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Abstract
Tabu Search (TS) has always been a very popular algorithm for graph coloring, both

as a stand-alone optimizer as well as a subroutine inside population-based hybrid methods.
We present two TS extensions that could allow previous TS algorithms to improve their
behavior at almost no additional computational cost. First, we integrate two new evaluation
functions which employ supplementary (structural or dynamic) information in addition to
the conventional objective function (the number of edges with both ends of the same color).
These new evaluation functions allow the search process to differentiate configurations not
distinguished by the conventional evaluation function. The second extension concerns a
reactive mechanism for improving the tabu list management. Theoretical arguments show
that this reactive component completely eliminates the risk of getting blocked looping on
plateaus. Numerical experiments show that the two proposed TS extensions can be very
useful inside a stand-alone TS optimizer, as well as inside TS subroutines of state-of-the-art
hybrid methods.

1 Introduction
The graph (vertex) coloring problem (Coloring) requires finding the chromatic number of a
graph, i.e. the minimum number of colors needed to construct a coloring without conflicts (with
no edge having both ends of the same color). The graph k-coloring problem (k-Coloring), the
decision version of Coloring, is to decide whether or not there is a coloring with no conflicts
using k colors. Coloring is one of the 21 fundamental computer science problems whose NP -
completeness was proved in the early 1970s [25]. Except a few special cases (trees, bipartite
graphs, etc.), no polynomial algorithm can solve or approximate Coloring within a constant
factor unless P = NP . In practice, Coloring and k-Coloring constitute a convenient and
powerful model for formulating numerous applications, as for example: frequency assignment
in cellular networks, timetabling, register allocation in compilers, scheduling problems, and
many others—see references in [28, 3, 33].

Since the early 1970s, numerous coloring algorithms have been developed and important
progress has been made. Exact algorithms do not usually deal with graphs of more than 100
vertices [28], and so, heuristic algorithms are often employed for coloring larger graphs. Exist-
ing (meta-)heuristic coloring algorithms belong to five main solving approaches: (i) sequential
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constructive heuristics (e.g. some of the best are RLX and XRLF [23]), (ii) local search (tabu
search [20, 12, 3], simulated annealing [5, 23], iterative local search [30, 7, 6], variable neigh-
borhood search [1, 19], local search with forward checking [35], distance and position guided
search [33], etc.), (iii) population-based hybrid algorithms [29, 13, 10, 15, 17, 27, 26, 32, 34],
(iv) neural networks approaches [22, 36], (v) swarm intelligence algorithms [8, 11, 4, 31], (vi)
independent set extraction [38], and (vii) distributed and hybrid quantum annealing [37].

Among these coloring approaches, one of the most effective and most popular choices
is represented by Tabu Search or by algorithms incorporating Tabu Search. Many of the best-
known results available today have been obtained with hybrid methods that employ Tabu Search
as a local optimizer [15, 17, 27, 26, 32]. One observes that classical TS coloring algorithms are
quite simple and “lightweight”: they do not make use of “heavy machineries” such as linear
programming relaxations, distributed computing, ant swarms, evolutionary computing, niching
or fitness sharing techniques, etc. One wonders then whether a TS coloring algorithm can be
further boosted by improving some of its key ingredients, while keeping it reasonably simple.

This paper introduces two TS extensions: well-informed evaluation functions and a simple-
but-effective reactive tabu list. The classical objective function (the number of conflicts) is
essential because it defines the landscape and guides the search process (together with the
neighborhood). However it makes no distinction among numerous k-colorings with the same
number of conflicts but with a different potential of leading to a solution. As such, we in-
vestigate two new evaluation functions that use supplementary information: (i) the degrees of
the conflicting vertices, and (ii) the frequencies of color changes during a first stage of the
execution.

Regarding the tabu list tunning, we observed that the existing well-established techniques
can still be improved, as looping problems can still occur at times. For this reason, we introduce
a new reactive technique[2] that allows the search process to avoid getting blocked indefinitely
looping on plateaus. The resulting algorithm (hereafter referred to as IRTS—Informed Reactive
Tabu Search) reaches good results as a stand alone algorithm, and it can also be very useful as
a local optimizer in state-of-the-art hybrid methods.

The rest of the paper is organized as follows. In Section 2, we give preliminary definitions
and we present in detail the TS variant we use. Sections 3 and 4 are devoted to the new
evaluation functions and to the reactive tabu list, respectively. In Section 5, we perform an
experimental study of the proposed ideas, followed by conclusions in the last section.

2 Generic Tabu Search for k-Coloring

2.1 Preliminary Definitions
Let G = (V,E) be a graph with V and E being respectively the vertex and edge sets. We recall
the following definitions.

Definition 1. (k-Coloring and Coloring) Given a graph G = (V,E) and a positive integer k,
the graph k-coloring problem requires deciding if G is k-colorable, i.e. if there is a function
C : V → {1, 2, · · · , k} such that C(v) 6= C(v′) ∀{v, v′} ∈ E. The graph coloring problem
requires finding the chromatic number of G, i.e. the smallest k such that G is k-colorable.

It is clear that k-Coloring and Coloring are two tightly related problems. A possible ap-
proach to deal with Coloring consists of solving a series of increasingly-difficult k-Coloring
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problems: start with a very large initial k and iteratively decrement k after solving each k-
Coloring instance. The k-coloring problem becomes more and more difficult until it can no
longer be solved by the algorithm. The best k for which k-Coloring is solved constitutes an
upper bound to the chromatic number of G.

In the following, we represent a coloring function C : V → {1, 2, · · · , k} as an array
C = [C(1), C(2), . . . , C(|V |)]. We say that C is a k-coloring for G, or a configuration.

Definition 2. (Conflicts) The conflicts (the conflicting edges) of a k-coloring C are given by
E (C) = {{v, v′} ∈ E : C(v) = C(v′)}. The set of conflicting vertices is: V (C) = {v ∈ V :
∃v′ ∈ V s.t. {v, v′} ∈ E (C)}.

The conflict number of C is denoted by |E (C)|, or simply by |E |, i.e. the argument C is
omitted when no confusion is possible. A coloring C is conflict-free if and only if |E | = 0.

Definition 3. (Conflicting degree of a vertex) Let v be a vertex, dv its degree, and C a config-
uration. We define V v = {v′ ∈ V |{v, v′} ∈ E (C)}. We call |V v |

dv
the conflicting degree of v

under C.

It is easy to see that 0 ≤ |V v| ≤ dv ∀v ∈ V . The minimal value |V v| = 0 is reached for
non-conflicting vertices; |V v| = dv indicates that vertex v is conflicting with all its neighbors.
Moreover, the following relation holds for any coloring: 2|E | =

∑
v∈V |V v|.

Finally, notice that we solve k-Coloring as an optimization problem. Given a k-Coloring
instance (G, k), the optimization problem is determined by the couple as (S, fc), where: (i)
S is the search space composed of all the |V |k possible k-colorings; (ii) fc : S → IN is the
objective function counting the number of conflicts using formula below.

fc(C) =
∣∣E (C)

∣∣ ,∀C ∈ S (1)

Accordingly, any configuration C∗ ∈ S such that f(C∗) = |E (C∗)| = 0 corresponds to a
conflict-free or legal k-coloring, a solution of the given k-Coloring instance.

2.2 Key Components of the TS Coloring Procedure
Tabu Search [18] was first applied to k-Coloring in 1987, leading to the well-known Tabucol
algorithm [20]. Since then, the approach has inspired several other TS variants and important
progress has been made. We here discuss two of the most important improvements, as they are
tightly related to our study. First, [13] introduced an efficient incremental evaluation technique
for streamlining the calculations. Secondly, more elaborate tabu-list management techniques
have been developed [10, 15, 9]. A historical presentation of Tabucol as well as a comprehen-
sive analysis of some of the best local search algorithms can be found in [16]. Experimental
comparisons of TS with other coloring heuristics are also available in the literature [21, 6].
Finally, one should be aware that other TS variants do exist (e.g. the PartialCol algorithm [3]
using partial colorings), but these variants are not directly related to our approach.

2.2.1 Fast neighborhood evaluation via calculation streamlining

Given a k-coloring C, a neighboring k-coloring C ′ can be obtained by simply changing the
color C(v) of a conflicting vertex v into a new color C ′(v). We denote by 〈v, C ′(v)〉 the
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transition from C to C ′. By focusing on conflicting vertices, this neighborhood helps the search
process to concentrate on influential moves and to avoid irrelevant ones, i.e. changing the color
of a non-conflicting vertex would not directly improve the objective function fc. Furthermore,
this neighborhood N(C) has a cardinal of |N(C)| = (k − 1)|V |, which is considerably lower
than the cardinal of a neighborhood in which any vertex could change its color (i.e. (k−1)|V |).

To rapidly choose the best next coloring from N(C), we use a |V | × k table Γ such that
Γv,C′(v) indicates the number of conflicts of vertex v if v would receive color C ′(v). As such,
Γv,C′(v) − Γv,C(v) represents the fc variation that would be induced by changing the color of v
from C(v) to C ′(v). Since we only deal with conflicting vertices, the best move is searched by
going through all elements Γv,C′(v) with v ∈ V (i.e. (k − 1) · |V | elements). After performing
a move, Γ can be updated in O(|V |) time (because only columns C(v) and C(v′) might require
updating in Γ). This incremental evaluation technique proves to be essential for a practically
viable examination of the complete neighborhood.

2.2.2 Tabu list management

A tabu list is commonly regarded as a first-in-first-out structure recording recent configurations
or recent moves. In our case, it is more convenient to implement it using a |V | × k table T
in which each element Tv,C′(v)corresponds to a possible move 〈v, C ′(v)〉. Each time a move
〈v, C ′(v)〉 is performed, v receives the new color C ′(v) and the lost color of v becomes forbid-
den (tabu) for the next tl (tabu tenure) iterations. In practice, each element of T records the
current iteration number plus the tabu tenure tl. Consequently, in order to check out whether or
not a move 〈v, C ′(v)〉 is tabu, it is enough to compare Tv,C′(v) to the current iteration counter.

A well-established tenure [15, 10] in graph coloring is: tl = α · |E | + random(1, A). The
term random(1, A) makes reference to a routine returning a random integer between 1 and A;
it imposes a quality independent tenure to all moves. The value of α ·|E | depends on the current
coloring: this term aims at penalizing moves associated to lower quality configurations. Our
new reactive component for tunning the tabu list is introduced in Section 4.

Aspiration criterion Notice that it would be quite unreasonably to forbid a move that would
lead to a new best coloring. In this case, we make use of an aspiration criterion that removes
the tabu status of the corresponding move.

2.3 TS Formal Specification
Algorithm 1 presents the general TS k-coloring procedure, including the components presented
above. For a given k-coloring instance (G, k), our TS variant starts out with an initial (random)
k-coloring C. The main steps of an iteration are: (A) use Γ to pick up an acceptable move (i.e.
non-tabu, or tabu but satisfying the aspiration criterion) that minimizes the number of conflicts,
(B) set the current color of v as tabu, (C) execute the move and (D) update Γ accordingly. The
process stops when a legal coloring is found or when a time (or iteration) limit is reached. The
new evaluation functions will be integrated in this algorithm at Step 5.A, see Section 3.3 below.
The reactive tabu list will be integrated at Step 5.B.
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Algorithm 1 Template of the classical Tabu Search
Input: graph G, integer k;
Return: fc(C

∗) the best conflict number ever found;
Variables: C (current coloring), C∗ (best coloring found so far), T
(tabu Table), tl (tabu tenure), Γ (table of move values), iter counter (the
current iteration);
Begin

1. T = 0|V |×k /*no move is tabu when starting*/

2. C = a random initial k-coloring

3. C∗ = C
4. Initialize Γ /*see §2.2.1*/
5. while (fc(C) > 0 and time/iteration limit not reached)

A. Use Γ to select a best neighbor C ′ in O(k|V |): if more moves lead
to a best conflict number, C ′ is selected using a probabilistic
choice guided by the evaluation function (see Section 3.3)

B. Tv,C(v) = iter counter + tl /*mark 〈v, C(v)〉 tabu, see §2.2.2 and §4*/
C. C(v) = C ′(v)

D. Update Γ /*in O(|V |) time, see §2.2.1*/
E. if (fc(C) < fc(C

∗)) then C∗ = C /*better coloring found*/

6. return fc(C
∗)

End

3 New Evaluation Functions
The function fc (Equation (1)) is commonly used as the evaluation and objective function. Since
fc only counts the number of conflicts, it has an inherent inconvenience: it makes no distinction
between all configurations with the same conflict number. Indeed, these configurations are
equivalent for fc even if they may have different potential for leading to a legal coloring.

To overcome this difficulty, we propose to enrich fc with additional information. We intro-
duce a heuristic function h : S → [0, 1) and combine it with fc by the following simple linear
form, leading to a new evaluation function f̃ :

f̃ (C) = fc (C)− h (C) (2)

where h is a heuristic that can discriminate configurations equivalent in terms of fc, as exem-
plified in Sections 3.1 and 3.2 below. By considering h(C) < 1 for any coloring C , we obtain
df̃(C)e = fc(C).

3.1 A Degree-Based Evaluation Function
Let us first consider the example from Figure 1 showing two 3-colorings C1 and C2 of a small
graph. The edges in conflict are respectively {a, b} for C1 and {a, c} for C2. Consequently,
|E (C1) | = |E (C2) | = 1 and the two configurations are thus equivalent for fc. However, it is
easier to solve the 3-coloring problem from C1 than from C2.

Indeed, since the degree of b is small, one can assign to b a color not used by its neighbors
(i.e. black or white) to solve the {a, b} conflict on C1. That can be done in one step and it does
not introduce any other conflicts. Solving the {a, c} conflict on C2 is more difficult because any
color change on vertex a or c would perturb one of its more numerous neighbors. Intuitively,
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Figure 1: Two 3-colorings C1 and C2 with one conflict (marked with a thicker line). It is easier
to solve the gray one (C1, left) than the black one (C2, right) even if both configurations have
just a single conflict.

the more neighbors a vertex has, the more difficult it is to change its color without perturbing
the rest of the configuration.

More precisely, for each conflicting vertex, we can use its degree to define a penalty term:
the higher its degree is, the smaller the heuristic term (h) is, and the higher the value of the
evaluation function becomes, see also (4) below. In order to take all the conflicting vertices
into account, we use the following heuristic h1 to define the penalty of k-coloring C:

h1(C) =
1

|V |
∑
v∈V

|V v| ·
1

dv
(3)

According to the notation of conflicting degree of vertices (Section 2.1, Definition 3), we
see that h1(C) gives the total of the conflicting degrees of all the conflicting vertices of C. Our
first degree-based evaluation function f̃1 can now be defined as follows:

f̃1 (C) = fc (C)− h1 (C) (4)

The only role of the 1
|V | coefficient in (3) is to keep the value of h1 in [0, 1). Therefore, f̃1

preserves the fc ordering: f̃1 (C) < f̃1 (C ′) whenever fc (C) < fc (C ′). The new evaluation
function should only help the search process choose between neighbors with the same conflict
number; it should not introduce penalties that outweigh the number of conflicts.

3.2 An Evaluation Function Based on Search History
We propose here a second heuristic h2 which takes into account information collected during
the search process. The considered information is the number of color changes per vertex.
Basically, if a vertex v changes its color frequently, the evaluation should give more weight to
v, so as to help the search process fix its color.

More precisely, let us consider a first stage of the search with the basic evaluation function
fc. For each vertex v, we compute a frequency coefficient freq (v) which is a scaling of the
number of color changes applied on v during the first stage. The heuristic h2 and the second
new evaluation function can now be defined as follows:

f̃2 (C) = fc (C)− h2 (C) = fc (C)−
∑
v∈V

|V v| ·
1

freq(v)
(5)
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Given two colorings with the same conflict number, the evaluation function f̃2 prefers the
one whose conflicting vertices had lower frequencies of color change in the past. We consider
the vertices with high frequencies of color changes to be more critical: the new function en-
courages the search process to first assign a color to these vertices, by giving them more weight
in the evaluation. As such, using f̃2 results in more frequent color changes on vertices that were
“quite fixed” during the first stage; it has an implicit diversification effect.

3.3 Specific TS Integration and Comparison with Related Literature
To be able to integrate the calculation of h1 or h2 in TS, the additional computational overhead
should be limited—TS needs to remain a very fast algorithm, see also Section 2.2.1. For this
purpose, IRTS uses the following formula to compute any of the two heuristics (denoted by h).

h(C) =
∑
v∈V

|V v| · hv =
∑
{v,v′}∈E

(hv + hv′),

where hv is the penalty associated with vertex v, i.e. hv = 1
|V |·dv for the first function, or hv =

1
freq(v)

for the second. Using (2), we observe that any new function f̃(C) can be calculated with
the formula fc(C)− h(C) =

∑
{v,v′}∈E 1−

∑
{v,v′}∈E (hv + hv′). Before launching the search

process, one constructs a table T̃ so that f̃(C) =
∑
{v,v′}∈E T̃vv′ . The only difference between

the calculation of fc and f̃ is the initial value of T̃ . To be specific, one uses T̃vv′ = 1 ∀v, v′ ∈ V
to compute fc, or T̃vv′ = 1 − hv − hv′ to compute f̃ . Matrix T̃ can be integrated in the
streamlined calculation of Γ (see Section 2.2.1), so as to perform an incremental evaluation.

A different integration issue arises from the inherent imperfections of the heuristics. The
fact that f̃ (C1) < f̃ (C2) should ideally imply that the probability to reach a legal coloring is
greater when the search runs from C1 than when it runs from C2. Unfortunately, due to the
complexity of the fitness landscape, this probability is unknown; as such, the computation of
an exact evaluation is very difficult (h1 and h2 are only heuristics).

Such imperfections render slightly more complicated the use of f̃ in Tabu Search. If one
directly inserts a very discriminative f̃ in Step 5.A. of Algorithm 1, the number of choices
for iteratively selecting the next coloring C ′ could be very limited—leading to insufficient
diversification. As mentioned in Step 5.A. of Algorithm 1, the next coloring C ′ is selected
from among those that minimise the number of conflicts df̃ (Ci)e; if more moves satisfy this
condition, we perform a tie-breaking choice guided by f̃ . Consider the set of all neighboring
colorings Ci minimizing the number of conflicts. The next coloring C ′ is selected from this set:
each Ci can be chosen with a probability proportional to h(Ci). This choice can be seen as an
instance of a fitness-proportional selection in the evolutionary computing terminology.

IRTS seems to be the first algorithm that uses new evaluation functions within a Tabucol-
based TS, making appeal to a specific integration methodology. However, degree information
was also used in a different form in the constructive heuristic introduced by [18]; the authors
proposed to wait to color low degree dependent vertices until all other vertices are colored.
The Impasse coloring algorithm [29, 27] is based on a different encoding, but it also intends to
first color high degree vertices, leaving more vertices of smaller degree in the uncolored class.
Completely different evaluation functions can also be found in the literature, as for example
f̂dsjc = −

∑k
i=1 |Ci| +

∑k
i=1 2|Ci||E i|, where Ci is the set of vertices having color i and E i is

the set of conflicts of color i [23].
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4 A Simple-but-Effective Tabu Tuning Technique
It is well known that the tabu list must be managed with care. In Section 2.2.2, we indicated a
well-established formula for calibrating the tabu tenure: tl = α · |E |+ random(1, A). We here
provide the rationale for integrating an additional reactive component.

Let us consider a plateau with n configurations C1, C2, ..., Cn having the same conflict
number |E |. A tabu list of length at least n is necessary to break a cycle of length n: C1 →
C2... → Cn → C1. If the classical Tabu tenure verifies max tl < n, the Tabu mechanism
can no longer stop the search process from repeatedly performing the above cycle. As such,
a larger-than-expected plateau is able to completely block the algorithm. Indeed, experiments
confirm that the classical TS reaches sooner or later a point beyond which it can not longer
make any progress (see Section 5.2.2).

To overcome this difficulty, we consider a reactive tabu list: when the conflict number
stays constant during a number of iterations Pmax, we increment the length of the tabu tenure
for all subsequent iterations. In other words, when we observe Pmax consecutive transitions
C1 → C2... → CPmax such that fc (C1) = fc (C2) = · · · = fc (CPmax), the tabu tenure becomes
tl + 1 for the forthcoming iterations. If the conflict number stays constant for another Pmax

iterations, the tabu tenure becomes tl+2; after another Pmax iterations it becomes tl+3, etc. The
tabu tenure is thus continually incremented as long as the conflict number remains constant. We
reset it to the original tl value only when fc changes again. This way, we guarantee that, sooner
or later, the tabu list is increased to a value that can break a cycle of any length. Theoretically,
in the worst case, tl would be incremented indefinitely and this would lead to a tabu list that
contains all possible moves. In this exceptional case, a random move is performed and we
consider that the resulting random walk could not lead to periodic cycles.

Let us remark that using a large tabu list all the time would have a negative effect; outside
large plateaus, it could encourage the algorithm to leave promising regions too early. Here, the
algorithm learns from its own search evolution, and resorts to a larger tabu list only when it is
necessary. This simple mechanism enabled TS to solve important looping problems without
affecting its performance outside plateaus. More discussions about the practical impact of our
reactive tuning are given in the experimental part (Section 5.2.2).

To our knowledge, while reactive tabu techniques were often used in other problems [2],
they have not been typically applied to graph coloring. However, in the context of a different
TS variant (based on partial configurations [3]), the local search process is considered trapped
if the objective function fluctuation stays a long period bellow a certain threshold; this threshold
is set by a separate tuning phase along with two other parameters of the reactive scheme. IRTS
takes this approach even further by only using one parameter (Pmax) that can be tunned quite
easily (see Section 5.1.2). More distantly related, the algorithm from [9] uses some different
ideas to detect looping, focusing on the identification of vertices causing loops.

5 Experiments and Discussions
In this section, we report empirical results of the Informed Reactive TS algorithm on the com-
plete set of DIMACS coloring benchmarks.
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G k G k G k G k
dsjc125.1 5 r125.1 5 le450.5a 5 flat300.20.0 20
dsjc125.5 17 r125.5 36 le450.5b 5 flat300.26 26
dsjc125.9 44 r125.1c 46 le450.5c 5 flat1000.50 50
dsjc250.1 8 r250.1 8 le450.5d 5 flat1000.60 60
dsjc250.5 28 r1000.1 20 le450.15a 15 school1 14
dsjc250.9 72 r1000.1c 98 le450.15b 15 school1.nsh 14

dsjr500.1 12 le450.25a 25
le450.25b 25

Table 1: Easy DIMACS k-coloring instances. For these graphs, numerous other papers report
legal colorings with exactly the same values of k, but there is no mention of a solution using
k − 1 colors (for flatX.Y and leX.Y graphs, we even know the chromatic number).

5.1 Experimental Conditions
5.1.1 The DIMACS benchmark

The Dimacs competition benchmark [24] is composed of 46 graphs from the following fami-
lies: (i) random graphs dsjcX.Y with X vertices and density Y; (ii) flat graphs, generated by
partitioning the vertex set into Kp classes and by adding edges only between vertices of differ-
ent classes (flatX.Y, where X denotes |V | and Y is the chromatic number Kp); (iii) Leighton
graphs with 450 vertices and with known chromatic number Y (leX.Y, they have a clique of
size Y ); (iv) two families of random geometrical graphs generated by picking points uniformly
at random in the unit square and by joining any 2 points situated within a certain distance
(dsjrX.Y and rX.Y, where X is |V | and Y is the distance threshold); (v) huge random graphs
(C2000.5 and C4000.5) with up to 4 million edges; (vi) class scheduling graphs (school1,
school1.nsh) and a latin square graph (latin square 10).

Easy instances and hard instances Table 1 presents the easy graph k-coloring instances;
they can be rapidly solved by all our TS versions with a success rate of 100% . In what follows,
we focus on the rest of 19 hard instances, as most coloring research papers do.

5.1.2 Parameters

Recall that IRTS requires only three parameters: A,α and Pmax. The first two are inherited
from previous TS versions, as they are utilized to compute the tabu tenure (tl = α · |E | +
random(1, A), see Section 2.2.2). We simply used the following values already reported in the
literature [15]: A = 10 and α = 0.6.

The third parameter Pmax represents the number of iterations with constant conflict number
necessary to assume the search process is stuck, i.e the reactive component is only activated
after Pmax iterations with no conflict number variation (see Section 4). We set Pmax = 1000,
but there are many safe values one could use. We empirically observed that each time the con-
flict number stayed constant for 1000 iterations, it remained so indefinitely (with the classical
tunning). Larger values of Pmax would only render the reactive reaction less prompt. Smaller
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values can trigger reactive reactions more often than necessary, thus risking to influence the
search process without proper reason.

5.2 Influence of the Proposed TS Extensions
Let us first present preliminary experiments and arguments regarding the positive impact of
the new evaluation functions and of the reactive tabu list. While the new functions aim at
better guiding TS toward promising regions, the objective of the reactive tabu list is to unlock
the search process from looping. As such, the two proposed TS extensions are completely
independent and complementary to one another.

5.2.1 Impact of the new functions w.r.t. instance characteristics

Our preliminary experiments showed that the influence of the new function f̃1 is more visible
on certain instances than on others. Generally speaking, the best improvement is seen on the
most difficult instances and on certain specific graph classes. An example of good performance
is given by the random geometrical graphs (dsjrX.Y and rX.Y); fc is clearly dominated by f̃1
in all our experiments—see also Table 2 and Table 3 below.

The explanation of this performance variation lies in the structure of the graphs, more ex-
actly in the degree variation. For the geometrical graphs mentioned above, the maximum de-
gree can be by an order of magnitude higher than the minimum degree (e.g. for dsjr500.5)
and this makes any degree-based differentiation very effective. Indeed, we observed that the
average graph class effectiveness of f̃1 can be ranked according to the degree variation, from
the highest to the lowest: geometrical graphs, Leighton graphs, random graphs, flat graphs.
An extreme case is the Latin square graph which is regular (i.e. constant degree): the new
degree-based evaluation function brings no new distinction between vertices.

5.2.2 Influence of the reactive tunning

To evaluate the influence of the new reactive tabu list, we analyzed and compared the classical
tabu tuning (Section 2.2.2) with the reactive tabu tuning. Recall that the objective of the reac-
tive component is to avoid looping on k-colorings with the same conflict number. Using several
representative graphs from each important family, we performed between 20 and 100 execu-
tions of the TS algorithm equipped with the classical tabu tuning and we counted how many of
them got stuck before reaching 20 million iterations. Here, we consider that the search process
is stuck from the moment when the conflict number does no longer variate. The conclusion of
this experiment was very clear: more than 90% of all executions got stuck looping on a plateau
before reaching 20 million iterations.

By introducing the reactive part, these looping problems are solved and the TS algorithm
could successfully escape all plateaus. This allows the search process to effectively take profit
from longer running times—without reactive tuning, there would be no much use to run IRTS
more than 20 million iterations (regardless of the evaluation function). We empirically observed
that the reactive component is triggered only a few times in millions of iterations, and so, there
is virtually no negative interference with other algorithm components. Another positive point
of our reactive scheme is the simplicity: only one parameter Pmax is needed and it can be easily
assigned a safe value—i.e. any value X satisfying the property that if the conflict number |E |
stays constant for X iterations, |E | remains constant indefinitely.
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5.3 Results on Short Term Stopping Conditions
To assess the potential impact of IRTS inside more sophisticated hybrid algorithms, we consider
a limit of 1.000.000 iterations and we analyse the running profile along these iterations. A local
search coloring algorithm can visit millions of colorings per minute, and so, the chosen iteration
limit corresponds to the relatively short running times typically allowed for internal subroutines
of hybrid algorithms.

Table 2 reports the average conflict numbers along these 1.000.000 iterations with all three
functions on 10 representative graphs from different families. Rather then reporting only the
minimum conflict number, this average information offers a better view of the global behavior
of the algorithm over the considered number of iterations. We observe that the average conflict
number is always smaller for f̃1 than for f̃c. The conclusion is that the new evaluation function
usually allows the search process to visit more rapidly colorings of higher quality.

Graph k Average Number of Conflicts Statistical Confirmation
f̃1 f̃2 fc [f̃1] 6≡ [fc] [f̃2] 6≡ [fc]

dsjc250.5 28 8.138 7.133 9.878 Yes Yes
dsjc500.5 48 24.9 28.5 26.6 Yes Yes
dsjc1000.5 87 35 32.2 37.7 Yes Yes
dsjr500.5 122 5.106 8.875 10.46 Yes Yes
r1000.5 234 16.02 25.76 29.09 Yes Yes
le450 25c 25 9.38 9.524 12.97 Yes Yes
le450 25d 25 9.183 13.94 13.74 Yes No
flat300 28 0 30 21.63 23.87 22.13 No No
flat1000 76 0 86 30.39 29.02 32.04 Yes Yes

Table 2: Average conflict number of the colorings visited during the first 1000000 iterations
with all three functions. In most cases, the modified functions, in particular f̃1, allow the
algorithm to visit colorings with (statistically) fewer conflicts.

Indeed, the differences between these averages were confirmed by a statistical test. We
considered the null hypothesis that the average of the conflict numbers obtained with f̃1 (or f̃2
respectively) is equal to the average obtained with fc. Using a very confident level of signif-
icance of α = 0.1%, this hypothesis was rejected in most of the cases, confirming that most
reported differences are statistically significant—see the last two columns of Table 2.

In the best cases, the conflict numbers of the configurations visited by f̃1-IRTS can even be
half of those visited by fc-IRTS. The second function f̃2 also shows an improvement on two
thirds of instances, but with a smaller amplitude (recall that fc-IRTS is equivalent to f̃2-IRTS
in the first half of the search, during the first 500.000 iterations).

5.4 Long-term Results and Comparison with the Best Algorithms
In this section, we provide detailed results (Table 3) with all three evaluation functions for all
hard instances. For each instance, we perform 10 executions (launched from different random
colorings) and we report the success rate, as well as the average computing effort for finding
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a conflict-free coloring. We allow the algorithm a maximum time limit of 10 hours.1 In the
coloring literature, it is a common practice to use time limits of several hours; this is also the
case for many state-of-the-art algorithms from Table 4. However, one should be aware that it is
difficult to make local search algorithms substantially improve their empirical performance by
allowing more than one hour of running time (if there are plateaus looping problems).

Graph k f̃1-RCTS fc-RCTS f̃2-RCTS
#Hits #Iters Time #Hits #Iters Time #Hits #Iters Time
[/ 10] [106] [h] [/ 10] [106] [h] [/ 10] [106] [h]

dsjc500.1 12 10/10 96 < 1
4 10/10 64 < 1

4 10/10 64 < 1
4

dsjc500.5 48 1/10 1352 6.33 0/10 — — 0/10 — —
dsjc500.9 126 9/10 360 1.67 10/10 457 2.4 10/10 466 2.5
dsjc1000.1 21 10/10 1 < 1

4 10/10 2 < 1
4 10/10 2 < 1

4
dsjc1000.5 87 1/10 873 7 0/10 — — 0/10 — —
dsjc1000.9 224 4/10 420 7.5 1/10 321 5 3/10 492 7.33
dsjr500.1c 85 5/10 470 1.2 1/10 7 < 1

4 1/10 7 < 1
4

dsjr500.5 122 7/10 469 2.4 0/10 — — 0/10 — —
r250.5 65 10/10 99 < 1

4 0/10 — — 0/10 — —
r1000.5 237 2/10 1059 7.5 0/10 — — 0/10 — —
le450.15c 16 8/10 11 < 1

4 9/10 17 < 1
4 9/10 17 < 1

4
le450.15d 16 10/10 1 < 1

4 10/10 < 1 < 1
4 10/10 < 1 < 1

4
le450.25c 25 9/10 621 1.1 6/10 572 1.2 6/10 203 1.2
le450.25d 25 9/10 937 2 2/10 1895 4.5 2/10 1895 4.5
flat1000.76 87 10/10 290 2.3 10/10 265 2 10/10 265 2
flat300.28 30 4/10 1183 4.5 6/10 538 2.33 8/10 737 3.1
latin square 100 6/10 641 3 4/10 1005 5 5/10 1141 5.5
C2000.5 162 4/10 237 3.63 1/10 601 9.5 2/10 477 8
C4000.5 305 4/10 88 4.75 2/10 85 4.5 2/10 98 5.5

Table 3: Detailed results of IRTS with a time limit of 10 hours for all three evaluation functions.
f̃1-IRTS finds better solutions than fc-IRTS on 25% of graphs and has a improved success rate
on another 25% of graphs. The difference between f̃2-IRTS and fc-IRTS can only be visible on
instances that require more than 5 hours (the last three and dsjc1000.9).

The first two columns of Table 3 denote the k-Coloring instance, i.e. the graph and the num-
ber of colors k. For each evaluation function, we provide the success rate (Columns 3,6,9) and
the average computation efforts needed to solve the instance: the average number of iterations
in millions (Columns 4, 7, 10) and the average time in hours (Columns 5, 8, 11).

First, we observe that f̃1-IRTS reaches better k-colorings (i.e. with a smaller k than fc-
IRTS) for more than 25% of the instances—i.e. 5 graphs our of 19. Furthermore, we observe
that f̃1-IRTS obtains a success rate twice as good as fc-IRTS for another 25% of graphs. Thus,
one can say that the new evaluation function f̃1 brings important improvement on half of the
instances (i.e. 10 out of 19).

The most important progress can be observed on graph classes with a large degree variation.
Indeed, on random geometrical graphs, f̃1-IRTS can quickly (in less than one hour) reach upper

1We used a 2.8 GHz Xeon processor. The programs were written in C++ and compiled with the -O2 optimiza-
tion option—the gcc compiler, version 4.1.2 under Linux (kernel version 2.6).
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bounds that fc-IRTS did not find in 10 hours—see graph r250.5. Furthermore, f̃1-IRTS solves
the difficult instance (dsjr500.5, 122) in less than two hours and with a stable success rate. Out
of the best fifteen algorithms from the literature (see also Table 4), this instance was previously
solved only by very few (much more sophisticated and very recent) algorithms [27, 32, 26].
Similar observations apply to r1000.5 or r250.5: to the best of our knowledge, IRTS is the first
local search capable of finding high quality upper bounds for these graphs.

The advantage of the evaluation function f̃2 over fc is less pronounced on certain graphs.
This is not very surprising, as f̃2-IRTS diverges from fc-IRTS only in the second half of the
search, after 5 hours of computation. Consequently, the values reported by fc-IRTS and f̃2-
IRTS are completely identical on instances that never require more than 5 hours. By considering
now only the 4 instances that often require more than 5 hours (the last three and dsjc1000.9),
one observes that f̃2 has an improved success rate for 3 instances out of 4.

5.4.1 Direct comparison with state-of-the-art algorithms

Graph Local Search Algorithms Population-based Hybrid Algorithms Ants
IRTS Ils Vns Als PCol Vss TS-Div/Int Dcns Hga Hea Amcol Mmt MCol EvoDiv Abac ALSC

[7, 30] [1] [9] [3] [19] [33] [29] [14] [15] [17] [27] [26] [32] [4] [31]
2002 2003 2008 2008 2008 2010 1996 1996 1999 2008 2008 2010 2010 2008 2009

dsjc500.1 12 12 — 13 12 12 12 — — — 12 12 12 12 13 12
dsjc500.5 48 49 49 50 48 48 48 49 49 48 48 48 48 48 50 48
dsjc500.9 126 126 — 128 126 126 126 — — — 126 127 126 126 127 127
dsjc1000.1 21 — — 21 20 20 20 — — 20 20 20 20 20 21 20
dsjc1000.5 87 89 90 89 89 88 85 89 84 83 84 83 83 83 91 86
dsjc1000.9 224 — — 230 225 224 223 226 — 224 224 224 223 223 229 225
r250.5 65 — — — 66 — — 65 69 — — 65 65 65 – –
r1000.5 237 — — — 248 — — 241 268 — — 234 245 237 – –
dsjr500.1c 85 — — — 85 85 — 85 85 — 86 85 85 85 85 85
dsjr500.5 122 124 — — 126 125 — 123 130 — 125 122 122 122 128 125
le450.15c 16 15 15 — 15 15 15 15 15 15 15 15 15 15 15 15
le450.15d 16 15 15 — 15 15 15 15 15 — 15 15 15 15 – 15
le450.25c 25 26 — — 25 26 25 25 — 26 26 25 25 25 26 26
le450.25d 25 26 — — 25 26 25 25 — — 26 25 25 25 26 26
flat300.28 30 31 31 — 28 28 28 31 33 31 31 31 29 29 – 29
flat1000.76 87 — 89 — 88 86 85 89 84 83 84 82 82 82 – 85
latin square 100 99 — — — — — 98 106 — 104 101 99 98 100 –
C2000.5 162 — — — — — — 165 169 — — — 148 148 – –
C4000.5 305 — — — — — — — 313 — — — 272 271 – –

Table 4: Upper bounds reached by IRTS (with a time limit of 10 hours) compared to those
reported by 15 state-of-the-art papers. Certain bounds from Columns 3–17 represent the best
performance of more than one algorithm, with very diverse stopping conditions.

Table 4 contrasts the results2 of IRTS with the best results of fifteen other algorithms (six
local search approaches, seven evolutionary hybrid algorithms and two ant-based methods).
IRTS competes well with most previous local search methods: it reaches three upper bounds
that were never found before with local search (on geometrical graphs, see dsjr500.5, r1000.5,
or r250.5). Regarding the hybrid approaches, one should be aware that these algorithms out-
perform most local search methods on several graphs. For instance, on dsjc1000.5, all (recent)
hybrid methods reach upper bounds with 3-4 colors less than any existing local search (except

2The colorings reported by IRTS are publicly available at www.info.univ-angers.fr/pub/
porumbel/graphs/irts/
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TS-Div/Int). The advantage of IRTS is that it is quite simple and it can be directly employed as
a local optimizer in other hybrid algorithms (we already used a degree-based function in [32]).

6 Conclusions
This paper proposed two extensions of the classical Tabu Search template for vertex graph col-
oring: new well-informed evaluation functions and a simple-but-effective tabu list. The new
functions integrate additional information related to the graph structure (degrees of conflict-
ing vertices, for f̃1), or dynamic knowledge acquired along the search (frequencies of color
changes, for f̃2). The most important positive effect of the evaluation function f̃1 can be ob-
served on the (geometrical) graphs with the largest degree variation. Furthermore, the proposed
reactive tabu list completely eliminates the risk of looping indefinitely on plateaus; as such, TS
is effectively allowed to take profit from longer computing time.

Tabu Search is routinely used for graph coloring, both as a stand-alone algorithm, as well
as a local optimizer inside state-of-the-art hybrid methods. This paper shows how integrating
new evaluation functions in Tabu Search can help it perform better in both cases. Compared
to previous local search algorithms, IRTS is capable of finding several upper bounds that were
never reached before. Furthermore, the proposed TS extensions could be profitably used by
the TS internal routine of any existing hybrid algorithm, as their induced overhead is negligible
(see Sections 3.3 and 4).

Finally, let us comment that the idea of using artificial well-informed evaluation functions,
although often partially overlooked, could be very useful for meta-heuristics in general. A
carefully designed evaluation function, using problem-specific knowledge, would permit to en-
hance our capacity of solving hard and large combinatorial optimization problems.
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