaining components
of the Projective Cutting-Planes becomes rather straightforward.

A key question regards the selection of the interior point xit at each iteration it ≥ 1. As with most
problems studied in this work, experiments suggest that it is not very efficient to define xit as the best feasible
solution found up to the iteration it (the last pierce point). Indeed, while the Projective Cutting-Planes

is able to find better feasible solutions in the beginning by aggressively assigning xit = xit−1 + t∗it−1dit−1,
this variant eventually needs more iterations in the long run. For best long-term results, it is certainly
better to choose a more interior point xit, not too close to the boundary of P, enabling the inner solutions
x1, x2, x3, . . . to follow a central path (a similar concept is used in some interior point algorithms). As such,
we define xit using the formula xit = xit−1 + αt∗it−1dit−1 with α = 0.1 ∀it > 1.

To construct an initial feasible solution x1, one could be tempted to try x1 = 0n, but this is very often
not possible because 0n is usually infeasible. However, it is not difficult to generate x1 by constructing a
feasible solution in a relatively simple LP defined as follows: for each (a, ca) ∈ Anom, generate a constraint

a>x + 2δ|a|>x ≤ ca, where |a| = [|a1| |a2| . . . |an|]>. If the variables x are all non-negative (as in most
instances), than any solution x that satisfies a>x + 2δ|a|>x ≤ ca ∀(a, ca) ∈ Anom is feasible with regards to
all robust cuts — because a robust cut uses a deviation vector â that satisfies â ≤ δ|a|, so that (a + â)>x ≤
a>x + 2δ|a|>x ≤ ca. However, even for the instances that do allow some variables to be negative, the above
LP still generated a feasible solution x1 in practice. The first direction d1 points to the solution of the
nominal problem, i.e., we can take d1 = opt(P0) − x1, where P0 is the polytope of the nominal problem
with no robust cut.

Finally, we noticed that the above LP can remain feasible by replacing a>x + 2δ|a|>x ≤ ca with a>x +
2δ|a|>x + ∆ ≤ ca, for some small ∆ > 0. The use of this parameter ∆ makes the generated solutions x1

more interior, pushing them away from the boundary; experiments suggest it is usually better to start from
such (well-centered) solutions rather than from a boundary point. This is in line with similar ideas in interior
point algorithms for standard LP, i.e., it is better to start out with very interior points associated to high
barrier terms and to converge towards the boundary only at the end of the solution process, when the barrier
terms converge to zero.

3.1.3 Solving the projection sub-problem

Recalling (2.2.1), the intersection sub-problem requires minimizing
ca − (a + â)>x

(a + â)>d
over all nominal con-

straints (a, ca) ∈ Anom and over all deviation vectors â ∈ DevΓ (a) such that (a + â)>d > 0. Just as the
separation algorithm, the projection algorithm iterates over all nominal constraints Anom, in an attempt to
reduce the above ratio (the step length) at each (a, ca) ∈ Anom, i.e., for each (a, ca) ∈ Anom it is possible to

2This list of the largest Γ values is recorded in a self-balancing binary tree, as implemented in the C++ std::multiset data
structure. At each iteration i, the partial-sorting algorithm has to check if the current value vnew is larger than the minimum
value vmin recorded in the tree. If this is the case, the insertion of vnew may make the tree size exceed Γ, and so, vmin has to
be removed. Each insertion and each removal takes constant time with regards to n, by considering Γ as a parameter. However,
these operations can still lead to a non-negligible multiplicative constant factor (like log(Γ)) in the complexity of the partial
sorting algorithm, hence this partial sorting can take 15% of the total running time of the overall Cutting-Planes.
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find several increasingly stronger â that gradually decrease the above ratio. Let t∗i denote the optimal step
length obtained after considering the robust cuts associated to the first i constraints from Anom. It is clear
that t∗i can only decrease as i grows. Starting with t0 = 1, the projection algorithm determines t∗i from t∗i−1

by applying the following five steps:

1. Set t = t∗i−1 and let (a, ca) denote the ith constraint from Anom.

2. Determine the strongest deviation vector âtd with respect to x + td by maximizing:

âtd = arg max
{
â> (x + td) : â ∈ DevΓ(a)

}
. (3.1.2)

For this, one has to extract the largest Γ absolute values from the terms of the sum a> (x + td); we
apply the partial-sorting algorithm used for the separation sub-problem in Remark 1.

3. If (a + âtd)
>

(x+td) ≤ ca, then x+td is feasible with regards to the first i constraints fromAnom (and the
associated robust cuts), because any deviation vector â ∈ DevΓ(a) satisfies â> (x + td) ≤ â>td (x + td).
In this case, we have obtained the final value t∗i = t and we terminate the algorithm (for this value of
i). Otherwise, the robust cut (a + âtd, ca) leads to a smaller feasible step length:

t′ =
ca − (a + âtd)

>
x

(a + âtd)
>

d
< t. (3.1.3)

4. If t′ = 0, then the overall projection algorithm returns t∗ = 0 without checking the remaining nominal
constraints, because it is not possible to return a step length below 0 since x is feasible. In prac-
tice, we used the condition “if t < 10−6” because very small step lengths usually represent numerical
computation errors.

5. Set t = t′ and repeat from Step 2 (without incrementing i). The underlying idea is that the deviation
vector âtd determined via (3.1.2) is not the strongest one with regards to x+ t′d, because âtd generates
the highest deviation in (3.1.2) with regards to a different point (i.e., x + td). But there might exist a
different robust cut (a+ât′d, ca) for the same nominal constraint such that â>t′d (x + t′d) > â>td (x + t′d).
This could further reduce the step length below t′, proving that x + t′d is infeasible.

By sequentially applying the above steps to all constraints (a, ca) ∈ Anom one by one, the step length
returned at the last constraint of Anom provides the sought t∗ value.

3.1.3.1 Comparing the running times of the projection and the separation algorithms

In theory, the above projection algorithm could repeat many times the steps 2-5 for each i, iteratively
decreasing t in a long loop. However, experiments suggest that long loops arise only rarely in practice; the
value of t is typically decreased via (3.1.3) only a dozen of times at most, for all (thousands of) nominal
constraints, i.e., for all i. For many nominal constraints (a, ca) ∈ Anom, the above algorithm only concludes
at Step 3 that x + td does respect all robust cuts associated to (a, ca); for such nominal constraints (for such
i), the only needed calculations are the partial-sorting algorithm (called once at Step 2) and several simple
for loops over [1..n].

Furthermore, the intersection algorithm can even stop earlier without scanning all nominal constraints, by
returning t∗ = 0 at Step 4. An exact separation algorithm could not stop earlier, because ca− (a+ âx)>x can
certainly decrease up to the last nominal constraint (a, ca). As such, the projection algorithm can become
even faster than the separation one in certain cases. Indeed, for the last (very large) instance from Table 1
with Γ = 50, a separation iteration takes around 0.62 seconds (in average), while the projection one takes
0.56 seconds (in average). At the other end of the spectrum, for an instance like nesm with Γ = 50, an
intersection iteration can take about 30% more time than a separation one. All things considered, one can
say that the running time of the above intersection algorithm is similar to that of the separation algorithm.

It would have been substantially less efficient to solve the intersection sub-problem by simply calling the
separation sub-problem multiple times. More exactly, such approach would make the projection sub-problem
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at least twice as slow as the separation one, i.e., one would need to call the separation sub-problem a first
time to find a first robust cut satisfied with equality by some x + td, followed by at least a second call to
check if x + td can be further separated to decrease t. And experiments suggest that a third or a fourth
call might well be needed at many iterations in practice. More generally, one of the goals of the paper is to
explore techniques that can bring us (very) close to designing a projection algorithm as fast as the separation
one.

3.2 The Benders reformulation

3.2.1 The model with prohibitively-many constraints and their separation

First introduced in the 1960s [2], the Benders’ method has nowadays become a widely used Cutting-Planes

approach to solve Integer Linear Program (ILP) of the following form:

min
{
b>x : Bx + Ay ≥ c, x ∈ Zn+, y ≥ 0

}
. (3.2.1)

Generally speaking, x can encode the main decisions and they are also referred to as design variables.
The variables y could quantify flows in network design/loading problems [5], goods delivered to customers
in facility location problems, second–stage uncertain events in two–stage stochastic LPs, etc. The goal is
to minimize the cost b>x of the design decisions x which have to allow y to receive feasible values in
Bx + Ay ≥ c, to enable the underlying system to work properly. The integrality condition x ∈ Zn+ can be
lifted, for instance when solving a linear relaxation of (3.2.1), as needed in a Branch and Bound algorithm.
More generally, one can not rule out that x ∈ Rn+ could represent fractional amounts of installed technology
in certain problems. For notational consistency throughout the paper, we actually swapped (the classical
interpretation of) notations x and y, i.e., in most Benders decomposition papers, y represents the design
decisions and x are the secondary-level (flow) variables [5].

The Benders’ method can actually address even more general programs, introducing a term like f>y in
the objective function of (3.2.1), e.g., to introduce some costs associated to flows. We do not (yet) propose
a projection algorithm for this most general Benders model. However, the above Benders LP (3.2.1) is still
rather general, because it is often realistic to consider (zero flow costs) f = 0n, e.g., there is virtually no
(volume-based) cost for operations such as: transmitting data along a cable, sending fluids along water pipes,
transporting electricity along power lines, etc.

Considering a fixed x, the inner condition of (3.2.1) reduces to a system of inequalities Ay ≥
c − Bx, in variables y. This system admits a feasible solution y if and only if we can state that
min

{
0>y : Ay ≥ c−Bx, y ≥ 0

}
= 0. Writing the dual of this LP, any dual feasible solution u has to be-

long to P =
{
u ≥ 0m : A>u ≤ 0n

}
, where m is the number of inequalities in the system Ay ≥ c−Bx. The

dual objective value associated to u has to be less than or equal to 0, and so, we obtain that (c−Bx)>u ≤ 0.
This condition can also be derived using the Farkas’ lemma (see Footnote 4 of [14]); more generally, we refer
the reader to [14, § 2.1] or [5] for more details into the steps of the general Benders reformulation. However,
using standard algebraic manipulations of above formulae, (3.2.1) can be equivalently written in the following
Benders decomposition form:

min b>x (3.2.2a)

c>u− (Bx)
>

u ≤ 0 ∀u ∈ P s. t. 1m
>u = 1 (3.2.2b)

x ∈ Zn+, (3.2.2c)
P

{
where

P =
{
u ≥ 0m : A>u ≤ 0n

}
(3.2.3)

is the Benders sub-problem polytope that does not depend on the current x. This (3.2.2a)–(3.2.2c) program
is an instantiation of the general large-scale LP (2.1); even if P is now a discrete set, the Benders’ method
applies the Cutting-Planes algorithm exactly as described in Section 2, although it now generates a sequence
of discrete sets P1 ) P2 ) P2 ) · · · ⊃P. At each iteration it, we say Pit corresponds to a relaxed master
associated to (3.2.2a)–(3.2.2c), obtained by only keeping a subset of the constraints (3.2.2b). In fact, the only
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difference compared to (2.1) is that x is integer in (3.2.2c), so that opt(Pit) needs to be determined using
an ILP solver instead of an LP solver. Given the current optimal solution x = opt (Pit), the separation
algorithm solves the following LP to (try to) exclude x from P.

max
{

c>u− (Bx)
>

u : u ∈ P , 1m
>u = 1

}
(3.2.4)

The condition 1m
>u = 1 first arising in (3.2.2b) could be considered superfluous in theory because all

positive multiples of u ∈ P belong to P and they all produce the same inequality (3.2.2b), i.e., the status of
this inequality does not change by multiplying all its terms by a positive constant. However, this condition
is useful to avoid numerical issues in practice because it enables the separation algorithm to return only
normalized constraints (3.2.2b), with no exceedingly large term. Furthermore, this condition removes the
extreme rays from (3.2.4), which is also useful because the extreme rays with their unbounded objective
values are very difficult to compare, e.g., for the (Simplex) algorithm solving (3.2.4).

3.2.2 The Projective Cutting-Planes for the Benders reformulation

Before presenting the projection algorithm, let us discuss the overall Projective Cutting-Planes for the
above Benders reformulation (3.2.2a)–(3.2.2c). It essentially executes the steps indicated in Section 2, the
main difference being that x is integer in (3.2.2a)–(3.2.2c). An important consequence of this integrality is that
one needs to solve an (NP–hard) ILP instead of an LP to find opt(Pit) at each iteration it. Because of this,
the iterative call to the ILP solver for determining opt(Pit) becomes the most important computational
bottleneck of the overall Projective Cutting-Planes. This may be seen as an encouraging factor for
adopting the Projective Cutting-Planes: the projection sub-problem (an LP) is computationally far less
expensive than the master problem, i.e., than the above ILP for determining opt(Pit).

However, we will also examine the linear relaxation of the Benders reformulation (3.2.2a)–(3.2.2c), re-
placing x ∈ Zn+ with x ∈ Rn+ in (3.2.2c). For this problem variant, the only difference compared to the
general large-scale LP (2.1) is that the objective function is minimized instead of maximized, which does not
essentially change our Cutting-Planes algorithms.

For both the integer and the relaxed problem variant, a key question concerns the choice of the interior
point xit at each iteration it ≥ 1. The very first feasible solution x1 is determined using a problem-specific
routine we will describe later in Section 3.2.4.2. For it > 1, experiments suggest it is preferable to choose
an interior point xit relatively far from the boundary — as with the robust optimization problem previously
studied. As in Section 3.1.2, we apply the formula xit = xit−1 +αt∗it−1dit−1, using a value of α significantly
below 1. More exactly, we set α = 0.2 for the linear relaxation of the Benders reformulation. For the original
integer model, we set α = 0.2 only during the first 100 iterations; after that, we set α = 0.4, i.e., the algorithm
becomes slightly more aggressive in the second part of the search.

Remark 2 A second consequence of the integrality condition x ∈ Zn+ is that the pierce point xit + t∗itdit

returned by the projection algorithm is not necessarily integer. However, depending on the underlying problem,
one can usually build an integer feasible solution by simply rounding up all components of xit+t∗itdit. At least
when x encodes design decisions to install (transmission) facilities, there is generally no reason to forbids an
increase (by rounding) of the number of these facilities. This is formally proved for the application problem
example from Section 3.2.4 in Observation 4 of [14].

3.2.3 The intersection sub-problem algorithm

Consider an interior point x satisfying all constraints (3.2.2b) and a direction d ∈ Rn. Based on Definition 1
(p. 4), the intersection sub-problem project(x→ d) requires finding:

(i) the maximum step length t∗ ≥ 0 such that x + t∗d satisfies all constraints (3.2.2b);

(ii) a vector u ∈ P such that the associated constraint (3.2.2b) is respected with equality by the pierce
point x + t∗d. We do not ask the returned u to be normalized, i.e., it is not necessary to multiply u
by some factor to make it satisfy a condition like 1m

>u = 1 from (3.2.2b).
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Substituting x + t∗d for x in (3.2.2b), the intersection sub-problem requires finding the maximum value

t∗ such that c>u− (B (x + t∗d))
>

u ≤ 0 ∀u ∈ P , equivalent to −t∗ (Bd)
>

u ≤ (Bx)
>

u− c>u ∀u ∈ P . The
right–hand side of this last inequality is always non–negative because x is feasible and satisfies all constraints
(3.2.2b). Furthermore, any u ∈ P associated to a non-positive − (Bd)

>
u ≤ 0 would allow t∗ to be arbitrarily

large. As such, hereafter we focus only on the vectors u ∈ P such that − (Bd)
>

u > 0, and so, t∗ can be
determined by solving the following linear-fractional program:

t∗ = min

{
(Bx− c)

>
u

− (Bd)
>

u
: u ∈ P , − (Bd)

>
u > 0

}
(3.2.5)

This program can be translated to a standard LP using the Charnes–Cooper transformation [3]. More

exactly, writing u =
u

− (Bd)
>

u
, one can show that (3.2.5) is completely equivalent to:

t∗ = min (Bx− c)
>

u (3.2.6a)

A>u ≤ 0n (3.2.6b)

− (Bd)
>

u = 1 (3.2.6c)

u ≥ 0m (3.2.6d)

It is not difficult to check that the above change of variable u→ u transforms a feasible solution of (3.2.5)
into a feasible solution of (3.2.6a)–(3.2.6d) with the same objective value. Conversely, a feasible solution u
of (3.2.6a)–(3.2.6d) is itself feasible in (3.2.5) and it has the same objective value in both programs.

The algorithm for solving the LP (3.2.6a)–(3.2.6d) has clearly the same asymptotic running time as the
one for the separation sub-problem (3.2.4), i.e., both sub-problems have the complexity of solving an LP
with m variables and n or n+ 1 constraints.

3.2.4 From the general Benders model to a network design problem

We introduced the Projective Cutting-Planes so far in a rather generic Benders model (3.2.2a)–(3.2.2c);
we did not want to impair the understanding of the main ideas with the particularities of a specific problem.
However, we will hereafter use a network design problem to experimentally compare the proposed Projective

Cutting-Planes with the standard Benders’s Cutting-Planes.

3.2.4.1 The Benders reformulation model for a network design problem

We consider the network design problem from [14, § 4] which asks to install multiple times a technology (e.g.,
cables or other telecommunication links) on the edges E of a graph G = (V,E). The installed transmission
facilities (links) should allow one to transfer data from a source or origin O ∈ V towards a set of terminals
T ( V , each i ∈ T having a flow (data) demand of fi. We propose to use variables x ∈ Zn+ to represent the
number of links installed on each edge (so that |E| = n) and y ≥ 0 to encode data flows along edges. The
goal is to find the minimum total number of links needed to accommodate a one-to-many flow from O to T .
The initial Benders ILP (3.2.1) is instantiated as follows:

min
∑
{i,j}∈E

xij

(
= 1>nx

)
(3.2.7a)

∑
{i,j}∈E

yji −
∑
{i,j}∈E

yij ≥ 0, ∀i /∈ T ∪ {O} (3.2.7b)

∑
{i,j}∈E

yji −
∑
{i,j}∈E

yij ≥ fi, ∀i ∈ T (3.2.7c)

bwdxij − yij − yji ≥ 0, ∀{i, j} ∈ E, i < j (3.2.7d)

xij ∈ Z+, yij , yji ≥ 0, ∀{i, j} ∈ E, i < j (3.2.7e)
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The principles underpinning this model are the following. For each edge {i, j} ∈ E, the design variable
xij indicates the number of installed links between i and j, yij encodes the flow from i to j and yji indicates
the flow from j to i. The objective function contains no y term because we assume the flow costs are zero,
which is realistic when the cost of sending data along a cable is virtually zero. The inequalities (3.2.7b)–
(3.2.7c) represent modified flow conservation constraints, i.e., notice they allow flow losses but forbid any
flow creation, except at the source O. We prefer such inequalities to standard flow conservation equalities,
to make (3.2.7a)–(3.2.7e) more similar to the initial Benders ILP (3.2.1). However, any feasible solution
that generates some flow loss in (3.2.7a)–(3.2.7e) can be transformed into a solution with no flow loss, by
decreasing some entering flows in (3.2.7b) or (3.2.7c). Constraints (3.2.7d) indicate that the flow transmitted
in either sense on any edge {i, j} can not exceed the number of links mounted on {i, j} multiplied by the
bandwidth bwd of each individual link. The condition i < j from (3.2.7d) and (3.2.7e) only arises because
there is a unique design variable xij for each {i, j} ∈ E.

To build the Benders reformulation of above (3.2.7a)–(3.2.7e), one has to instantiate the general steps
from Section 3.2.1. Accordingly, we consider (3.2.7b)–(3.2.7e) as an inner LP (a system of inequalities) and
we will dualize the decision variables y. Recalling how we generated the dual variables u ∈ Rm+ of (3.2.3),
we here obtain a vector u of |E| + |V | − 1 dual variables, i.e., one variable uij for each {i, j} ∈ E with
i < j from (3.2.7d) and one variable ui for each i ∈ V \ {O} from (3.2.7b)–(3.2.7c). The dual constraints
are built from the coefficients of the columns of yij and yji, for all {i, j} ∈ E with i < j. After moving
bwdxij in the right-hand side of (3.2.7d), the dual objective function is built from the right-hand side terms
in (3.2.7c)–(3.2.7d). Following the development that led to (3.2.2b), the dual objective value has to be no
larger than 0, i.e., we obtain

∑
i∈T fiui −

∑
{i,j}∈E bwdxijuij ≤ 0. Referring the reader to [14, § 3.2] for full

exact details, the Benders reformulation of (3.2.7a)–(3.2.7e) can be written as below, obtaining an instance
of (3.2.2a)–(3.2.2c):

min 1>nx (3.2.8a)∑
i∈T

fiui −
∑
{i,j}∈E

bwdxijuij ≤ 0 ∀u ∈ P s. t. 1>u = 1 (3.2.8b)

x ∈ Zn+, (3.2.8c)

P


where P is given by (3.2.9a)–(3.2.9c) below, i.e., by the dual constraints associated to the columns of yij and
yji from (3.2.7b)–(3.2.7e). Since there is no constraint (3.2.7b) or (3.2.7c) associated to the origin O, we use
the convention that the term ui (resp. uj) vanishes in (3.2.9a)–(3.2.9b) when i (resp. j) equals O.

yij : −uij − ui + uj ≤ 0 ∀{i, j} ∈ E, i < j (3.2.9a)

yji : −uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j (3.2.9b)

u ≥ 0 (3.2.9c)

P


Remark 3 We will also provide numerical results for the linear relaxation of the above (3.2.8a)–(3.2.8c),
replacing x ∈ Zn+ with x ∈ Rn+. This amounts to installing fractional amounts of transmission capacities
along the edges, which could be very realistic in certain applications, e.g., if the transmission capacities are
obtained by acquiring bandwidth from a telecommunication carrier. Furthermore, even if only the integer
model is relevant, the linear relaxation could be needed by a Branch and Bound algorithm, at different nodes
of the branching tree.

3.2.4.2 The Projective Cutting-Planes and the initial feasible solution

The above model (3.2.8a)–(3.2.8c) is an instantiation of the general Benders reformulation (3.2.2a)–(3.2.2c)
from Section 3.2.1; it also fits well the most general large–scale LP (2.1). The Projective Cutting-Planes

described in Section 3.2.2 in a general Benders context can be directly applied to solve the above (3.2.8a)–
(3.2.8c).

The only detail that remains to be filled concerns the very first feasible solution x1. We construct it by

assigning to each edge {i, j} ∈ E the value

⌈∑
i∈T fi

bwd

⌉
, so that each edge has enough capacity to transfer
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all the demands, making this x1 certainly feasible. The first direction is d1 = −1n, i.e., the direction with
the fastest rate of objective function improvement. We also tried to define x1 by assigning the above value⌈∑

i∈T fi
bwd

⌉
only to the edges of a spanning tree of G. This latter solution is also feasible, but it assigns the

value 0 to the numerous edges outside the spanning tree, and so, it can not be qualified as “well-centered”.
This would reduce the effectiveness of the overall Projective Cutting-Planes in the long run because it is
preferable to start from a more interior solution x1, as also described in the last paragraph of Section 3.1.2,
confirming ideas used in interior point algorithms.

3.2.4.3 The projection sub-problem

Consider an (interior) solution x ∈ Rn+ that satisfies all constraints (3.2.8b) and a random direction d ∈ Rn.
To solve the intersection sub-problem project(x → d), we will instantiate the general linear-fractional
program (3.2.5), following the development from Section 3.2.3. Accordingly, notice that the numerator of

(3.2.5) contains a term (Bx)
>

u that was build from the terms involving x in the constraint (3.2.2b) of the
general Benders model (3.2.2a)–(3.2.2c). Since (3.2.2b) has been instantiated to the above (3.2.8b), one can

check that (Bx)
>

u corresponds to
∑
{i,j}∈E bwdxijuij . Using the fact that d is defined in the same space

as x, one can also check that (Bd)
>

u becomes
∑
{i,j}∈E bwddijuij . Finally, c>u represents the free terms

(without x) from (3.2.2b) that correspond to
∑
i∈T fiui. We thus obtain that (3.2.5) can be instantiated as

follows:

t∗ = min


∑
{i,j}∈E bwdxijuij −

∑
i∈T fiui

−∑{i,j}∈E bwddijuij
: u ∈ P , −

∑
{i,j}∈E

bwddijuij > 0

 (3.2.10)

Recalling how we translated the linear-fractional program (3.2.5) to the standard LP (3.2.6a)–(3.2.6d),
we apply the same Charnes–Cooper transformation to reformulate (3.2.10) as a pure LP. Accordingly, after

writing u =
u

−∑{i,j}∈E bwddijuij
, (3.2.10) becomes equivalent to:

t∗ = min
∑
{i,j}∈E

bwdxijuij −
∑
i∈T

fiui (3.2.11a)

− uij − ui + uj ≤ 0 ∀{i, j} ∈ E, i < j (3.2.11b)

− uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j (3.2.11c)

−
∑
{i,j}∈E

bwddijuij = 1 (3.2.11d)

u ≥ 0, (3.2.11e)

where we used the convention that if i (resp. j) equals O then the term ui (resp. uj) vanishes in (3.2.11b)–
(3.2.11c), as we did for the constraints (3.2.9a)–(3.2.9b) defining P .

4 The Projective Cutting-Planes in Column Generation

In Column Generation, the generic LP (2.1) is instantiated as the dual of a relaxed primal LP. The
prohibitively-many constraints of P are given by an unmanageably-large set A of primal columns. These
columns can represent stables in graph coloring, cutting patterns in (Multiple-Length) Cutting-Stock, routes
in vehicle routing problems, assignments of courses to timeslots in timetabling, or any specific subsets in
the most general set-covering problem. Given a column (a, ca) ∈ A of such a problem, ca is the objective
function coefficient and a ∈ Zn+ is often an incidence vector such that ai indicates how many times an element
i ∈ [1..n] is covered by a. We use a primal decision variable ya to encode the number of selections of each
column (a, ca) ∈ A. The Column Generation model asks to minimize the total cost of the selected columns,
under the (set-covering) constraint that each element i ∈ [1..n] has to be covered at least bi times. After
relaxing ya ∈ Z+ into ya ∈ R+, the primal program becomes:
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min
∑

caya

x :
∑

aiya ≥ bi ∀i ∈ [1..n]

ya ≥ 0 ∀(a, ca) ∈ A
(4.1)

The dual LP is:

max b>x
ya : a>x ≤ ca ∀(a, ca) ∈ A

x ≥ 0n

(4.2)
P

{

The Column Generation method can be seen as a Cutting-Planes algorithm (e.g., Kelley’s method)
acting on the above dual program (4.2). This program fits very well the general LP (2.1) and we will
hereafter use (4.2) to show how to adapt the Projective Cutting-Planes to different Column Generation

models.

4.1 Graph coloring

4.1.1 The model(s) with prohibitively-many constraints and their separation

Standard graph coloring belongs to a large class of coloring problems that involve assignments of colors
(labels) to vertices, e.g., multi-coloring, defective coloring, list coloring, sum coloring, etc. Besides their
intrinsic interest, such problems enjoy widespread applications in various fields of science and engineering,
such as frequency assignment, register allocation in compilers, timetabling or scheduling. Standard graph
coloring can be directly formulated as a set covering problem: determine the minimum number of stables
(independent sets) of a given graph G(V,E) needed to cover (color) each vertex of V once. Focusing on the
dual LP (4.2), each constraint (a, ca) ∈ A corresponds to the incidence vector a of a stable of G and we
always consider ca = 1 because each color counts once.

The Column Generation method optimizes (4.2) by solving at each iteration the separation sub-problem
min

(a,1)∈A
1 − a>x, where x is the current optimal (outer) solution opt(Pit) at iteration it. In standard

graph coloring, the constraints A are given by the standard stables of G, so that the above separation sub-
problem reduces to the maximum weight stable problem with weights x (a well-known NP-hard problem).
This Column Generation coloring model has been widely-studied (see [12, 9] and references therein); besides
popularity reasons, this also comes from the fact that graph coloring is a rather generic problem with no
particularly skewed constraints. More exactly, there seems to be little potential in analyzing, reformulating
or reinterpreting the simple constraints of graph coloring; progress can rather be expected from focusing on
(more general) optimization aspects. According to the abstract of [9], Column Generation is also the “best
method known for determining lower bounds on the vertex coloring number”.

The most standard coloring variant considers a unique color per vertex, so that bi = 1 ∀i ∈ V = [1..n],
i.e., the objective function coefficients in (4.2) are given by b = 1n. This can be easily generalized to a
multi-coloring problem with b 6= 1n, in which one has to assign multiple colors per vertex. Multiply-colored
vertices could naturally arise in many applications of graph coloring. For example, a frequency allocation
problem might ask to assign multiple frequencies per station; in university timetabling, one might require
multiple timeslots per course; in scheduling, certain jobs might need several resources, etc. An interesting
feature of this multi-coloring variant is that the maximum clique size is no longer a lower bound, while all
the lower bounds b>x1, b>x2, b>x3, . . . generated by Projective Cutting-Planes remain valid.

4.1.2 The Projective Cutting-Planes for Graph Coloring

The main steps of the Projective Cutting-Planes from Section 2 can be applied on the dual Column

Generation program (4.2) with very few customizations. The choice of xit is given by xit = xit−1 +
t∗it−1dit−1 at each iteration it > 1, so that xit becomes the best feasible solution found so far (the last
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pierce point); graph coloring is the only problem studied in the paper for which this choice leads to good
results in the long run. Regarding the very first iteration, we take simply x1 = 0n because 0n is feasible
in (4.2). The first direction d1 is constructed by assigning to each component v ∈ V = [1..n] the value

1

|stab(v)| , where stab(v) 3 v is the stable containing v in a given initial feasible coloring (determined

heuristically as stated in Section 5.3.2, Footnote 8, p. 33). The use of an initial feasible coloring is useful
for warm starting reasons and it offers several advantages to both the standard Column Generation and the
Projective Cutting-Planes:

– The heuristic solution provides an initial set of stables or initial constraints A0 in (4.2), so as to start
from the very first iteration with a reasonable outer approximation P0 ) P.

– The first outer approximation P0 obtained as above leads to a first upper bound b>opt(P0) that
is equal to the number of colors used by the heuristic coloring. This way, a quality upper bound is
known from the very first iteration; one can easily refer to it to (more clearly) evaluate the gap of all
lower bounds reported at subsequent iterations. Without this initial heuristic coloring, one might need
dozens or hundreds of iterations to obtain an upper bound of the same quality.

– If we had started by projecting 0n → 1n, we would have obtained a very first pierce point t∗11n = 1
α(G)1n

that might correspond to multiple constraints of (4.2) associated to multiple stables of maximum size
α(G). If one then takes x2 = x1 + t∗11n = 1

α(G)1n, the second projection can return t∗2 = 0 because of a

second stable of size α(G). If this repeats a third or a fourth time, the iterative solution process could
stall for too many iterations, generating a form of degeneracy.

We will also apply the Projective Cutting-Planes on a second graph coloring model in which the
constraints A of (4.2) are defined using a new (broader) notion of reinforced relaxed stables (RR-stables).
In this new model, each element of A is associated to a solution of an auxiliary polytope P that does
contain the standard stables, so that (a, 1) ∈ A ⇐⇒ a ∈ P . The advantage of this second model is that it
has a considerably simpler projection sub-problem that ca be formulated (Section 4.1.4) as a pure LP. The
disadvantage is that the new (4.2) model becomes overly-constrained, i.e., the new (4.2) contains artificial
constraints, because P contain many other elements besides the legitimate standard stables. However, each
feasible inner solution xit generated by Projective Cutting-Planes on the new (4.2) model is also feasible
in the original (4.2) model. We will see that the lower bounds b>xit calculated on the second (overly–
constrained) model can be very fast and compete rather well with the bounds obtained using the original
model. Section 4.1.3 presents the projection sub-problem in the original model; Section 4.1.4 is devoted to
the projection sub-problem in the new model.

4.1.3 The Projection Sub-Problem in the Original Model with Standard Stables

Following the steps that led to the general intersection sub-problem formulation (2.2.1), the intersection
sub-problem project(x→ d) for standard graph coloring can be written as follows:

t∗ = min
1− x>a

d>a
(4.1.1a)

d>a > 0 (4.1.1b)

P0−1

{
ai + aj ≤ 1, ∀{i, j} ∈ E
ai ∈ {0, 1} ∀i ∈ [1..n]

(4.1.1c)

This is an integer linear–fractional program that will be translated to a Disjunctive LP in which the
integrality constraints ai ∈ {0, 1} ∀i ∈ [1..n] are reformulated as disjunctive constraints of the form ai ∈
{0, α} ∀i ∈ [1..n]. We will see that a disjunctive constraint breaks the continuity in the same manner as
integrality constraint, so that the resulting program has a discrete feasible area and can be optimized with
similar Branch and Bound methods as an ILP. We recall that the standard separation sub-problem reduces
to solving the ILP min

{
1− x>a : a ∈ P0−1

}
, where x ∈ Rn+ is the current optimal outer solution. The
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constraints ai + aj ≤ 1∀{i, j} ∈ E from (4.1.1.c) are referred to as edge inequalities [10, 12]; the convex
closure conv(P0−1) of the set P0−1 of standard stables is referred to as the stable set polytope.

To reformulate (4.1.1.a)–(4.1.1.c) as a Disjunctive LP, we now apply a discrete version of the Charnes–
Cooper transformation initially proposed for standard LPs [3]. Accordingly, let us consider a change of

variables a =
a

d>a
and α =

1

d>a
; we will prove that (4.1.1.a)–(4.1.1.c) is completely equivalent to:

t∗ = minα− x>a (4.1.2a)

ai + aj ≤ α ∀{i, j} ∈ E (4.1.2b)

d>a = 1 (4.1.2c)

ai ∈ {0, α} ∀i ∈ [1..n] (4.1.2d)

α ≥ 0 (4.1.2e)

To prove this equivalence, let us first show that the change of variables a→ a, α maps a feasible solution
a of (4.1.1.a)–(4.1.1.c) to a feasible solution of (4.1.2.a)–(4.1.2.e) with the same objective value. To check

this, it is actually enough to directly substitute ai =
ai

d>a
∀i ∈ [1..n] and α =

1

d>a
> 0 to notice that the

initial constraints of (4.1.1.a)–(4.1.1.c) are transformed into the constraints of the Disjunctive LP. Conversely,

a feasible solution of (4.1.2.a)–(4.1.2.e) can be reversely mapped to a =
1

α
· a, which is a feasible solution

of the initial program. To show this, first notice that the expression
1

α
· a is consistent in the sense that

α 6= 0 — otherwise, α = 0 would make a = 0n via (4.1.2.d), so that (4.1.2.c) would certainly be infeasible.
One can directly check that the resulting a satisfies all constraints in the initial program. The equality of

the objective values follows from α− x>a =
α

d>a
− x>a

d>a
=

1

d>a
− x>a

d>a
.

4.1.3.1 The resulting Disjunctive LP can be in theory as hard as the associated ILP

We have just formulated the projection sub-problem as the Disjunctive LP (4.1.2.a)–(4.1.2.e). The integrality
constraints ai ∈ {0, 1} have been transformed into disjunctive constraints of the form ai ∈ {0, α}. The inte-
grality and the disjunctive constraints break the continuity in a similar manner; we find no deep meaningful
difference that would make one much easier to handle than the other. Both the ILP (for the separation
sub-problem) and the Disjunctive LP (projection sub-problem) are solved by a similar Branch and Bound

algorithm, constructing in both cases a branching tree in which each node corresponds to a relaxation that
lifts certain (integer or resp. disjunctive) constraints.

However, in practice, we solve both programs using the tools from the optimization software package
cplex, the disjunctive constraints being implemented as logical constraints. As such, we implicitly use a
larger arsenal on the ILP. For instance, cplex can generate well-studied valid inequalities (mixed-integer
rounding cuts, Gomory cuts, etc) on the ILP; although many such ILP cuts could in theory be transformed
into Disjunctive LP cuts,3 cplex does not “realize” this and it does not generate such cuts on the Disjunctive
LP.

This comes from the fact that cplex does not have the notion of valid inequalities satisfied by all “discrete”
solutions a of the Disjunctive LP (i.e., discrete in the sense that ai ∈ {0, α} i ∈ [1..n]); it does not see
ai ∈ {0, α} somehow similar to an integrality constraint (in the sense that ai

α is integer). In fact, it does
not even have the information that relaxing (lifting) a disjunctive constraint ai ∈ {0, α} allows ai to take
a fractional value in the interval [0, α]. As such, cplex can not use very evolved branching rules because it
does not “realize” that any fractional ai ∈ (0, α) is actually a value between two “discrete” bounds 0 and α.
The situation is completely different for the ILP, because cplex can use elaborately-tuned branching rules
based on evaluating the distance from each fractional variable to its bounds 0 and 1.

3The logs show that cplex uses many “zero-half cuts” on the ILP. According to the documentation, these cuts are simply
“based on the observation that when the lefthand side of an inequality consists of integral variables and integral coefficients,
then the righthand side can be rounded down to produce a zero-half cut.” For instance, it can sum up different constraints to
obtain a1 + a2 ≤ 3.5 which is reduced to the zero-half cut a1 + a2 ≤ 3. In theory, the same operations could apply perfectly
well on a disjunctive LP and a1 + a2 ≤ 3.5α could be reduced to a1 + a2 ≤ 3α.
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We did attempt to compensate the above advantage of the cplex (arsenal of) ILP cuts by adding cuts
to the Disjunctive LP, but one should be aware that the cplex ILP solver has benefited from decades of
experience and research in valid inequalities for ILPs. However, to (try to) reinforce the Disjunctive LP
(4.1.2.a)–(4.1.2.e), we propose to insert k-clique inequalities with size k = 4 at the root node of the branching
tree, i.e., before starting to branch (on the disjunctive constraints). At this root node, all constraints (4.1.2.d)
are completely lifted and the problem reduces to a pure LP. This pure LP is solved by cut generation as
described in Section 4.1.4.2, searching at each iteration to separate the current solution using a k-clique
inequality of the form

∑
i∈C ai ≤ 1 (associated to a clique C of size k), equivalent to

∑
i∈C ai ≤ α in the

Charnes-Cooper reformulation. Whenever such cuts are used, the value of k will be indicated in the numerical
results (Table 4).

We could have further accelerated the standard Column Generation by solving the maximum weight
stable problem (at each separation call) using a purely-combinatorial algorithm particularly tuned to this
well-studied problem. However, such algorithm would only bring a fortuitous advantage to the standard
Column Generation but it would remain limited to standard graph coloring, i.e., it would no longer work if
one added a single new constraint to the sub-problem, as illustrated by the problem example from the next
section.

4.1.3.2 The discrete Charnes-Cooper transformation beyond graph coloring

For the sake of a fair comparison between the Projective Cutting-Planes and the standard Column

Generation, we will solve their respective sub-problems with similar mathematical programming tools, based
on Branch and Bound. The advantage of these tools is that they can easily extend to address more (diverse)
constraints beyond the edge inequalities ai + aj ≤ 1 ∀{i, j} ∈ E. For instance, we can consider the defective
coloring problem, in which each vertex is allowed to have a maximum number of d ≥ 0 neighbors of the same
color. When d = 0, this problem reduces to standard graph coloring. A mathematical programming method
can simply replace the edge inequalities from (4.1.1.a)–(4.1.1.c) with the constraints (4.1.3a) below — notice
how such constraint is active only when ai = 1. Applying the discrete Charnes–Cooper transformation,
(4.1.3a) could be directly translated to (4.1.3b).

n(ai − 1) +
∑
{i,j}∈E

aj ≤ d ∀i ∈ [1..n] (4.1.3a)

n(ai − α) +
∑
{i,j}∈E

aj ≤ dα ∀i ∈ [1..n] (4.1.3b)

An important consequence of the above development concerns the potential extensions and generalizations
of this discrete Charnes-Cooper transformation. If the sub-problem had other constraints instead of ai+aj ≤
1 ∀{i, j} ∈ E, the transformation (4.1.1.a)–(4.1.1.c) → (4.1.2.a)–(4.1.2.e) would have worked in the same
manner, i.e., any linear constraint can be reformulated using the Charnes-Cooper transformation, as also
exemplified by the above translation (4.1.3a)→(4.1.3b). This suggests that the proposed approach could be
applied on many Column Generation programs in which the columns A represent the integer solutions of an
LP. In such cases, the separation sub-problem reduces to an ILP and the intersection sub-problem can reduce
to a Disjunctive LP. Recall this amounts to changing integrality constraints like ai ∈ {0, 1} into disjunctive
constraints of the form ai ∈ {0, α}, i.e., a similar form of continuity breaking constraints. We focused on
standard graph coloring only because it is a problem without complex problem–specific constraints whose
presentation could impair the understanding of the more general algorithmic ideas.

4.1.4 The Projection Sub-Problem in the New Coloring Model with RR-Stables

Hereafter, we focus on a second coloring model that defines the columns (or the dual constraints A) using
a broader notion of reinforced relaxed stables (RR-stables), formally introduced by Definition 2 below. In a
nutshell, the constraints A are characterized by (a, 1) ∈ A ⇐⇒ a ∈ P , where P is an auxiliary polytope of
RR-stables, constructed from a set R of constraints defined by (4.1.5) further below. This Section 4.1.4 is
devoted to this second coloring model with RR stables and it is structured as follows:

– We develop the Charnes-Cooper LP (re)formulation of the projection subproblem in Section 4.1.4.1;
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– We propose a cut generation algorithm to solve the above LP in Section 4.1.4.2;

– Section 4.1.4.3 exposes a special degenerate case (null step length) that can arise in this new model.
We will see we need to define xit = α(xi−1 + t∗i−1di−1) with α = 0.9999 to avoid such degeneracy.

Definition 2 The reinforced relaxed (RR) stables are the (extreme) solutions of an auxiliary polytope P
representing an outer approximation of the stable set polytope conv(P0−1). We construct P ) conv(P0−1) by
adding reinforcing cuts to conv(P0−1) in several stages. At first, we only simply consider the edge inequalities
ai+aj ≤ 1 ∀{i, j} ∈ E, so that the first-stage outer approximation of conv(P0−1) only contains simple relaxed
stables (solutions of the fractional stable set polytope). We then continue building the outer approximation by
adding stronger and stronger cuts that become more and more difficult to generate. The more cuts we add,
the better the outer approximation P . However, generating more cuts comes with a greater computational
cost and a trade-off has to be found. We will use six cut families briefly presented in Section 4.1.4.2 and then
described in full detail in Appendix A.2.

4.1.4.1 The LP formulation of the projection sub-problem with RR stables

Using the same ideas that led to formulating (4.1.1.a)–(4.1.1.c) in Section 4.1.3 above, the intersection
sub-problem project(x→ d) for the coloring model with RR-stables can be written as:

t∗ = min

{
1− x>a

d>a
: a ∈ P , d>a > 0

}
, (4.1.4)

where P from Definition 2 is formalized by (4.1.5) below. As stated in Definition 2, P is defined by six classes
of cuts R that will be later presented in Section 4.1.4.2.

P =
{
a ≥ 0n : e>a ≤ 1 ∀(e, 1) ∈ R, f>a ≤ 0 ∀(f , 0) ∈ R

}
(4.1.5)

This intersection sub-problem (4.1.4) is a linear-fractional program that can be translated to a standard

LP using the Charnes–Cooper transformation [3]. More exactly, writing a =
a

d>a
and α =

1

d>a
, one can

show that (4.1.4) is completely equivalent to:

t∗ = min α− x>a (4.1.6a)

e>a ≤ α, f>a ≤ 0 ∀(e, 1) ∈ R, ∀(f , 0) ∈ R (4.1.6b)

d>a = 1 (4.1.6c)

a ≥ 0n, α ≥ 0 (4.1.6d)

The equivalence of the two formulations can be checked by following (and slightly generalizing) the
proof of the equivalence between (4.1.1.a)–(4.1.1.c) and (4.1.2.a)–(4.1.2.e) used for the model with standard
stables (in Section 4.1.3). Following this proof, the only difference is that the above new programs have a
continuous feasible area and we no longer have disjunctive or integrality constraints (of the form ai ∈ {0, α}
or resp. ai ∈ {0, 1}). Even without these constraints, all feasible solutions of (4.1.6a)–(4.1.6d) still satisfy
α 6= 0, because α = 0 would also impose a = 0n — recall R contains all edge inequalities and they are
reformulated in (4.1.6b) under the form ai + aj ≤ α ∀{i, j} ∈ E. However, even if such edge inequalities
did not exist, this Charnes-Cooper transformation is very general and it would still work for any constraints
(4.1.6b).4

4For any constraints (4.1.6b), any feasible solution (a, α) with α = 0 of the LP (4.1.6a)–(4.1.6d) can always be associated to
an extreme ray of feasible solutions in the initial linear-fractional program. More exactly, one can take any a ∈ P and construct
a ray a + za of P , i.e., a + za is feasible in (4.1.5) for all z ≥ 0. To check this, notice that e>(a + za) ≤ 1 ∀(e, 1) ∈ R follows
from a ∈ P and e>a ≤ 0 ∀(e, 1) ∈ R, which holds because α = 0 in (4.1.6b); a similar argument proves f>a ≤ 0 ∀(f , 0) ∈ R.
The objective value of a + za in (4.1.4) converges to

lim
z→∞

1− x>a− zx>a
d>a + zd>a

= lim
z→∞

−zx>a
d>a + z

= −x>a.
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The above LP (4.1.6a)–(4.1.6d) is solved by cut generation because enumerating all reinforcing cutsR is
computationally very exhausting, if not impossible. Notice that these reinforcing cuts R are slightly modified
when they are inserted in the above LP (re-)formulation, i.e., we use e>a ≤ α in (4.1.6b) instead of e>a ≤ 1
as in the P definition from (4.1.5). However, the difficulty of the separation sub-problem for (4.1.6b) does
not depend on the right-hand side α, but on the structure of the cuts R. To make the overall Projective
Cutting-Planes reach its full potential, it is important to have a fast algorithm for the separation sub–
problem of (4.1.6a)–(4.1.6d); we next describe the cut generation algorithm for this (4.1.6a)–(4.1.6d) LP
(re-)formulation of the projection sub-problem.

4.1.4.2 The cut generation for the LP formulation (4.1.6a)-(4.1.6d) of the projection sub-
problem

A positive distinguishing characteristic of the above LP formulation (4.1.6a)–(4.1.6d) is that the prohibitively-
many reinforcing cuts R from (4.1.6b) do not depend on x or d; these constraints remain the same along
all iterations of the overall Projective Cutting-Planes. As such, after solving an intersection sub-problem
project(xit → dit) at some iteration it of the overall Projective Cutting-Planes, one can keep all
generated cuts (4.1.6b) and only update (4.1.6c) to move to the next iteration it + 1.

The cut generation algorithm for (4.1.6a)–(4.1.6d) has to separate the reinforcing cuts R, which are
composed of six classes of inequalities (a)–(f) presented in greater detail in Appendix A.2.1. Their design has
been inspired by research in valid inequalities for the maximum stable problem [10]. However, our context
is different compared to the existing literature: we will need to generate too many clique inequalities (see
cuts (f) below) to afford using cliques of arbitrary size, and so, we will only use cliques of bounded size k.
However, we use several other cuts besides these clique inequalities (f). The first four cut classes (a)–(d)
from R are actually static and they are inserted in (4.1.6a)–(4.1.6d) at the very first iteration of the overall
Cutting-Planes; they are then implicitly re-used at all subsequent iterations because they are never removed
from (4.1.6a)–(4.1.6d).

Only the cuts (e)–(f) are dynamically generated one by one using a specific cut generation algorithm,
by repeatedly solving a separation sub-problem. This sub-problem reduces to finding the maximum of
max

(e,1)∈R
e>a − α and max

(f ,0)∈R
f>a, for the current optimal solution (a, α) at each cut generation iteration.

The cut generation algorithm is described in greater detail in Appendix A.2.2. The cuts (e) are referred
to as odd hole inequalities in the literature of valid inequalities for the stable set polytope. They can be
separated in polynomial time by applying Dijkstra’s algorithm on a bipartite graph with 2n+ 2 vertices.

The class (f) represents k-clique cuts of the form
∑
v∈C av ≤ 1, or

∑
v∈C av ≤ α in (4.1.6b), where

C is a clique with k vertices. The separation of these cuts is computationally rather expensive because it
requires solving a maximum weight clique problem with bounded size k, which is NP–Hard when k is not
a constant parameter. We propose in Appendix A.2.3 a dedicated Branch & Bound with Bounded Size

(BBBS) algorithm to solve this problem. The repeated call to this algorithm becomes the most important
computational bottleneck for the overall Cutting-Planes, especially when k is not very small. We also tried
to generate the cuts (f) by solving the maximum weight clique problem with no size restriction (k = ∞).
This is the well-known maximum clique problem for which there exist elaborately-tuned off-the-shelf software
(e.g., we used the well-known Cliquer, due to S. Niskanen and P. Österg̊ard, see users.aalto.fi/~pat/

cliquer.html), but our BBBS algorithm is faster when k is not too large.
The value of k can be used to control a trade-off between speed and efficiency, between the total com-

putation time of the Projective Cutting-Planes and the reported optimal value (of the new (4.2) model
with RR stables). Experiments confirm that the above maximum weight clique problem with bounded size
k can be solved more rapidly (i.e., BBBS becomes faster) when k is lower.5 On the other hand, by lowering
k, the outer approximation P ) conv(P0−1) becomes coarser, in the sense that P contains more artificial
RR stables that are not standard stables. This leads to more artificial constraints in the new (4.2) model, so
that the lower bound reported in the end becomes smaller.

5This was actually observed both for the BBBS algorithm developed in this work and for the Cplex ILP solver applied on
the same problem. In theory, a very small k can even be seen as a parameter, so that the maximum weight clique problem with
bounded size k is no longer NP-Hard (it becomes polynomial by enumerating all such cliques in O(nk) time).
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On sparser graphs, the resulting Projective Cutting-Planes with RR–stables is naturally faster than
the classical Column Generation with standard stables. Sparser graphs have smaller cliques and larger sta-
bles, so that the maximum weight clique problem with bounded size (for the Projective Cutting-Planes)
becomes easier and the maximum weight stable problem (for the standard Column Generation) becomes
harder.

Remark 4 The optimum of the Column Generation model with RR stables can be greater than the maximum

clique size ω. This comes from the fact that the cuts (d) from Appendix A.2 can exclude
[

1
ω

1
ω . . .

1
ω

]>
from

P . As such, the new Column Generation model (4.2) does not necessarily contain a constraint of the form[
1
ω

1
ω . . .

1
ω

]
x ≤ 1, and so, the dual objective function value does not necessarily satisfy 1>nx ≤ ω. Notice

that
[

1
ω

1
ω . . .

1
ω

]
could not be excluded from P by a k-clique cut of class (f) associated to a clique of size

k = ω. Experiments suggest that the Column Generation model with RR–stables can often have an optimal
value above k, in part because of these cuts (d). Furthermore, the Projective Cutting-Planes could work
perfectly well for any (dual) objective function b 6= 1n, e.g., for the multi-coloring problem proposed at the
end of Section 4.1.1. In such a multi-coloring context, ω is no longer be a valid lower bound, while each lower
bound b>xit reported by the Projective Cutting-Planes remains perfectly valid. �

4.1.4.3 Projecting a boundary point xit can lead to a null step length t∗it in the model with
RR stables

For the model with RR–stables, the Projective Cutting-Planes variant that chooses xit = xit−1 +
t∗it−1dit−1 is not very effective because projecting boundary points is prone to a certain form of degen-
eracy. More exactly, the projection sub-problem might return t∗it = 0 in this case because a boundary
point can belong to multiple facets; as such, the projection operation can reduce to finding a new facet that
touches xit. This could make Projective Cutting-Planes stagnate like a Simplex algorithm that performs
degenerate iterations without improving the objective value (even if new constraints can enter the basis).

Technically, this is explained by the following phenomenon. First, notice that xit = xit−1 + t∗it−1dit−1

belongs to the first–hit constraint/facet a>x ≤ 1 returned by the projection sub-problem at iteration it− 1,
so that a>xit = 1. Furthermore, the current optimal outer solution opt(Pit−1) also belongs to the above
first–hit facet, and so, by taking dit = opt(Pit−1) − xit as indicated by Step 2 from Section 2, we also
obtain a>dit = 0. Now recall that a can be seen as a feasible solution (an RR–stable) of the polytope P
from (4.1.5), so that there might exist a continuous set of RR stables â ∈ P very close to a. There might
exist multiple first–hit facets (of P) that touch xit because a part of these â ∈ P can satisfy â>xit = 1
— recall that a = a

α is not an extreme solution determined by optimizing the LP (4.1.6a)–(4.1.6d) in the
direction of xit. As such, it is often possible to find some â ∈ P such that â>xit = 1 and â>d = ε > 0,

which leads to a step length of t∗it =
1− â>xit

â>dit

=
0

ε
= 0.

We thus propose to define xit as a strictly interior point using xit = α(xi−1 + t∗i−1di−1) with α = 0.9999.
This way, the above RR stables â very close to a no longer cause any problem: they lead to 1 − â>xit > 0

and to a small (“ε-sized”) â>dit, so that 1−â>xit

â>dit
becomes very large. Generally speaking, this 0.9999 factor

is reminiscent of the “fraction-to-the-boundary stepsize factor” used in (some) interior point algorithms to
prevent them from touching the boundary — see the parameter α0 = 0.99 in the pseudo-code above Section
3 in [7].

4.2 Multiple-Length Cutting-Stock

4.2.1 The model with prohibitively-many constraints and their separation

Cutting-Stock is one of the most celebrated problems typically solved by Column Generation, as first proposed
in the pioneering work of Gilmore and Gomory in the 1960s. Given a stock of large standard-size pieces (e.g.,
of wood or paper), this problem asks to cut these standard pieces into smaller pieces (items) to fulfill a given
demand. The pattern-oriented formulation of Cutting-Stock consists of a program with prohibitively-many
variables, using one variable for each feasible (cutting) pattern. After applying a linear relaxation as in
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the case of graph coloring, the dual of this program takes the form of the generic Column Generation dual
LP (4.2), recalled below for the reader’s convenience.

max b>x
ya : a>x ≤ ca, ∀(a, ca) ∈ A

x ≥ 0n

(4.2.1)
P

{

The notations from (4.2.1) can be directly interpreted in (Multiple-Length) Cutting-Stock terms. Each
constraint (a, ca) ∈ A is associated to a primal column representing a (cutting) pattern a ∈ Zn+ such that ai
is the number of items i to be cut from a large standard-size piece (for any item i ∈ [1..n]). Considering a
vector w ∈ Zn+ of item lengths, all feasible patterns a ∈ Zn+ have to satisfy w>a ≤ W , assuming W is the
unique length of all given standard–size pieces. The vector b ∈ Zn+ represents the demands for the n items.
Recalling the primal LP (4.1) corresponding to the above (4.2.1), one can check that the primal objective
function asks to minimize the total cost of the selected cutting-patterns. On the account of the industrial
origins of the problem, the lengths W and w are also referred to as (paper) roll widths.

In pure Cutting-Stock, all feasible patterns (a, ca) ∈ A have a fixed unitary cost ca = 1, but we will
rather focus on the more general Multiple-Length Cutting-Stock in which the large standard-size pieces can
have different lengths of different costs. While all discussed algorithms could address an arbitrary number of
lengths, we prefer to avoid unessential complication and to generally consider two lengths 0.7W and W of
costs 0.6 and resp. 1. The cost of a cutting pattern a is thus the cost of the smallest standard-size piece that
can accommodate a, e.g., if w>a ≤ 0.7W then ca = 0.6, else ca = 1.

Recall that the standard Column Generation actually optimizes the above LP (4.2.1) by Cutting-Planes,
iteratively solving the separation subproblem min(a,ca)∈A ca − a>x on the current optimal outer solution
x = opt(Pit) at each iteration it. In (Multiple-Length) Cutting-Stock, this sub-problem is typically solved
by Dynamic Programming. In a nutshell, the main idea is to assign a state s` for each feasible length
` ∈ [1..W ]; all patterns of length ` have the same cost c` and the pattern a` ∈ Zn+ that minimizes c` − a>` x
gives the objective value of s`, i.e., obj(s`) = c` − a>` x. The Dynamic Programming scheme generates
transitions among such states, and, after calculating them all, returns min

`∈[1..W ]
c` − a>` x in the end.

4.2.2 The Projective Cutting-Planes for Multiple-Length Cutting-Stock

The Projective Cutting-Planes was presented in Section 2 (as a rather generic methodology) and we
now need a few customizations to make it reach its full potential on Multiple-Length Cutting-Stock. As with
other problems explored in this work, a key observation is that defining xit as the best solution ever found up
to iteration it is not efficient in the long run, partly because xit could fluctuate too much from iteration to
iteration (recall also Section 2.1). We will also see in Section 4.2.3.2 that, in (Multiple-Length) Cutting-Stock,
the projection sub-problem project(x → d) can be solved more rapidly when x is a “truncated” solution,
e.g., when xi is a multiple of γ = 0.2 for each i ∈ [1..n].

Based on above observations, we define xit using the following approach. Let us first introduce the
operator bxc that truncates x down to multiples of some γ ∈ R+ (we used γ = 0.2), i.e., xi becomes
γ ·
⌊

1
γxi
⌋

for any i ∈ [1..n]. Let xbst denote the best truncated feasible solution generated up to the current

iteration; xbst can be determined as follows: start with xbst = 0n at iteration it = 1, and replace xbst with⌊
xit + t∗itdit

⌋
at each iteration it > 1 where b>

⌊
xit + t∗itdit

⌋
> b>xbst. The Projective Cutting-Planes

chooses the inner solution xit at each iteration it based on the following rules:

– set xit = 0n in half of the cases (half of the iterations);

– set xit = xbst in 25% of the cases;

– set xit =
⌊

1
2xbst

⌋
in 25% of the case.

We did try to let xit take the value of the best feasible solution (last pierce point) found up to iteration it,
using the formula xit = xit−1 + t∗it−1dit−1. This leads to a more “aggressive” Projective Cutting-Planes
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variant that starts very well by strictly increasing the lower bound at each iteration it, i.e., check that
b>xit = b>

(
xit−1 + t∗it−1dit−1

)
≥ b>xit−1 is surely satisfied because the objective function does not

deteriorate by advancing along xit−1 → dit−1 (see arguments at Step 2 from Section 2). Accordingly,
this Projective Cutting-Planes variant brings the advantage that the lower bound b>xit becomes con-
stantly increasing along the iterations it, eliminating the infamous “yo-yo” effect often appearing in Column

Generation. However, our preliminary experiments (available on-line, see footnote 10, p. 39) suggest that
this aggressive choice leads to more iterations in the long run; furthermore, these iterations are also compu-
tationally more expensive because the above xit is not truncated. For this reasons, we decided not to use
this Projective Cutting-Planes variant when reporting the main results.

Regarding the iterations it = 1 and it = 2, let us choose x1 = 0n and d1 = 1
W w, and resp. x2 = 0n and

d2 = b. The choice of projecting along 0n → 1
W w at the very first iteration is inspired by research in dual

feasible functions for Cutting-Stock problems [4], which shows that 1
W w is often a dual-feasible solution (in

pure Cutting-Stock) of very high quality. The choice at iteration 2 is a standard one, following ideas from
Section 2. By solving these two sub-problems, the Projective Cutting-Planes also generates a few initial
constraints in (4.2.1). To ensure an unbiased comparison, our standard Column Generation algorithm also
generates such initial constraints in the beginning, i.e., it solves the separation sub-problem on b and 1

W w
before launching the standard iterations.

4.2.3 Solving the Projection Sub-problem

Most Column Generation algorithms for cutting and packing problems can use Dynamic Programming (DP)
to solve the separation sub-problem. And, in many such cases, if the separation sub-problem can be solved
by Dynamic Programming, so can be the projection one.

Given a feasible x ∈ P in (4.2.1) and a direction d ∈ Rn, recall that the projection subproblem
project(x → d) asks to minimize (2.2.1). For Multiple-Length Cutting-Stock, (2.2.1) is instantiated as
follows:

t∗ = min

{
f(w>a)− a>x

d>a
: a ∈ Zn+, w>a ≤W, d>a > 0

}
, (4.2.2)

where the function f : [0,W ] → R+ maps each ` ∈ [0,W ] to the cost of the cheapest (shortest) standard–
size piece of length at least ` available in stock. The DP scheme proposed next can work for any non-
decreasing function f , i.e., under the natural assumption that shorter pieces are cheaper than longer pieces.
Such functions f can encode many different Cutting-Stock variants, like variable–sized bin–packing or elastic
cutting stock, as in the examples from [13, §4.1.1].

4.2.3.1 The main DP algorithm, the state definition and the state transitions

We consider a set S` of DP states for every feasible length ` ∈ [0..W ]. Each state s ∈ S` is associated to all
patterns a ∈ A of length slen = w>a = `, of cost sc = f(w>a)− a>x = f(`)− a>x and of profit sp = d>a.
Using this cost/profit interpretation, we can say that (4.2.2) asks to find a state s ∈ {S` : ` ∈ [0..W ]} that

minimizes the cost/profit ratio obj(s) =
sc

sp
, i.e., if possible, minimize the cost and maximize the profit.

Notice that any cutting pattern can be associated to a state, although we will see that certain states are
dominated and do not need to be recorded. The above cost sc = f(x>a) − a>x is always non-negative
because x ∈P.

The DP algorithm starts out only with an initial null state of length 0, cost 0 and profit 0. It then
performs a DP iteration for each item i ∈ [1..n]; if bi > 1, this iteration is performed bi times because a
pattern can cut up to bi copies of item i (and there is no use in exceeding the item demand bi). Each such
DP iteration generates transitions from the current states to update other (or produce new) states. A state
transition s→ s′ associated to an item i leads to a state s′ such that:

(a) s′len = slen + wi, i.e., the length simply increases by adding a new item;

(b) s′p = sp + di, i.e., we add the profit of item i;
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(c) s′c = sc + f(s′len)− f(slen)− xi, i.e., the term f(s′len)− f(slen) updates the cost of the standard-size
stock piece from which the pattern is cut, and −xi comes from the −a>x term from the cost definition
f(`)− a>x presented above.

Algorithm 1 The main Dynamic Programming steps executed for each item i bi times

1. for ` = W − wi to 0:

2. for each s ∈ S`: . for each state with length `

3. initialize state s′ with s′len = `+ wi, according to above formula (a)

4. calculate s′p, s
′
c with above formulae (b) and (c)

5. if s′ is not dominated by an existing state in S`+wi
(see Section 4.2.3.2) then

• S`+wi
← S`+wi

∪ {s′}

• record the transition s→ s′ (to reconstruct an optimal pattern in the end)

Algorithm 1 provides the pseudo-code executed for each item i ∈ [1..n] considered bi times. In the end,

the overall DP algorithm returns the best state ever generated, i.e., min
{
obj(s) =

sc
sp

: s ∈ S`, ` ∈ [0..W ]
}

.

The most complex operation arises at Step 5, where one needs to check that the new state s′ is not dominated
by an existing state in S`+wi before inserting it in S`+wi . If we only had to solve a separation sub-problem
(i.e., min {sc − sp : s ∈ S`, ` ∈ [0..W ]}), it would have been enough to make each set S` contain a unique
state, the one of maximum profit (as all states in S` have the same cost). The above pseudo-code would
reduce to a DP knapsack algorithm, calculating only the maximum profit for each length ` ∈ [0..W ].

The projection sub-problem is more difficult because recording a unique state per length is no longer
enough. To illustrate this, notice that a state with a cost/profit ratio of 5

4 does not necessarily dominate a
state with a cost/profit ratio of 3

2 only because 5
4 <

3
2 . Indeed, the 5

4 state can evolve to a sub-optimal state by
following a transition that decreases the cost by 1 and increases the profit by 4 because 5−1

4+4 = 4
8 �

3−1
2+4 = 2

6 .
This could never happen in a (knapsack-like) separation sub-problem, i.e., the relative order of two states
defined by cost−profit differences would never change because all transitions induce linear (additive) changes
to such differences.

Hereafter, we focus on how to reduce the number of states recorded in each set S`, so as to accelerate the
DP algorithm for the projection sub-problem. First, let us show it is enough to record a unique maximum-
profit state for each feasible cost value of a state in S`. For this, let us consider two states s∗, s ∈ S` such
that s∗c = sc and s∗p > sp; we will show that s is dominated and can be ignored. This comes from the fact
that any transition(s) applied on such states would lead to the same cost s∗c + ∆c = sc + ∆c > 0 and to

profits s∗p + ∆p > sp + ∆p; this way, it is easy to check that
s∗c + ∆c

s∗p + ∆p
<

sc + ∆c

sp + ∆p
holds — as long as we are

only interested in positive profit states (positive denominators) as requested by the condition d>a > 0 from
(4.2.2).

Let us now compare s∗ to a state s ∈ S` of higher cost and no better profit, i.e., such that s∗c < sc and

s∗p ≥ sp. Such state s is also dominated by s∗ because it can only lead via transitions to
s∗c + ∆c

s∗p + ∆p
<

sc + ∆c

sp + ∆p
.

As such, if a state s ∈ S` has a higher cost than an existing state s∗ ∈ S` (i.e., s∗c < sc), then it can only be
non-dominated if it has a better profit as well, i.e., only if s∗p < sp. This can be seen as a formalization of
a very natural principle “pay a higher cost only when you gain a higher profit”. However, the cost and the
profits of all non-dominated states in S` can thus be ordered using a relation of the form:

c1 < c2 < c3 < . . . (4.2.3a)

p1 < p2 < p3 < . . . (4.2.3b)
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4.2.3.2 Reducing the number of states to accelerate the DP

We now propose several ideas to reduce the number of states and to accelerate the DP projection algorithm.
First, let us focus on the length of the lists (4.2.3.a)–(4.2.3.b) that have to be recorded for each S` ∀` ∈ [0..W ].
If there are fewer potential costs values, these lists have to be shorter, and so, the total number of states is
reduced. Accordingly, if all pattern costs f(`) (∀` ∈ [0,W ]) are multiples of 0.2 and if we only use truncated
solutions xit such that all components of xit are also multiples of 0.2, the maximum number of feasible costs
values is 6, because any state cost has the form f(`) − a>x for some a ∈ Zn+ and thus it has to belong to
{0, 0.2, 0.4, 0.6, 0.8, 1}. This way, the resulting DP algorithm might often need to record only a few states per
length, and so, it is not necessarily significantly slower than a separation DP algorithm recording a unique
state per length.

Secondly, we need a fast data structure to manipulate the list of cost/profit pairs satisfying the above
conditions (4.2.3.a)–(4.2.3.b). Such a fast data structure aims at speeding-up the projection algorithm by
accelerating the following two operations executed by Algorithm 1:

(i) iterating over all elements of S`, as needed by the for loop at Step 2;

(ii) inserting a new state at Step 5 after checking that it is not dominated.

Remark 5 A list of cost/profit values satisfying (4.2.3.a)–(4.2.3.b) can be seen as a Pareto frontier with
two objectives (minimize the cost and maximize the profit). Iterating over the elements of such a frontier
for the above operation (i) is relatively simple. On the other hand, achieving a very fast insertion for the
above operation (ii) is significantly more difficult because the new state mentioned at (ii) could be dominated.
The difficulty comes from the fact that one should not scan the whole list to check whether the new state
is dominated or not. Furthermore, the insertion of a new non-dominated state can result in the removal of
other existing states that become dominated. We propose in Appendix A.3.1 a fast data structure (relying on
a self-balancing binary tree) designed to perform such operations as rapidly as possible. �

Finally, experiments suggest it is possible to further accelerate the DP scheme (in practice) by sorting the

items i ∈ [1..n] in descending order of the value
wi

1 + xbst
i

. Precisely, Algorithm 1 is executed for each of the

items [1..n] considered in this order. In a loose sense, this amounts to considering that it is better to start
with longer items that did not contribute too much to the best truncated inner solution xbst ever found.

5 Numerical Evaluations

Sections 5.1 and 5.2 provide numerical results for the (minimization) problems discussed in Section 3, in
which P is defined as a primal polytope. Section 5.3 and 5.4 are devoted to the problems from Section 4
in which P is the dual polytope in a Column Generation model with a maximization (dual) objective. We
will finish with a brief Section 5.5 explaining why the Projective Cutting-Planes can be more successful
on certain problems than on others, also investigating why choosing xit = xit−1 +αt∗it−1dit−1 with α < 0.5
is often better than choosing α = 1 (except in graph coloring). The C++ source code for all four considered
problems is publicly available on-line at cedric.cnam.fr/~porumbed/projcutplanes/; we refer the reader

to (the beginning of) Appendix B for information on the technical configuration (compilation, CPU, memory,
etc.).

5.1 A Robust optimization problem

This section compares the standard and the new Cutting-Planes on the robust optimization instances
from [6], considering Γ ∈ {1, 10, 50}; these instances originate in the Netlib or the Miplib libraries. In
fact, we discarded all instances that are infeasible for Γ = 50, since our methods are not designed to find
infeasibilities. We also ignored all instances that require less than 5 cuts in loc. cit. (i.e., seba, shell and
woodw) because they are too small to yield a meaningful comparison. As such, we remain with a test bed of
21 instances with between n = 1000 and n = 15000 variables, as indicated in Appendix B.1. Recall that the
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Figure 3: The progress over the iterations of the lower and upper bounds reported by the Projective

Cutting-Planes (in red), compared to those of the standard Cutting-Planes (lower bounds only, in blue).

considered robust problem has a minimization objective, so that the feasible solutions xit determined by the
Projective Cutting-Planes along the iterations it generate upper bounds b>xit.

Figure 3 plots the running profile of the standard Cutting-Planes compared to that of the Projective

Cutting-Planes on two instances. The standard Cutting-Planes needed 83 and resp. 207 iterations to fully
converge on these two instances. After only half this number of iterations, the Projective Cutting-Planes

reported a feasible solution with a proven low gap of 0.06% or resp. 3.1% — see the arrows at the center of
Figure 3.

Table 1 next page compares the total computing effort (iterations and CPU time) needed to fully solve
each instance; for the Projective Cutting-Planes, this table also indicates the computing effort needed to
reach a gap of 1% between the lower and the upper bounds. In average, the new method reduced the total
number of iterations by 26% for γ = 50, by 15% for γ = 10 and by 7% for γ = 1.

More important than the total computational effort to fully converge, we notice that the upper bounds
generated by the Projective Cutting-Planes can be of good quality, even since the beginning of the search
in some cases. For example, the standard Cutting-Planes needed between one and two hours (depending on
γ) to determine the optimal solution for the last instance stocfor3, while the Projective Cutting-Planes

reported in less than 3 seconds a feasible solution with a proven gap below 1% — remark the columns “gap
1%” in the last row of Table 1, where the time appears in bold. In many practical settings, this could
represent a satisfactory feasible solution.6

For sctap2 and sctap3 with Γ = 50, the standard Cutting-Planes is seriously slowed down by degen-
eracy issues, i.e., it performs too many Simplex pivots that only change the basis without improving the
objective value. It thus needs significantly more iterations than normally expected — see the figures in bold

6It is also true that the robust optimal solution is always within 103% of the nominal optimum. The value of the starting
solution x1 might be only a few percents higher than the nominal optimum.

27



γ
=

50
γ

=
1
0

γ
=

1
O

P
T

n
ew

m
et

h
o
d

st
d

.
m

et
h

o
d

O
P

T
n

ew
m

et
h

o
d

st
d

.
m

et
h

o
d

O
P

T
n

ew
m

et
h

o
d

st
d

.
m

et
h

o
d

(+
%

)
ga

p
1%

fu
ll

co
n
v
er

g.
fu

ll
co

n
v
er

g
.

(+
%

)
g
a
p

1
%

fu
ll

co
n
v
er

g
.

fu
ll

co
n
v
er

g
.

(+
%

)
g
a
p

1
%

fu
ll

co
n
v
er

g
.

fu
ll

co
n
v
er

g
.

In
st

an
ce

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

2
5
f
v
4
7

2.
54

8
14

6
1.

16
8

14
9

1.
19

1
19

9
1
.2

6
5

2
.5

4
1

1
5
8

1
.1

8
8

1
6
9

1
.2

7
3

2
0
4

1
.4

5
5

1
.4

5
7

1
3
5

1
.0

2
3

1
4
7

1
.1

1
1
4
9

1
.1

2
b
n
l
2

1.
84

7
48

6
13

.6
6

49
1

13
.8

1
19

27
4
8
.1

3
1
.8

4
7
0
3

2
0
.9

2
7
0
8

2
1
.0

8
1
2
9
5

3
1
.3

1
0
.7

9
0
3

5
0
1

1
4
.4

7
5
0
4

1
4
.5

6
5
5
2

1
2
.6

6
c
z
p
r
o
b

0.
64

01
61

0.
48

5
73

4
32

.3
12

93
5
8
.5

2
0
.3

7
4
9

3
2

0
.1

8
1

1
2
5

0
.8

9
9

1
7
0

1
.3

0
2

0
.1

2
2
3

1
4

0
.0

9
3
5

2
5

0
.1

9
6

2
5

0
.1

2
4

g
a
n
g
e
s

0.
47

36
1

<
0.

00
1

25
0.

05
9

25
0
.0

5
9

0
.4

3
0
2

1
<

0
.0

0
1

3
1

0
.0

8
5

3
3

0
.0

7
4

0
.0

5
3
1

1
<

0
.0

0
1

2
5

0
.0

6
3

2
5

0
.0

4
9

g
f
r
d
-
p
n
c

0.
06

49
64

0.
14

04
64

0.
14

1
64

0
.0

9
2

0
.0

6
4
9

6
4

0
.1

0
8
6

6
4

0
.1

0
9

6
4

0
.0

9
0

0
.0

5
9
2

6
7

0
.1

4
1
5

6
7

0
.1

4
2

6
7

0
.1

0
0

m
a
r
o
s

12
.1

2
27

2
2.

40
2

27
8

2.
45

8
37

9
3
.5

1
8

1
2
.1

1
2
8
1

2
.5

0
8

3
0
0

2
.6

8
3

3
9
5

3
.4

8
6

5
.7

6
2
0
0

1
.8

1
2

2
1
9

1
.9

8
3

2
2
7

1
.7

1
4

n
e
s
m

0.
87

52
56

0.
57

9
80

0.
79

8
80

0
.6

5
9

0
.8

7
5
2

5
6

0
.6

0
4

8
0

0
.8

2
4

8
0

0
.6

5
8

0
.4

5
1
5

5
8

0
.6

4
7

8
2

0
.8

8
0

8
2

0
.6

3
9

p
i
l
o
t
j
a

4.
87

7
12

1
2.

41
8

16
1

3.
04

2
20

7
3
.7

0
1

4
.8

1
5

1
2
5

2
.3

1
6

1
7
2

3
.0

7
4

1
7
9

3
.4

1
8

2
.3

4
4

1
1
0

1
.5

2
2

1
3
5

1
.9

0
8

1
4
3

1
.6

9
3

p
i
l
o
t
n
o
v

8.
51

96
4.

22
7

12
0

4.
61

5
11

9
3
.7

1
4

8
.5

1
1
0
3

6
.1

2
1
3
9

6
.9

1
2

1
4
1

4
.9

1
5

4
.4

0
2

9
4

3
.3

5
5

1
2
0

3
.8

0
5

1
1
9

1
.7

7
6

p
i
l
o
t
w
e

6.
10

9
10

2
0
.9

7
11

8
1.

10
2

14
3

1
.2

0
4

6
.1

0
8

1
0
2

1
.0

4
5

1
1
9

1
.1

9
1
4
4

1
.3

0
8

3
.1

9
3

9
8

0
.8

5
3

1
1
5

1
.0

0
5

1
2
4

1
.0

6
6

s
c
f
x
m
2

2.
11

4
93

0.
38

7
13

9
0.

58
4

14
6

0
.5

3
7

2
.1

1
3

1
0
1

0
.4

0
1

1
5
2

0
.6

0
3

1
5
0

0
.4

9
8

0
.9

8
8
9

8
8

0
.3

5
7

1
3
1

0
.5

3
6

1
4
2

0
.4

8
6

s
c
f
x
m
3

2.
14

2
13

9
0.

95
7

19
6

1.
35

3
21

5
1
.2

7
2
.1

4
1

1
4
2

0
.9

5
5

2
2
7

1
.5

7
5

2
2
2

1
.3

0
9

0
.9

7
7

9
1

0
.6

0
5

1
9
7

1
.3

5
2

2
1
3

1
.2

1
6

s
c
t
a
p
2

2.
84

4
18

5
1.

94
6

24
2

2.
56

7
6
5
4
5

1
4
7
.3

2
.8

1
4

3
3
2

3
.6

8
5

6
9
6

8
.4

9
5
4

1
0
.6

2
1
.5

3
3

1
9
1

2
.0

3
5

3
5
3

3
.8

8
3
0
2

2
.6

4
4

s
c
t
a
p
3

3.
04

14
5

2.
64

9
23

9
4.

55
9
4
6
3

3
6
6
.1

2
.9

9
5

1
8
0

3
.4

5
7
7
3

1
5
.4

9
1
1
6
8

2
0
.2

2
1
.6

0
2

2
1
3

3
.7

8
5

4
0
6

7
.3

9
4

3
4
7

4
.7

9
9

s
h
i
p
0
8
l

0.
12

44
1

0.
00

2
20

0.
11

1
29

0
.1

7
1

0
.1

1
5
7

1
0
.0

0
2

1
9

0
.1

2
8

2
3

0
.1

3
4

0
.0

3
0
0

1
0
.0

0
2

1
9

0
.1

2
7

2
4

0
.1

4
7

s
h
i
p
0
8
s

0.
13

96
2

0.
00

6
32

0.
12

2
42

0
.1

3
9

0
.1

2
9

2
0
.0

0
6

3
4

0
.1

3
4

3
5

0
.1

2
3

0
.0

3
1
7

1
0
.0

0
1

3
2

0
.1

2
3

3
8

0
.1

2
7

s
h
i
p
1
2
l

0.
35

28
1

<
0.

00
1

48
0.

44
2

65
0
.5

7
6

0
.3

4
6
2

1
<

0
.0

0
1

4
8

0
.4

1
8

6
5

0
.5

5
5

0
.0

6
0
0

1
0
.0

0
4

4
5

0
.4

5
1

5
6

0
.4

8
3

s
h
i
p
1
2
s

0.
38

98
4

0.
01

5
63

0.
37

7
83

0
.3

7
6

0
.3

8
5
7

5
0
.0

1
9

6
4

0
.3

8
7

8
6

0
.3

9
8

0
.0

6
1
7

4
0
.0

1
5

5
8

0
.3

0
5

6
3

0
.2

8
1

s
i
e
r
r
a

0.
02

39
1

0.
00

1
54

0.
41

4
61

0
.5

6
7

0
.0

2
3
9

1
0
.0

0
1

5
4

0
.4

1
2

6
1

0
.5

6
9

0
.0

2
2
3

1
0
.0

0
4

5
1

0
.5

3
8

5
1

0
.4

8
3

s
t
o
c
f
o
r
2

1.
52

2
6

0.
02

2
43

7
5.

04
7

48
4

6
.6

7
1
.5

2
2

7
0
.0

2
5

4
3
8

5
.3

8
7

4
8
6

6
.5

6
2

0
.7

5
8
8

3
0
.0

5
4

4
3
8

7
.5

7
3

7
1
2

1
0
.3

s
t
o
c
f
o
r
3

1.
48

2
29

2
.1

9
2

37
77

21
25

43
29

2
7
0
1

1
.4

8
2

3
2

1
.8

6
2

3
7
8
1

2
0
2
9

4
3
3
0

2
8
5
1

0
.7

3
2
7

1
0
.9

9
3
7
2
0

3
0
2
3

6
0
6
9

3
4
8
2

T
ab

le
1:

C
om

p
ar

is
on

b
et

w
ee

n
th

e
P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

a
n

d
th

e
st

a
n

d
a
rd

C
u
t
t
i
n
g
-
P
l
a
n
e
s

o
n

th
e

ro
b

u
st

o
p

ti
m

iz
a
ti

o
n

in
st

a
n

ce
s.

T
h

e
co

lu
m

n
s

O
P

T
in

d
ic

at
e

th
e

in
cr

ea
se

in
p

er
ce

n
ta

ge
o
f

th
e

ro
b

u
st

o
b

je
ct

iv
e

va
lu

e
w

it
h

re
sp

ec
t

to
th

e
n

o
m

in
a
l

o
n

e
(w

it
h

n
o

ro
b

u
st

n
es

s)
.

T
h
e

co
lu

m
n

s
“g

ap
1%

”
in

d
ic

at
e

th
e

co
m

p
u

ti
n

g
eff

or
t

n
ee

d
ed

to
re

a
ch

th
e

it
er

a
ti

o
n
i
t

w
h

en
th

e
g
a
p

b
et

w
ee

n
th

e
u

p
p

er
b

o
u

n
d

b
>

x
i
t

a
n

d
th

e
lo

w
er

b
o
u

n
d

o
p
t
V
a
l
(P

i
t
)

is
b

el
ow

1%
,

i.
e.

,
ei

th
er

0
<

o
p
t
V
a
l
(P

i
t
)
≤

b
>

x
i
t
≤

1.
0
1
o
p
t
V
a
l
(P

i
t
)

o
r
o
p
t
V
a
l
(P

i
t
)
≤

b
>

x
i
t
≤

0.
9
9o
p
t
V
a
l
(P

i
t
)
<

0
.

28



in the rows of sctap2 and sctap3. We suppose that such degeneracy phenomena are also visible for czprob
with Γ = 50 in Table 1 of [6], because their algorithm takes 100 more time for Γ = 50 than for Γ = 10, which
is unusual.

Remark 6 Except for the above experiments, the degeneracy issues of the standard Cutting-Planes are not
very visible in other Cutting-Planes implementations from this paper. However, they can generally arise in
many problems, and, for instance, Column Generation algorithms are often prone to degeneracy phenomena;
as [11, §4.2.2] put it, “When the master problem is a set partitioning problem, large instances are difficult
to solve due to massive degeneracy [...] Then, the value of the dual variables are no meaningful measure for
which column to adjoin to the Reduces Master Problem”. In Projective Cutting-Planes, we can say that
the inner-outer solutions xit and opt(Pit−1) represent together a more “meaningful measure” for selecting
a new constraint, avoiding iterations that keep the objective value constant; projecting along xit → dit does
not normally keep the objective value constant (given that b>dit > 0, recall Step 2 from Section 2).

To summarize, the proposed Projective Cutting-Planes brings two advantages at a rather low compu-
tational cost: (i) it generates feasible solutions of provable quality along the iterations and (ii) it avoids the
degeneracy issues of the standard Cutting-Planes. We can not claim that the new algorithm achieves a very
spectacular acceleration in terms of iterations or CPU time for full convergence on this problem. However,
we will see that it can reduce the number of iterations by factors of 3 or 4 on the Benders decomposition
experiments from the next section, as well as on certain graph coloring instances from Section 5.3.1.

5.2 The Benders reformulation

We here evaluate the potential of the intersection sub-problem to improve the standard Benders’
Cutting-Planes on the network design problem from Section 3.2.4, reformulated using the model (3.2.8a)–
(3.2.8c). In fact, we will first report results on the linear relaxation of this problem, replacing x ∈ Zn+ from
(3.2.8c) with x ∈ Rn+, i.e., this reduces to solving the problem from Remark 3 (p. 14). We use a test bed
of 14 existing instances from [14] and 7 new instances (see exact details in Appendix B.2). We consider a
bandwidth of bwd = 3 for all instances and the demands have always been generated uniformly at random
from an interval [0, dem max]. We will present statistical results over 10 runs,7 reporting the average, the
standard deviation and the minimum value of the main performance indicators, i.e., the number of iterations
and the CPU time.

Tables 2 and resp. Table 3 compare the new and the standard method on the linear relaxation of (3.2.8a)–
(3.2.8c) and resp. on the original integer Benders model (3.2.8a)–(3.2.8c). The first five columns of both tables
represent the same instance information: the instance class in Column 1, the instance ID (number) in column
2, the number of edges n = |E| in Column 3, the number of vertices in Column 4 and the maximum demand
dem max in Column 5. Column 6 reports either the optimum of the linear relaxation (LP OPT in Table 2) or
the optimum of the original integer model (IP OPT in Table 3). In both tables and for both methods, we
report statistics on the number of iterations and on the total CPU time in the column groups “avg (std) min”.
The columns “Time solve master” report the percentage of CPU time spent on solving master problems along
the iterations, i.e., to determine opt(P1), opt(P2), opt(P3), etc.

Table 2 contains an additional Column 7 (Best IP Sol) that reports the best integer upper bound reported
by the Projective Cutting-Planes along all runs on the LP relaxation. The Projective Cutting-Planes

determines an integer feasible solution at each iteration using Remark 2 (p. 12). We calculated that the LP
optimum in Column 6 represents in average 94.5% of the above integer solution from Column 7, i.e., the
average integrality gap is 5.5%. If we only consider the last 9 instances with dem max ≥ 100, the average
integrality gap is below 1%. These instances are so large that we are skeptical their integer optimum could
be found using (the new or the standard) Cutting-Planes. As such, one could attempt to tackle them by
Branch and Bound, solving the above LP relaxation at the root node of the branching tree. It well-known
that the effectiveness of a Branch and Bound substantially depends on the gap at this root node. For the
above 9 largest instances, we can say the Projective Cutting-Planes reports a gap below 1% at the root

7By default, the Benders algorithms from Section 3.2 have no random component. However, we could randomize them by
inserting 10 random cut-set constraints in the beginning of the solution process, as in the experimental section of [14].
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node; thus the integration in a Branch and Bound seems promising, but this lies outside the scope of this
paper.

We now turn our attention to the total computing effort needed to fully converge to the LP optimum. In
Table 2, the average number of iterations of the Projective Cutting-Planes is often better than the best
number of iterations of the standard Cutting-Planes. The new method can roughly reduce the (average)
number of iterations by a factor of almost 3 (row 3 from bottom to top), or by a factor of about 2 for roughly a
third of the instances; the average reduction is 2

3 , i.e., the new method requires 1
3 fewer iterations in average.

This shows there is no need for a statistical test to confirm there is a statistically significant difference between
the numbers of iterations reported by the two methods. The average reduction of the CPU time is however
only 3

4 because the projection sub-problem is computationally (slightly) more expensive than the separation
one.

Regarding the original integer Benders problem, Table 3 confirms that both the separation and the
projection sub-problem can be solved significantly faster than an ILP master problem. The columns “Time
solve master” indicate that 97% of the total running time is spent on solving ILP master problems, which
clearly become the major computational bottleneck of the (standard or new) Cutting-Planes. This confirms
theoretical expectations (recall Section 3.2.2) since both sub-problems are reformulated as a pure LP which
can be solved significantly faster than a (master) ILP.

Table 3 suggests that, for the original integer Benders model, the Projective Cutting-Planes can
reduce the average number of iterations by factors of 3 or 4 (e.g., see instances b and d). Such a performance
could not be achieved by simply improving or stabilizing the standard Cutting-Planes — see comparative
results in the caption of Table 3. The new method can also halve the average running time on four instances
out of ten (see rows 2, 3, 4, or 7), although it can also fail to solve two instances with a 100% success rate.
The running time is not perfectly proportional to the number of iterations because the structure of the ILP
master problems generated along the iterations can be very different from method to method, from instance
to instance.

5.3 Graph Coloring

This section is devoted to two different experimental comparisons on two different coloring models.

– Section 5.3.1 compares the Projective Cutting-Planes and the classical Column Generation on the
original graph coloring model with (columns defined by) standard stables, i.e., each dual constraint
a>x ≤ 1 in A is associated to the incidence vector a of a standard stable from the considered graph.
The projection sub-problem algorithm for this model was described in Section 4.1.3.

– In Section 5.3.2 we will apply the Projective Cutting-Planes on a second coloring model using
(columns defined by) a broader notion of reinforced relaxed (RR) stables from Definition 2 (p. 20).
The classical Column Generation will always be applied on the original coloring model. We will thus
compare the new Projective Cutting-Planes variant working on the second coloring model with
the classical Column Generation that uses standard stables. The projection sub-problem is solved as
described in Section 4.1.4.

We use 15 coloring instances generated during the second DIMACS implementation challenge (in the
1990s) and widely-used afterwards for benchmarking many different coloring algorithms. This test bed
contains random graphs, random geometrical graphs or particular graphs with hidden cliques as described in
Appendix B.3.

5.3.1 The Projective Cutting-Planes and the Column Generation on standard graph coloring

We here consider the Projective Cutting-Planes from Section 4.1.2. The projection sub-problem is for-
mulated (in Section 4.1.3) using the Disjunctive LP (4.1.2.a)–(4.1.2.e), that was obtained via a discrete
Charnes–Cooper reformulation. Recall that the separation sub-problem of the standard Column Generation

algorithm reduces to the maximum stable problem, that can be formulated as an ILP over the set P0−1 of
standard stables from (4.1.1.c). We prefer to solve both the (separation) ILP and the (projection) Disjunctive
LP with similar mathematical programming tools based on Branch and Bound, as provided in the cplex
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software package. Had we used two (very) different methods for these sub-problems, we would have skewed
the results in the favor of the most refined of the two methods.

To have an additional marker for evaluating the quality of the reported lower bounds, we will also refer to
an upper bound determined from a heuristic coloring.8 As indicated in Section 4.1.2, this heuristic coloring
is also used to construct an initial direction d1 and a set of initial constraints A0 ( A; all these initial
constraints take the form a>x ≤ 1, where a ∈ Zn+ is the incidence vector of a stable from the heuristic
coloring. While the Projective Cutting-Planes starts out by solving project(0n → d1) with d1 defined
as above, the standard Column Generation starts out by separating the same d1 at the first iteration, so as
to ensure similar starting conditions for the two methods.

By instantiating (4.1.1.a)–(4.1.1.c), the first projection sub-problem can be written in the form t∗1 =

min

{
1

d>1 a
: a ∈ P0−1, d>1 a > 0

}
, where recall P0−1 is the set of standard stables from (4.1.1.c). The first

pierce point is t∗1 · d1 and the associated first lower bound is b>(t∗1 · d1) = t∗1 · 1>nd1, equivalent to:

1>nd1

max
{
d>1 a : a ∈ P0−1

} (5.3.1)

The standard Column Generation method relies on the separation sub-problem min{1−x>a : a ∈ P0−1},
where x is the current optimal outer solution opt(Pit) at iteration it. A well-known Lagrangean bound
for problems with ca = 1 ∀(a, ca) ∈ A is the Farley bound (A.3.1) from Appendix A.3.2 — see also [1,
§ 2.2], [16, § 3.2] or [11, § 2.1] for interesting descriptions and proofs. Instantiating the notations from

(A.3.1) to our problem, this first bound becomes
1>nx

1−min{1− x>a : a ∈ P0−1}
; for x = d1, this reduces to

1>nd1

max{d>1 a : a ∈ P0−1}
. Thus, the very first lower bound reported by the standard Column Generation is

equal to the first bound (5.3.1) of the Projective Cutting-Planes.
Figure 4 depicts the progress over the (first 150) iterations of the lower bounds reported by the Projective

Cutting-Planes compared to those of the standard Column Generation. As expected from the above
theoretical arguments, the two methods start from the same lower bound (5.3.1) at the very first iteration.
However, the lower bounds of the Projective Cutting-Planes increase monotonically, while those of the
standard Column Generation method demonstrate the “yo-yo” effect. This (infamous) effect is due to the
strong oscillations of the optimal solutions opt(Pit) along the Column Generation iterations it (which is
also referred to as the “bang-bang” behavior). By stabilizing the Column Generation, one can reduce such
effects, but we are not aware of any other Column Generation work in which the “yo-yo” effect could be
completely eliminated.

The Projective Cutting-Planes from this section eliminates this “yo-yo” effect completely, mainly
because each current inner solution xit = xit−1 + t∗it−1dit−1 is better than the previous one xit−1. Indeed,
we have b>xit > b>xit−1 since the objective value can not decrease by advancing along xit−1 → dit−1, i.e.,
a projection can only improve the objective value, based on the arguments indicated at Step 2 from Section
2.

Table 4 reports three lower bounds determined by the classical Column Generation (Columns 2-4), fol-
lowed by 3 bounds of the Projective Cutting-Planes (last three columns). In loose terms, for both
methods, the three reported bounds respectively correspond to the beginning (Columns 2 and 6), to a mid-
point (Columns 3 and 7) and to the to end (Columns 4 and 8) of the solution process. In fact, we tried
to make Columns 2 and 6, 3 and 7, and resp. 4 and 8 correspond to equal rounded-up bound values; this
explains why Column 2 might actually report more than 100 iterations, i.e., the Column Generation might
need hundreds of iterations to reach the bound value obtained by Projective Cutting-Planes in a dozen
of iterations (in Column 6). For each bound, we indicate the number of iterations iter needed to reach it,
the bound value lb and the CPU time tm in seconds. A digit in Column 5 indicates that we used k-clique
inequalities to accelerate the projection sub-problem algorithm (see Section 4.1.3.1). We excluded graphs

8Such feasible colorings have been determined by heuristic algorithms developed in our previous work on graph coloring
(almost a decade ago). They are publicly available on-line at cedric.cnam.fr/~porumbed/graphs/evodiv/ or cedric.cnam.

fr/~porumbed/graphs/tsdivint/. The upper bound value for each instance is provided in Column 4 of Table 5.
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Figure 4: The running profile (lower bounds) of the Projective Cutting-Planes and of the classical Column
Generation on 4 standard coloring instances. The new method does not exhibit the infamous “yo-yo” effect
arising in most (if not all) classical Column Generation algorithms.
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Instance
Classical Column Generation clique Projective Cutting-Planes

beginning mid iter last iter cut sz. beginning mid iter last iter
iter:lb/tm iter:lb/tm iter:lb/tm k iter:lb/tm iter:ca lb/tm iter:lb/tm

dsjc125.1 283:3.44/29.2 380:3.8/53.8 544:4.01/135.6 4 3:3.52/33.0 78:3.80/1225 142:4.01/2809
dsjc125.5 253:13.08/365 306:14.27/634 378:15.08/1101 — 16:13.04/213 62:14.001/1288 136:15.003/4077
dsjc125.9 70:25.67/24.4 134:34.13/78 171:42.11/136 — 2:25.67/7.3 44:34.11/109 150:42.03/486
dsjc250.9 254:51.6/2221 275:54.98/2702 437:70.09/7757 — 5:51.06/487 34:54.01/3013 67:70.01/50185
r125.1 34:2.35/0.06 36:2.62/0.06 47:5/0.08 4∗ 5:2.35/0.18 17:2.61/0.68 20:5/0.80
r125.1c 15:25.09/8.18 17:30.06/8.45 22:46/9.8 — 2:26.83/4.7 6:30.06/10.4 14:46/21.6
r125.5 82:21.39/7.3 100:24.59/9.2 121:36/11.2 4∗ 3:21.21/4.2 67:24.01/74.3 116:36/136.7

Table 4: The Projective Cutting-Planes compared to the classical Column Generation on all standard
graph coloring instances that could be solved by either method in less than 10000 seconds.

∗ For these graphs, we added the cuts (c) from Appendix A.2.1. We also protect the algorithm from generating zero step lengths
and stagnating: if the intersection sub-problem returns t∗it < 10−6 at some iteration it, we switch to a new formula to determine
future inner solutions: xit = 0.99 (xit−1 + t ∗it−1 dit−1). We thus avoid the degeneracy-like issues from Section 4.1.4.3.

like le450 25c, le450 25d, le450 15c, le450 15d, dsjc500.1, simply because they require more than 10000
seconds for both methods, at least when the sub-problem is solved by cplex (see also Remark 7, p. 38).

The first conclusion that can be drawn from Table 4 is the following. For half of the instances, the classical
Column Generation might need hundreds of iterations to reach the lower bounds generated by Projective

Cutting-Planes in less than 20 iterations (compare Columns 2 and 6 labeled “beginning”). This mainly
comes from the fact that the lower bounds of the Projective Cutting-Planes start on a rapidly increasing
slope. Regarding the final convergence, the Projective Cutting-Planes is systematically faster in terms
of iterations, up to reducing the number of iterations to half (dsjc125.5, r125.1) or to less than a third (on
dsjc125.1). However, it can be slower in terms of absolute CPU times. As discussed in Section 4.1.3.1, this
is mostly due to the speed of the sub-problem solvers provided by the cplex software package: the solver for
the (separation) ILP is faster than one for the (projection) Disjunctive LP. By changing these solvers, one
could easily obtain very different results in terms of CPU time.

More generally, although the sub-problem algorithm can be seen as a black-box component in the overall
design, the relative CPU performance of all discussed coloring algorithms depends substantially on the running
time of this sub-problem algorithm. Focusing only on the standard Column Generation, the total running
time can completely change if we replace the current cplex pricing (Table 4) by a BBBS pricing (Table 5
in Section 5.3.2). On the low-density graph dsjc125.1, the Column Generation with cplex pricing needs
135 seconds, while the BBBS version needs 5431 seconds. The situation is inverted on a high-density graph
like dsjc125.9: the cplex version needed 136 seconds and the BBBS version needed 1.61 seconds. Similar
phenomena arise for the Projective Cutting-Planes; for instance, we could double the running time for
dsjc125.1 by simply changing the implementation of ai ∈ {0, α} from “ai ≤ 0 or ai ≥ α” to “ai = 0 or

ai = α” — both these equivalent constraints are implemented as logical “or” constraints in cplex.
Further research could explore other algorithms specifically devoted to this class of Disjunctive LPs, as

needed by the projection sub-problem. Based on the arguments from Section 4.1.3.1, we see no in-depth
reason why a Branch and Bound algorithm for such a Disjunctive LP should always be fundamentally slower
in absolute terms than any Branch and Bound algorithm for the associated ILP.

The proposed approach beyond standard graph coloring

As described in Section 4.1.3.2, the discrete Charnes-Cooper transformation has the advantage that it can
actually work on (numerous) problems in which the separation sub-problem can be expressed as an ILP. The
reformulation of the edge inequalities used in graph coloring can well apply to other inequalities. To give
only one example, if instead of the edge inequalities ai + aj ≤ 1 ∀{i, j} ∈ E we consider defective coloring
inequalities (4.1.3a), the discrete Charnes-Cooper can perform the translation (4.1.3a) →(4.1.3b). We here
only present a brief experiment. Figure 5 plots the lower bounds generated by the two methods along the
first (150) iterations on two defective coloring instances. This figure confirms the trends observed on Figure 4
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Figure 5: The running profile (lower bounds) of the Projective Cutting-Planes and of the standard Column

Generation on two instances of the defective coloring problem, allowing d = 3 neighbors of the same color
(recall Section 4.1.3.2).

5.3.2 The new method with RR-stables against the standard method with standard stables

We now focus on a second coloring model in which the constraints A from (4.2) are no longer associated to
standard stables but to a new, broader, notion of RR–stables. Accordingly, the constraints A are defined
by the extreme solutions of the polytope P from Definition 2 (p. 20), see also (4.1.5). Since P does contain
all original stables, any feasible solution of this second (4.2) model with RR–stables is also feasible for the
original (4.2) model; as such, any lower bound for the new model is also a lower bound for the original model.
We will compare the lower bounds reported by the Projective Cutting-Planes on this second model to
the Lagrangian bounds reported by the standard Column Generation on the original model. We will see
(Remark 7) that the Projective Cutting-Planes can find in less than one hour certain lower bounds that
the standard Column Generation may not reach in days of computations (on the original model).

The projection sub-problem now reduces to the pure LP (4.1.6a)–(4.1.6d) obtained via the continuous
Charnes–Cooper transformation as described in Section 4.1.4.1. This LP is solved by cut generation as
indicated in Section 4.1.4.2. We will report results for two values of the parameter k that controls the size of
the k-cliques used to generate reinforcing cuts (f) when constructing the polytope P (by cut generation).
Confirming theoretical arguments from Section 4.1.4.2, a higher k generates stronger lower bounds but at
the expense of a lower speed.

For the sake of an unbiased comparison, we always prefer to solve the intersection and the separation sub-
problems with similar techniques. In Section 5.3.1, both sub-problems have been solved with mathematical
programming tools (based on Branch and Bound and continuous relaxations), as provided by the cplex

software package. In the current section, we determine the maximum weight stables (for the separation sub-
problem) using the same Branch & Bound with Bounded Size (BBBS) algorithm used by the Projective

Cutting-Planes to find k-cliques when constructing P . For the standard Column Generation, the maximum
stable of the considered graph (Column 5 in Table 5) is given as input to the BBBS algorithm, i.e., it
constitutes the bounded size given as input to BBBS.

Table 5 compares the standard and the new method, placing a special emphasis on three lower bounds
reported along the iterations. The first four columns describe the instance: the density in Column 1, the
graph name in Column 2, the number of vertices in Column 3 and the heuristic upper bound in Column 4.
Columns 6–8 report three lower bounds determined by the standard Column Generation along the iterations
(each table cell in these columns indicates the bound value and the required CPU time). For the Projective

Cutting-Planes, we consider in Column 9 two values of the parameter k used to generate k-cliques to
construct P . Columns 10–12 provide three lower bounds of the Projective Cutting-Planes in the same
format as in the Columns 6–8.

The last column of Table 5 reports the result of a final additional iteration: take the last pierce point
reported by the Projective Cutting-Planes with RR-stables (next-to-last column), multiply it with α =
0.9999 (for the reasons indicated in Section 4.1.4.3), and project it towards 1n in the original model with
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standard stables. This last projection may lead to an even better lower bound. The following remark
summarizes the main conclusions that can be drawn from Table 5.

Remark 7 One of the state–of–the–art Column Generation algorithms for graph coloring [9] could not con-
verge in less than three days for instances like le450 25c, le450 25d, le450 15c, le450 15d and dsjc500.1.
Our numerical experiments confirm that a standard Column Generation can indeed “stall” on such instances,
exactly for the reason indicated in [9], namely, “the maximum-weight stable-set problems that need to be solved
exactly become too numerous and too difficult.” More generally, low-density graphs like the above ones are
often quite difficult for the standard Column Generation because they have very large stables that can be really
hard to generate (to solve the separation sub-problem). For such graphs, the Projective Cutting-Planes

from this section could lead to certain successes:

1. For le450 25c, le450 25d, le450 15c and le450 15d, the Projective Cutting-Planes reported a
lower bound that matches the chromatic number in less than one hour, which seems out of reach for
the standard Column Generation. Although these first four instances are not very hard in absolute
terms because they can be solved with external methods (using a lower bound given by the maximum
clique9), the lower bounds of the Projective Cutting-Planes are more general. These bounds could be
determined in the same manner for any (dual) objective function b 6= 1n, as in a multi-coloring problem
(see Section 4.1.1) for which the above external methods would fail (because the maximum clique is no
longer a lower bound).

2. For dsjc500.1, the last projection in the model with standard stables (last column of Table 5) reports
a (rounded up) lower bound of 6; to the best of our knowledge [12, 9], this is the first time anyone has
found a feasible solution of such quality in the dual Column Generation LP (4.2). As in the case of the
four graphs at point 1 above, the bound value in itself has been already discovered, but only using external
means (based on constructing a reduced induced subgraph in [9]). We can even describe this feasible
solution of (4.2): assign 0.9999 + 0.00000101 to the vertices 4, 30, 47, 361, 475 and 0.00000101 to all
remaining 495 vertices; the associated objective value is 5·0.9999+500·0.00000101 = 4.9995+0.000505 =
5.0005. Without any risk of numerical errors, we can prove this solution is feasible because there is no
stable of size 100 that contains any of the vertices 4, 30, 47, 361, or 475 (these vertices form a clique).
Indeed, cplex showed in less than 2 hours that the size of such a stable is upper bounded by 99; the
above solution is thus feasible because 0.9999 + 99 · 0.00000101 = 0.99999999 < 1.

3. For dsjc250.1, the last column of Table 5 indicates that the (cplex solver for the) last projection needed
at most 1000 seconds to show that the last step length t∗last is large enough to prove

⌈
3.80585222+ t∗large ·

250
⌉

= 6, where 3.80585222 is the value of the last pierce point multiplied by α = 0.9999. Allowing even
more CPU time to this last projection sub-problem, cplex could report after roughly 36 hours (using
up to 20 threads and 40GB of RAM on a stronger, multi-core CPU) a lower bound of 0.0088 on the
last step length, i.e., it proved t∗last > 0.0088. The last projection with standard stables thus proves a
lower bound of

⌈
3.80585222 + t∗last · 250

⌉
≥
⌈
3.80585222 + 0.0088 · 250

⌉
≥
⌈
6.005

⌉
= 7. We see no risk

of numerical errors because after 56 hours, cplex could even prove t∗last > 0.01. To the best of our
knowledge [12, 9], this is the first time a lower bound of 7 has even been reported on this graph.

5.4 Multiple-Length Cutting-Stock

This section is devoted to Multiple-Length Cutting-Stock, generally considering two types of standard-size
pieces in stock: one of length W and cost 1, and one of length 0.7W and cost 0.6. We have two reasons to
prefer this problem variant over the standard Cutting-Stock: (i) the constraints (a, ca) ∈ A of the Column

Generation dual LP (4.2.1) do not satisfy all ca = 1, and (ii) one cannot compute lower bounds using the
Dual Feasible Functions that proved so effective for the standard Cutting-Stock [4]. We use a test bed of 30
Cutting-Stock instances whose characteristics (i.e., the values of n, W , b, etc) are described in Appendix B.4,
more exactly in Table 9.

9One can use a meta-heuristic to find an upper bound and any algorithm to determine the maximum clique size. Since for
such graphs the upper bound is often equal to the maximum clique size, this maximum clique size gives the chromatic number.
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Projective Cutting-Planes Standard Column Generation
Instance OPT gap 20% full convergence gap 20% full convergence

iters time[s] iters time[s] iters time[s] iters time[s]
m01-1 49.3 90 0.02 166 0.05 187 0.07 194 0.08
m01-2 53 82 0.02 140 0.04 171 0.06 202 0.07
m01-3 48.2 70 0.02 134 0.04 180 0.07 212 0.08
m20-1 56.6 79 0.02 101 0.03 101 0.03 148 0.04
m20-2 58.7 73 0.02 103 0.02 123 0.04 175 0.05
m20-3 64.8 61 0.01 116 0.02 118 0.03 136 0.03
m35-1 73.9 61 0.01 61 0.01 64 0.01 64 0.01
m35-2 71.5 125 0.02 125 0.02 143 0.02 143 0.02
m35-3 73.7 67 0.01 67 0.01 82 0.01 82 0.01
vb50c1-1 866.3 46 0.8 82 2.2 83 5.5 113 8.3
vb50c1-2 842.5 39 1.6 86 2.5 91 7.6 121 9.6
vb50c1-3 860.2 37 1.5 85 3.1 87 6.9 115 9.5
vb50c2-1 672.3 55 2.2 114 9.8 82 13.1 127 20.2
vb50c2-2 593.1 40 1.9 80 5.1 88 11 139 21.1
vb50c2-3 480.048 36 3.5 181 47.2 75 20.6 216 76.3
vb50c3-1 282 37 11.7 122 57.6 67 36.1 179 105
vb50c3-2 239.398 37 16.8 115 64.6 60 30.6 145 85.1
vb50c3-3 271.398 36 12.9 132 65.3 68 38.2 173 109
vb50c4-1 579.548 40 3.5 115 17.5 73 12.5 158 35.5
vb50c4-2 551.01 36 3 123 21.9 73 18.5 166 46.6
vb50c4-3 700.039 40 2.3 111 9.9 81 11.9 147 24.8
vb50c5-1 337.8 40 8.7 133 51.9 61 24.8 228 109
vb50c5-2 349.799 30 4.8 130 44.1 64 21 207 81.4
vb50c5-3 295.775 36 11 115 53.6 71 28.4 177 83.9
wäscher-1 24.0648 71 0.2 319 4.2 294 2.3 483 4.7
wäscher-2 22.0003 69 0.2 501 8.6 158 1 481 6.7
wäscher-3 12.1219 31 0.03 110 0.3 110 0.3 170 0.5
hard-sch-1 51.4254 112 14.7 345 69.2 345 48.1 712 115
hard-sch-2 51.4426 116 15.1 339 67 365 50.9 685 110
hard-sch-3 50.5957 110 15.1 295 58.6 357 52.8 630 107

Table 6: The Projective Cutting-Planes compared to the classical Column Generation on Multiple-
Length Cutting-Stock. The Projective Cutting-Planes needs 40% fewer iterations on almost a 1

4 of the
instances (in bold in Column 5). Notice the CPU times are always smaller in absolute terms than those
reported in the companion paper (Section 2, p. 6) of [15], for both the new method and the standard Column

Generation. This can not only be explained by the hardware evolution, but also by a better implementation.

Table 6 compares the Projective Cutting-Planes (from Section 4.2.2) to the standard Column

Generation. Column 1 indicates the instance, Column 2 presents the optimal value of (4.2.1), Columns
3–6 report the results of the new method, and Columns 7–10 provide the results of the standard Column

Generation. For both methods, Table 6 first indicates the computing effort (iterations and CPU time)
needed to reach a gap of 20% (i.e., so that ub≤ 1.2·lb) and then the total computing effort needed to fully
converge.

We notice in Table 6 that the Projective Cutting-Planes reaches the 20% gap three or four times more
rapidly than the standard Column Generation (compare Columns 3–4 to Columns 7–8). This is mostly due
to the fact that the lower bounds of the Projective Cutting-Planes start on a more upward trend10 than
the (Lagrangian) lower bounds of the standard Column Generation determined via (A.3.2).

Regarding the complete convergence, the standard Column Generation requires in average 44% more it-
erations than the Projective Cutting-Planes. For the last three (most difficult) instances, the Projective
Cutting-Planes reduced the number of iterations by half. By applying stabilization techniques on the clas-

10The evolution of these lower bounds along the iterations are publicly available on-line at cedric.cnam.fr/~porumbed/

projcutplanes/cutstock/. These bounds are also be compared to those of a so-called “aggressive” Projective Cutting-Planes

that defines xit via xit = xit+t∗it−1dit−1. This Projective Cutting-Planes version eliminates the yo-yo effect (as in Figures 4–
5) but it is slower in the long run.
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sical Column Generation, the reduction of the number of iterations would generally be between 10% and
20%, for all instances except the (very easy) m20 and m35 [15, Table 2].

Table 7 provides experimental evidence that the above experimental conclusions are supported by statis-
tical results over 10 runs. For both the new and the standard method, Table 7 reports the average, the
standard deviation and the minimum/maximum number of iterations needed by both methods to fully
converge. To randomize the two methods, we determine each optimal solution opt(Pit) by randomly
breaking ties in case of equality (at each iteration it). The maximum number of iterations needed by
the Projective Cutting-Planes is usually lower than the minimum number of iterations of the standard
Column Generation, and so, there is no need for statistical tests to confirm this difference is statistically
significant. In addition, all standard deviations are usually rather limited for both methods, generally repre-
senting less than 5% of the average value. Other preliminary experiments confirm that similar trends show
up across all instances from each instance set, e.g., the instances m01-1, m01-2, m01-3 lead to similar results.

Instance OPT Projective Cutting-Planes standard Column Generation

avg (std. dev) min/max avg (std. dev) min/max
m01-1 49.3 159 (4.7) 152/168 191 (8.2) 173/202
m20-1 56.6 98.8 (3.2) 91/102 162 (6.9) 152/175
m35-1 73.9 63.3 (3.2) 61/69 66.3 (2) 64/69
vb50c1-1 866.3 82 (0) 82/82 113 (0) 113/113
vb50c2-1 672.3 114 (0) 114/114 127 (0) 127/127
vb50c3-1 281.949 173 (18.2) 119/180 196 (7.2) 174/198
vb50c4-1 579.548 115 (0) 115/115 158 (0) 158/158
vb50c5-1 337.675 201 (22.8) 133/209 238 (3.3) 228/239
wäscher-1 24.0648 308 (13) 287/328 485 (7.5) 466/494
zhard-sch-1 51.4253 356 (7.7) 346/370 707 (11.4) 691/726

Table 7: Statistical comparison (over ten runs) of the number of iterations needed by the two methods to
fully converge on the first instance from each instance set.

Finally, the above experimental conclusions are further supported by the results on a second Multiple-
Length Cutting-Stock variant that introduces a third standard-size piece of length 0.5W and cost 0.4. Ta-
ble 8 compares the new and the standard method on this second problem variant, using the same for-
mat (and same columns) as in Table 6. Compared to the standard Column Generation, the Projective

Cutting-Planes requires roughly half iterations for 4 instances out of 10. For another 3 instances, the
Projective Cutting-Planes requires 40% fewer iterations.

Projective Cutting-Planes Classical Column Generation
Instance OPT gap 20% full convergence gap 20% full convergence

iters time[s] iters time[s] iters time[s] iters time[s]
m01-1 49.1 98 0.03 108 0.03 179 0.07 201 0.08
m20-1 56.4 77 0.02 91 0.02 101 0.03 150 0.04
m35-1 72.6 53 0.009 53 0.009 64 0.01 122 0.02
vb50c1-1 832.6 45 1.1 87 2.3 87 6.6 136 10.8
vb50c2-1 622.8 42 2.6 83 4.6 91 15.5 150 21.6
vb50c3-1 263.243 35 7.4 204 95.4 59 31.9 286 184
vb50c4-1 562.3 40 3 80 10 73 13.1 174 41.1
vb50c5-1 315.488 36 7.7 145 52.1 70 29.4 171 83.4
wäscher-1 23.075 77 0.3 212 1.8 283 2.1 450 3.9
zhard-sch-1 47.9 124 17 281 48.3 394 57.4 714 122

Table 8: The Projective Cutting-Planes compared to the standard Column Generation on a Multiple-
Length Cutting-Stock variant with 3 types of standard-size pieces in stock: one of length W and cost 1, one
of length 0.7W and cost 0.6, and one of length 0.5W and cost 0.4.
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5.5 The oscillations of the inner solutions and the “bang-bang” effects

We here (try to) gain more insight into why an “aggressive” definition of xit like xit = xit−1 + t∗it−1dit−1

leads to poor results (in the long run) on certain problems and to reasonable results on others. A possible
explanation is related to the oscillations of the inner solutions xit along the iterations it. The above aggressive
xit definition generates stronger oscillations (“bang-bang” effects) for the first two problems (Sections 5.1
and 5.2) than for the last two (Sections 5.3 and 5.4).

We provide below the values of the first 15 components of xit+1 = xit+t∗itdit for it ∈ {1, 11, 21, 31, 41},
i.e., as generated by Projective Cutting-Planes using the above aggressive xit definition. For each prob-
lem, we selected the very first instance from the main table of results, i.e., from Table 1, Table 3, Table 5,
and resp. Table 6. It is clear that these values exhibit stronger oscillations for the first two problems than for
the last two. This explains why setting xit = xit−1 + t∗it−1dit−1 is appropriate for graph coloring, while the
best settings for the first two problems take a form xit = xit−1 + αt∗it−1dit−1 with α < 0.5. Regarding the
Multiple-Length Cutting-Stock, although we do not use xit = xit−1 + t∗it−1dit−1 in Section 5.4, this choice
would still lead to reasonable results, as in the experiments referred by Footnote 10 (p. 39).

The robust optimization problem:

0 37.36 0 59.62 0 69.77 0 97 199.2 0 0 417 4403 0 65.66

20.76 22.81 0 49.76 0 45.46 0 65.86 236.4 0 136.3 254.6 3500 0 64.43

27.38 18.04 0 46.28 0 37.49 0 55.68 248.7 0 180.8 201.3 3205 0 64.03

33.26 13.8 0 43.21 0 30.41 0 46.66 259.6 0 220.7 154.1 2942 0 63.67

36.22 11.68 0 41.63 0 26.86 0 42.14 265.1 0 240.7 130.3 2811 0 63.49

The benders reformulation (IP version):

2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76

0.37 0.37 0.37 0.37 0.37 0.37 4.08 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

0.112 0.112 0.112 0.112 0.112 0.112 1.93 0.112 0.112 1.64 0.112 0.112 0.112 0.112 0.112

0.026 0.026 0.026 0.026 0.026 0.026 1.62 0.026 0.026 1.62 0.026 0.026 0.026 0.026 0.026

0.018 0.024 0.018 0.018 0.018 0.029 1.67 0.03 0.018 1.12 0.018 0.079 0.018 0.029 0.018

Standard graph coloring:

0.025 0.021 0.036 0.021 0.033 0.021 0.021 0.021 0.029 0.029 0.021 0.025 0.029 0.025 0.033

0.04 0.064 0.033 0.028 0.084 0.028 0.035 0.019 0.04 0.059 0.019 0.073 0.054 0.025 0.05

0.04 0.063 0.033 0.029 0.085 0.028 0.044 0.019 0.04 0.058 0.019 0.072 0.056 0.025 0.051

0.038 0.062 0.032 0.03 0.089 0.027 0.045 0.018 0.039 0.056 0.018 0.07 0.054 0.025 0.051

0.037 0.06 0.032 0.031 0.088 0.026 0.044 0.018 0.038 0.055 0.018 0.068 0.053 0.025 0.051

Multiple length cutting stock:

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.25 0.95

0.27 0.43 0.72 0.79 0.24 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.44 0.72 0.79 0.23 0.7 0.55 0.4 0.69 0.01 0.41 0.41 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.42 0.39 0.05 0.24 0.95

6 Conclusion and Prospects

We proposed a Projective Cutting-Planes method to optimize LPs over polytopes P with unmanageably-
many constraints. The key idea is to “upgrade” the widely–used separation sub–problem of the well–known
Cutting-Planes to a more general projection sub–problem. Given an arbitrary inner (feasible) solution
x ∈ P and a direction d ∈ Rn, this sub-problem asks to determine the pierce (first-hit) point x + t∗d en-
countered when advancing from x along d, i.e., determine t∗ = max {t ≥ 0 : x + td ∈P}. The Projective

Cutting-Planes generates a sequence of inner solutions xit and a sequence of outer solutions opt(Pit) that
both converge along the iterations it to the optimal solution opt(P). Each inner solution xit is chosen as a
point on the segment joining the previous inner solution xit−1 and the last pierce point xit−1 + t∗it−1dit−1.
Theoretical arguments and extensive experiments on four different problems highlight a number of advantages
of the Projective Cutting-Planes:
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– The feasible (interior) solutions xit ∈P that converge to opt(P) are generated using a generic built-
in mechanism of the Projective Cutting-Planes. The standard Cutting-Planes does not have any
built-in functionality to generate converging inner solutions for any problem. And although different
ad-hoc techniques (e.g., the Farley bound in Column Generation) can be used for certain problems to
determine feasible inner solutions during the Cutting-Planes, these inner solutions usually remain a
by-product of the algorithm, i.e., they are not an important “driving force” guiding the Cutting-Planes
evolution. In contrast, the inner solutions generated by the Projective Cutting-Planes are part of
the main algorithmic engine and the Projective Cutting-Planes could not work without them.

– Except for the robust optimization experiments (Section 5.1), the new method could lead to important
reductions of the total running time or of total the number of iterations. More exactly, in Section 5.2,
both the number of iterations and the CPU time could be reduced in the best cases by factors of 3
or 4 (e.g., see instances b and d in Table 3). A reduction of a factor of 2 can also be observed in
Section 5.4 on Multiple-Length Cutting-Stock (see the last three rows in Table 6 and the last two rows
in Table 8). For standard graph coloring (Section 5.3.1), the reduction of the number of iterations can
also reach a factor of 4 (first instance in Table 4); we could even report a lower bound that has never
been reported before in the literature of the (well studied) graph coloring problem — see last point of
Remark 7 (p. 38).

– The separation sub-problem of the standard Cutting-Planes determines each new constraint using only
one guide point, i.e., the current optimal outer solution. The Projective Cutting-Planes generates
new constraints by taking into account a pair of inner–outer solutions (two guide points). This, coupled
with the fact that all considered projection sub-problems project(xit → dit) satisfy b>dit > 0,
enables the Projective Cutting-Planes to more easily avoid many degeneracy issues (i.e., iterations
that keep the objective value constant) that can arise in Cutting-Planes. Although in our experiments
these issues of the standard Cutting-Planes are only visible in Section 5.1 (Remark 6, p. 29), it is
well-known that they do arise quite frequently in Column Generation as well.11

– By defining xit as the best solution ever found (the last pierce point), one can prove that the lower
bound b>xit becomes strictly increasing along the iterations it. This way, the lower bounds for graph
coloring (Figure 4) or defective graph coloring (Figure 5) no longer show the infamous “yo-yo” effect
that can be seen in most (if not all) existing Column Generation algorithms. The “yo-yo” effect could
also be eliminated in certain Multiple-Length Cutting-Stock experiments, but only using a particular
Projective Cutting-Planes variant that is not particularly effective in the long run (Footnote 10,
p. 39).

There are also certain (inherent) deterrents to adopting the Projective Cutting-Planes:12

– Since the projection sub-problem is more general, it can be more difficult to design a projection al-
gorithm than a separation one. The projection algorithm can also be more prone to numerical issues
because a small precision error in computing the step length t∗ can lead to an infeasible pierce point
x+ t∗d, which risks generating infeasibilities at the next iteration. For the standard separation, a small
precision error can remain innocuous if the returned constraint does separate the current optimal outer
solution. As such, more work may be needed to make the Projective Cutting-Planes reach its full
potential.

– We do not (yet) have a fully comprehensive insight into why the Projective Cutting-Planes is more
successful on some problems than on others. It remains rather difficult to explain why α < 0.5 is often
better than α = 1 when defining the inner solution xit with a formula like xit = xit−1 +α · t∗it−1dit−1.
However, we can advance the following arguments:

11As [1, §4] put it, “Column generation processes are known to have a slow convergence and degeneracy problems”. Section
4.2.2 of [11] explains that “large instances are difficult to solve due to massive degeneracy” — see also the references from loc. cit
for longer explanations of the mechanisms that lead to degeneracy issues.

12We do not want to let the reader think that we consider the proposed algorithm to be close to revolutionary in any sense;
we do not like papers with too much big talking.
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1. In a successful Projective Cutting-Planes implementation, the feasible solutions xit generated
along the iterations it are rather well-centered, i.e., they do not exhibit a “bang-bang” behavior
with strong oscillations (see also arguments in Section 5.5). In a loose sense, the inner solutions
xit are reminiscent of an interior point algorithm in which the solutions follow a central path [8,
§ 3.3], while the outer solutions opt(Pit) are reminiscent of the Simplex algorithm. Recall that
the Simplex algorithm can sometimes exhibit a “bang–bang” behavior by moving along the edges
from one extreme solution to another. We can argue that, by choosing xit = xit−1 +α ·t∗it−1dit−1

with α < 0.5, the Projective Cutting-Planes generates more well-centered paths, limiting the
“bang-bang” effects.

2. The projection sub-problem of a successful Projective Cutting-Planes generates stronger con-
straints than the separation sub-problem. As described in Section 2.4.1 of [14], when x = 0n,
the intersection subproblem project(x→ d) is equivalent to normalizing all constraints and then
choosing one by separating x + d. The strengh of two constraints can be compared without am-
biguity only when the constraints are normalized, i.e., when they have the same right-hand side
value. Even if this paper uses x 6= 0n, each projection sub-problem could still generate stronger
(normalized) constraints than the ones obtained by separation. For example, consider choosing
between 2x1 + 3x2 ≤ 1 and 200x1 + 300x2 ≤ 495. When solving the separation sub-problem on
[1 1]>, the second constraint might seem more violated because 200+300−495 = 5 > 2+3−1 = 4.
But the (level sets of the) two constraints are parallel and the second constraint is considerably
weaker, even redundant. It is not difficult to check that the projection sub-problem can never
return this (redundant) second constraint, for any feasible x and for any direction d ∈ R2.

Last but not least, many existing Cutting-Planes algorithms could be “upgraded” to a Projective

Cutting-Planes, provided that one can design a projection algorithm whose running time is similar to that
of a separation algorithm. The Projective Cutting-Planes could thus be potentially useful to solve other
LPs with prohibitively-many constraints, beyond the four problem examples addressed in this paper. This
could help one overcome certain limitations of current practices used on canonical Cutting-Planes.
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A Greater detail on three projection algorithms

A.1 Numerical difficulties when solving the Benders integer model

For both the separation and the projection sub-problem, the Cutting-Planes algorithm for the Benders
reformulation (3.2.8a)–(3.2.8c) can encounter a number of numerical issues that are worthwhile investigating.
The main one (Appendix A.1.1) regards the optimization of the relaxed master programs, to determine
opt(Pit) at each iteration it. The second one (Appendix A.1.2) concerns the projection algorithm.

A.1.1 Numerical problems when solving the integer master problem

The ILP solver for determining opt (Pit) at each iteration it can be particularly prone to numerical or
precision problems, especially if Pit contains too many constraints (3.2.8b) with exceedingly large coefficients
– as determined by the sub-problem algorithm. For the (cplex) LP solver, many values (of variables or slacks)
can be zero in theory and slightly larger than zero in practice; multiplying such “ε-sized” values with extremely
large coefficients can generate noising terms and numerical precision problems.

Recall that the separation sub-problem performs a normalization of these coefficients by imposing 1>u = 1
in (3.2.4). Regarding the projection sub-problem, we mentioned at point (ii) from Section 3.2.3 that the
returned u does not need to be normalized. This is perfectly fine in theory, but if the optimal solution of the LP
(3.2.11a)–(3.2.11e) used by the sub-problem has some exorbitant coefficients (see reasons in Appendix A.1.2
below), the projection algorithm can return a constraint (3.2.8b) with exceedingly large coefficients. To avoid
such drawbacks, we apply the following principles when solving the projection sub-problem:

– If (3.2.11a)–(3.2.11e) has multiple optimal solutions, it is better to take one with reasonable coefficients;
as such, when solving (3.2.11a)–(3.2.11e), the projection algorithm breaks ties by minimizing 1>u.

– Before inserting a constraint (3.2.8b) into the master problem, it is better to normalize it; for this, we
multiply u by a scalar such that the largest coefficient uij of a term uijxij in (3.2.8b) becomes equal
to 10.
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Despite above efforts, the master ILP solver (for both the standard or the new Cutting-Planes) might
take too long to optimize certain relaxed master ILPs associated to (3.2.8a)–(3.2.8c), i.e., it can be too difficult
to determine opt(Pit) at certain (rare) iterations it. Although such problems are not frequent, they could
completely block the overall algorithm for a prohibitively long time; accordingly, the integer Benders model
can become very difficult to solve in such cases, almost impossible.

The key for overcoming this drawback comes from the fact that it is not really essential to determine
the optimal solution opt(Pit) at each iteration it (as described soon). Accordingly, we enforce a limit of
n

120 + 1 seconds on the running time of the ILP solver; as soon as this limit is exceeded, the Cutting-Planes

continues with the best sub-optimal solution of Pit found by the ILP solver in the given time, which is
different from opt(Pit). This does not change the correctness of the overall algorithm, because this sub-
optimal solution could be separated anyway, at the next call to the sub-problem algorithm. If this is not
the case, we allow 500 more times to the ILP solver and we let it try again to determine opt(Pit). If this
second try fails, we consider the instance can not be solved. This technique is described in greater detail in
Appendix C.2 of [14].

A.1.2 Numerical problems when solving the projection sub-problem

The LP (3.2.11a)–(3.2.11e) used to solve the projection subproblem (p. 15) is also prone to numerical prob-
lems, mainly because the decision variables u can be unbounded. In fact, the only constraint that can limit
the magnitude of u is −∑{i,j}∈E bwddijuij = 1 from (3.2.11d); but since the terms dij can be positive,
negative or zero, it is possible to satisfy this constraint by assigning some extremely high values to certain
uij variables. Furthermore, certain factors bwdxij in the sum

∑
{i,j}∈E bwdxijuij from the objective function

(3.2.11a) can be zero in theory and slightly different from zero in practice (at least when using Cplex);
multiplying such non-zero factors bwdxij with an extremely large uij can lead to non-zero artificial (noising)
terms in the objective function.

To reduce such phenomena, we impose a limit of 100 on the maximum value the variables u can take
in (3.2.11a)–(3.2.11e). In fact, any practical algorithm for (3.2.11a)–(3.2.11e) has to impose such a limit in
practice because the memory is finite and the variables u can not be effectively unbounded. This leads to
restricting the feasible set of (3.2.11a)–(3.2.11e); in theory, the resulting restricted LP might not minimize
t∗ as much as possible, and so, it might return an overestimated t∗ so that x + t∗d could be potentially
infeasible. However, one can certify that the projection sub-problem is correctly solved by checking that the
optimal solution satisfies uij < 100 ∀{i, j} ∈ E. This is very often confirmed because the optimal u hardly
ever contains values larger than 0.5 in practice. When there is however some uij = 100, this is most certainly
due to the numerical issues above, i.e., bwdxij is slightly different from zero in practice although it should
be zero in theory. Furthermore, the fact that an intersection point xit + t∗dit might be infeasible at some
iteration it does not change the correctness of the solution returned by the Projective Cutting-Planes

in the end (for the reasons provided two paragraphs above).

A.2 Graph Coloring Projection: Reinforced Relaxed Stables by Cut Generation

A.2.1 Cut families used to reinforce relaxed stables

The Projective Cutting-Planes from Section 4.1.4 uses a graph coloring Column Generation model in
which each constraint a>x ≤ 1 from (4.2) is defined by an RR–stable a ∈ P , i.e., by an (extreme) solution a
of the auxiliary polytope P from Definition 2 (p. 20). This auxiliary polytope P is an outer approximation
of the stable set polytope, i.e., of the convex closure of the standard stables. We construct P by reinforcing
with cuts the description of the relaxed stables (i.e., of the vectors respecting the edge inequalities), hence
the name reinforced relaxed stables (RR–stables). More exactly, P is defined by six classes of (reinforcing)
cuts of the form e>a ≤ 1 ∀(e, 1) ∈ R or f>a ≤ 0 ∀(f , 0) ∈ R, as indicated in (4.1.5). We present below
these six cuts (a)–(f) without applying the Charnes–Cooper transformation to translate them to a form like
(4.1.6b). In fact, the cuts (a)–(d) are statically added when calling the first intersection sub-problem (and
they are re-used for all the next sub-problems), while the cuts (e)–(f) are dynamically added one by one
using the cut generation algorithm from Section 4.1.4.2.
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(a) The first cut class simply comes from the edge inequalities defining the standard 0–1 stables, i.e., at this
stage, we only impose au + av ≤ 1 ∀{u, v} ∈ E, obtaining the description of the relaxed stables, i.e.,
the fractional stable polytope.

(b) Generalizing the above idea, we use cuts (b) to generate a number of clique inequalities of the form
a(C ) =

∑
v∈C av ≤ 1, using only cliques C of maximum size min(5, k). These cliques are enumerated

one by one using a backtracking approach; the role of the parameter 5 is to keep the number of such
cliques within reasonable limits. To avoid combinatorial explosions, the backtracking algorithm uses
the rule that any vertex has to be ignored after appearing in 20 inequalities, i.e., after 20 apparitions,
the vertex is discarded from generating future cliques. In other words, we use the most standard
backtracking algorithm to enumerate all cliques of maximum size min(5, k), with the exception that we
discard any vertex after it appears in 20 cliques.

(c) To generate cuts (c), we actually construct a collection of clique inequalities that “cover” V . They are
generated by iterating over the vertices V = [1..n], using a method that is reminiscent of Algorithm 1
from [10] or of [12, § 2.2.2]. At the first iteration i = 1, this method simply selects a clique C of a given
maximum size k′ (see below) that contains the vertex i = 1 and imposes the clique inequality a(C ) ≤ 1.
We now introduce a set V ′ = V \ C that will evolve along the iterations; all subsequent cliques will be
determined by maximizing the number of elements from V ′. At the second iteration, we move to the
next element i ∈ V ′ to determine a new clique C 3 {i} of maximum size k′ and impose a(C ) ≤ 1. After
performing V ′ ← V ′ \ C , we move to the next iteration and repeat. At each iteration, we search for a
clique C of bounded size k′ with a maximum of elements from V ′, i.e., we apply the Branch & Bound

with Bounded Size (BBBS) from Appendix A.2.3 with very large weights for all v′ ∈ V ′ and with
small weights to all v ∈ V \V ′. The value of k′ is given by the minimum clique size for which this BBBS
algorithm can solve within at most 0.01 seconds the standard maximum clique of bounded size (with
weights 1n) on G. Experiments suggest that such cuts (c) can even accelerate the cut generation by
a factor of ten on the Leighton graphs (le450 25c, le450 25c, etc.), especially when k′ is much larger
than the value of k used at point (f).

(d) A cut of this class can be associated to any u, v, w ∈ V such that {u, v} ∈ E, {u,w} /∈ E and {v, w} /∈ E.
Using notation Nv = {v′ ∈ V : {v, v′} ∈ E}, a maximum standard 0–1 stable astd satisfies the following:

astd
u + astd

v ≤ astd
w + astd(Nw −Nu ∩Nv),

because if the maximum stable astd contains u or v (exclusively), then it also has to contain either w or
a neighbor of w. This neighbor of w can only belong to Nw −Nu ∩Nv because it can not be connected
to both u and v (since one of u or v belongs to the stable). This idea has also been generalized to the
case of triangles {µ, u, v} ⊂ V not connected to a vertex w ∈ V . We obtain the following cuts:

au + av ≤ aw + a(Nw −Nu ∩Nv) ∀{u, v} ∈ E, {u,w} /∈ E, {v, w} /∈ E
aµ + au + av ≤ aw + a(Nw −Nµ ∩Nu ∩Nv) ∀{µ, u}, {µ, v}, {u, v} ∈ E, {µ,w} /∈ E, {u,w} /∈ E, {v, w} /∈ E

We decided to insert such cuts only when they have less than 10 non-zero coefficients; experiments
suggest they are the most effective when they have 3 or 4 non-zero coefficients. For instance, when Nw−
Nu∩Nv = ∅, the first cut simplifies to au+av ≤ aw. Such a cut would eliminate [1/ω 1/ω 1/ω . . . 1/ω]
from P , where ω is the maximum clique size of G. Based on this, Remark 4 (p. 22) shows that the
optimum of the proposed Column Generation model with RR stables can be larger than ω.

(e) These cuts are classical odd-cycle (or odd-hole) inequalities, dynamically added by solving a separation
sub-problem on each current optimal solution a of (4.1.6a)–(4.1.6d). First, notice than a (simple) odd

cycle H yields a cut
∑
v∈H ah ≤

|H|−1
2 because a stable with |H|+1

2 vertices of H would have selected
two consecutive vertices of the cycle. To separate such a cut, it is enough to re-write it in the form

1 ≤
∑
v∈H

(1− 2av), equivalent to 1 ≤
∑

{u,v}∈EC(H)

(1− au − av), where EC(H) represents the |H| edges

of the cycle inside H. The separation sub-problem can be solved by finding the shortest odd cycle in G
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considering edge weights 1− au − av ∀{u, v} ∈ E — these weights are always non-negative because of
above cuts (a). This shortest odd cycle can be found by applying Dijkstra’s algorithm on an augmented
graph with: (i) a source linked to all vertices V , (ii) all vertices V without any edges between them, (iii)
a set V ′ of copies of V linked to V via edges {u, v′} ∈ V × V ′ of weight 1− au − av for any {u, v} ∈ E
(i.e., v′ is a copy of v), and (iv) a target vertex linked to all vertices V ′.

(f) The last cut class consists of k-clique inequalities a(C ) ≤ 1 associated to cliques C with at maximum k
elements, where k is a parameter that defines the model — it always has to be indicated in the numerical
results as in (Column 9 of) Table 5. Separating these cuts reduces to solving a maximum weight clique
problem with bounded size k; the weights a are given by the optimal solution at the current cut

generation iteration. For large values of k, (the iterative call to) this problem can become the main
computational bottleneck of the overall Cutting-Planes. This is why we present in Appendix A.2.3
a specific Branch & Bound with Bounded Size (BBBS) algorithm dedicated to this clique problem
with bounded size.

A.2.2 Accelerating the Cut Generation using Stabilization

We recall that the Charnes–Cooper LP (re-)formulation (4.1.6a)–(4.1.6d) of the projection sub-problem
from Section 4.1.4.1 is solved by cut generation. This cut generation algorithm was first described in
Section 4.1.4.2; at each iteration, it attempts to separate (the current optimal solution using) the above
(a)–(f) cuts. More exactly, the constraints (a)–(d) are statically inserted in (4.1.6a)–(4.1.6d) at the very first
iteration; only cuts (e)–(f) have to be iteratively separated.

A positive distinguishing characteristic of (4.1.6a)–(4.1.6d) is that all constraints (4.1.6b) generated at a
given iteration it can be kept throughout all subsequent iterations of the overall Cutting-Planes, because
they do not depend on the current xit or dit. In (4.1.6a)–(4.1.6d), only the constraints (4.1.6c) are specific
to the current iteration it because they depend on dit. The cuts (a)–(f) that produce constraints (4.1.6b)
never change along the Projective Cutting-Planes iterations.

All cuts (e) can be separated quite rapidly by applying Dijkstra’s algorithm once. Most of the computing
effort is spent on repeatedly separating the constraints (f) by solving a maximum weight clique problem.
Besides designing in Appendix A.2.3 a dedicated Branch & Bound with Bounded Size (BBBS) algorithm
for this (bounded size) maximum clique problem, we also propose the following two ideas to further accelerate
the cut generation:

1. We use a simple-but-effective solution smoothing technique: instead of calling the separation algorithm
on the current optimal solution, we call it on the midpoint between the current optimal solution and
the previous optimal solution. If the current optimal solution can not be separated this way, we have
to call the separation algorithm again, this second time on the current optimal solution.

2. We propose a (meta-)heuristic algorithm for the sub-problem before calling the BBBS algorithm. This
heuristic executes 5 ·n iterations of a Tabu Search algorithm.13 We always start the cut generation in
a heuristic mode, trying to solve all maximum weight cliques with this heuristic. But once the heuristic
fails, the cut generation algorithm switches to an exact mode (running only BBBS) for 15 iterations.
After each 15 iterations, it tries again to solve the problem heuristically. Unless this repeated heuristic
call is successful, the cut generation remains in the exact mode for another 15 iterations.

A.2.3 Maximum Weight Clique Branch–and–Bound with Bounded Size (BBBS)

The maximum weight clique with bounded size is a rather general graph–theoretic problem that could be
modeled and solved with many different methods. However, perhaps rather surprisingly at first glance, we did

13This Tabu Search algorithm encodes each candidate solution as a bit string of length n with exactly k ones. The objective
function is the sum of the edge weights induced by the vertices selected by the bit string. Each two vertices u, v ∈ V are
associated to an edge weight, either 1

2
(au + av) if {u, v} ∈ E or a prohibitively-small negative weight when {u, v} /∈ E. A Tabu

Search iteration selects the best non-Tabu vertex swap, the one maximizing the objective function. We use incremental data
structures to perform a fast streamlined calculation of the objective function variation associated to each vertex swap. After
deselecting a vertex, it becomes Tabu for 10+random(5) iterations, where random(5) returns a uniformly random integer value
in {0, 1, 2, 3, 4, 5}. For k = ∞, we used the multi-neighborhood Tabu search (www.info.univ-angers.fr/~hao/clique.html)
due to Q. Wu, J.K. Hao and F. Glover.
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not find any dedicated off-the-shelf software to solve it as rapidly as necessarily. We thus have to introduce
a new Branch & Bound with Bounded Size (BBBS) algorithm devoted to this problem. This BBBS was
mainly used to separate the cuts (f) from Appendix A.2.1, as needed by the cut generation algorithm from
Appendix A.2.2 above. At the same time, BBBS can directly solve the complementary problem, i.e., the
(bounded-size) maximum weight stable. We thus also used BBBS to solve the separation sub-problem of the
classical Column Generation algorithm with standard stables (for the results reported in Section 5.3.2).

The main algorithmic engine

The BBBS algorithm relies on a fairly straightforward Branch & Bound (B&B) routine that successively adds
vertices to existing cliques to construct increasingly larger cliques (B&B nodes); it generates a branching
tree in a deep–first manner. The number of generated B&B nodes (and the total running time) depends
substantially on the quality of the lower and upper bounds used for branch pruning. The lower bound is
simply given by the best clique ever generated, i.e., there is a unique global lower bound for the whole
branching tree at each moment. The upper bound is determined at each B&B node and it is more critical
for reducing the running time; we will present below a dedicated algorithm for it.

All cliques are constructed (to generate B&B nodes) by adding vertices to existing cliques following an
initial order v1, v2, . . . vn such that w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn, i.e., the vertices are initially sorted by decreas-
ing weight. As such, the very first B&B node is simply the clique {v1}. Since the B&B tree is constructed in
a deep-first-search manner, the second generated B&B node is {v1, vi} where i = min {i : {vi, v1} ∈ E} and
the third node is {v1, vi, vj} where j = min {j : {vj , v1} ∈ E, {vj , vi} ∈ E}, assuming k ≥ 3.

The global lower bound

The best clique ever constructed provides the global lower bound. In addition, recall (point 2 from Ap-
pendix A.2.2) that one can first try to solve the bounded–size maximum weight clique problem using a
(meta-)heuristic prior to launching BBBS; this can provide a second lower bound. Preliminary experiments
suggest that trying other better or faster (meta–)heuristics do not usually lead to an impressive acceleration
of the BBBS, and so, we hereafter focus on the upper bound.

The upper bound of each node

The running time of BBBS seems more sensitive to the quality of the upper bound. Let us first present
the most basic upper bound to be generalized next. Consider the current B&B node corresponding to a
constructed clique C of k′ elements with k′ < k (otherwise the node is a leaf). The remaining as-yet-
unconsidered vertices constitute a list (u1, u2, u3, . . . ) sorted by decreasing weight — because this is the
original sorting order of all vertices. After eliminating from (u1, u2, u3, . . . ) all vertices that are not connected
to all v ∈ C , one obtains a reduced list LC of vertices linked to all vertices from C . The simplest upper
bound is then given by the sum of the weights of the first k − k′ vertices in LC (plus the weight of C ).

We now present a higher–quality upper bound that can improve BBBS up to reducing the running time
by a factor of seven. The pseudo-code below presents the algorithm for calculating this bound and it relies
on the following ideas. First, recall that the above basic upper bound simply sums up the weights of the
first k− k′ elements in LC . Going beyond this idea, the new algorithm investigates in greater detail which of
these vertices should really contribute to the upper bound value. A vertex u of LC can not contribute to the
upper bound value, if there is a preceding v ∈ LC (of higher weight) such that {v, u} /∈ E that has already
contributed to the bound value. We say that v shadows u; in such case, the pseudo-code below breaks the
loop processing u using the first continue statement. However, this idea can not be applied twice: if there
is a second vertex u′ such that {v, u′} /∈ E, v can not shadow both u and u′ because selecting u and u′ can
be better than selecting v (assuming {u, u′} ∈ E). This explains why the pseudo-code below first inserts u
into a list L of vertices that can shadow other vertices (Line 15), but then removes any v ∈ L at Line 6 if v
shadows u, i.e., v can shadow only one vertex at most. However, v could still shadow some u′ ∈ V , but only
if {v, u, u′} is a stable and such cases are detected using a second list L′.

1: ub←
∑
v∈C

weight(v), addedVtx = 0

2: L← ∅ . vertices v that shadow other vertices
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3: L′ ← ∅ . non-edges {v, u} /∈ E such that v shadows u
4: for all u ∈ LC do . scan LC by descending order of weight
5: if ∃v ∈ L such that {v, u} /∈ E then . v shadows u and no clique contains both v and u
6: L← L \ {v} . v can not shadow more vertices using the test at Line 5
7: L′ ← L′ ∪ {(v, u)} . but it can shadow some u′ if {v, u, u′} is a stable at Line 10
8: continue . we do nothing else with u, because u is shadowed by v
9: end if

10: if ∃(v, u′) ∈ L′ such that {v, u, u′} is a stable then . v shadows both u and u′

11: L′ ← L′ \ {(v, u′)} . v can shadow at maximum two vertices
12: continue . we do nothing else with u, as u is shadowed by v and u′

13: end if
14: ub← ub + weight(u), addedVtx← addedVtx + 1
15: L← L ∪ {u} . u can shadow subsequent vertices in LC

16: if (addedVtx == k − |C |) then
17: break
18: end if
19: end for
20: return ub

Finally, to make the BBBS reach its full potential, one could still apply a number of further engineering
and implementation optimizations (as for many applied algorithms). For instance, experiments suggest that
the BBBS can be faster if we limit the size of the lists L and L′ to min(10, 2

3k). In addition, we decided not
to use the above improved upper bound when k is exceptionally large (greater than half the average degree
of G).

A.3 Two concepts used in Cutting-Stock that are essentially more general: a fast
data structure for handling Pareto frontiers and Lagrangian bounds

This section explores two notions that were originally needed by our (Multiple-Length) Cutting-Stock al-
gorithms, but that are essentially more general and even not necessarily related to Cutting-Stock. First,
Appendix A.3.1 presents a fast data structure to manipulate a Pareto frontier. Then, Appendix A.3.2 exam-
ines the Lagrangian bounds of the standard Column Generation, placing a special emphasis on the case in
which ca = 1 ∀(a, ca) ∈ A does not hold.

A.3.1 A fast data structure to record a Pareto frontier

Recall from Section 4.2.3.2 (Remark 5, p. 26) that the Dynamic Programming (DP) scheme has to manipulate
a list of states whose cost and profits constitute a Pareto frontier, satisfying the relation (4.2.3.a)–(4.2.3.b).
More exactly, the considered states correspond a list of |I| cost/profit pairs ci/pi ∀i ∈ I that satisfy the
following (Pareto dominance) relations:

c1 < c2 < c3 · · · < c|I|

p1 < p2 < p3 · · · < p|I|

As stated in Remark 5, one of the most computationally intensive tasks (of Algorithm 1, p. 25) is the insertion
of a new pair (at Step 5); one should not scan the whole list I to check whether the new pair is dominated or
not. We propose to record this list I in a self-balancing binary tree because this data structure is designed to
manipulate ordered lists and it can perform a lookup, an insertion and a removal in logarithmic time (with
respect to the number of pairs already recorded in I).

Given a new pair c+/p+, one has to decide as rapidly as possible if c+/p+ should be inserted into the list
I or if c+/p+ is dominated; as hinted above, this task can not be efficiently solved by simply scanning one by
one all elements in I. To avoid this (computationally–taxing) enumeration, we record I in a self-balancing
binary tree that uses the order given by the simple comparison of costs, i.e., if ci < cj , then ci/pi is ordered
before cj/pj . Regardless of the implementation, any self-balancing binary tree has to be able to compare c+
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to the pair c∗/p∗ with the highest cost no larger than c+, i.e., such that c∗ = max{ci : ci ≤ c+, i ∈ I}.
Without comparing to c∗/p∗, it is certainly impossible to decide whether c+/p+ should be inserted before or
after c∗/p∗ in the binary tree. Thus, any implementation of the self-balancing tree has to provide a means
to determine c∗/p∗. In the worst case, it is certainly possible to (temporary) insert c+/p+ in the tree and
return the element before c+/p+; this operation relies on the insertion operator and other constant-time
manipulations, and so, it takes logarithmic time.

Once c∗/p∗ is determined, we apply an insertion routine that performs the following. First, if p∗ ≥ p+,
then the new pair c+/p+ is directly rejected because it is dominated by definition. Otherwise, if p∗ < p+,
then c+/p+ has to be inserted in the tree, and so, other recorded pairs may become dominated and need
to be removed. For instance, if c∗ = c+ and p∗ < p+, then c∗/p∗ is immediately removed from the tree.
Furthermore, the proposed insertion routine enumerates one by one all next recorded pairs c#/p# ordered
after c∗/p∗ (and after c+/p+) that satisfy p# ≤ p+ and removes them all. Indeed, such pairs c#/p# are
certainly dominated by c+/p+, given that p# ≤ p+ and c# > c+; the latter inequality follows from the fact
that c#/p# is ordered after c∗/p∗ in the tree.

A.3.2 The Lagrangian Bounds of the Standard Column Generation

In the numerical experiments for both graph coloring and (Multiple-Length) Cutting-Stock, we compared the
lower bounds of the Projective Cutting-Planes to the Lagrangian lower bounds of the standard Column

Generation. When all columns have equal unitary costs (i.e., ca = 1 ∀(a, ca) ∈ A as in graph coloring), we
simply used the Farley Lagrangian lower bound

b>x

1−mrdc(x)
, (A.3.1)

where mrdc(x) is the minimum reduced cost with regards to the optimal (dual) values x = opt(Pit) at the
current iteration it, i.e., mrdc(x) = min

(a,ca)∈A
ca − a>x.

In Multiple-Length Cutting-Stock, the column costs are no longer unitary and the above bound can evolve

to
b>x

1− 1
cmin

mrdc(x)
, where cmin is the minimum cost of a feasible (cutting-)pattern. To show this, one

can extend any of the interesting proofs from [1, § 2.2], [16, § 3.2] or [11, § 2.1]. However, it is more
convenient for us to prove it using our formalism from our previous work [13, Appendix C]. Using (C.2)
from loc. cit., the lower bound can be written as b>x + ub ·mrdc(x), where ub is any valid upper bound of∑

(a,ca)∈A ya, i.e., if one imposes
∑

(a,ca)∈A ya ≤ ub in the primal (4.1), the optimum of (4.1) has to remain

the same. When ca = 1 ∀(a, ca) ∈ A, one can say that this optimum of (4.1) is itself an upper bound of∑
(a,ca)∈A ya =

∑
(a,ca)∈A caya, which leads to the above Farley bound. When ca = 1 ∀(a, ca) ∈ A does not

hold, one can only infer
∑

(a,ca)∈A ya ≤ 1
cmin
·∑(a,ca)∈A caya. Thus, one notices that in all formulae after

(C.2) from [13, Appendix C] the term mrdc has to be multiplied by 1
cmin

, and so,
b>x

1−mrdc(x)
evolves to:

b>x

1− 1
cmin

mrdc(x)
. (A.3.2)

The above formula yields a valid lower bound only when mrdc(x) ≤ 0, i.e., by closely investigating the
Lagrangian relaxation proof from [13, Appendix C], we notice it uses the fact that x is the optimal dual
solution of a reduced master program. As such, the above (A.3.2) is not always necessarily a lower bound
for any arbitrary x ∈ Rn+ with mrdc(x) > 0. An example can simply confirm this. Consider an instance with
two standard-size pieces in stock: a piece of length 0.7 and cost 0.6 and a piece of length 1 and cost 1. The
demand consists of two small items of lengths w1 = 0.7 and w2 = 0.3. Taking x1 = 0.5 and x2 = 0.4, one
obtains mrdc(x) = 0.6−0.5 = 1−0.5−0.4 = 0.1 and (A.3.2) yields 0.9

1− 1
0.6 0.1

= 1.08 which is not a valid lower

bound, since the optimum for this instance is 1 (cut both items from a standard-size piece of length 1).
Recall (last paragraph of Section 4.2.2, p. 23) that the first two iterations of the Projective

Cutting-Planes for Multiple-Length Cutting-Stock solve the projection sub-problems project(0n → 1
W w)
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and project(0n → b), generating two initial lower bounds. As described above, the standard Column

Generation could not generate a lower bound by applying (A.3.2) on an arbitrary x ∈ Rn+, including on
x = 1

W w which is a feasible solution with mrdc(
1
W w) ≥ 0. However, to generate useful initial columns and

to provide similar starting conditions for the Column Generation and the Projective Cutting-Planes, we
also start the standard Column Generation by first solving the separation sub-problem on 1

W w and b.

B Complementary experimental information

We recall that the C++ source code is publicly available on–line for all four considered problems at http:

//cedric.cnam.fr/~porumbed/projcutplanes/ — there are 13279 lines all together as of August 2018.

We compiled these C++ files with gcc using the code optimization option -O3; we used the Cplex 12.6 library
for C++ to solve all (integer) linear programs (concert technology). All reported results have been generated
by these programs on a mainstream Linux computer using a i7-5500U CPU with 16GB of RAM; unless
otherwise stated, all programs use a single thread.

B.1 Robust optimization instances

Most instances from Section 5.1 (Table 1) have between n = 1000 and n = 5000 variables and a number of
constraints between 500 and 3000. They are all taken from Table 1 of [6] and we refer the reader to this
table for the nominal objective value of each instance. We mention that stocfor3 is an exceptionally large
instance with n = 15695 and more than 15000 constraints. For even greater detail on their characteristics,
the instances are publicly available on-line in a human-readable format (the original MPS files are difficult
to parse) at cedric.cnam.fr/~porumbed/projcutplanes/instances-robust.zip.

B.2 The network design problem formulated using the Benders decomposition

As mentioned in Section 5.2, the instances for the network design problem from Section 3.2 are either taken
from [14] or generated for the first time in this work (seven instances). More exactly, the seven instances
generated now for the first time are a, b, . . . , g. The (set of) instances rnd-10 from Tables 2 and 3 correspond
to the random-10-bnd3 instances from Table 2 of [14]. The instances rnd-100 and rnd-300 resp. correspond
to random-100-bnd3 and random-300-bnd3 from Table 4 of [14]. Their main characteristics are described
in the first five columns of Table 2 or Table 3.

B.3 Graph coloring

All coloring instances were generated during the second DIMACS implementation challenge, and they are
publicly available at http://cedric.cnam.fr/~porumbed/graphs/, along with their descriptions and char-

acteristics. They can have different structural properties. The instances le450 X are called Leighton graphs
and their chromatic number is X; they all have a clique of size X. The instances dsjcX.Y represent random
graphs with X vertices generated using the classical Erdős–Rényi model. The instances r.X are called random
geometrical graphs; they are generated by picking X points uniformly at random in a square and by inserting
an edge between all pairs of vertices situated within a certain distance; a suffix “c” indicated the graph was
complemented.

B.4 Multiple-Length Cutting-Stock

The test bed used in this paper consists of 10 instance sets and we refer the reader to Table 1 of [15] for
(bibliographic) references on their (industrial) origins. For each set, the number (ID) of each individual
instance is indicated by a suffix, e.g., we use the formulation m01-1, m01-2, m01-3 to refer to the first,
second, resp. third instance from the set m01. The main characteristics of each instance set are provided in
Table 9 next.
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Instance set n capacity W avg. demand b avg. w span description

m01 100 100 1
[
1, 100

]
1000 random bin-packing instances

m20 100 100 1
[
20, 100

]
1000 random bin-packing instances

m35 100 100 1
[
35, 100

]
1000 random bin-packing instances

vb50c1 50 10000
[
50, 100

] [
1, 3

4W
]

20 random instances

vb50c2 50 10000
[
50, 100

] [
1, 1

2W
]

20 random instances

vb50c3 50 10000
[
50, 100

] [
1, 1

4W
]

20 random instances

vb50c4 50 10000
[
50, 100

] [
1
10W,

1
2W

]
20 random instances

vb50c5 50 10000
[
50, 100

] [
1
10W,

1
4W

]
20 random instances

wäscher 57-239 10000 1
[
1, 1

2W
]

17 hard bin-packing instances

hard–sch ≈ 200 100000 [1, 3]
[

20
100W,

35
100W

]
the ten hardest scholl instance sets.

Table 9: Characteristics of the Cutting-Stock instance set, also used for Multiple-Length Cutting-Stock.

52


