
Isomorphism Testing via Polynomial-Time Graph

Extensions

Daniel Cosmin Porumbel∗

October 24, 2010

Abstract

This paper deals with algorithms for detecting graph isomorphism (GI) prop-
erties. The GI literature consists of numerous research directions, from highly
theoretical studies (e.g. defining the GI complexity class) to very practical appli-
cations (pattern recognition, image processing). We first present the context of
our work and provide a brief overview of various algorithms developed in such dis-
parate contexts. Compared to well-known NP-complete problems, GI is only rarely
tackled with general-purpose combinatorial optimization techniques; however, clas-
sical search algorithms are commonly applied to graph matching (GM). We show
that, by specifically focusing on exploiting isomorphism properties, classical GM
heuristics can become very useful for GI. We introduce a polynomial graph exten-
sion procedure that provides a graph coloring (labeling) capable of rapidly guiding
a simple-but-effective heuristic toward the solution. The resulting algorithm (GI-
Ext) is quite simple, very fast and practical: it solves GI within a time in the
region of O(|V |3) for numerous graph classes, including difficult (dense and regu-
lar) graphs with up to 20.000 vertices and 200.000.000 edges. GI-Ext can compete
with recent state-of-the-art GI algorithms based on well-established GI techniques
(e.g. canonical labeling) refined over the last three decades. In addition, GI-Ext
also solves certain GM problems, e.g. it detects important isomorphic structures
induced in non-isomorphic graphs.

1 Introduction

Graph encodings can describe a large variety of connected objects in virtually all fields of
science. The graph isomorphism (GI) problem and its generalizations are essential in large
application areas directly dealing with similarity problems, e.g. pattern and image recog-
nition [1,8,9,20,28,33,35,38,39] or chemical informatics [23,31]. Furthermore, algorithms
for these problems often find unexpected applications in other more specific applications,
from biometric identification or scheduling to monitoring computer networks—numerous
such examples are available in the literature [8, 10].

In theoretical computer science, GI is one of the few NP problems not proved to be
either in P or NP −P (we assume P 6= NP ) and a lot of effort has been done to classify
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it. Although polynomial time algorithms are available for many graph classes [3, 17, 27],
all existing algorithms are still exponential for certain well-known graphs classes—e.g.
regular graph isomorphism is GI-complete [6,40], that is, if regular graphs can be tested
for isomorphism in polynomial time, then so can be any graphs. The exact GI algorithms
are usually based on tree search procedures with various pruning techniques [12,13,34,36],
or on comparing canonical graph forms invariant under isomorphism [2,4, 14, 15, 22,29].

Numerous heuristic GI algorithms are also available, but they have been developed
rather for graph matching (GM) than for GI. Indeed, heuristic optimization algorithms
are well adapted to practical matching problems that require finding a best (but not
necessarily perfect) isomorphism. In this context, one often defines an objective function
of similarity—a measure of closeness—and the best matching is searched using (meta)
heuristic methods. However, these heuristics are often developed for specific applications
and they are targeted to small and very small graphs (i.e. hundreds or tens of vertices,
see Section 4).

In order to put our work in context, we first present a brief overview of the most related
(exact or heuristic) approaches from the literature of GI and GM. Even if this literature
is very vast (hundreds of algorithms are available [10]), small order graphs are commonly
employed in practice (hundreds, maximum thousands of vertices). Next, we introduce GI-
Ext, a combinatorial optimization algorithm that appears to identify isomorphisms very
rapidly: it runs in low-order polynomial time on numerous standard graph classes. We
also show certain polynomial complexity bounds for some cases. Numerical experiments
are carried out for dense regular graphs with up to 20000 vertices, graphs from an existing
GI-testing database, complete benchmark sets from other papers, etc.

GI-Ext has three stages: (i) polynomial graph extension to propagate new isomor-
phism constraints from the initial edge structures, (ii) linear deterministic construction
of an initial potential solution, and, if necessary, (iii) local search in the proximity of
this point. To our knowledge, an advantage of GI-Ext is the simplicity: no deep dis-
crete mathematics is needed for the first two stages and the (meta-)heuristic from the
last step is related to methods used in GM combinatorial optimization algorithms. We
show evidence that the new approach competes well with state-of-the-art algorithms on
numerous graph classes. While certain crafted graphs might be approached more effec-
tively only using very recent canonical labeling techniques [22,26], these methods employ
more complex mathematics based on refining work which began 3 decades ago [29]. Fur-
thermore, GI-Ext is also very useful to detect large isomorphic sub-structures induced in
non-isomorphic graphs—e.g. we also provide experiments on a GM problem.

The next section briefly outlines the problem notations and formulations. Section 3
reviews certain exact and inexact methods from the large GI literature, selecting the most
relevant ideas in the context of our work. Next, in Section 4 we present several objective
functions commonly employed by GM heuristic algorithms and we also introduce our new
function. Section 5 presents the GI–Ext algorithm and the polynomial graph extension
that supports its performance. The last section shows numerical experiments on several
graph families, followed by conclusions.
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2 Graph Isomorphism (GI) and Graph Matching (GM)

Definitions

We denote the input graphs by G(V,E) and G′(V ′, E ′) and their adjacency matrices by
M and M’, respectively. The number of vertices (denoted by |G| or |V |) is commonly
referred to as the graph order. For graph isomorphism, we can consider without loss of
generality that V = V ′ = {1, 2, . . . , |V |}. A mapping between G and G′ is represented
by a bijective function on the vertex set h : V → V ′. We say that h∗ is an isomorphism
if and only if {i, j} ∈ E ⇔ {h∗(i), h∗(j)} ∈ E ′; the graph isomorphism (GI) problem
consists of determining whether or not such an isomorphism exists.

For an optimization algorithm, the set of all bijections h constitute the search space S.
An objective function f (see examples in Eq. (2), Section 4) is employed to measure the
quality of each mapping h. The optimization GI problem requires finding the minimum
of f , e.g. a mapping h∗ such that f(h∗) = 0 if h∗ is an isomorphism. In this context, the
elements of S can also be referred to as search space potential solutions (or configurations).

The mapping h : V → V ′ can be represented as a permutation of V when V = V ′,
i.e. it is encoded as an array [h(1), h(2), . . . h(|V |)] with all values pairwise different.

The value at position i represents the vertex association i
h→ j and (i, j)

h→ (i′, j′) is a

double (edge) association. A double association (i, j)
h→ (i′, j′) is a conflict if h violates

the isomorphism constraint on (i, j), i.e. if either (i) {i, j} ∈ E and {i′, j′} /∈ E ′, or
(ii) {i, j} /∈ E and {i′, j′} ∈ E ′. Throughout the paper, we prefer to express the same
conditions simply as:

(i, j)
h→ (i′, j′) is a conflict ⇐⇒ Mij 6= Mi′j′

Finally, a mapping h can also be encoded as a match matrix Ph, such that:

Phii′
= [h(i) = i′], (1)

where the square brackets operator is 1 if the predicate inside brackets is true and 0
otherwise.

Graph matching While GI is a decision problem, graph matching (GM) usually
consists of finding the best matching between two graphs, i.e. the best mapping h. An
optimization algorithm can solve a GM problem in the same manner as a GI problem—the
only difference is that there might be no mapping h∗ such that f(h∗) = 0 (no isomor-
phism). One should be aware that there are several distinct problems that are all referred
to as GM, depending on the interpretation of “best matching”. Thus, we only touch on
the most GI-related research in this paper and we consider GM formulations defining an
objective function f . GM problems can also be stated using algebraic analysis (using
eigen decomposition, spectral graph theory), or using probabilistic methods (e.g. deter-
mining the likelihood that a data graph was obtained from a model graph through a noisy
process)—a classification can be found in [28, §1.1].

GM provides a more flexible approach to practical applications in which perfect graph
isomorphism is quite rare—e.g. two images of the same person are never identical, but a
graph matching algorithm can find them very similar. Depending on the context, GM al-
gorithms can also be referred to as error-correcting (or error-tolerant) graph isomorphism,
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inexact (or partial) isomorphism, matching with mismatches, etc. Graph matching prob-
lems often use edge-weighted, vertex-labeled or attributed relational graphs (i.e. where
both the edges and the vertices posses weighted values). To deal with such graphs, labels
can be encoded in the diagonal elements of M and weights on the other elements.

3 A Brief Historical Algorithmic Overview

There are numerous research threads in the literature of both graph isomorphism (GI)
and graph matching (GM). While GI is more important from a theoretical viewpoint,
GM algorithms are more common in relatively-young practical applications dealing with
various types of similarity problems. Although there are several distinct problems referred
to as GM, most of them can be considered direct generalizations of GI and they all have
higher computational complexities. As such, exact GM algorithms are limited to very
small graphs (i.e. several tens of vertices [8, 37]) and the GM literature is dominated by
inexact algorithms. Most heuristic algorithms available for GI were actually developed
for specific applications involving GM problems.

3.1 Exact Algorithms for Graph Isomorphism

As for the exact GI methods, the algorithm of Ulmann [36] is historically the most famous.
The main idea of the approach is to recursively (try to) construct the match matrix Ph∗

of isomorphism h∗ using a backtracking algorithm; a refining procedure prunes the search
tree using a look-ahead technique that anticipates isomorphism violations. This type of
tree-search methods were first developed in the early 1970s [13] and, since then, numerous
pruning techniques have been proposed to reduce the search space. Another example of
such a backtracking strategy is the algorithm of Schmidt and Druffel [34] that reduces
the search tree using an initial partition of the vertex sets. More recent algorithms are
also available, for instance the VF2 algorithm is very effective and much faster than the
algorithm of Ullmann [12].

A drawback of tree search methods is that they can waste important time exploring
potential solutions (mappings) equivalent up to an automorphism (the search space can
have many symmetries). As such, a second approach for exact GI resides in constructing
canonical graph labelings (invariant under automorphism) that can be more easily com-
pared. In this context, the oldest and most established algorithm is nauty [29], in which
a canonical graph is associated to any input graph—i.e. such that all isomorphic graphs
have the same canonical graph. Constructing the canonical graph is based on computing
the automorphisms of the input graph. The automorphism group is built with a partition
refinement procedure that backtracks through a tree of colorings (or ordered partitions)
that correspond to potential automorphisms. In fact, automorphisms are discovered at
the leaf nodes of the tree—a leaf coloring encodes a bijective relation between |V | colors
and |V | vertices, corresponding to a re-labeling of V . A rigorous description of this pro-
cess requires complex mathematics, but, fortunately, there are high-quality descriptions
available [14, 15, 22].

Canonical labeling algorithms represent one of the most effective approach for pure
GI problems and important progress has been made in the last five years. Indeed, there

4



are at least two recent tools—bliss [22] and saucy [14,15]—showing impressive results in
discovering automorphisms for large and sparse graphs. Furthermore, canonical labeling
techniques can be combined with three search methods as in another very recent algo-
rithm conauto [26] that uses precomputed graph automorphisms to prune the search tree.
Another popular strategy often employed in GI is to consider graph vertex invariants;
indeed, many examples of invariants are available in the literature [18] and they are also
essential for canonical labeling.

In a practical context, it is worth mentioning that the VFLib Graph Matching Library
provides implementations for VF2, Ulmann and Schmidt-Druffel, and that the LEDA Li-
brary (Library of Efficient Data types and Algorithms) for VF2 and conauto. However,
bliss has been also implemented in a public library and it seems very fast in finding
canonical labellings for a large variety of graphs with different types of regularities. Fur-
thermore, saucy was used to find the automorphism group for very sparse graphs using
techniques adapted to this situation.

One should be aware there are many particular graph families that can be tested
for isomorphism in polynomial time: graphs of bounded degree (valence) [27], graph of
bounded genus (including planar graphs or trees) [17], or graphs with adjacency matrices
with bounded eigenvalue multiplicity [3]. For the general case, the best theoretically-

proved worst-case running time is O(e
√

|V |log(|V |)) [4] but this algorithm is not typically
used in practice. However, it is quite difficult to make absolute comparisons of practical
algorithms because they all have worst-case exponential running times and their perfor-
mance can vary from one graph class to another. External factors should also be taken
into consideration, e.g. different machines, different programming languages, different
implementation styles, etc.

3.2 Inexact Algorithms for Graph Isomorphism

Regarding the incomplete GI algorithms, a lot of research work is actually available in
the vast graph matching (GM) literature; many GM heuristic algorithms can be directly
applied to GI. We focus here on heuristic combinatorial optimization algorithms that (try
to) minimize certain measures of closeness between graphs, i.e. an objective function f
that reaches the minimum value f(h∗) = 0 only for isomorphism mappings h∗ : G → G′.
Finding the minimum value of such function f can also be approached with other methods
besides heuristics—tree-search, algebraic analysis, algorithms based on probability theory,
see more classifications in [8, 28, 37]—but they lie outside the scope of this article.

The first closeness measures were proposed in the early 70’s [25,33] and they are based
on the maximum common subgraph and on generalizations of the string editing (Leven-
stein) distance. From a practical perspective, these measures are usually computationally
very demanding (e.g. the maximum common subgraph problem is NP-complete [19]) and
they are typically employed only in applications using small graphs—i.e. such NP-hard
algorithms were used for molecular similarity [31], but not for applications with larger
graphs (i.e. image recognition). The editing distance is also an NP-Hard problem [41],
but, since many variants exist, some graph editing distance algorithms are available to
more applications [7, 35].

Since the introduction of these first theoretical indicators, the GM problems gradually
gained in importance and various new closeness measures were proposed, especially for
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pattern and image recognition [1, 5, 9, 37] or chemistry informatics [23]. They usually
present ad-hoc measures, using application-specific features that might be difficult to ex-
press in a unified GI context. However, most GM encodings are generalized GI encodings
and the heuristics can be used in exactly the same way to solve either GM or GI.

The optimization algorithms can be broadly classified into continuous methods (i.e.
using various continuous embeddings [20, 28]) or discrete heuristic algorithms (i.e. Tabu
search [38], genetic algorithms [9, 35, 37], estimation of distribution algorithms [5], ant
algorithms [32], etc.). More specific algorithms (i.e. using decision trees, neural networks)
are also available in the literature [1, 20, 28, 38] but they are less related to our paper.

4 Objective functions

Since most GM heuristics are developed for specific applications, they are typically tested
and compared with respect to the success of finding good solutions for matching tasks
inside these applications. GM optimization algorithms often work with distinct graph
representations and with different semantics—for example, the edge weights can signify
geometric distances, temporal causality, concept similarity, etc.

However, a common point is the construction of an objective function representing
the measure of closeness that is minimized over the space S of all bijections h : G → G′.
We provide examples of such functions, as used by various papers in different contexts:

f1(h) =
α

|V |
∑

v∈V

cV (v, h(v)) +
1− α

|E|
∑

e∈E

cE(e, h(e)) [9, §2.2]

f2(h) = ||M − PhM
′P T

h || [37, §2.2]

f3(h) = −1

2

∑

i∈V

∑

j∈V

∑

i′∈V

∑

j′∈V

P̂ h
ii′P̂

h
jj′Cii′jj′ [20, §2.1] (2)

f4(h) = |V |+ |V ′| − 2max{|Gc| : Gc ⊑ h(G) and Gc ⊑ G′} [7, 25]

f5(h) = min{Cost(Edt) : Edt = edit operations s. t. h(G)
Edt−→ G′} [7, 30, 33]

The first function (f1) evaluates attributed graphs using a measure of vertex similarity
(CV ) and a measure of edge similarity (cE); their global contributions are weighted using
the α factor. It was utilized with three algorithms in order to carry out a comparative
study of optimization methods for image recognition [9]; the order of considered graphs
is in the range 147–228 vertices. Related strategies, especially Estimation Distribution
Algorithms are presented in greater detail in [5].

The f2 function uses the match matrix Ph (see Section 2, (1)) and a matrix norm
|| · ||. This function was tested with several algorithms and with various versions of the

matrix norm, but they always use graphs with 10–20 vertices [37]. The matrix P̂ h for f3
is a relaxed version of Ph, i.e. its elements are real numbers in [0, 1] and, for any i ∈ V ,∑

i′∈V ′ P̂ h
ii′ = 1; Cii′jj′ is a similarity measure between the vertex pairs (i, j) in V ×V and

(i′, j′) in V × V . The experiments are performed on graphs from images or randomly-
generated with 100 vertices at maximum [20]. The same function is used in a series of
papers about molecular structures [23] with Simulated Annealing (SA) and Tabu search,
but small graphs are usually used.
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Function f4 is a reformulation of a measure based on the order of the maximum
common subgraph. In this equation, the ⊑ relation denotes subgraph isomorphism; if h∗

is an isomorphism, the inclusion becomes equality (i.e. Gc = h∗(G) = G′) and f(h∗) = 0.
Many other reformulations can be found in the literature [8, 25, 31] and it was shown [7]
that this measure is equivalent to a graph edit distance.

Graph editing distance (function f5) represent a large family of measures and sev-
eral heuristic algorithms were developed for them [35]. Typical algorithms using such
functions are often limited for graphs of small order, e.g. maximum 100 vertices [30, 35].

There exist several other application-specific functions (e.g. using angles [1] or using
various specific feature-based graph descriptions [39]), but the goal of the paper is not to
enter into complex formulas. However, a common point of all these objective functions is
that they require algorithms with high computational costs that are usually applied on
small graphs (|V | < 1000) as GM problems are computationally very demanding.

4.1 Proposed GI approach and objective function

The simplest formulation of our measure of closeness between graphs is:

f(h) =
∑

1≤i<j≤|V |

[Mi,j 6= M ′
h(i),h(j)], (3)

where the square brackets represent an indicator that is 0 if the predicate (inside the

brackets) is false and 1 otherwise—if Mi,j 6= M ′
h(i),h(j), we say that the association (i, j)

h→
(i′, j′) is a conflict. The objective of our proposed heurstics is to search for a matching
with the lowest number of conflicts.

This function can be seen as a particular case of f1 and f3 if we consider a specific
interpretation of the cost functions used by these functions. As such, it could be directly
compared with optimization algorithms using these function; however, these algorithms
were tested on smaller non-isomorphic graphs, making such a comparison very difficult—
GI-Ext is focused on finding isomorphisms, or, at least, large similarities between graphs.

Recall that our algorithm encodes the function h as a permutation of V (see Section 2).
The neighborhood function (used by local search to move from one mapping to another)
consists of swapping two elements (i, j) of this permutation, i.e. h(i) takes the value of
h(j) and h(j) takes the value of h(i). We write h := h+ < i, j > to denote that a move in
the neighborhood is performed. This interchange neighborhood has the advantage that it
does not require re-computing the whole sum of the objective function after each move,
it can only compute the variation induced in the sum by the elements i and j.

Using this standard configuration encoding and neighborhood, we carried out certain
preliminary tests with several (meta-) heuristics algorithms. Simulated annealing [21,24]
seemed to be the most promising: with a good choice of the annealing schedule, it can
slowly but surely converge from a random bijection to the isomorphism. However, for
large graphs with many regularities, the algorithm could easily get blocked into local
optima; to avoid this, we use Iterated Local Search principles so as “iterate” the cooling
schedule (see also Section 5.2.3). Furthermore, in order to deal with larger graphs, we
propose to reinforce the algorithm by propagating new isomorphism constraints from
adjacency matrix M , as described in the next section.
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5 A GI algorithm based on graph extensions

The first part of this section (§5.1) only presents the graph extension procedure. Then, the
second part (§5.2) provides the complete description of GI-Ext, discussing the importance
of applying the graph extension. The motivation for the extended graphs arise from the
following situation: if there is no edge between vertex i and j in G (i.e. Mi,j = 0) and

no edge between h(i) and h(j) in G′, then the association (i, j)
h→ (h(i), h(j)) is not seen

as a conflict—there is no mechanism to directly detect whether (i, j) and (h(i), h(j)) are
indeed compatible or not. But, by exploiting the structure of the graph, one can find
many conditions in which (i, j) and (h(i), h(j)) are incompatible even if they are both
disconnected (e.g. by checking the shortest path between them).

5.1 Polynomial graph extension

5.1.1 Extension construction

We define the |V | × |V | matrix MK , in which the element MK
i,j represents the number of

paths of length K (i.e. with K edges) from i to j. Obviously M1 = M , and we now show
that MK+1 can be computed in polynomial time from M and MK using the following
algorithm based on dynamic programming.

Algorithm 1 Polynomial time graph extension step

Input: MK

Result: MK+1

1. Set all elements of MK+1 to 0

2. For each {i, j} ∈ E with i < j

For k = 1 to |V |
• MK+1[i, k] = MK+1[i, k] +MK [j, k]

• MK+1[j, k] = MK+1[j, k] +MK [i, k]

• MK+1[k, j] = MK+1[j, k] and MK+1[k, i] = MK+1[i, k]

The idea behind this algorithm is to notice that all the paths of length K+1 between
two vertices i and k are composed of an edge {i, j} and a path of length K from j to k.
Since the number of paths of length K from j to k is known, we only need to sum up the
number of paths of length K from all neighbors of i to k. To achieve this, the algorithm

lists all edges {i, j} ∈ E and adds all contributions of {i, j} to paths i → j
K steps
− · · · → k in

the constructed MK+1 matrix.
The extended graph is straightforwardly defined as the weighted graph with vertex

set V and edge set EK defined as follows: if MK
ij 6= 0, then {i, j} is an edge of weight MK

ij

in EK . If two graphs G and G′ are isomorphic, then their extended graphs are isomorphic
as well—because the same extension operations are applied in the same manner for any
two isomorphic vertices i and h∗(i).
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5.1.2 Complete extended graphs

Once the matrices M1,M2, . . .MK are computed, one can construct a complete extended
matrix M such that

M = a1M1 + a2M2 + · · ·+ aKMK , (4)

where a is a positive number. If a > maxMK , then a ensures in (4) that two different
series of Mi’s can not result in identical complete extended matrices.

The complete extended graph of order K is the weighted graph G with vertex set
V and with edges {i, j,M ij}. Two graphs are isomorphic if and only their complete
extended graphs are isomorphic. Indeed, if the initial graphs are isomorphic, then so
are the extended graphs, and so are the complete extended graphs—any isomorphism
relation is conserved by the sum (4). In the other direction, if the complete extended
graphs are isomorphic, then M = M ′

h∗(i),h∗(j) implies that M1
i,j = M ′1

h∗(i),h∗(j)—in (4), one

can see a as the base of a numeral system. The sum (4) can be computed in polynomial
time for any a ∈ O(|V |) with the appropriate data structure. In practice, we execute
our optimization algorithm on complete extended graphs with a = 1; eventually, any
resulting extended graph isomorphism is tested for consistency on the initial graphs.

To search the isomorphism of complete extended graphs, we generalize our objective
function (see Equation 3) for the complete extended matrix M :

f̄(h) =
∑

1≤i<j≤|V |

[M i,j 6= M ′
h(i),h(j)] (5)

If there exists an isomorphism h∗ : G → G′, then M i,j = M ′
h∗(i),h∗(j), ∀i, j ∈ V and

f̄(h∗) is 0; the isomorphism h∗ is the same for both the initial graphs and the extended
graphs. An optimization algorithm based on the classical objective function (see Equation
3) can be used in the same way to minimize the new objective function.

5.1.3 Incompatibility detection using extended edges

If only exact isomorphism is targeted, the matrices M1,M2, . . .MK can also be used to
discover incompatible (forbidden) associations: vertices (i, i′) ∈ V ×V ′ that can never be
mapped by a graph isomorphism function. These forbidden associations might recall of
the way other algorithms use ordered partitions (colors) for discovering automorphisms;
however, we do not only partition the vertex set, but these forbidden associations can
discover impossible isomorphic mappings between vertices of different graphs.

Definition 1 (Compatible and forbidden associations) Vertices (i, i′) ∈ V ×V ′ are com-
patible if and only if: (i) M i,i = M ′

i′,i′ and (ii) line i of M is equal to a permuted line i′

of M ′. An association i → i′ that is not compatible, is also called forbidden.

Indeed, if h∗ is an isomorphism, then all associations (i
h∗

→ i′) are compatible because
each element MK

ij of line i of MK , can also be found in MK at line i′ and column
j′ = h∗(j). Therefore, any GI algorithm presented later in Section 5.2 avoids associating
two incompatible (forbidden) vertices. We introduce a matrix F encoding these forbidden
associations, such that if Fi,i′ = 1, the association i → i′ if forbidden (i.e. the local search
can never assign i′ to i). This matrix of forbidden associations is empty at start (all
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elements are 0), and the extension routine gradually fills its elements while constructing
the matrices M1,M2, . . .MK .

The matrices M1, M2, M3, . . . are very rich in information that is implicitly checked
via the matrix F . Each edge value from the extended graph is in fact a a hash function of
some larger structures around it in the initial graph. Indeed, the fact that an association
i → i′ is not forbidden (i.e. Fii′ = 0) implies numerous hidden conditions: i and i′ need to
have the same degree (otherwise M2

i,i 6= M ′2
i′,i′), they need to be part in the same number

of triangles (otherwise, M3
i,i 6= M ′3

i′,i′), they need to have the same number of 2-step
neighbors, etc. Many other such theoretical conditions can be derived and proved, but
the goal of this specific paper is only to present a very practical, high-speed algorithm;
many more such conditions can be found by a theoretical study of greater detail.

5.2 GI-Ext—Algorithm Applying the Extension Procedure

The GI-Ext algorithm (see Algorithm 2) consists of three stages: (1) graph extension,
(2) construction of an initial configuration (initial mapping), and (3) a heuristic search
for finding the optimal solution in the proximity of this initial configuration. The first
stage builds the information-rich extended adjacency matrix M and it also provides a
matrix F of forbidden vertex associations (used only for pure isomorphism). The second
stage tries to use this information for a linear construction of an initial good mapping.
The last stage is a heuristic that searches in the proximity of the initial mapping so as to
minimize f̄ (Equation 5). This heuristic easily reduces the number of conflicts because it
implicitly exploits a large amount of structural information hashed in the matrices M1,

M2, M3, . . . , MK , and implicitly in M . Recall that a double association (i, j)
h→ (i′, j′)

is non conflicting for f̄ if and only if the number of paths of length 1, 2, . . . , K between
i and j (in G) are the same as for i′ and j′ (in G′)—which is equivalent to important
similarities on the structures around the edges {i, j} and {i′, j′}

Algorithm 2 GI-EXT Algorithm

Input: Graphs G and G′

Result: True, False, or Undetermined (probably not isomorphic)

1. Repeat

– Graph extension step /*see Alg. 1*/
– K := K + 1 /*initially, K = 1*/

Until a stopping condition is reached /*see Sec. 5.2.1*/

- Construct matrix F of forbidden associations /*see Sec. 5.1.3*/

- If incompatibility found Then Return False

2. Construct Initial Potential Solution /*see Sec. 5.2.2*/

- If isomorphism found Then Return True

3. Run Heuristic Search with stopping conditions: /*Sec. 5.2.3*/

If isomorphism found Then Return True
If time elapsed Then Return Undetermined

We provide all details of the above-presented steps in the next three sections (Section
5.2.1, 5.2.2 and 5.2.3). Notice that the most important and GI-related steps are Step 1
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and Step 2; the heuristic search could be replaced by other method, or even by an integer
programming approach.

5.2.1 Extension application and complexity: GI-Ext Step 1

Even if the graph extension procedure is polynomial, it represents by far the largest
computational cost. Recall that a step of this procedure (i.e. if we apply it once, so as
to construct MK+1 from MK) requires O(|E| · |V |) time. If we perform K extension
steps, the total complexity is O(K|E| · |V |). Thus, it is important to obtain a trade-off
between the number of steps (i.e. K) and the number of new derived constraints via the
extended matrix. Each higher value of K adds more constraints in the matrix F (making
the search space smaller) and it also adds new extended edges (the objective function
becomes more informative). In the beginning, the process starts with |E1| = |E|, but the
number of extended edges in EK increases with each new higher value of K. Following
empirical evidences, we chose to stop this extension procedure as soon as |EK | ≥ 66%|V |2
or if the resulting EK values become heterogenous enough,e.g. if all non-zero values of
MK are pairwise distinct.

This strategy for setting K assures that, in practice, the final complexity of the whole
extension operation is in the region of O(|V |3). However, the complexity of the procedure
(i.e. O(K|E| · |V |)) is theoretically limited by O(|E| · |V |3) because K can never reach
|V |2. If each extension step discovers at least one new extended edge, after at most
K = 66%|V |2 steps the procedure stops (because EK has surely at least 66% elements).
If there is extension step such that |EK | = |EK+1|, this means that all i, j ∈ V that
can be connected through K + 1 edges (of E), can also be connected using a smaller
number of edges. In this case, there already exists an extended edge (in EK) between
any two connected vertices of V (given any two vertices, they are either disconnected
or can be connected through K edges or less). This implies that either |EK | = |V |2, or
|EK | = |EK+1| < |V |2 and the graph is disconnected (in this special case, the problem
can be split).

5.2.2 Linear construction of initial start configuration: GI-Ext Step 2

This step incrementally constructs an initial mapping h using a linear procedure that tries
to associate all i ∈ V only to compatible values h(i) = i′ ∈ V ′ (such that Fii′ = 0). All
vertices i ∈ V are first sorted according to their number of compatible vertex associations
(i, i′)—i.e. the number of zeros in row i of F . The complete mapping is constructed
by assigning all i ∈ V in this order,i.e. starting with those with the lowest number of
compatible associations (leaving less i′ ∈ V choices available). For each vertex i ∈ V ,

we associate a vertex i′ from V ′, such that the new association i
h→ i is as consistent as

possible with the previously associated vertices (i.e. introduces the minimal number of
conflicts). The result of this process is an initial configuration possibly with inconsistent
(conflicting) edge associations that can be minimized (reduced) using local search.

5.2.3 Local search: GI-Ext Step 3

The solution encoding and the neighborhood are defined in Section 4.1 and we consider
the extended objective function f̄ (see Equation (5)). The search algorithm starts from
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configuration h constructed in Step 2.

Repairing Descent Procedure Let us first describe a simple Descent procedure.
At each iteration, one searches for a conflict (i, j) of h (i.e. a pair (i, j) such that

M i,j 6= M ′
h(i),h(j)) that needs to be repaired. To effectively “repair” a conflicting (i, j)

h→
(h(i), h(j)), the descent procedure searches for a vertex k ∈ V such that M i,j = M ′

h(i),h(k)

and M i,k = M ′
h(i),h(j). The (i, j) conflict can be solved by swapping the values of h(j) and

h(k)—we say that a move < j, k > is carried out and the mapping h becomes h+ < j, k >.
However, such a move can theoretically generate other conflicts in the graph and the pro-
cedure also checks that the ∆ value of the move—i.e. ∆(j, k) = f̄(h) − f̄(h+ < j, k >);
the move is performed only if the ∆ value is positive.

In case there is no conflict that can be repaired by such a move, the descent procedure
tries all possible moves (i.e. swaps (i, j)). If it finds any positive ∆(i, j), the move h =
h+ < i, j > is executed and the process goes on to the next iteration. In this manner,
the value of function f continually decreases until either f(h) = 0 (i.e. the problem is
solved) or until no move can improve the objective function (local optima).

Iterated Simulated Annealing In order to avoid local optima, we introduce a Simu-
lated Annealing (SA) algorithm that works as follows. At each iteration, a random move
(i, j) is picked up and this leads to one of the following situations: (i) if ∆(i, j) ≥ 0,

perform the move, or (ii), if ∆(i, j) < 0, accept the move with probability e
∆(i,j)

T , where
T is the temperature parameter [24]. The cooling schedule changes the temperature by a
cooling factor α < 1 such that T becomes αT after a number of iterations R(relaxation
time). By starting with a very large initial T = Tstart, numerous “up” moves are accepted
and the search process is allowed to leave the initial local optima. As the temperature
decreases, fewer and fewer “up” moves are accepted and the process is led toward a new
region and toward a new local optimum.

When the temperature becomes low enough and no new moves are accepted, the
descent procedure is executed again so to perform intensification in the proximity of the
potential solution provided by SA. After reaching another local optimum via descent, SA
is applied again. In this context, one can also consider SA as a perturbation operator
of an iterated descent search. This might recall Iterated Local Search principles, and,
indeed, the general search process consists of a loop of SA and descent. The general
search process is the following:

RepairingDescent()

Tstart = maxStartTempSA

1. SA(Tstart,α, R)

2. RepairingDescent()

3. Tstart = Tstart · γ
4. if Tstart ≈ 0 then Tstart = maxStartTempSA

5. go to 1 while a stopping condition is not met.

By performing numerous rounds of Simulated Annealing (Step 1) and Repairing De-
scent (Step 2), many regions and local optima are visited. The SA start temperature
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decreases (Step 3) along the general search process so as to steadily decrease perturba-
tions strength after each descent. This proved very useful in practice: the general search
process starts out by performing strong perturbations (i.e. SA takes the search to regions
quite far from the current local optimum), but, after a while, the general search process is
gradually stabilized, i.e. perturbations become weaker and weaker. If the general search
process gets into a local minimum that it can not leave (start SA temperature almost
zero resulting in very weak perturbations), the whole strategy is restarted by resetting
the SA start temperature (Tstart is reset in Step 4).

The stopping condition is either to find the solution or to reach a limit of time; we
used both predefined limits (e.g. 1000 seconds in Figure 4), but we prefer a time limit
defined as the equal of the time spent by the extension procedure (e.g. in Section 6.5),
so as to ensure a theoretical polynomial time for GI-Ext. The other parameters were
calibrated with minimal tunning effort, resulting in Tstart = 100000, α = 0.9, γ = 0.1 and
R = 100000. By searching a perfect optimal value for each parameter, one could skew
the results slightly more in GI-Ext’s favor, but not enough to upset our main conclusions.

5.2.4 Final Remarks

To summarize, GI-Ext is a Las Vegas algorithm, returning one of the following: (i) the
graphs are surely isomorphic (if the linear construction or the heuristic finds a solution),
(ii) the graphs are surely not isomorphic (if there are vertices with all possible associations
forbidden by the matrix F ) and (iii) the isomorphism status can not be determined in
the given time but the graphs are probably not isomorphic. The third case occurs only
very rarely, on crafted instances with many regularities.

Note that GI-Ext can also be used to discover isomorphic substructures induced in
non-isomorphic graphs. In this case, it only returns a suitable matching and a value of
the objective function f on the original graphs (Section 6.5); the information related to
forbidden associations (matrix F ) is not used so as to report the graphs as not isomorphic.

6 Numerical results, discussions and conclusion

For graph isomorphism, there is no common standardized benchmark on which all algo-
rithms are tested, and, each of the previous papers introduced certain particular graph
classes. As such, we present numerical experiments using both previous graph classes,
as well as new instances that we consider relevant in our context. More exactly, we test
GI-Ext on the following test instances:

1. the graph classes from the database for benchmarking graph isomorphism algo-
rithms [16]: bounded valence graphs, mashes, randomly-generated graphs—this
paper already showed the performance of other four algorithms on this test data
set;

2. the graph classes on which the nauty algorithm was tested [29];

3. regular graphs—a difficult graph class that can also arise naturally in practice:

(a) the sparse random regular considered in the bliss paper [22];
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(b) dense regular graphs with up to |V | = 20000 vertices and |V |(|V |−1)
2

≈ 200.000.000
edges;

4. strongly regular graphs—this class captures much of the difficulties of the GI prob-
lem,i.e. it represents crafted specially-constructed instances;

5. distorted isomorphic pairs of random graphs for a graph matching problem.

The running time is routinely expressed as a function of |V |. A classical method to
obtain information whether this function is polynomial or exponential consists of plotting
the log-log graph of the running time. This representation has the advantage that a
polynomial function of the form xβ becomes a straight line of slope β. Furthermore, the
slope of the running time function is machine independent, so we can easily compare
algorithms developed on different machines in different contexts. Note that the results
on higher order graphs are more reliable because they can better express the exponent of
the leading term of a polynomial function of |V |.

6.1 The graph database

The database due to De Santo et al. [16] provides numerous instances of several widespread
graph classes. These instance were used to compare four GI algorithms (Ulmann, SD,
Nauty and VF2 ). The first class is represented by a family of random graphs with den-
sities between 0.01 and 0.1. In fact, random graphs have been tested by most papers for
indicative purposes, but they are not particularly challenging (it is known since 1980 that
a straightforward O(|V |2) algorithm can be applied to almost all such graphs [2]).
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Figure 1: Log-log graph of the running time of GI-Ext on instances provided by the graph
database [16]. Numerous other experiments not detailed in the paper confirm that any
two graphs from the database can be processed within a time bounded by the two plotted
slopes (of β = 3.1 and β = 2, respectively).
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The mesh-connected graphs (2D, 3D, and 4D) represent a more regular and more
difficult class. They are generated from a mesh—i.e. a regular grid of connected nodes
(graph vertices). Each vertex is connected with a fixed number of mesh neighbors (i.e.
4, 6 or 8 for 2D, 3D, and respectively 4D meshes), except those at the border that have
fewer neighbors. Irregular meshes are obtained by adding certain edges (according to a
noise level between 0.2 and 0.6), and in some sense, regular meshes are more difficult.
We provide running times only for 3D regular meshes and 4D irregular meshes with 0.6
noise, but very similar plots were obtained for other graphs from this class.

The most difficult class from the database (for GI-Ext) is represented by the bounded
valence graphs, i.e. graphs that have the degree (the valence) of each vertex limited by a
certain value (3, 6 or 9). The database includes graphs with a fixed valence (degree 3,
6 or 9). An easier class has been obtained by moving some edges, resulting in irregular
bounded valence graphs. We report results on the most difficult class (9-bounded valence
graphs), both the standard and the modified version.

Figure 1 shows the results on all the above mentioned graph classes. The instances
are available on line (amalfi.dis.unina.it/graph/) and they have a maximum order
of 1296; each class contains graphs with different intermediate values of |V |. All graphs
were solved in polynomial time by GI-Ext. The two lines in Figure 1 have slope 2 and
3.1 showing that the running time of GI-Ext is always between O(|V |2) and O(|V |)3.1.
The lower bound is due to the fact that we do not use sparse matrices and the minimum
complexity is always O(|V |2), as GI-Ext works with many |V | × |V | matrices. The upper
bound is mostly due to the graph extension procedure that performs many steps for the
bounded valence graphs. While GI-Ext is polynomial on all classes, nauty and ulmann
are exponential in some cases (i.e. regular meshes, see [16, Fig 2]). On the other hand,
VF2 is polynomial, too, but it is difficult to compare its slope with GI-Ext. We do not
have this information for VF2, but, in absolute times, VF2 seems to be faster on certain
instances and slower on others. We only mention that the tests we performed confirm
this, but we would prefer not to provide detailed figures on behalf of other algorithms
(their running speed can vary greatly from one machine to another).

Finally, we also tested GI-Ext on non-isomorphic pairs of graphs from the database;
in this case, the decision of non-isomorphism was reached more rapidly, without needing
to run the heuristic—because the extension procedure finds vertices i ∈ V with no com-
patible association i → i′ ∈ V ′ (via the matrix F ). However, the total speed-up is limited
because the running time is still a polynomial of the same order of magnitude—the num-
ber K of extension steps is the same for both isomorphic and non-isomorphic graphs.
Generally speaking, non-isomorphism conflicts could be determined earlier if one checks
the number of forbidden associations of matrix F earlier (e.g. after each extension step),
but we prefer to focus here on a unique algorithm version.

6.2 Graph classes from the nauty paper

The nauty program was tested on several graph classes [29, pp. 79–82] and its running
time was plotted on log-log graphs (Figure 3.1, p. 80), in the same manner as we do.
Recall that a polynomial function of the form xβ becomes a linear function of slope β on
the log-log graph; for each considered class, we also provide the β slope reported in the
nauty paper:
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1. random graphs of density 0.5 (β = 2.0);

2. m-dimensional cube (β = 2.3);

3. random circular graphs (β = 2.2)—a circular graph with vertices {1, 2, . . . , |V |} is
built by connecting all i and j such that |i− j| ∈ W , where W is a set of cardinal

5 in {1, 2, . . . , ⌊ |V |−1
2

⌋};

4. regular graphs with degree 6 and 20 (built essentially by superimposing 2-regular
graphs with no common edge);

5. strongly regular graphs with up to 60 vertices.

200 500 1000 2000 5000 10000

1
e

+
0
0

1
e

+
0
2

1
e

+
0
4

1
e

+
0
6

Number of vertices |V|

M
ill

is
e

c
o

n
d

s

n−Cube graphs
Circulant graphs
Random graphs (density 0.5)

Figure 2: Log-log graph of the running time of GI-Ext on the graph classes considered
in the nauty paper. We also show two lines of slope β = 3.3 and β = 2.1.

Figure 2 plots the results of GI-Ext on the first three graph classes above—all graphs
were re-generated at orders between 100 and 1000. The case for the rest of the graph
classes (i.e. regular and strongly regular graphs) is taken into consideration in greater
detail in Section 6.3 and 6.4. However, this figure shows that GI-Ext has a polynomial
run time on the first three classes; the exponent (i.e. slope on the log-log graph) is
between 2.1 and 3.3. It seems that nauty is faster (β is between 2.0 and 2.3), but GI-Ext
is however polynomial. The complexity of GI-Ext is in the region of O(|V |3) and it is
due to the extension step. As such, it never reaches O(|V |4)—in fact, the complexity of
the extension operation is theoretically bounded (see Section 5.2.1).

6.3 Regular graphs

We consider regular graphs essential, because they are at the same time difficult and
quite general. Unlike more complex crafted graph classes, regular graphs can often arise
naturally in applications, as for example: graphs from images considering each pixel as a
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vertex with 8 (or 4) neighbors, graphs of a circuit design in which all components have a
fixed number of logical inputs and outputs (e.g. binary logic gates), graphs associated with
k-satisfiability problems, etc. Furthermore, regular graph isomorphism is GI-complete [6,
18,40], i.e. if regular graphs can be solved in polynomial time, so can be any graph class.

Sparse regular graphs have been considered several times in the literature (e.g. a class
of 6-regular and 20-regular graphs since the nauty paper), but we consider it might be
more important to test dense regular graphs. Note that the graphs of bounded degree
d << |V | are known to be solvable in polynomial time [27] since the early 1980s. Fur-
thermore, we provide results on regular graphs with hundreds of millions of edges (our
largest dense regular graph has 20000∗19999

2
edges). To the best of our knowledge, it is for

the first time a graph isomorphism algorithm has been tested on such graph sizes.

6.3.1 Sparse regular graphs

First, we test the 3-regular graphs introduced in [22] and report results in Table 1. We
compare the running time of GI-Ext with the running times of saucy, nauty, and bliss—
the figures for these three algorithms are taken from the bliss paper [22]. Following the
format from this paper, for each graph order, we report the minimum and maximum
solving time required by GI-Ext. In the bliss paper, each algorithm was allowed a max-
imum time of 600 seconds and we are convinced our machine would report similar time
values for saucy and nauty (Columns 3 and 4), i.e. the same numbers multiplied by a
constant. Notice that the values for the canonical labeling algorithms represent only the
time of processing one graph—finding an isomorphism would also require labeling the
second graph. To test GI-Ext, we first construct a randomly-permuted copy of the input
graph, and only then we apply the search on both graphs.

|V | GI-Ext nauty saucy bliss
Tmin[s]–Tmax[s] Tmin[s]–Tmax[s] Tmin[s]–Tmax[s] Tmin[s]–Tmax[s]

1000 0.36 – 0.42 9.00–9.08 1.11–1.18 0.06–0.07
2000 1.52 – 1.71 117.13–120.74 8.57–8.63 0.27–0.3
3000 3.47 – 3.94 time out 28.34–28.44 0.64–0.71
4000 8.47 – 10.03 time out 62.22–64.50 1.09–1.20
5000 18.27 – 21.39 time out 122.23–129.40 1.70–1.93
6000 17.48 – 20.35 time out 208.65–215.22 2.65–2.98
7000 29.88 – 35.72 time out 335.10–365.94 3.61–4.04
8000 53.12 – 57.56 time out 499.67–508.16 4.87–5.49
9000 79.15 – 93.71 time out time out 7.43–8.28
10000 123.99 – 150.09 time out time out 7.90–8.74

Table 1: Running time comparison for GI-Ext and canonical labeling algorithms on 3-
regular graphs. Other algorithms not using canonical labeling techniques seem slower
than nauty.

Interesting conclusions can be drawn from Table 1. Only bliss and GI-Ext can
solve the largest graphs in a short time and they are both polynomial. It seems that
other approaches (without canonical labeling techniques) can not compete in polyno-
mial time—at least not well-known algorithms provided by the VFLib Graph Match-
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ing Library (amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html). By in-
stalling this well-coded library (provided by the graph database paper [16]), since the
input 3-regular graphs are also published on-line (via the bliss paper, www.tcs.hut.fi/
Software/benchmarks/ALENEX-2007/), one can easily check the timing of other (non
canonical labeling) algorithms, but we do not provide details here.

However, bliss obtains running times nearly inferior to O(|V |2) as it takes profit
from refined sparse data structures achieved from an engineering effort. Notice that our
GI-Ext implementation does not use sparse data structures, and so, it can never reach
a complexity below O(|V |2). GI-Ext executes K extension steps of total complexity
O(K · |E||V |) = O(K · 3|V |2) and, since K is in O(|V |) for these sparse 3-regular graphs,
the complexity of GI-Ext is in the region of O(|V |3). While saucy also seems to run in
O(|V |3), GI-Ext is better in terms of absolute times—and one should be aware that the
saucy column reports just the time of generating the automorphism group (not the final
labeling).

6.3.2 Dense regular graphs

It is important to also test dense regular graphs because GI-Ext is not (yet) optimized
for sparse structures. We tried several values of the degree d (at least 1

10
|V |) and the

hardest graphs were those with d = 1
2
|V | (for larger densities, one can complement the

graph). Therefore, we generated pairs of random regular graphs of degree 1
2
|V | with |V |

ranging from 1000 to 20000. We do not claim that these regular graphs are generated
uniformly at random, but the theory of generating such structures is a difficult issue (see
Appendix 1 presenting the generation procedure).
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Figure 3: Log-log graph of the running time of GI-Ext on dense random regular graphs

with |V | ranging from 1000 to 20000. The functions

( |V |
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)3.2
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)3.4

are also

plotted.

Figure 3 plots the running time of finding the isomorphism between two copies of a
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random regular graph (i.e. for each graph, we obtain a copy by randomly permuting its
vertices—as for all tested classes). This figure directly confirms that the running time of
the GI-Ext is polynomial. Note that GI-Ext is available on-line and it can be very easily
tested using several graph input formats.1

6.4 Strongly regular graphs

The strongly-regular graphs represent the hardest instances, more difficult than simply
regular graphs. To the best of our knowledge, only two papers [22,26] provide results on
such graphs with |V | > 100, and, furthermore they do not claim to be polynomial. How-
ever, efficient algorithms for strongly graphs seem to require canonical labeling techniques
(i.e. based on computing automorphism groups). In this section, we provide however re-
sults on Paley dense strongly-regular graphs; these graphs can be generated for any prime
|V | of the form 4k+1, and so, we can easily investigate the run time as a function of |V |.
Many other classes of strongly-regular graphs are presented in the bliss paper, but we do
not claim there are many algorithms without canonical labeling techniques that compete
well with bliss on this data set.
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Figure 4: The running time of GI-Ext on strongly-regular Paley graphs.

Figure 4 shows the running time function for strongly-regular Paley graphs, giving
evidence that GI-Ext is able to solve small strongly-regular graphs (tens or hundreds of
vertices). While GI-Ext is not yet perfected to deal with this class, one might notice that
bliss or saucy are based on canonical labeling work which began 30 years ago with nauty.
We share the view of the saucy paper that the description of this theory has to “delve into
the depths of discrete mathematics”; GI-Ext is much simpler, and so, it could be more
easily (re-)implemented without requiring understanding complex theories. In this sense,

1www.lgi2a.univ-artois.fr/~porumbel/giext/; there is also a permanent mirror (an exact copy)
at sites.google.com/site/danielporumbel/giext/. All provided results are obtained on a 2.79GHz
computer, by compiling the programs using gcc with the -O2 optimization flag.
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we consider the simplicity rather as an advantage than as a drawback. Furthermore,
the next section shows a different advantage over canonical labeling: GI-Ext can also be
employed for certain graph matching problems arising naturally in practice. Indeed, since
it does not depend on global structures like the automorphism group, GI-Ext can also
construct only a partial isomorphism between two graphs,i.e. to (try to) find the largest
set of vertex associations respecting the isomorphism constraints.

6.5 Graph matching example—partial graph isomorphism

Recall that the problem addressed by GI-Ext can actually be expressed as follows: find
the mapping h : V → V ′ such that f(h) is minimum—see also (3), Section 4.1. If the
input graphs are isomorphic, then the problem is equivalent to finding isomorphism h∗

such that f(h∗) = 0. But in the general case, minimizing f is equivalent with minimizing
the number of edges (in any of the two graphs) not associated to edges in the other graph.

A mapping h : V → V ′ that satisfy Mij = Mh(i),h(j)∀i, j ∈ Ṽ is a Ṽ -partial iso-

morphism. We say that the largest set Ṽ verifying this property indicates the partial

isomorphism order : |Ṽ |
|V |

. In this sense, an isomorphism is a partial isomorphism of order

100%. Discovering partial isomorphisms could be very useful in certain applications. For
example, consider taking satellite images of an area at different moments of time: if a
new construction arises between the two moments, the associated graphs are essentially
identical with the only difference the one of the graphs contain some additional vertices
(corresponding to the new construction). Establishing a partial isomorphism could be
very useful to detect unchanged parts in the two satellite images.
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Figure 5: Order of the partial isomorphism discovered by GI-Ext in two distorted initially-
isomorphic graphs—e.g. in the second graph, a number of vertices is erased (on x axis).
GI-Ext identifies important isomorphic substructures (induced graphs), accounting for
80%|V | even after erasing 50 vertices (out of 1000).

To test GI-Ext in finding partial isomorphisms, we consider the following problem.
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Assume G and G′ are isomorphic via h∗ : V → V ′ and let G(U) be the subgraph
induced by a subset U . In practice, G(U) is obtained by erasing vertices V − U from
V (along with their edges). In our tests, we will erase a number of vertices from 1 to
5%|V | and we (try to) construct a partial isomorphism on the remaining vertices U . The
operations needed to run exactly the same GI-Ext program on input graphs G(U) and
G′ are the following: (i) add |V |− |U | dummy singleton vertices to U because the GI-Ext
specification is written for graphs of equal order; (ii) disable the matrix F of forbidden
associations because we do not target exact isomorphism any more; and (iii) run GI-Ext
with a polynomial time stopping condition (allowing the same amount of time as used
by the extension procedure) and let hU the best solution ever reached. We evaluate
the successfulness of GI-Ext according to the order of the partial isomorphism hU—it is
essentially the pourcentage of vertices i such that hU(i) = h∗(i).

Figure 5 plots the order of the partial isomorphism returned by GI-Ext, as a function
of the number of erased vertices |V − U |; the initial input graphs had |V | = 1000 and
density 50%. A conclusion of this figure is that, if one erases a vertex in one graph (i.e.
|V −U | = 1), GI-Ext can still identify almost 100% of the initial isomorphism. This is not
possible with canonical labeling algorithms that depend on computing the automorphism
groups of the whole graphs.

Notice that associations i → h∗(i) are not regarded as “correct” when i is a neighbor
of a vertex in V − U . Indeed, such associations would not be isomorphic for f because
the edge structures around them are not the same (i ∈ V and h∗(i) ∈ V ′ have different
degrees in G(U) and G′). Essentially, this is the reason GI-Ext can not reconstruct the
isomorphism on all non-erased vertices—the isomorphism can be reconstructed only on
the vertices not connected to the erased ones.

Most of the typical graph isomorphism algorithms work only on the whole graphs and
can not be adapted to partial isomorphism. The graph extension procedure constructs
vertex extended labels not only to partition the vertices of an individual graph; they
also indicate pairs of vertices i ∈ V and i′ ∈ V ′ that can be put isomorphically into

correspondence. An association i
h→ i′ might satisfy the isomorphism constraints only if i

and i are compatible (see Definition 1). As such, the extension procedure has a far more
general applicability than pure graph isomorphism.

Gi-Ext is more adapted to partial isomorphism than to subgraph isomorphism prob-
lems because partial isomorphism focuses only on induced subgraphs—i.e. not general
subgraphs, the whole structure on Ṽ is preserved via a partial isomorphism h (GI-Ext is
useful on identifying isomorphisms between this type of structures). The problem from
this section is more related to the maximum common subgraph problem because it is
reasonably to consider that the best partial isomorphism shares many vertex associations
with the solution of the maximum common subgraph problem. Recall that, in this final
experiment, we allow for the heuristic part the same time as for the first polynomial steps.
This results in a total polynomial time theoretically bounded by O(|E| · |V |3)—but it is
O(|V |2) in practice. However, GI-Ext can deal with graphs with thousands of edges, while
smaller graph sizes are commonly considered in the literature of the maximum common
subgraph problem [11].
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6.6 Final remarks on speed and memory requirements

In terms of memory costs, the spatial complexity of GI-Ext is O(|V |2) as we use a bounded
number of matrix structures of size |V |× |V | (we record only the last matrix of the series
M1,M2, . . . ,MK). This is easily confirmed by experimentation: GI-Ext requires about
30 × |V |2 bytes of free RAM. It is only the memory restriction of our machine (16 GB)
that prevented us from testing dense graphs with more than 20.000 vertices. For certain
matrices we used 8-bit integers (i.e. for F ), but we used unsigned long 64-bit integers for
the elements of M . However, for large values of K, there might exist elements exceeding
264 − 1; therefore, we consider all addition operations in the Arithmetic Modulo 264 (in
our C++ implementation, the variables are encoded so that 264 − 1 + 1 = 0). This
observation does not change the fact that f̄(h∗) = 0 if h∗ is an isomorphism, because if
M i,j = M ′

h(i),h(j), then M i,j = M ′
h(i),h(j) (Modulo 264). However, it is still theoretically

possible to have the Modulo equality without the non-Modulo equality; this never happens
in practice but we can easily verify any reported f̄ solution with the objective function
f (Equation 3).

Finally, we note that the graph extension procedure can be easily parallelized. That
would skew the results more in GI-Ext’s favor, but not enough to change our main
conclusions. However, the goal of the paper is not to enter into such technical speed-
up discussions and we only mention that we roughly reduced by half the running time
by using 4 processors; all graphs from the library [16] could be solved in less than one
second. The openMp library provided easy-to-use directives for the parallelization of the
For loops of Algorithm 1—technical details about the parallel program are also available
on-line (see page 19, Footnote 1).

7 Conclusion

To conclude, GI-Ext is a flexible algorithm, very useful for both pure isomorphism and
for certain more general matching problems. Experimental tests show that it is effective
in finding isomorphisms for several input graph classes, including complete benchmarks
from other papers. While very recent GI canonical labeling algorithms are based on
work which began 30 years ago, we propose a viable new alternative that competes well
with these state-of-the-art methods. Although GI-Ext has the inconvenience of not being
exact, it has the advantage of being quite simple and it can be implemented without
needing deep mathematics. It can deal with difficult (dense and regular graphs) with
hundreds of millions, even billions of edges (more than many previous algorithms).

One of the main ideas is related to the O(|E| · |V |2) extension operation that is used
to construct complete extended graphs in polynomially bounded time—i.e. O(|E| · |V |3).
The complete extended structure is actually a hash code of the initial graph; each ex-
tended vertex along with its extended edges encode a wealth of information of the initial
graph structure on a large proximity around this vertex. While classical graph match-
ing heuristic algorithms only (try to) reduce violated constraints involving neighboring
vertices, the extended graph enables GI-Ext to detect and prevent a larger class of iso-
morphism violations, between apparently compatible vertices—so as to seriously constrict
the search space.

Last but not least, notice that, while we used the extension operations in conjunction
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with a heuristic, the interest in complete extended graphs is not limited to a heuristic
context. Our techniques could be quite easily used to construct an exact procedure,
e.g. by replacing the local search with a branch and bound algorithm or with an integer
programming solver. In practical terms, the implementation would pose however certain
technical issues —e.g. classical integer data structures would not be long enough to record
elements of matrix M . Finally, notice that the matrix F of incompatible associations can
be inserted in other existing methods (including canonical labeling algorithms) in order
to enhance their performance.
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Appendix: Simple Generation of Regular Graphs

To generate a pair of random regular graphs G and G′, we first construct a random
bijection σ : V → V ′ and all operations that we apply to vertex i ∈ V , will also be
applied to σ(i) ∈ V ′. The construction of G is incremental, i.e. a (d+1)-regular graph is
constructed on top of a d-regular graph. Please note that if one needs a regular graph of
degree d > |V |

2
, one can generate it using the complementary of a (|V |−d)-regular graph;

as such, it is enough to consider the case d ≤ |V |
2
.

To construct a (d + 1)-regular graph from a d-regular graph, let i and j be any two
(random) vertices of degree d. If {i, j} /∈ E, insert an edge between i and j and their
degree becomes d + 1. If {i, j} ∈ E, the algorithm searches an edge {i′, j′} such that:
(i) {i, i′} /∈ E and (ii) {j, j′} /∈ E (such an edge was always found, there are more than

(|V | − d)2 > ( |V |
2
)2 pairs (i′, j′) satisfying (i)–(ii) and they are not all unlinked). The last

operation consists of incrementing the degree of i and j by linking i to i′, j to j′ and by
disconnecting i′ and j′.

In this manner, we were able to increment the degree of any two pairs of vertices i
and j of degree d. We repeat this operation |V |

2
times until all vertices increment their

degree (|V | needs to be even), and, thus, the d-regular graph is transformed into a (d+1)-
regular graph. Examples of generated graphs are publicly available on the website with
the source code (see Footnote 1, page 19), both in an adjacency matrix format and in a
list-of-edges format. Although difficult to theoretically prove, one can see these graphs
have and important random component and no specific particularities.
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