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I wrote this document because I had in my mind (consciously or unconsciously) the same reasons I accidentally
found at www. onmyphd. com :

1. It gives me a personal reference that I can go back and remember what I need.

2. It helps consolidate my knowledge about the topic by forcing me to explain it.

3. It gives me the satisfaction of knowing that people are learning something from me.

We take a first step towards showing how the constrained optimum of a function has to satisfy the
(Karush-Kuhn-Tucker) KKT conditions. We will not prove that the presented KKT conditions are
necessary in the most general sense, because we will not discuss the regularity conditions (Footnote
3). However, towards the end of this manuscript we will show the KKT conditions are necessary and
sufficient for a barrier linear program used in interior point methods.

Consider differentiable functions f, g1, g2, h : Rn → R and the program:

max f(x1, x2, . . . xn)

h(x1, x2, . . . xn) = 0

g1(x1, x2, . . . xn) ≤ 0

g2(x1, x2, . . . xn) ≤ 0

Suppose this program has a constrained maximum at point P =< x∗1, x
∗
2, . . . x

∗
n > such that h(P ) = 0,

g1(P ) = 0 and g2(P ) < 0. We will show this point satisfies the KKT conditions by first addressing
the constraints individually and then joining the respective conditions. In fact, we will see that the
KKT conditions are verified by all local maxima of f in above program.

1) Let us first address the equality constraint individually. Consider any (contour) curve r(t) =<
x1(t), x2(t), . . . xn(t) > on the surface of h(x1, x2, . . . xn) = 0 with r(0) = P =< x∗1, x

∗
2, . . . x

∗
n > and

t ∈ R. This curve has to satisfy h(r(t)) = 0. Differentiating this with respect to t we obtain via the
chain rule (and a notation abuse discussed below):

0 = (h(r(0)))′ =
∂h

∂x1

∣∣∣∣
P

dx1
dt

∣∣∣∣
0

+
∂h

∂x2

∣∣∣∣
P

dx2
dt

∣∣∣∣
0

+ · · ·+ ∂h

∂xn

∣∣∣∣
P

dxn
dt

∣∣∣∣
0

= ∇h|P · r′(0) (1)

We used the following notation abuse: the use of xi in a denominator ∂xi refers to the variable xi,
while the use of xi in a numerator dxi refers to an element of function r(t) =< x1(t), x2(t), . . . xn(t) >.

However, the gradient of h in P is thus perpendicular to (the tangent of) any curve1 r(t) that
belongs to the surface of h(x1, x2, . . . xn) = 0. Consider now the function f(r(t)) and observe its

1There is a particular case that should not be ignored: ∇h(P ) = 0. If the gradient is zero, we can not really say it is
perpendicular to some curve. The method of Lagrangian multipliers should check all the points where ∇h|P = 0. This
is described in greater detail in [Lagrange Multipliers Can Fail to Determine Extrema, College Mathematics Journal,
Vol. 34, No. 1 (2003), pp. 6062], see https://www.maa.org/sites/default/files/nunemacher01010325718.pdf.
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derivative with respect to t in 0 needs to be zero, because otherwise one could move away from P in
some direction along r and increase the value of f . Using the chain rule as in (1), we obtain:

∇f |P · r′(0) = 0

The gradient of f in P is thus perpendicular to any curve r(t) that belongs to the surface of
h(x1, x2, . . . xn) = 0. Both∇h|P and∇f |P need to be perpendicular to the surface h(x1, x2, . . . xn) = 0
in P . In other words, there exists some λ ∈ R such that ∇f |P = λ∇h|P .

2) We now address the first inequality constraint individually. Consider as above a curve r(t) =<
x1(t), x2(t), . . . xn(t) > such that g1(r(t)) ≤ 0 with r(0) = P =< x∗1, x

∗
2, . . . x

∗
n > and t ≥ 0. We stated

that we consider g1(r(0)) = g1(P ) = 0. The intuition is that the curve starts at the constrained
optimum P and then it goes inside (or on the surface of) the constraint. As such, the right derivative
in t at point 0 satisfies: (g1(r(0)))′ ≤ 0. Using the chain rule as in (1), we obtain:

∇g1|P · r′(0) ≤ 0 (2)

The gradient ∇g1|P is perpendicular to the level surface g1(x1, x2, . . . xn) = 0 and it is the only
direction for which (2) holds for any feasible curve r(t), t ≥ 0.2

Since r(0) = P is a constrained maximum, the function f needs to be decreasing as we move along
t ≥ 0 from t = 0. This means that the right derivative in 0 satisfies (f(r(0)))′ ≤ 0. Analogously to
(2), we obtain:

∇f |P · r′(0) ≤ 0

This shows there exists some µ ≥ 0 such that ∇f |P = µ∇g1|P , because ∇g1|P is the only direction
such that (2) holds for all feasible curves r. Observe we need to state µ ≥ 0 because otherwise the
signs of the above inequalities would be reversed.

3) We now address the last inequality constraint. Since g2(P ) < 0, the evolution of f around P does
not depend on g2. We can ignore g2, as it plays no role in ensuring that P is a local optimum.

Let us now join the arguments of 1), 2) and 3).
The point 1) shows that any objective function f1 such that ∇f1|P = λ∇h|P (with λ ∈ R) allows

P to be maximum. By moving along any curve r(t) on the level surface of h, we have (f1(r(0)))′ = 0.
The point 2) shows that any objective function f2 such that ∇f2|P = µ∇g1|P (with µ ≥ 0) allows

P to be maximum. By moving along any curve r(t) feasible with respect to g1(r(t)) ≥ 0, we have
(f2(r(0)))′ ≤ 0: by going inside the constraint, the objective function decreases.

Consider now f = f1 +f2. By moving from P along any curve r(t) with t ≥ 0 that satisfies all con-
straints, we have (f(r(0)))′ = (f1(r(0)))′+(f2(r(0)))′ ≤ 0, because the first term yields (f1(r(0)))′ = 0
given that r is feasible with respect to h and the second term yields (f2(r(0)))′ ≤ 0 because r is feasible
with respect to g1.

We conclude that P can be a constrained maximum for any objective function whose gradient has
the form:3

∇f |P = λ∇h|P + µ∇g1|P ,
2If we move away from ∇g1|P to some other direction d, the hyperplane perpendicular to d in P will not be tangent

to the level surface g1(x1, x2, . . . xn) = 0. As such, there are curves r1 on the level surface along which d · r′1(0) can
either increase or decrease as we move in either direction from t = 0.

3Care should be taken that there might be other functions f for which P is a constrained maximum. For instance,
if ∇g1|P and ∇h|P are linearly dependent, the associated surfaces have the same supporting (tangent) hyperplane in
P and the feasible area could be reduced to one point. In such a case, P is the constrained optimum for any function
f . For instance, if g1(x1, x2) = x2

1 + x2
2 − 1 ≤ 0 and h(x1, x2) = x1 − 1 = 0, the only feasible point is P = (1, 0). To

ensure the necessity of the KKT conditions, one has to assume some regularity conditions.
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with µ ≥ 0. Using point 3), we can now write this as follows

∇f |P = λ∇h|P + µ1∇g1|P + µ2∇g2|P ,

where µ1 ≥ 0 and µ2 = 0. Observe we can say µigi(P ) = 0, for any i ∈ {1, 2}: for i = 1 we have
gi(P ) = 0 and for i = 2, we have µi = 0.

The joining argument can be generalized to more functions h1, h2, . . . hm and g1, g2, . . . gp and we
obtain the KKT conditions:

• ∇f |P =

m∑
i=1

λi∇hi|P +

p∑
i=1

µi∇gi|P

• µ1, µ2, . . . µp ≥ 0

• µigi(P ) = 0, ∀i ∈ [1..p]

• P =< x∗1, x
∗
2, . . . , x

∗
n > is primal feasible.

The first condition is often expressed as follows: the stationary point of the Lagrangian f −∑m
i=1 λihi −

∑p
i=1 µigi in P is zero. This condition can also be found by applying the Lagrangean

duality and by writing the Wolfe dual problem.
Notice that if all functions are linear, it is superfluous to evaluate the gradient in P , because the

value of the gradient is the same in all points.

We now give a full proof of the KKT conditions for the following barrier problem used by Interior
Point Methods (IPMs) for linear programming (supposing the rows hi are linearly independent be-
cause otherwise they can be filtered).

min f(x) = f>x +

n∑
i=1

τ log(xi)

hi(x) = h>i x = h̄i ∀i ∈ [1..m]

There is no chance of finding an optimum solution x∗ with some x∗i close to zero, because the log
function exploses when its argument approaches zero. Since all involved functions are convex, this
program needs to have a solution x∗ of minimum cost. We can prove that the KKT conditions are
necessary and sufficient to certify x∗ is the optimal solution. The KKT conditions discussed above
actually reduce to:

• ∇f |x∗ =

m∑
i=1

λihi

• x∗ =< x∗1, x
∗
2, . . . , x

∗
n > is primal feasible.

The necessity Take the optimal x∗. The second condition is clearly necessary from the definition
of x∗. We prove the first condition by contradiction. Assume for the sake of contradiction that
∇f |x∗ can not be written as a linear combination of vectors h1, h2, . . . hm. This means we can
write ∇f |x∗ =

∑m
i=1 aihi + z, where z 6= 0 belongs to the null space of h1, h2, . . . hm, i.e., z>hi =

0 ∀i ∈ [1..m]. Let us check what happens if one moves from x∗ back or forward along direction z.
For this, it is enough to study the function f̄(t) = f(x + tz). Using the chain rule, we can calculate
f̄ ′(0) = ∇f |>x∗z = (

∑m
i=1 aihi + z)> = z>z > 0. By taking a sufficiently small step from x∗ towards

−z, the function f becomes smaller and the constraints hi (i ∈ [1..m])) remain valid. This is a
contradiction.
The sufficiency For the sake of contradiction, we assume there is some feasible xo 6= x∗ such that
f(x∗) < f(xo) that satisfies both KKT conditions, i.e, xo is primal feasible at it can be written
∇f |xo =

∑m
i=1 λihi for some λ = [λ1, λ2, . . . λm]. Let us define the Lagrangian L(x, λ) = f(x) −∑m

i=1 λi(h
>
i x − h̄i). Considering this fixed λ = [λ1, λ2, . . . λm] indicated above, this Lagrangian
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function is convex in the variables x. Given that ∇f |xo −
∑m
i=1 λihi = 0, we obtain that xo has to be

the unique stationary point of the Lagrangian function in x, and so, xo has to be the unique minimizer
of the Lagrangian. This is a contradiction, because we have L(x∗, λ) = f(x∗) < f(xo) = L(xo, λ).

The above last result is very useful to define the notion of central path in Interior Point Algorithms
(IPMs). We will see below that for each value of τ > 0, there is a unique primal optimal solution x∗τ
and a unique dual optimal solution λτ . The central path is the set {(x∗τ , λτ , τ > 0)}. The uniqueness
of xτ comes from the fact that f is strictly convex for τ 6= 0. If we had something like f(x∗1) = f(x∗2),
then the strictly convex function f needs to achieve a value strictly below f(x∗1) = f(x∗2) at some
point x∗3 between x∗1 and x∗2. Since the feasible area is convex, x∗3 has to be feasible as well, and so,
f(x∗1) is not optimal by virtue of f(x∗3) < f(x∗1). Given the unique optimal solution x∗, the equation
∇f |x∗ =

∑m
i=1 λihi can not have two solutions λ and λ′. If that were the case, we would obtain

that
∑m
i=1(λ′i − λi)hi = 0, which would mean that the rows hi (with i ∈ [1..m]) are not linearly

independent as mentioned in the hypothesis.
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