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Abstract

A recurrent task in mathematical programming requires optimizing polytopes with prohibitively-
many constraints, e.g., the primal polytope in cutting-planes methods or the dual polytope in Column
Generation (CG). We present a method to optimize such polytopes using the following intersection sub-
problem: given ray r ∈ Zn, find the maximum t∗ ≥ 0 such that t∗r is feasible. We interpret 0n → r as
a direction of growth from the origin 0n; t∗r is the intersection point between 0n → r and the polytope
boundary. To ease the exposition, the first part of the paper is devoted to the general context of a (primal
or dual) polytope with rational data such that: (i) the intersection sub-problem can be effectively solved
in practice for input rays r ∈ Zn and (ii) 0n is feasible. By iterating over such rays r, our method
produces a sequence of feasible solutions t∗r that we prove to be finitely convergent. From Section 3 on,
we focus on dual polytopes in CG formulations. Typically, if the CG (separation) sub-problem can be
solved by Dynamic Programming (DP), so can be the intersection sub-problem. The proposed Integer
Ray Method (IRM) only uses integer rays, and so, the intersection sub-problem can be solved using a
DP scheme based on states indexed by integer ray values. We show that under such conditions, the
intersection sub-problem can be even easier than the CG sub-problem, especially when no other integer
data is available to index states in DP, i.e., if the CG sub-problem input consists of fractional (or large-
range) values. As such, the IRM can tackle scaled instances (with large-range weights) of capacitated
problems that seem prohibitively hard for classical CG. This is confirmed by numerical experiments on
various capacitated Set-Covering problems: Capacitated Arc-Routing, Cutting-Stock and other three
versions of Elastic Cutting-Stock (i.e., a problem class that includes Variable Size Bin Packing).

1 Introduction

The optimization of Linear Programs (LPs) with-prohibitively many constraints has a rich history in math-
ematical programming, e.g., consider the primal LP in cutting-planes methods or the dual LP in Column
Generation (CG). In both cases, the goal can be formulated using a (primal or dual) LP as follows

max
{
b>x : Ax ≤ c, x ≥ 0n

}
, (1.1)

where x = [x1 . . . xn]> are the decision variables, b ∈ Rn, c ∈ Qn+, and A ∈ Qm×n. Although we never
formally impose a condition of the form m � n, the paper is devoted to large-scale LPs: the constraint
matrix A (polytope P) has too many rows (facets) to be feasibly enumerated in practice.

A highly successful approach for optimizing large-scale LPs rely on dual (outer) methods: drive a dual
(primal infeasible) solution towards an optimum solution of (1.1), by progressively removing infeasibility.
For instance, in cutting-plane methods and branch-and-cut, one iteratively adds constraints that separate the
current infeasible solution from P. A similar (dual) process takes place in Column Generation (CG): dual
constraints (primal columns) are iteratively generated to separate the current infeasible (dual) solution from
the (dual) polytope P. In both cases, the current solution at each iteration is the optimum of some “outer
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polytope” that contains P. The process converges to an optimal P solution OPT(P) through a sequence of
such exterior (infeasible) solutions.

While this paper does use ideas from the literature of dual methods (i.e., to get upper bounds using
“outer polytopes” as above), the proposed IRM is rather designed as a primal method. Primal and dual
methods for (1.1) are compared in more detail in Section 1.1.1, but for the moment it is enough to say that a
primal method proceeds by converging a sequence of interior (feasible) solutions rather than exterior solutions.

In IRM, these interior (feasible) solutions are actually sit-
uated on some facets of the feasible polytope P. They are
generated using the ray projection technique: advance from 0n
along ray direction 0n → r until intersecting the boundary of
P on a first-hit facet. The intersection point is determined by
solving the intersection (or IRM) sub-problem on input ray r:
find the maximum feasible step length t∗ such that t∗r ∈ P.

Our ray approach offers a relatively-high flexibility in choos-
ing the rays: any point in the space of P can be potentially used
as a ray direction. This flexibility can be useful for simplify-
ing the intersection sub-problems: it is generally easier to solve
a (sub-)problem on some controllable input data r than on a
rather unpredictable multiplier x =OPT(P ′) determined by op-
timizing some outer polytope P ′ ⊃ P . In our CG models, we
only use integer rays r, so as to render the intersection sub-
problem tractable by r-indexed Dynamic Programming (see
Section 3.2). The fact that the rays are integer could also sim-
plify intersection sub-problems in cutting-planes models (see
an example in Section 1.1.1.3).

The very first ray is the objective function vector b (or a
rounding of b when necessary). As such, IRM starts out by
advancing on the direction with the fastest rate of objective
improvement. Then, IRM iterates the following steps (see Fig-
ure 1):

(1) solve the intersection sub-problem for the current ray r:
determine the maximum t∗ such that t∗r is feasible. This
generates lower bound solution xlb = t∗r and also a xlb-
tight constraint (a “first hit” facet of P).

(2) optimize the current outer polytope, i.e., the polytope
delimited by the first-hit facets discovered while solving
intersection sub-problems at (1). This leads to an upper
bound xub, i.e., an outer solution for P.

(3) determine the next ray and repeat from (1). The next
ray rnew is obtained by finding integer solutions in the
proximity of the segment joining xlb and xub (see Section
2.3), i.e., in the proximity of some points of the form
r+β(xub−xlb). Each new ray rnew can lead the IRM sub-
problem to: (a) a better lower bound solution t∗newrnew,
or (b) a new constraint that separates xub from P, which
later leads to an update of xub (Section 2.4).

When the IRM can no longer decrease the gap between xlb and
xub, it applies discretization refining to increase (double) the
coefficients of the next generated rays. The main idea is to look
up more fine-grained rays, trying to get closer to 0n → OPT(P).
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Figure 1: Three IRM steps at a glance.
Some ray choices are voluntarily simplified
to reduce clutter: (1) ray r1 leads to bounds
xlb1 (i.e., the hit point of 0n → r1) and
xub1 (i.e., the optimum of outer polytope
{x ∈ R2

+ : 2x1 + x2 ≤ 15}), (2) r2 leads to
xlb2 and xub2, (3) r3 to xlb3 and xub3. At
step (iv), IRM will use r4 = xub3 and finish,
see Appendix A for full numerical details.
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1.1 Context and Related Ideas

We first place the proposed method in the general perspective of large-scale LPs (Section 1.1.1); then, we
continue in Section 1.1.2 with related CG work.

1.1.1 General LPs with Prohibitively-Many Constraints

1.1.1.1 Primal and Dual Methods for Large-Scale LPs As hinted above, we consider two broad
classes of optimization algorithms for large-scale LPs: dual (or outer) methods and primal (or inner)
methods—see also [19], the introduction of [1], or [25]. While our goal is not to perform a detailed overview
of such a vast topic,1 we briefly place IRM in this context:

dual (outer) methods This is the most wide-spread approach, generally including: (i) most cutting-plane
algorithms for solving primal Integer LPs (ILPs) and (ii) CG methods as interpreted from the perspec-
tive of the dual LP in CG formulations. They drive a dual-feasible solution towards primal feasibility.

primal (inner) methods Such methods were first studied in the 1960s for solving ILPs (e.g., see references
in [19, §1] or in [25, § 4.1]). They rely on repeating the following operation: start from the current
integer feasible solution and find a cut on the simplex tableau such that the resulting simplex pivot
leads to a new feasible solution of higher quality that is still integer. These cuts can be seen as a tool
for driving the current primal feasible solution towards the optimum integer solution.

1.1.1.2 Ray Projections in Linear Programming We now focus on techniques closer to our central
idea of ray projection in large-scale LPs. As hinted above, certain (generally) related ideas arise in primal
algorithms for ILPs. Such algorithms are often described in terms of pivot operations in the Simplex tableau
and on (Chvátal-Gomory) cuts. However, their dynamics can also be presented as a process that moves from
one integer feasible solution to another by integer augmentation, e.g., see Step 4 in the algorithm from [19,
§3.1] or Step (2.b) in Algorithm 1.1 of [25]. In this latter example, the next integer feasible solution is
determined by advancing an integer length from the current solution along an integer augmenting direction.
These integer lengths are essential in an Integer LP context, because the goal is to produce integer solutions.

Certain cutting-plane methods do use interior points to provide a stable behavior for the convergent
process. For instance, instead of solving the separation problem on the optimal solution x = OPT(P ′) of
the current outer dual polytope P ′ ⊃ P , one can replace x with a solution situated on the segment joining
OPT(P ′) and an interior (feasible) solution of P—see [5, p. 4] for more detailed discussions on these aspects.

Other forms of ray projections arise in the field of Submodular Function Minimization (SFM). One of
the simplest approaches for optimizing the submodular polytope is the Greedy algorithm [22, Sec. 2.1].
Given a linear order of the variables, Greedy progresses towards the optimum by increasing one by one each
variable to its maximum value. Each such maximum value can be seen as a “maximum step length” that
one can advance in the direction of the variable until intersecting a polytope facet. Generalizing this idea,
Schrijver’s algorithm advances on more complex directions, by simultaneously increasing one variable while
decreasing some other. In certain cases, one can exactly determine the maximum feasible step length on
such directions [22, Lemma 2.5], but Schrijver’s algorithm is making use of lower bounds for it. The problem
of finding the intersection of a line with a sub-modular polytope (or polymatroid) is referred to as the “line
search problem” [23] or as the “intersection problem” [10]. The intersection algorithm from [23] consists of

1More refined classifications can be found in the literature of Integer LPs, for instance in the introduction of [19]. As the
abstract of this paper put it in 2002, “Dual fractional cutting plane algorithms, in which cutting planes are used to iteratively
tighten a linear relaxation of an integer program, are well-known and form the basis of the highly successful branch-and-cut
method. It is rather less well-known that various primal cutting plane algorithms were developed in the 1960s, for example by
Young. In a primal algorithm, the main role of the cutting planes is to enable a feasible solution to the original problem to
be improved. Research on these algorithms has been almost non-existent.” The introduction of the more recent handbook [1]
states: “Relaxation or dual methods, such as cutting plane algorithms, progressively remove infeasibility while maintaining
optimality to the relaxed problem. Such algorithms have the disadvantage of possibly obtaining feasibility only when the
algorithm terminates. Primal methods for integer programs, which move from a feasible solution to a better feasible solution,
were studied in the 1960s but did not appear to be competitive with dual methods. However, recent development...”
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solving a minimum ratio problem. Our intersection sub-problem (Definition 1, Section 2.2) is also formulated
as a ratio minimization problem. The last section of [10] discusses certain perspectives on the applicability
of related approaches to other polytopes with prohibitively many constraints, but there is no mention of CG.

Interior point algorithms for LPs also share some general ideas with the ray projection technique. They
differ in the sense that each iteration of an interior point algorithm does not advance on a fixed direction
until its hits (pierce) the boundary of the polytope; it rather stops on some strictly-interior point before
changing the direction for the next iteration.

1.1.1.3 Possible Approaches for the Intersection Sub-problem The intersection sub-problem can
be seen as a generalization of the more widespread separation problem. In some cases, the intersection
sub-problem could be solved by generalizing existing separation techniques, e.g., see the polarity technique
described in Section 2.2.2. In addition, we will see that the intersection sub-problem reduces to finding a
constraint that minimizes a cost/profit ratio. This approach for selecting the constraint also arises in the
separation algorithms from the very recent CG work [2], as well as in certain Simplex flavors (in steepest-edge
pivot rules). Furthermore, if all values of c are equal, the intersection sub-problem (cost/profit minimization)
is equivalent to the separation sub-problem (minimizing a difference between cost and profit). More generally,
the intersection sub-problem can always be solved using a repeated call to a separation oracle: solve the
separation problem on solutions tr (with t ≥ 0) and converge t to the sought t∗ (see also Section 2.2.2).

The use of integer-only rays is very convenient for solving the intersection sub-problems in our CG models.
However, generally speaking, cutting-planes models can also take profit from using integer-only data. For
instance, the sub-problem of separating a solution (noted x∗) for the Symmetric Travelling Salesman Problem
(STSP) can become easier when x∗ is integer; as [19, § 3.2] put it, “it is much easier to identify violated
subtour elimination inequalities when x∗ is integral than when x∗ is arbitrary. One merely has to compute
connected components in a graph.”. More generally, any flexibility in the input choice can be potentially
useful for other (sub-)problems of exponential complexity for the worst-case input (see theoretical examples
in Section 4.1.2.1). By slightly modifying the input, one could often avoid the worst-case complexity of a
(sub-)problem of lower average complexity (or of good smoothed complexity2).

1.1.2 Column Generation (CG)

We first recall that CG can be seen as a cutting-plane algorithm (e.g., Kelley’s method) in the dual polytope
P. At each iteration, the standard CG method takes the optimum solution x = OPT(P ′) of an outer dual
polytope P ′ ⊃ P and calls a separation oracle to solve the pricing sub-problem: find (and add) the most
violated (primal column) dual constraint with respect to exterior solution x. Important progress has been
done in CG over the last decades by developing innovative methods of column management and stabilization.
Such methods aim of providing a more stable behaviour to the evolution and convergence of the exterior
solution x—see, chronologically, the work in [3, 20, 28, 7, 9, 14]. Many CG stabilization ideas have a dual
counterpart in the literature of cutting-plane acceleration. For instance, the separation sub-problem can lead
to better constraints (cutting off larger parts of P ′ \ P) if the exterior solution x is chosen more carefully,
as in the examples below (see also [5, §2] for more comprehensive discussions addressing both CG and
cutting–planes). In most cases, one wants to minimize the number of constraints needed throughout the
process.

However, IRM is not mainly devoted to minimizing the number of iterations, but to converging a sequence
of feasible solutions by iterating over integer rays. The choice of the rays shares some similarities with the
choice of the exterior solution x in stabilized CG. Instead of using x = OPT(P ′), certain stabilized CG [7, 14]
methods use some interior (more central) dual solutions. However, we are not aware of any CG methods
that (try to) select integer dual solutions x as input for the sub-problem; typical choices are: the optimum of
the current dual program (pure CG), the optimum of a stabilized dual program [7, Alg. 1.5], a well-centered
ε-optimal solution [14, Def. 1], etc.

2An algorithm with good smoothed complexity performs well on almost all inputs in every small neighborhood of inputs
(under slight perturbations of worst-case inputs).
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To summarize, IRM differs from (stabilized) CG in several aspects. First, IRM automatically provides
a sequence of built-in intermediate lower bounds xlb = t∗r that are different from the Lagrangean bounds
(optionally) used in CG. Secondly, the IRM rays are not necessarily infeasible dual solutions as in CG,
but simply integer directions in the dual space. Thirdly, the input r of the intersection sub-problem can
be more easily controlled, and this can render the intersection sub-problem even easier than the separation
one. By using integer rays r, the (integer) intersection sub-problem can be tractable by (r-indexed) Dynamic
Programming (DP), while the CG separation sub-problem can be practically intractable on non-integer input
multipliers x /∈ Zn.

Profit-indexed DP is often used in Fully Polynomial-Time Approximation Schemes (FPTASs), e.g., the
first knapsack FPTAS [15] scales and rounds the profits to apply profit-indexed DP afterwords. Such rounding
was also used in certain CG approaches as a heuristic to accelerate the pricing [11, § 3]. However, the IRM
does not really need rounding, as it directly chooses integer rays. It is the general idea of profit-indexed (or
r-indexed) DP that is fully exploited by IRM: ray r is interpreted as a vector of integer profits in all IRM
sub-problems (see Section 3.2 and the examples in Sections 4.1 and 4.2).

To conclude, ray projection approaches seem partially overlooked in CG. Despite our best efforts3, we did
not find any other research thread that is more specifically relevant to the central IRM idea (ray projection)
utilized in the context of dual LPs in CG.

1.2 Paper Organization

The paper is organized in two parts. We first present the IRM in Section 2 as a method for optimizing
general LPs such as (1.1). This IRM description only relies on the following: (a) we are given a large-scale
LP and (b) we are given a routine that solves intersection sub-problems for any input ray with integral
components. Under such conditions, we will prove that the method converges in a finite number of steps
(Section 2.4.3).

From Section 3 on, we introduce the CG interpretation of (1.1) and the second part of the paper is
focuses on CG aspects. Section 4 provides solution methods for the intersection sub-problems of Elastic

Cutting-Stock and Capacitated Arc Routing. Numerical experiments are provided in Section 5, followed
by conclusions in Section 6.

2 Integer Ray Method

The constraint matrix A in (1.1) is considered too large to be fully recorded and manipulated by a practical
algorithm. As such, it is more convenient to model it using a set A of elements of the form [ca,a] that
correspond to constraints a>x ≤ ca; in (1.1), [ca,a] is equivalent to [ci, Ai], where Ai is some row of A. Our
method will often manipulate constraint sub-sets A ⊂ A, assuming (but not formally imposing) |A| � |A|,
e.g., A might represent the constraints discovered so far at some stage of the execution. We use the notation
PA to refer to an outer polytope PA ⊃ P that is constructed from P only keeping constraints A ⊂ A.

Using these notations, we will describe the IRM on model (2.1) below, which is a translation of (1.1).
Recall that we only consider two particularizing assumptions: (i) the intersection sub-problem can be solved
in practice for any input ray r ∈ Zn (see Section 2.2); (ii) 0n is a feasible solution, which is equivalent to
ca ≥ 0,∀[ca,a] ∈ A (to see this, only remark that a>0n is always 0).

max b>x
a>x ≤ ca, ∀[ca,a] ∈ A
x ≥ 0n

}
P (2.1)

3Including personal communications with five researchers whose help will be mentioned in the acknowledgements of the final
version.
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2.1 Main Building Blocks and Pseudocode

We introduce the IRM using 4 steps briefly described below. Each step is discussed in greater detail in a
dedicated subsection indicated in parentheses (except Step 2 which is rather straightforward).

1. Solve the IRM sub-problem to determine a lower bound solution (Section 2.2) Advance on a given ray
r until intersecting a first facet (constraint) of P at t∗r ∈ P. This leads to a lower bound solution
xlb = t∗r, and to a (first-hit) constraint a>x ≤ ca that is xlb-tight (i.e., a>xlb = ca). This first-hit
constraint is added to the set A of currently available constraints (A ← A∪ {[ca,a]});

2. Calculate upper bound solution xub (no dedicated subsection) This xub is simply determined by opti-
mizing b>x over x ∈ PA, where PA ⊃ P is the polytope obtained from P by only keeping constraints
A ⊂ A. We can write xub = OPT(PA), and so, b>xub is an upper bound for (2.1). We will also consider
the exceptional case in which this optimum is not a proper vertex, but an extreme (unbounded) ray
of open polyhedron P.

3. Generate Next Rays (Section 2.3) Given r,xlb and xub, search for new rays among the closest integer
points to r+β(xub−xlb), with β > 0. For a fixed β, the closest integer point is determined by applying
a simple rounding on each of the n positions of r + β(xub − xlb). New potential better rays rnew are
iteratively generated by gradually increasing β until one of them leads to some lower or upper bound
update (using Step 4 below). In fact, if none of the proposed rays can update either bound, we consider
that the current ray coefficients are too small (imprecise) to reduce the gap. In this case, IRM calls
a “discretization refining” routine (see Section 2.3.3) that increases the ray coefficients: multiply r by
λ ∈ Z+ (we used λ = 2) and divide t∗ by λ; as such, xlb = t∗r and xub stay unchanged. This allows
our ray generators to find new larger rays (i.e., from updated r,xub and xub) with higher chances of
improving the bounds (see below), at the cost of a potential slowdown of the intersection calculations.

4. Complete a major iteration: update xlb or xub (Section 2.4) The new rays rnew generated by Step 3
are iteratively provided as input to the intersection sub-problem. Each such rnew can either lead to a
lower bound improvement (if the first-hit solution t∗newrnew ∈ P dominates xlb = t∗r) or to an upper
bound update (if the first-hit constraint separates xub). As soon as xlb or xub is updated, the ray
generation from Step 3 is restarted with new input data (i.e., with updated r,xub or xlb). If neither
bound can be improved as above, IRM continues generating new rays as described in Step 3; as such,
Step 3 and Step 4 are actually iteratively intertwined until one of the new rays triggers an update of
xlb or xub. In the worst case, Step 3 uses discretization refining to construct rays with increasingly
larger coefficients. This can eventually make the new rays pass arbitrarily close to the segment joining
xlb and xub, which is guaranteed to eventually trigger some bound update. Theorem 2 in Section 2.4
(Section 2.4.3) proves that IRM is finitely convergent.

Algorithm 1 above provides the general IRM pseudocode. The outer repeat-until loop (Lines 5-26)
performs a major IRM iteration, intertwining the ray generation routines (Step 3 above, roughly correspond-
ing to Lines 10-15) and the mechanism for updating xlb or xub (Step 4 above, implemented in Lines 17-25).
The inner repeat-until loop (Lines 9-19) performs a minor iteration, in which new rays are iteratively
generated until one of the bounds can be updated.

Except intersect-subprob (see Section 2.2), all other routines are generic with respect to (2.1):

optimize(PA,b) stands for any LP algorithm that can return an optimal vertex (or extreme unbounded
ray) xub that maximizes b>x over x ∈ PA.

nextRay (r,xlb,xub, rprv) returns the next integer ray after rprv in a sequence of new rays constructed from
r, xlb and xub. This construction takes place when we call nextRay with rprv = 0n (see Section 2.3).
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Algorithm 1 Integer Ray Method for optimizing b>x over large-scale polytope P in (2.1)

1: A ← ∅ . one can start with some initial constraints (e.g., bounds on the variables)
2: r← b . scale b down if all bi are too large or fractional
3: t∗,a, ca ←intersect-subprob(r)
4: A ← A∪ {[ca,a]}
5: repeat
6: xlb ← t∗r . if t∗ =∞, return ∞
7: xub ←optimize(PA,b) . optimal solution (or extremal ray) of PA (P restricted to A)
8: rprv ← 0n . rprv stands for the previous new ray (0n means none yet)
9: repeat

10: rnew ←nextRay(r,xlb,xub, rprv) . return 0n if no more rays can be found after rprv

11: while (rnew = 0n) . while no more rays:
12: r← λr , t∗ ← t∗

λ . i) discretization refining
13: rnew ←nextRay (r,xlb,xub,0n) . ii) re-try ray generation
14: end while
15: rprv ← rnew

16: t∗new,a, ca ←intersect-subprob(rnew)
17: newLb←

(
b> (t∗newrnew) > b>xlb

)
. better lower bound if the expression is true

18: newUb←
(
a>xub > ca

)
. new constraint violated by current xub

19: until (newLb or newUb)
20: if (newLb)
21: r← rnew, t

∗ ← t∗new . if rnew � r, scale rnew down to avoid implicit discretization refining
22: end if
23: if (newUb)
24: A ← A∪ {[ca,a]} . xub will be updated at the next loop at Line 7
25: end if
26: until

(
b>xub − b>xlb ≤ ε

)
. Theorem 2 (§2.4.3) shows the convergence is finite for any ε > 0

2.2 The Intersection (IRM) Sub-problem

2.2.1 Formal Definition

Definition 1. The intersection (sub)-problem is formally described as follows. Given given ray r ∈ Zn and
a (possibly open) polyhedron P ∈ Rn, determine:

1. the maximum step length
t∗ = max {t ∈ R+ ∪ {∞} : tr ∈ P} .

A returned value of t∗ =∞ indicates a exceptional case: r is an unbounded ray in polyhedron P, i.e.,
tr ∈ P for any indefinitely large t > 0;

2. any element [ca,a] of A associated to a “first-hit constraint”, i.e., to a (t∗r-tight) constraint a>x ≤ ca
verified with equality by t∗r (such that a>(t∗r) = ca). If t∗ =∞, the returned constraint is technically
[0,0n].

This definition assumes 0n ∈ P, but the case 0n /∈ P could also addressed by adding one more possible
exceptional situation: if 0n → r does not even “touch” P, the returned t∗ could be −∞.

2.2.2 Solutions methods and comparisons with the separation sub-problem

If P is a dual polytope in CG models, the intersection sub-problem can often be solved by Dynamic Program-
ming, as described in greater detail in Section 3.2. In the remaining, we rather focus on the case of a primal

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



polytope P: we present two techniques that relate the intersection sub-problem to the more widespread
separation sub-problem.

First, the intersection sub-problem could be solved by repeatedly calling a separation oracle as follows.
One can start with a sufficiently large t0 and solve the separation sub-problem on t0r to obtain a P constraint
that intersects 0n → r at some point t1r. Next, one applies the separation oracle on t1r and obtains a point
t2r such that t2 < t1. By repeating this operation, one constructs an iterative sequence t0, t1, t2 . . . that
finishes when the separation oracle concludes that tir ∈ P for some i ∈ Z+. This approach can actually be
applied in both CG and cutting-planes models; the idea is taken from [2, §3].

A second separation technique that can be generalized to intersection sub-problems relies on the idea of
polarity, as described in [17, (7)-(9)]; consider the LP:

p∗ = max{r>a : x>v a ≤ 1, ∀xv ∈ PV },

where PV is the set of vertices of P. Observe that any feasible solution a of above LP corresponds to a
constraint a>x ≤ 1 in variables x verified by all x ∈ P. If a practical algorithm can optimize this LP, one
could use the optimal solution amax to determine whether r ∈ P or r /∈ P. Indeed, if p∗ = r>amax is larger
than 1, then a>maxx ≤ 1 is a valid P constraint that does separate r. The same algorithm would allow one to
solve the intersection sub-problem on input ray r by simply returning: (1) a maximum step length t∗ = 1

p∗ ,

and (2) the first-hit constraint [1,amax]. Indeed, these values do solve the intersection sub-problem because:

(i) for any larger t > 1
p∗ , tr would violate by a>maxx ≤ 1, based on a>max(tr) > a>max

(
1
p∗ r
)

= 1; and (ii) for

any t ≤ 1
p∗ , tr ∈ P. The last statement comes from the following. Consider any P constraint written in the

form a>x ≤ 1. The maximality of p∗ ensures that a needs to verify r>a ≤ r>amax = p∗, which is equivalent

to a>
(

1
p∗ r
)
≤ 1, or a>(tr) ≤ 1,∀t ≤ 1

p∗ .

2.3 Generating the Next Integer Ray

The ray generation relies on a list rLst of new ray proposals that are provided one by one to Algorithm 1
at each call of nextRay(r,xlb,xub, rprv). The input of this routine consists of the current ray r, the current
bounds xlb and xub, as well as the last ray rprv returned by the previous nextRay call (rprv = 0n if none).
Each nextRay call returns the new ray situated right after rprv in rLst, or the first new ray in rLst if
rprv = 0n. After trying all rays in rLst, if none of them leads to updating xlb or xub (i.e., newLb and
newUb remain false in Lines 17-18), then nextRay(r,xlb,xub, rprv) eventually returns 0n. The condition
in Line 11 thus leads to discretization refining (Section 2.3.3), i.e., IRM generates next rays with larger
coefficients, to try to update xlb or xub.

We distinguish a standard case and two exceptional cases:

proper bounds (the standard case): xlb and xub are proper non-null solutions (Section 2.3.1);
unbounded upper bound (exceptional case 1): xub is actually an unbounded ray in the (open) poly-

hedron PA constructed by IRM up to the current iteration (Section 2.3.2.1);
null lower bound (exceptional case 2): all rays r tried so far have led to intersection point xlb = t∗r =

0n (Section 2.3.2.2).

These three cases cover all possible situations: if the exceptional cases are excluded, then the lower bound is
non-null and the upper bound can not be unbounded, i.e., we are in the standard case with proper bounds.
The two exceptional cases will always be treated separately in the subsequent proofs and descriptions.

2.3.1 The standard case: xlb,xub are proper non-null solutions

This section is only devoted to non-exceptional cases: (i) t∗ 6= 0 and xlb 6= 0n, and (ii) xub is a proper
solution and not an unbounded ray. The essential task is the construction of the sequence rLst and we
describe it by picking out the key points in boldface.
Rationale To locate promising new rays, let us focus on the segment [xlb,xub] = {xα = xlb+α∆ : α ∈ [0, 1]}
(with ∆ = xub−xlb) that joins xlb and xub. Also, consider a projection of [xlb,xub] onto the t∗-scaled segment
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{rβ = r + β∆ : β ∈ [0, βmax]}, where βmax = 1
t∗ , see Figure 2 (p. 9) for a graphical representation; recall

that t∗ = 0 is treated separately. If this later segment contains an integer solution rβ , a new ray rβ can
surely lead to some update of xlb or xub. Indeed, such an integer new ray rβ = r+β∆ intersects the segment
[xlb,xub] at some point xα = t∗(r + β∆) = xlb + t∗β∆. By solving the intersection sub-problem on rβ , one
implicitly solves the intersection sub-problem on xα. This also determines the feasibility status of xα: (i)
if xα ∈ P, the lower bound can be improved because a call intersect-subprob(rβ) would lead (see Lines
16-17) to a feasible solution of higher quality than xlb; (ii) if xα /∈ P, then the xub can be updated, because
both xα and xub can be separated from P. We will formally prove this in Section 2.4 (Proposition 2), but
for the moment, it is enough to say that, intuitively, integer solutions closer to some r + β∆ have higher
chances of improving the optimality gap.

Locating the closest integer points to rβ = r+β∆ Given a fixed β`, the closest integer point to r+β`∆
is brβ` + 1

21nc. To advance from a fixed β` to the next one, one starts with β = β` and increases β until brβ+
1
21nc 6= brβ` + 1

21nc, i.e., until the following holds rβi + 1
2 = brβ`i + 1

2c±1 for some coordinate i ∈ [1..n], where
± depends on the sign of ∆i (use “+” if ∆i > 0 or “−” if ∆i < 0). Using this “± convention”, we reformulate

the last relation as:
(
rβ`i + 1

2

)
+∆i(β−β`) = brβ`i + 1

2c±1, or ∆i(β−β`) = brβ`i + 1
2c−

(
rβ`i + 1

2

)
±1. As such,

one could recursively generate a sequence β1, β2, β3, . . . via β`+1 = β` + mini∈[1..n]

brβ`i + 1
2 c−

(
r
β`
i + 1

2

)
±1

∆i
. We

now observe that rβ` and rβ`+1 might only differ on a single coordinate i, i.e., if only one i ∈ [1..n] minimizes
the above ratio. It can be more practical to construct a sequence with fewer rays, but in which consecutive
rays differ on more coordinates. For this, instead of choosing a different coordinate i to determine each β`+1,
we propose fixing i = max{|∆j | : j ∈ [1..n]} and use the same i at each step ` using the following formula:

β`+1 = β` +
brβ`i + 1

2c −
(
rβ`i + 1

2

)
± 1

∆i
, (2.2)

where “±” should be read using the above “± convention” (it is “+” if ∆i > 0, or “−” if ∆i < 0).

Algorithm 2 Construction of the new ray sequence rLst. The figure
shows an illustration of the process: 1 , 2 , 3 , 4 indicate the new
rays and their final order in rLst. The smaller empty squares are
instances of rβ and the arrows indicate the rounding operation brβ +
1
21nc from Line 11.

Require: r, xlb = t∗r, xub = xlb + ∆
Ensure: Sequence (list) rLst of integer rays

1: βmax = 1
t∗ . t∗ = 0 is treated separately below

2: rLst← ∅, β ← 0, rβ ← r
3: i← arg max

j∈[1..n]
|∆j | . max absolute value (random tie breaking)

4: repeat
5: if brβ + 1

2c 6= rβ + 1
2

6: β ← β +
brβi + 1

2 c−(rβi + 1
2 )±1

∆i
. recall the “± convention”:

. “± = +” if ∆i > 0 and “± = −” if ∆i < 0
7: else
8: β ← β + 1

|∆i|
9: end if

10: rβ ← r + β∆
11: append

(
rLst, brβ + 1

21nc
)

. add new ray rnew = brβ + 1
21nc

12: until β > βmax

13: rLst← lastToFront(rLst) . better to try the last ray first

1.5

0.5

2.5

3.5

4.5

2

3

1

4

r + βmax∆

t∗ = 1
2

xlb

∆

xub =
xlb + ∆

r

x1

x2

= rβ

Figure 2: Small running example:
Alg. 2 choses i = 2 in Line 3 and
all rβ computed in Line 10 yield
rβi ∈ Z+ 1

2 , see the empty squares.
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Algorithmic Construction of the New Ray Sequence Algorithm 2 completely describes the construc-
tion of the rLst sequence. Above update formula (2.2) is employed in Line 6 with the β indices removed
(any assigned (left) β stands for β`+1, all others for β`); this is further simplified to β ← β + 1

|∆i| when all

involved values are integer (see Line 8). This rLst sequence is construted after each update of xlb or xub

when IRM needs to generate new rays, i.e., when the IRM calls nextRay(r,xlb,xub,0n) with a last argument
of rprv = 0n (see Line 8, Algorithm 1). In fact, rprv = 0n indicates that IRM requires the very first new
ray for current r,xlb and xub, triggering the execution of Algorithm 2. Afterwards, nextRay returns (one by
one) the elements from rLst, i.e., observe the assignment rprv ← rnew (Line 15). When all elements from
rLst are finished, nextRay returns 0n.
Sequence Reshuffling The order of rays in rLst has a strong influence on the general IRM evolution.
A very practical enhancement of the initial order simply consists of moving the last element to the front
(last line of Algorithm 2). The last discovered ray (close to the direction 0n → xub) can be more useful
for updating the upper bound (see Theorem 2 in Section 2.4.3 for more formal arguments), while the first
rays are rather useful for updating xub. The upper bounds are somehow more critical, because they can be
anywhere in the search space. Reasonable lower bounds can be more easily located by the IRM from the
very first iteration, see also point (3) of the general experimental conclusions (Section 5.3).

2.3.2 Exceptional cases: unbounded ray xub or null xlb = 0n

2.3.2.1 Case “xub is an unbounded ray” First, observe that b>xub > 0, because no LP solver would
return an extreme ray 0n → xub such that b>xub ≤ 0 (i.e., no better than 0n). To build rLst, we first
consider the sequence r1

new, r2
new, r3

new, . . . with rinew = bixubc (∀i ∈ Z+). From this sequence, one needs to
pay attention to keep in rLst only the elements rinew such that 0n → rinew is a strictly positive direction (i.e.,
b>rinew > 0). Proposition 1 shows that the sequence of rays inserted this way in rLst is actually finite in
IRM, simply because there is some sufficiently large i for which the integer ray direction 0n → rinew identifies
with 0n → xub. As such, the generation of the above sequence always terminates in one of the following:

(a) 0n → rinew is an unbounded (strictly positive) ray: the intersection sub-problem returns t∗ = ∞ and
IRM concludes that the optimum objective value is unbounded;

(b) the intersection sub-problem on rinew returns a constraint that does separate a part of the points in
0n → xub. In this case, IRM ends up by updating xub and goes on to the next major iteration (Lines
5-26).

Proposition 1. If ca ∈ Q and a ∈ Qn for all [ca,a] ∈ A, there exists a sufficiently large integer i such that
0n → rinew and 0n → xub identify the same ray direction, where rinew = bixubc. More technically, one can
formalize a general notation 0n → r = {tr : t ≥ 0} and write the same conclusion as 0n → rinew = 0n → xub.
If some [ca,a] ∈ A contain non-rational data, IRM might not be finitely convergent due to this exceptional
case (potential extremal rays 0n → xub with non-rational data).

Proof. The existence of some i ∈ Z+ such that 0n → bixubc = 0n → xub is a direct consequence of the fact
that the constraints of P are defined on rational data only, as mentioned in the description of (1.1). This i
is simply the least common denominator of the n (rational) components of xub.
For the second statement, it is enough to provide an example: IRM is not finitely convergent on P =
{
√

2x1 − x2 ≤ 0, −
√

2x1 + x2 ≤ 0}, because the unbounded ray 0n → [1,
√

2] would lead to an infinite
rLst sequence built as above. This is the only proof in this paper that takes into account the fact that the
constraint of P are defined on rational data.

Finally, observe that this exceptional case can only arise during the first major IRM iterations (Lines
5-26 of Algorithm 1), as long as the optimum of PA is not a proper vertex but an unbounded (extreme) ray.
As soon as the constraint set A becomes large enough to make xub =OPT(PA) become a proper solution,
unbounded rays can no longer arise. This simply comes from the fact that the constraint set A can only
increase; once the upper bound becomes bounded, it stays bounded indefinitely.
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2.3.2.2 Case “null lower bound xlb = 0n and t∗ = 0” We further consider that xub is not an
extremal ray of PA, but a proper solution (as long as this does not happen, one can repeat the routine from
Section 2.3.2.1 until xub becomes a proper solution). We observe that the intersection sub-problem returns
t∗ = 0 only if the current main ray r verifies tr 6= P, ∀t > 0 (see Definition 1). This can only happen if there
exists some r-blocking constraint of the form a>x ≤ 0 such that a>r > 0. One can say that such constraint
“blocks” any advance on direction 0n → r; such a ray r is called a blocked ray.

IRM handles this exceptional case as the one from Section 2.3.2.1. We first consider a sequence of
rays r1

new, r2
new, r3

new, . . . with rinew = bixubc (∀i ∈ Z+) and we insert in rLst only strictly positive rays
0n → rinew. The intersection sub-problem is solved iteratively on these rays until one of the following holds:

(i) The intersection sub-problem returns some t∗ > 0. This would allow IRM to find some lower bound
xlb 6= 0n and go on to the next major iteration;

(ii) The intersection sub-problem returns t∗ = 0 and finds a first-hit constraint a>x ≤ 0 that is violated
by xub.

Using the same Proposition 1 as in Section 2.3.2.1, we observe that the sequence r1
new, r2

new, r3
new, . . .

is finite. More exactly, there needs to be some index i for which rinew = αixub for some αi > 0. In such
a case, the intersection sub-problem can either: (a) return t∗ > 0, leading to point (i) above, or (b) find a
first-hit constraint [ca,a] ∈ A such that a>rinew > 0 (rinew-blocking constraint). Such a constraint does need

to separate xub, because a>(rinew) > 0 =⇒ a>(αixub) > 0
αi>0
=⇒ a>xub > 0, leading to point (ii) above.

IRM can not continually repeat this exceptional case xub = 0n and indefinitely only end up in above
point (ii), because A is finite (see also Theorem 2 in Section 2.4.3). Sooner or later, one of the following
happens: either IRM concludes that 0n is the (2.1) optimum, or IRM finds some xlb = t∗r with t∗ > 0 and
xlb 6= 0n, i.e., point (i) above. Since such a positive lower bound can never be later replaced with some
xlb = t∗r = 0n, the exceptional case can be considered definitely solved, i.e., xlb can never become 0n again.

2.3.3 Discretization Refining

We now address the following (unfortunate) situation: there is no ray in the list rLst (as constructed
by Algorithm 2, p. 9) that can generate any lower or upper bound update. In other words, there is no
ray rnew in rLst that leads the IRM sub-problem to an intersection point t∗newrnew such that either (i)
b> (t∗newrnew) > b>xlb (lower bound update), or (ii) t∗newrnew belongs to an as-yet-undiscovered facet of P
that cuts xub off (upper bound update). This can happen because the ray coefficients need to be integer
and this can make all potential ray directions too coarse—intuitively, imagine the “coarseness” of most rays
if the polytope is completely included in the unit hypercube. Technically, a necessary condition to reach
this situation is the following: rLst contains no integer ray rnew such that 0n → rnew intersects [xlb,xub].
We will later prove this in Proposition 2 (Section 2.4), but for now it is enough to say the following (see the
proof of the proposition). If 0n → rnew is very close to [xlb,xub], then rnew has many chances to improve
one of the bounds. If 0n → rnew is too distant from [xlb,xub], rnew has less chances to update either bound.

To deal with such issues, IRM uses a technique of discretization refining that leads to new larger rays,
producing more fined-grained directions. In fact, an implicit form of discretization refining was already
introduced in Section 2.3.2, where we used a sequence of increasingly larger rays to address the two excep-
tional cases. However, these cases are completely described in Section 2.3.2 and we can now only discuss the
non-exceptional cases (xlb and xub are proper solutions).

The technical conditions that make Algorithm 1 trigger discretization refining are the following. If new
ray rnew fails in improving either bound, newLb and newUb remain false in Lines 17-18, and so, the inner
repeat-until loop (Lines 9-19) continues trying more rays by calling nextRay. After finishing all rays in
rLst, nextRay returns 0n; this makes Algorithm 1 activate the condition r = 0n in Line 11, triggering the
discretization refining in Line 12.

The refining operation itself is rather straightforward: multiply r by λ ∈ Z+, multiply t∗ by 1
λ ; observe

xlb = t∗r remains constant. The discretization step parameter λ only needs to be integer (we used λ = 2), so
as to keep r integer. The use of larger ray coefficients allows the next calls of the ray generator to construct
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directions 0n → rnew that are more refined, closer to [xlb,xub] (for more formal arguments on this, see also
Theorem 1, Section 2.4.2). As discussed above, when 0n → rnew is closer to [xlb,xub], rnew has more chances
to unlock the process.

The disadvantage of discretization refining is that it can naturally slowdown the sub-problem algorithms.
In the context of our CG models, the proposed r-indexed Dynamic Programming schemes (see Section 3.2.1)
might easily need to generate and scan more states when r becomes larger.

2.4 Iteratively Updating xlb and xub for Converging To Limit OPT(P)
We here analyze how IRM drives xlb and xub towards an optimal solution OPT(P) of (2.1). We start out
with the best-case scenario (Section 2.4.1), we continue with a formal worst-case analysis (Section 2.4.2) and
we put all pieces together to prove the theoretical convergence in Theorem 2 (Section 2.4.3).

2.4.1 Best-case Scenario: Early Update of xlb or xub

Proposition 2. If rβ = r + β∆ is integer for some β ∈ (0, βmax], then Algorithm 1 can surely update either
xlb or xub after calling intersect-subprob(rnew) in Line 16 with rnew = rβ.

Proof. Defining xα = t∗rβ , it is clear that 0n → rβ and 0n → xα identify the same ray direction. One can
also write xα = t∗(r + β∆) = xlb + t∗β(xub − xlb). This shows that xα ∈ [xlb,xub] because t∗β ≤ 1 (recall
form Algorithm 2 that βmax = 1

t∗ ). More generally, we observe that the whole segment [r, r + βmax∆] can
be multiplied by t∗ and scaled into segment [t∗r, t∗r + ∆] = [xlb,xlb + ∆], see Figure 2 in Section 2.3.1 for
an intuitive representation of this scaling. We will use this property below, but let us now focus on the IRM
sub-problem that returns t∗β on rnew = rβ .

case t∗β ≥ t∗ leads IRM directly to new lower bound solution t∗βrβ that strictly dominates xlb; technically,

we write b>
(
t∗βrβ

)
> b>xlb. We show this by proving the following.

(1) b>
(
t∗βrβ

)
≥ b>

(
t∗rβ

)
(2) b>

(
t∗rβ

)
> b>xlb

The first inequality is equivalent to (t∗β − t∗)b>rβ ≥ 0, which follows from b>rβ > 0 (this is true

for any rβ ∈ [r, r + βmax∆], based on β>r, β>(r + βmax∆) > 0). Inequality (2) is equivalent to
b>
(
t∗rβ

)
> b> (t∗r) and to b>rβ > b>r (recall we are in a non-exceptional case and t∗ > 0). We

still need to prove b>
(
rβ − r

)
> 0, which is equivalent to b> (β∆) > 0, or to b>∆ > 0 (based on

β > 0). To prove this latter inequality, observe that b>xub > b>xlb =⇒ b> (t∗r + ∆) > b> (t∗r),
which leads to b>∆ > 0.

Finally, Algorithm 1 triggers newLb = true in Line 17; r and t∗ are updated in Line 21, which can
directly update xlb = t∗r.

case t∗β < t∗ leads Algorithm 1 to update xub because the following operations are necessarily triggered:

1. Algorithm 1 calls in Line 16 the intersection sub-problem on rnew = rβ and this yields a constraint
a>x ≤ ca satisfied with equality by t∗βrβ , i.e., a>(t∗βrβ) = ca;

2. Algorithm 1 turns newUb true in Line 18, because a>xub > ca. This inequality is true, because
otherwise the constraint a>x ≤ ca would be verified by both xlb and xub. This would be equivalent
to a>x ≤ ca, ∀x ∈ [xlb,xub], which is impossible because t∗rβ ∈ [xlb,xub] and t∗ > t∗β =⇒
a>(t∗rβ) > a>(t∗βrβ) = ca;

3. Algorithm 1 adds [ca,a] to A in Line 24 (since newUb is true), leading to an update of xub at
the next optimize(PA,b) call in Line 7. This does not necessarily mean that the bound value is
strictly improved, but the initial infeasible xub is strictly separated by the new constraint.
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While the hypothesis condition of this property only arises in very fortunate exceptional situations, the
main idea can be generalized to other rays rβ = r + β∆ that are “almost” integer. If the IRM generates an
integer ray rnew = brβ + 1n

2 c very close to rβ , the ray direction 0n → rnew is close to the segment [xlb,xub].
The main idea of the convergence process is the following: when 0n → rnew is closer to [xlb,xub], there are
more chances to update xlb or xub as above. We describe next how 0n → rnew can always become sufficiently
close to [xlb,xub] by applying enough discretization refining.

2.4.2 Worst-Case Scenario: Later Update of xub

We show that the proposed ray generation routine from Section 2.3 is able to eventually lead IRM to update
any xub /∈ P, i.e., Algorithm 1 can never get locked in the inner repeat-until (Lines 9-19). First, recall
that the exceptional cases are treated separately in Section 2.3.2: we first described the case of unbounded
rays xub (Section 2.3.2.1), followed by the case t∗ = 0 (Section 2.3.2.2).

x150
0

5

x2

10

15

xub

2x
1
+
x

2 ≤
15

x2 ≤ 10

x
1 +

x
2 ≤

12.25

xlb

The (black) box B
(
xub
t∗ , ε

)
contains integer point

(4,15) – the white circle.

All rays from the gray area

lead to a xub-separating

constraint (dashed line). A

smaller t∗ (here, t∗ = 1
1.5

)

would lead to an even

larger box B
(
xub
t∗ , ε

)
.

rub

Figure 3: A modified version of Fig-
ure 1 in which the xub-separating con-
straint (dashed line) is “hard to hit”
after step 2, i.e., using t∗ = 1, the in-
teger points on the segment [xlb,xub]
are outside the gray area. However, a
lower t∗ = 1

1.5 leads to integer points
that do “hit” the dashed line.

We can here focus on the standard case: t∗ 6= 0 and
xub is a proper vertex of a polytope PA. We show that the
same causal events described in the second case (t∗ > t∗β) of
above Proposition 2 can actually always be triggered, eventu-
ally surely leading to an update of any infeasible xub. While
larger ray coefficients might be needed in the worst case, this
can always be achieved by discretization refining in finite time.

Theorem 1. There exists a sufficiently small tε > 0 such that if
xlb = t∗r with t∗ < tε (i.e., if r is large-enough), the standard ray
generator from Algorithm 2 constructs at least a new ray leading to
updating xub /∈ P. Formally, for any input r, xlb = t∗r and xub /∈ P
such that t∗ < tε, Algorithm 2 (p. 9) finds at least a ray rnew that
leads the IRM sub-problem to a constraint violated by infeasible xub.

Proof. Consider advancing along 0n → xub until first hitting a
constraint a>x ≤ ca (the dashed line in Figure 3) at some point
rub = tubxub. This “first-hit” constraint needs to be satisfied with
equality by rub (i.e., a>rub = ca). Using xub /∈ P and rub ∈ P,
it is clear that tub < 1, which shows that a>xub > ca (based on
ca

a>xub
= tub < 1), i.e., such a constraint a>x ≤ ca is xub–separating.

We need to show that one of the rays rnew constructed by Algo-
rithm 2 leads the IRM sub-problem to a xub-separating constraint.
We will first show there exists a small-enough box B(xub, ε) with
the following ε-box property : any xub

′ ∈ B(xub, ε), would lead the
intersection sub-problem to a xub-separating constraint. We need a
formal ε-box definition; given x ∈ Rn and ε > 0, the ε-box centered
at x is:

B(x, ε) = {x ∈ Rn : (1− ε)x ≤ x ≤ (1 + ε)x}
= {x + xε ∈ Rn : |xε| ≤ εx}

We consider any xub
′ = xub + xε ∈ B(xub, ε). Let us take

any constraint satisfied with equality by rub = tubxub, i.e., such
that tub = ca

a>xub
as described above. We observe that ca

a>xub
′ =

ca
a>(xub+xε)

is arbitrarily close to tub = ca
a>xub

, because a>xε can be

as close to 0 as one needs; indeed, since |xε| ≤ εxub, a small-enough ε
can make the term a>xε “vanish” in comparison to a>xub. Further-
more, the intersection sub-problem applied on xub

′ can only return

a constraint [c′a a′] such that
c′a

a′>xub
′ ≤ ca

a>xub
′ , which is arbitrarily

close to tub < 1. We can thus deduce
c′a

a′>xub
′ < 1, equivalent to

a′>xub + a′>xε > c′a. The second term can be arbitrarily small as
discussed above, which leads to a′>xub > c′a.
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Above paragraph proves the existence of a box B(xub, ε) such that all rays (not necessarily integer) in
B(xub, ε) lead the IRM sub-problem to a xub-separating constraint. We now show that the standard ray
generation procedure from Section 2.3.1 does return integer rays rnew with the same property. Intuitively,
all rays leading to xub-separating constraints belong to the gray conic area in Figure 3. Formally, recall that
Algorithm 2 (p. 9) generates each potential new ray rnew by rounding some solutions r + β∆ generated by
advancing on the line from r to r + 1

t∗∆ = xub

t∗ . One can find a small enough tε such that, for any t∗ ≤ tε,
the box B

(
xub

t∗ , ε
)

becomes large enough to contain as many integer solutions as needed. This comes from
the fact that each “edge” of this box has a length proportional to 1

t∗—intuitively, imagine the size of the
box in Figure 3 if t∗ were 10 times smaller. A detailed investigation of Algorithm 2 shows the following: for
any chosen i ∈ [1..n] (in Line 3), Line 10 leads to some points r + β∆ located (deep) inside the large-enough
B
(
xub

t∗ , ε
)

and that remain inside the same box after rounding. Since the intersection problem returns the

same “first-hit” constraint from rnew ∈ B
(
xub

t∗ , ε
)

or t∗rnew ∈ B(xub, ε), this “first-hit” constraint has to be
xub-separating.

2.4.3 Convergence of the Global Process

Theorem 2. The Integer Ray Method, as specified in Sections 2.1-2.3, is finitely convergent.

Proof. The exceptional cases are completely addressed in Section 2.3.2. We recall the argument. Based on
Proposition 1, we proved that if xub is an unbounded ray or xlb = 0n, then IRM constructs a finite sequence
of rays such that one of them identifies with 0n → xub. This shows that IRM constructs in finite time a
xub-separating constraint (i.e., that separates xub from P) if xub is not the optimal solution (or ray). By
iteratively adding such constraints, IRM eventually ends up in one of the following: (i) stop and return
an unbounded optimal value (in Section 2.3.2.1), (ii) stop and return 0 (in Section 2.3.2.2), or (iii) finish
completely the exceptional cases (xlb and xub become proper solutions) and continue with the standard case.

We can further focus on this standard case. Theorem 1 (p. 13) can be re-formulated as follows: if
the discretization is refined enough (i.e., t∗ < tε), the ray generation procedure (Algorithm 2) can find an
integer ray that leads the IRM sub-problem to an xub-separating constraint. This ensures that the inner
repeat-until IRM loop (Lines 9-19, see Algorithm 1) can not be infinite, i.e., after a finite number of
iterations, the discretization refining (Line 12) would be executed enough times to reach t∗ < tε and turn
newUb true (i.e., by finding a xub-separating constraint as in Theorem 1).

However, the stopping condition of this inner repeat-until loop (newLb or newUb, see Line 19) can be
triggered without upper bound update if newLb becomes true before newUb. Observe that newLb becomes
true only when there is a strict improvement of xlb = t∗r, leading to an update of r in Line 21. This strict
improvement condition for updating r shows that the main pivot ray r can never take the same value twice.
Considering a fixed tε, the number of integer rays r such that t∗r ∈ P and t∗ ≥ tε is finite. This shows
a state with t∗ ≥ tε can not hold indefinitely by only improving the lower bound, i.e., by only exiting the
inner repeat-until IRM loop with newLb = true and newUb = false in Line 19. In the worst case, IRM
can always eventually reach a state with t∗ < tε, which can surely allow the discovery of xub-separating
constraints (based on Theorem 1). The queue reshuffling in the last line of Algorithm 2 makes the ray
generator start with ray directions close to 0n → xub; as such, the xub-separating constraints can not be
discovered after those that improve the lower bound.

This shows that, as long as xub /∈ P, Algorithm 1 can surely find an xub-separating constraint in finite
time. Since the number of P constraints is finite, Algorithm 1 can generate in finite time all P constraints
required for making xub equal to an optimum P vertex. Next, we prove that the lower bound xlb also
converges towards this P optimum, i.e., after reaching a state with xub =OPT(P), xlb can get arbitrarily
close to xub. This comes from the fact that Algorithm 1 can make t∗ as small as desired in finite time (see
above). The first ray rnew in the list rLst constructed by Algorithm 2 (consider the order after reshuffling)
can make the ray line 0n → rnew pass at an any desired distance from xub, and so, lead the IRM sub-problem
to a lower bound arbitrarily close to xub. The IRM stopping condition b>xub − b>xlb < ε can surely be
triggered in finite time for any fixed ε > 0.
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This proves that IRM is finitely convergent. However, the stopping condition b>xub − b>xlb < ε can
be met even if xlb and xub are not equal to an optimum P vertex, especially if ε is not very small. These
solutions can become arbitrarily close, but xlb is never determined as a vertex of P.

3 The IRM in Dual LPs of CG Formulations

3.1 Dual Polytope Construction and CG Interpretation

The large-scale LP from Section 2 can be naturally interpreted as the dual LP of a fractional relaxation of a
master CG model for Set-Covering problems. We will provide very specific problem examples in Section 4,
but now it is enough to focus on the general dual interpretations (see also Appendix C for the master LP):

• x = [x1 x2 . . . xn]> is seen as a vector of dual (decision) variables and P becomes a dual polytope;

• each constraint [ca,a] ∈ A (corresponding to a>x ≤ ca) is associated to a primal column [caa ] and to a
configuration (route, pattern, cluster) a = [a1 a2 . . . an] with cost ca, see examples below;

• b = [b1 b2 . . . bn]> ∈ Zn+ indicates the (dual) objective function. It arises from the covering demands
in the master ILP, i.e., any i ∈ [1..n] has to be covered (serviced, packed) bi times.

We introduce below a slightly generalized version of the LP from Section 2, simply obtained from (2.1)
by replacing “xi ≥ 0” with “xi ≥ li”, where li is some fixed non-positive value.

max b>x
a>x ≤ ca, ∀[ca,a] ∈ A
xi ≥ li, i ∈ [1..n]

}
P (3.1)

A well-known example of a dual CG program fitting this interpretation is the dual LP of the Gilmore-
Gomory model for Cutting-Stock [12]: any [ca,a] ∈ A represents an integer solution (pattern) of a knapsack
sub-problem: ca = 1 is a constant pattern cost, bi is the number of demanded copies of item i and li =
0,∀i ∈ [1..n]. In vehicle or arc routing problems, a represents a feasible route in some graph, ca is usually a
route cost depending on certain traversed distances and b is traditionally 1n (each service is required only
once). In location or p-median problems, a can represent a cluster of customers and ca the cost of reaching
them. Implicitly or explicitly, (3.1) arises in many other Set-Covering problems, but we will discuss in
great detail Elastic Cutting-Stock (Section 4.1) and Capacitated Arc Routing (Section 4.2).

Finally, we introduce a few modifications to Algorithm 1, so as to handle two slightly particular CG
features (points 1-2 below) and a generalization (point 3):

1. The stopping condition becomes db>xlbe = db>xube. Since (3.1) is actually a fractional relaxation of
an integer LP, one is generally interested in the integer rounded value of the CG optimum.

2. Instead of starting with A ← ∅ in Line 1, we could easily start with some simple initial constraints of
the form xi ≤ ui, where each ui can be simply determined from some trivial configuration that only
concerns element i ∈ [1..n]. We generated either a pattern filled only with copies of i in Cutting-Stock,
or a route that only services edge i in Arc-Routing.

3. Instead of x ≥ 0n, we used xi ≥ li: while the Cutting-Stock model uses li = 0, ∀i ∈ [1..n], the
Arc-Routing model uses li = −ci, where ci is the length of edge i, see Section 4.2.2, model (4.8). As
such, our implementation can even handle rays with negative components, although this would never
actually be necessary in Section 2 (where we assumed x ≥ 0n to reduce clutter).

3.2 Solving the Intersection Sub-problem by Dynamic Programming in CG

We propose solving the intersection sub-problem from Definition 1 (p. 7) using a Dynamic Programming
(DP) scheme relying on proposition below.
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Proposition 3. Given a dual polytope P defined by a constraint set A such that ca ≥ 0 for any [ca,a] ∈ A,
the min-max equivalence t∗ = t# holds for any r ∈ Rn:

t∗ = max{t ∈ R+ ∪ {∞} : tr ∈ P}
t# = min

[ca,a]∈A
a>r≥0

ca
a>r

Proof. We first observe that t# can be∞ only if all [ca,a] ∈ A satisfy a>r = 0. Indeed, only such a situation
would allow a>(tr) ≤ ca to be true for any [ca,a] ∈ A and for any indefinitely large t. In this case, r is an
extremal ray in P and the intersection sub-problem (Definition 1) also returns t∗ =∞.
If t# 6=∞, then any t > t# would lead to tr /∈ P: such tr would violate a constraint a>y ≤ ca that minimizes
the above ratio. This simply follows from: a>(tr) = t(a>r) > t#(a>r) = ca. Similarly, we observe that any
t ≤ t# does lead to tr ∈ P. As such, the maximum step length t∗ returned by Definition 1 is t∗ = t#.

3.2.1 A Generic Scheme of Profit-Indexed Dynamic Programming

We here present the general principles of a Dynamic Programming (DP) scheme for solving the intersection
problem in CG models. The main idea is to calculate the above t# by minimizing the ratio from Proposition
3 over all possible configurations in A. We interpret r as a vector of profits and a>r becomes the total profit
of configuration a. As such, our DP solution methods aims at finding a configuration that minimizes the
cost/profit ratio ca

a>r
.

We introduce a set S of DP states; a state s ∈ S corresponds to a number of s-configurations (or
configurations in state s) that yield the same value on several state indices:

• the integer profit ps: all a ∈ s have the same profit ps = a>r;

• the cost cs: all configurations a in state s have the same cost cs. While cs is always 1 in classical
Cutting-Stock, it can be more complex in Elastic Cutting-Stock (Section 4.1.1) and Arc-Routing

(Section 4.2). In certain versions, this cost is only indirectly used for indexing, i.e., it is actually
directly determined from other state indices, see Section 3.2.2 below;

• any other problem-specific state indices, e.g., route start and end points in routing problems. We will
have more to say about this in Section 4.2, but now it is enough to focus on above indices ps and cs.

In resource-constrained sub-problems (e.g., like the knapsack problem), the most widely-used DP algo-
rithms use the weights for state indexing and calculate a maximum profit using a recurrence relation between
states. Using the fact that the profits r are integer, the main idea of our framework is to reverse the role of
weights and profits (as in the knapsack FPTAS from [15]); we use profits for state indexing and the recur-
rence formula calculates minimum weight values W (s) for all discovered s ∈ S. This function W : S → R+

indicates the minimum total weight required to reach each state. After discovering all states S, one identifies
a state s∗ = (ps∗ , cs∗) that minimizes cs∗

ps∗
, yielding the sought t# = t∗ value from Proposition 3.

We finish by pointing out the key idea behind the DP process that computes S and calculates W (s), ∀s ∈
S. We exemplify it on a very general recursion: W (s) = mini∈[1..n]W

(
s{−i}

)
+ wi, where s{−i} is a state

that can be obtained from s by removing a copy of i from any configuration a ∈ s (with ai > 0). To compute
W (s),∀s ∈ S, the DP process goes through the elements i ∈ [1..n]; for each i ∈ [1..n], it scans the current
S: for each initialized state s{−i} ∈ S, it updates (or initializes for the first time) the state s by setting

W (s) = min
(
W (s) ,W

(
s{−i}

)
+ wi

)
. Compared to s{−i}, the new state s has one additional copy of i.4

4Care needs to be taken not to add element i more than bi times by accumulating such additions. In (bounded) knapsack
problems, this issue is simply circumvented by going exactly bi times through element i in the DP process. In routing problems,
bi is usually 1 and this (well-known) phenomenon leads to a need of k-cycle elimination techniques—more details in Stage 1 of
the Arc-Routing intersection algorithm from Appendix B.
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3.2.2 DP Running Time and Comparisons with Weight-Indexed DP in CG

As for classical weight-indexed DP, the asymptotic running time of profit-indexed DP depends on the number
of elements n and on the number of states |S|. Let us compare this |S| to the number of states in an equivalent
weight-indexed DP. In profit-indexed DP, |S| depends closely on the number of realizable profit values. In
weight-indexed DP, the number of states depends closely on the number of realizable weight values.

Since IRM starts out with a very small r = b (i.e., b = 1n in Bin-Packing or Arc-Routing), the profits
(rays r) are usually much smaller than the weights w of typical instances. Furthermore, even when this is
not the case, IRM can scale down b in the first iteration—because b is a ray direction and not a (feasible
or infeasible) dual solution. The profits r can only become larger than w in case of excessive discretization
refining, because each refining step doubles the magnitude of r (see numerical discussions in Section 5.3).

A combinatorial explosion risk can arise (for both profit-indexed and weight-indexed DP) when there are
too many cost values that generate different states. For instance, if the costs can take fractional or continuous
values, it can even be impossible to put all feasible cost values in a table data structure and assign a state
to each cell. IRM uses two techniques that (try to) tackle this issue. First, the costs cs are not even always
necessarily used for state indexing. For instance, Elastic Cutting-Stock defines the cost as a function of
the pattern weight, see (4.1) in Section 4.1.1. In this case, the state cost cs is actually determined from the
minimum weight W (s). Secondly, IRM can prune states with exceedingly high costs, e.g., while there might
exist countless routes covering an exaggeratedly long distance, they are not always associated to (useful)
states. It is possible to detect and prune such configurations. We will have more to say about this in the
Arc-Routing example (Section 4.2.3.3), but for the moment we only illustrate the main idea. Given state
s = (ps, cs), the best cost/profit ratio that can be reached from s is cs

ps+pub
, where pub is an upper bound

of the profit that can be realized through future transitions from s. State s can be pruned if cs
ps+pub

> tub,

where tub ≥ t∗ is the best (minimum) cost/profit ratio reached so far.

4 Integer Ray Sub-problems for Cutting-Stock and Arc-Routing

We discuss below several cutting and routing problems (Section 4.1 and 4.2). In many cases, the (IRM)
intersection sub-problem is not necessarily more difficult than the (CG) separation problem, at least when
Dynamic Programming (DP) is used. It is rather for paper length reasons that we restricted now to cutting
and routing problems, but we did envisage further work on other Set-Covering problems.

4.1 Cutting-Stock and Elastic Cutting-Stock

4.1.1 Model Formulation

The well-known Gilmore-Gomory model for Cutting-Stock is a direct particularization of (3.1): the cost
of any pattern a is ca = 1 and the feasibility of a only relies on knapsack condition a>w ≤ C. In the elastic
version of Cutting-Stock, feasible patterns are allowed to exceed a base capacity C by paying a penalty
cost. The larger the excess over C, the higher the elastic pattern penalty. Let us give a natural bin-packing
illustration: a knapsack (vehicle) constructed to hold C = 15 kilograms (tonnes) would be very often able to
hold 16 kilograms (tonnes), but this would bear some additional cost (e.g., for unwanted damage risk). We
consider however a maximum extended capacity Cext > C that can not be feasibly exceeded, e.g., we will
use Cext = 2C, considering that the base capacity can not be more than doubled by elasticity. Formally, the
elastic cost of pattern a ∈ Zn+ is:

ca = f

(
a>w

C

)
, (4.1)

where f is a non-decreasing Elastic function f : [0, Cext

C ]→ R+ with a fixed value of 1 over [0, 1].
While the elastic terminology is not widespread in the Cutting-Stock literature, this problem is not new.

First, a stair-case function f can lead to Variable-Size Bin Packing (VSBP), as in example fVSBP below.
More generally, the new problem can be interpreted as Residual Cutting Stock in the typology of [29]
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and reformulated as Bin-Packing with Usable Leftovers. In this residual interpretation, one considers
that any leftover (unused material) can be returned to the stock, providing a benefit (cost reduction) for
potential future leftover use. If one interprets Cext as a total bin capacity, Cext − a>w becomes an usable

leftover of pattern a. The elastic cost f(a>w
C ) can be reformulated as: f(Cext

C ) −
(
f
(
Cext

C

)
− f

(
a>w
C

))
=

cfxd−fbnf(Cext−a>w), i.e., a fixed pattern cost cfxd minus a benefit fbnf(Cext−a>w) obtained from usable
leftover Cext− a>w; the larger the leftover, the greater the benefit. An example of this interpretation arises
in [27], where the pattern cost (see ckq in their Section 2) has a term (noted −rkLkq ) representing the value of

returning to stock a length of Lkq—this pattern cost could have been expressed using an elastic function f .
However, let us focus on the elastic interpretation from function (4.1); we use Cext = 2C. Any non-

decreasing function f : R → R can actually be used, after restriction to [0, Cext

C ] and truncation to 1 over
[0, 1]. Paradigmatic examples of elastic functions include:

• fCS(x) =∞ for x ∈ (1,∞): classical Cutting-Stock, any excess is prohibited by an infinite penalty;

• fk(x) = xk for x ∈ (1,∞): the penalty is polynomial with respect to the excess. We will use k = 2 and
k = 3 in practical instances, but larger k values will also be discussed.

• fVSBP: this represents any staircase function that is constant over intervals
(
C`−1

C , C`C

]
, with ` ∈ [1..m],

where C = C0 < C1 < C2 < · · · < Cm represent m+ 1 different bin sizes, each with its own cost. This
function actually encodes Variable Size Bin Packing [29, § 7.13] with m+ 1 bin sizes.

The main Set-Covering CG dual model (3.1) becomes:

max b>x

a>x ≤ ca = f
(

w>a
C

)
, ∀[ca,a] ∈ A

xi ≥ 0 i ∈ [1..n]

}
P , (4.2)

where A is formally
{

[ca,a] ∈ [1,∞)× Zn+ : a>w ≤ Cext = 2C, ca = f
(

a>w
C

)}
.

To fully evaluate the interest in the IRM sub-problem with integer rays (Section 4.1.3), let us first present
the CG sub-problem of (4.2) and discuss its difficulty for certain functions f (Section 4.1.2). If C and w
consists of bounded integers, the CG sub-problem is tractable. However, if the data is fractional, the CG
sub-problem can be as hard as finding some (random) element in an exponential-size set for certain functions
f—see examples in §4.1.2.1. Since IRM uses only integer rays r, it can always overcome such computational
difficulties by using r-indexed Dynamic Programming in the IRM sub-problem.

4.1.2 The CG Sub-problem

The CG sub-problem can be written:

SUBCG(x) = max
a∈Zn+

w>a≤Cext

x>a− f
(

w>a

C

)
(4.3)

We call this (sub-)problem f-Elastic Knapsack Problem: maximize the difference between the profit re-
sulting from benefits x and the elastic pattern cost determined by elastic function f .

A straightforward CG method for f-Elastic Cutting Stock can solve the pricing of (4.2) using an
extension of standard knapsack Dynamic Programming (DP). If C is not prohibitively large, the standard
knapsack DP can be extended as follows. Instead of generating a state for each realizable total weight w>a
in [1..C], we simply replace this interval with [1..Cext] = [1..2C]. As such, we generate a state for each
realizable weight w>a ∈ [1..2C] and we evaluate it by the difference between the maximum profit (of a

pattern with weight w>a) and the cost f
(

w>a
C

)
; the maximum of this difference is returned in the end.

If w is larger than r, the above w-indexed DP can often require substantially more states than the IRM
r-indexed DP. We will describe this r-indexed DP in Section 4.1.3, but for now it is enough to say that it
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generates an r-indexed state for each realizable profit value r>a. As long as the values of r are close to 1
(e.g., in Bin-Packing, IRM starts out with r = b = 1n), the number of r-indexed states can often stay in the
order of tens or hundreds. We observed that the number of of realizable total weight values w>a is generally
much larger, because most instances are defined using weights of hundreds or thousands. As long as r does
not become too large by discretization refining, the r-indexed DP is naturally much faster than w-indexed
DP. However, if C is not prohibitively large, the classical w-indexed DP remains a reasonable pricing method
for any function f . It is (much) more problematic (or impossible) to generalize other knapsack algorithms
(e.g., Minknap) for more complex functions f .

4.1.2.1 Examples of CG Elastic Sub-problems Prohibitively Hard for Fractional Data The
main advantage of IRM is that it only uses integer input data for its sub-problem. Since this does not happen
in CG, the CG sub-problem could be prohibitively hard for certain multipliers x. We provide below some
examples that both consider x = w (profits equal to the weight). However, this is only an illustration of
more general phenomena: if the multipliers x are unpredictable, worst-case scenarios of CG sub-problems
can more often arise during a CG process.

Consider the following elastic function fr(α) : [0, 2]→ R:

fr(α) =

{
1 if α ≥ 1

(α− 1)C + 1− ε · [α = αrnd] if α > 0
,

where ε is a sufficiently small real, αrnd is a randomly chosen value and “[α = αrnd]” makes reference to the
Iverson bracket operator (i.e., it takes value 1 if α = αrnd and 0 otherwise). We evaluate SUBCG(x)=SUBCG(w)
on a ∈ Zn+ on two cases: (i) w>a ≤ C and (ii) w>a = αC > C. In case (i), the evaluation of SUBCG(x)

on pattern a yields: w>a − fr

(
w>a
C

)
= w>a − 1 ≤ C − 1. In case (ii), SUBCG(x) is evaluated at

w>a − fr(α) = αC −
(
(α − 1)C + 1 − ε · [α = αrnd]

)
= C − 1 + ε · [α = αrnd]. A maximum objective

value C − 1 + ε can be reached at w>a = αrndC. If C and w consist of fractional (or large-range) data,
the number of realizable total weights can easily explode, i.e., the resulting CG sub-problem might actually
require finding some (random) element αrnd in an exponential-size subset of interval [1, 2].

The function fr can simply be generalized by replacing the above term “ε · [α = αrnd]” with “g(α)”,
using any function g : [1, 2] → [0, ε). This ε bound is needed to keep fr non-decreasing, i.e., ε needs to be
lower than the difference between the closest two values α1, α2 ∈ [1, 2] such that α1C and α2C do represent
realizable total weights of feasible patterns.

When C is a bounded integer, a weight-indexed DP approach could solve any of the above problems
by generating at maximum C states that do cover all realizable total weights. However, the same problem
can become prohibitively-hard when C and w are unbounded or fractional, i.e., the number of realizable
total weights can become exponential. In such cases, the last example above can not be solved in reasonable
time, unless one can optimize in reasonable time any function g over an exponential sub-set of [1, 2]. We
discuss next (Section 4.1.3) that the IRM sub-problem associated to functions above is always “vulnerable”
to profit-indexed DP if the profits (rays) are bounded integer (regardless of C).

4.1.3 The IRM Approach: the Intersection Sub-problem via Dynamic Programming

By particularizing Proposition 3 from Section 3.2, the Elastic Cutting-Stock IRM sub-problem is defined
as follows. The input data is: a base capacity C ∈ R, (possibly fractional) weights w ∈ Rn, demands b ∈ Zn+,
non-decreasing function f : [0, 2] → R (with f(x) = 1,∀x ∈ [0, 1]), and ray r ∈ Zn+. The goal is to find a
feasible pattern a ∈ Zn+ (with a>r > 0) such that:

f
(

w>a
C

)
r>a

is minimized

This is a cost/profit ratio minimization objective: ca = f
(

w>a
C

)
is a cost and r>a is a (realizable)

integer profit. We can particularize the generic Dynamic Programming (DP) ideas from Section 3.2.1 to the
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setting of Elastic Cutting Stock. The state associated to profit p only needs to record (see below) the
minimum total weight W (p) = w>a∗p required to realize a profit p = r>a∗p. It is clear that it is not necessary

to explicitly record the cost f(W (p)
C ). Given some other pattern ap 6= a∗p such that r>ap = r>a∗p = p and

w>ap > W (p), the cost of ap is dominated by that of a∗p, i.e., f(
w>ap
C ) ≥ f(W (p)

C ), owing to the fact that f
is non-decreasing.

The DP pseudo-code is provided in Algorithm 3. To fully ensure its technical correctness, we need to
more closely investigate how it discovers and updates the states. We observe that the state of pattern a∗p
is only determined by its profit p = r>a∗p and that we ignore other patterns ap such that r>ap = p and

w>ap > w>a∗p = W (p). We need to verify that the states generated from a∗p do dominate all states that
could have been generated from ap. In other words, we need to check whether the state update condition
from Line 12 is correct: can the new state replace the old one only because the new weight newW is lower?
This is true, because the updated state accepts all the transitions that the old state could have generated
from the current point on (even if the older state was discovered at some lower value of j, this does not
influence on the transitions that can be generated from the current point on).

Algorithm 3 Intersection Sub-problem for Elastic Cutting-Stock

Require: ray r ∈ Zn, capacity C ∈ R, weights w ∈ Rn, demands b ∈ Zn+ and function f
Ensure: minimum cost/profit t∗ ratio

1: tub ←∞ . an upper bound that will converge to t∗

2: states← {0} . a linked list of realizable profits p
3: W (0)← 0 . a linked list records the minimum weight W (p),∀p ∈ states

4: for i in [1..n] . scan each new article
5: for j in [1..bi] . at maximum bi times (no need for more).
6: for p in states . scan only the current states (not updated by the current loop itself)
7: if p+ ri /∈ states

8: states← states ∪ {p+ ri} . p+ ri is a new realizable profit
9: W (p+ ri)←∞ . W (p+ ri) will be updated below

10: end if
11: newW = W (p) + wi
12: if newW < 2C and newW < W (p+ ri) . state update
13: W (p+ ri)← newW . the lost state is not completely deleted
14: cost = f(newWC ) . to keep track of precedence relations.
15: tub ← min(tub,

cost
p+ri

)
16: end if
17: end for
18: end for
19: end for
20: return tub . An associated pattern a can be built from precedence relations between states

4.2 Capacitated Arc-Routing

We now turn to a more complex problem whose intersection sub-problem does not apparently seem well-
suited to the generic profit-indexed DP scheme from Section 3.2.1. The configurations of the Capacitated

Arc Routing Problem (CARP) represent paths in a graph; their costs do not depend on weights, but on
distances. More problem-specific concepts (e.g., deadheading) do need to be taken into account. We first
start out with the classical CARP CG model (Section 4.2.1). We then continue with a reformulated model
(Section 4.2.2) that allows profit-indexed DP to naturally tackle the intersection sub-problem. We finish by
providing the main DP scheme in Section 4.2.3; the full pseudo-code is completely specified in Appendix B.
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4.2.1 CARP Formulation and Classical CG Model

Consider a graph G = (V,E); each edge ei = {u, v} ∈ E has a traversal cost (length) ci = c(u, v). The
set ER ⊆ E (with |ER| = n) represents the edges that require service: each ei = {u, v} ∈ ER requires a
service that consumes a weight (demands a supply) of wi = w(u, v) ∈ R+. We also consider a (vehicle)
capacity C that indicates the maximum total weight (supply delivered) of a feasible route. The value of C
belongs to O(n) in existing instances, but it can also be unbounded (large-range) in the scaled instances from
Section 5.2.1. A complete route is a path in G that starts and ends at a special vertex v0 ∈ V (the depot); a
route that does not end in v0 is open. The cost ca of a route is the sum of the lengths of the edges traversed
by the route. The CARP requires finding a minimum cost set of routes that service bi times each ei ∈ ER
(practical instances use bi = 1). We use a slight notation abuse to lighten the text; w, c and b represent: (i)
column vectors with elements indexed by i ∈ [1..n], and (2) functions on ER, i.e., wi = w(u, v), bi = b(u, v)
and ci = c(u, v) ∀ei = {u, v} ∈ ER.

A route that traverses edge ei ∈ ER can either service ei or deadhead ei (traverse ei without service).
Deadheaded edges only matter in calculating route (traversal) costs, but have no impact on route weights
(supply delivered). We consider route a as a vector with n = |ER| positions: ai indicates how many times
edge ei ∈ ER is serviced. The total weight (load, supply) of a is w>a. While vector a does not encode the
non-serviced edges, its traversal cost ca is determined as the cost of a shortest a-route, i.e., the cost of a
minimum cost route servicing ai times each ei ∈ ER. Indeed, there is no use in considering different routes
that service ai times each ei ∈ ER, but travel longer distances. The classical CARP dual CG model is:

max b>x
a>x ≤ ca, ∀[ca,a] ∈ A
yi ≥ 0, i ∈ [1..n]

,
(4.4)

where A =
{

[ca,a] ∈ R+ × Zn+ : a>w ≤ C, ca = total cost of a shortest a-route
}

. The main constraint in
above model can also be written:

a>x ≤ a>c + a>Dc (4.5)

where aD is a vector indicating for each ei ∈ E the number of times ei is deadheaded by a shortest a-route
(one can chose any a-route).

4.2.2 Integer Ray Formulation

The above model does not naturally allow one to fully exploit ray integrality properties for solving the
intersection sub-problem. Any DP scheme would be complicated by the fact that the right-hand cost a>c+
a>Dc could be very large in (4.5), i.e., using this cost for state indexing could lead to prohibitively-many states.
We propose an alternative formulation in which the (right-hand) cost is restricted to the dead-heading cost.
Using only dead-heading costs reduces the number of states for two reasons. First, the dead-heading cost a>Dc
is naturally much smaller (even 0) than the total cost a>c+a>Dc. Secondly, states with smaller dead-heading
cost are discovered more rapidly (see below) and they can be later used to prune high-deadheading states.
The new formulation only requires a simple variable substitution in (4.4):

x = c + x

The objective function b>x simply becomes b>(c + x); xi ≥ 0 becomes xi ≥ −ci, ∀i ∈ [1..n]. The main
constraint (4.5) reduces to:

a>(c + x) ≤ a>c + a>Dc, or

a>x ≤ a>Dc
(4.6)

This constraint is further processed as follows. We consider a route is an alternating sequence of service
segments and segment transfers. A service segment vst � vend consists of a continual sequence of serviced
edges that start at vst ∈ V and finish at vend ∈ V . Given two consecutive service segments v1

st � v1
end and

v2
st � v2

end (with v1
end 6= v2

st) in a route, v1
end and v2

st need to be linked by a segment transfer, i.e., by a
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shortest cost path joining v1
end and v2

st (no service is provided during this transfer). For any potential segment
transfer {u, v} ∈ V × V , let us note c(u, v) the length of the shortest path between u and v. Given route
a ∈ Zn+, let us define by T (a) the set of segment transfers of a fixed shortest a-route. The dead-heading cost
a>Dc becomes

∑
{u,v}∈T (a) c(u, v), i.e., (4.6) can be written as:

a>x ≤ ca =
∑

{u,v}∈T (a)

c(u, v) (4.7)

The IRM model can now be written below with the new x variables. It fits (3.1) completely; the only
term not arising in (3.1) is b>c, which is merely a constant added to the objective function.

b>c + max b>x
a>x ≤ ca, ∀[ca,a] ∈ A
xi ≥ −ci, i ∈ [1..n]

}
P, (4.8)

where A =
{

[ca,a] ∈ R+ ×Zn : a>w ≤ C, ca = ca =
∑
{u,v}∈T (a) c(u, v)

}
. This set A is basically defined as

in the original model (4.4); the only difference arises in the cost definition: the new A replaces classical costs
ca with dead-heading costs ca—computed via (4.7) above. We observe that x can be negative, but 0n ∈ P.

4.2.3 IRM Sub-problem Algorithm

4.2.3.1 IRM sub-problem definition for model (4.8). Generally speaking, we proceed as in Section
4.1.3, i.e., we particularize Proposition 3 from Section 3.2. Given integer ray r ∈ Zn, the goal is to find a
feasible route a ∈ Zn+ (with a>r > 0) that minimizes:

ca
r>a

=

∑
{u,v}∈T (a) c(u, v)

r>a
,

where T (a) is defined as in (4.7).
This definition has a straightforward cost/profit ratio interpretation: ca ≥ 0 is the deadheading cost of

any shortest a-route and r>a is the profit of such a route. We give an example. A route that service ai times
each ei ∈ ER leads to ca

r>a
= 0. If all edges ER could be serviced by disjoint routes with no deadheading, the

IRM sub-problem would return t∗ = 0 for any input r. This would lead to an optimal solution x = 0n in
(4.8); its optimum value would simply be given by the constant b>c, i.e., the minimum traversal cost that
is anyway necessary to service all required edges.

4.2.3.2 Data Structures and State Indexing Following the DP framework from Section 3.2, we will
use a set of states S such that each s ∈ S is defined by the following state indices:

– ps is the profit a>r of any configuration (route) a in state s;

– cs is the deadheading cost
∑
{u,v}∈T (a) c(u, v) of any shortest a-route in state s;

– vs is the end vertex for any route a in state s: if vs 6= v0, the route a is open, i.e., it does not (yet)
return back to the depot.

As in Section 3.2, we introduce a function W such that W (s) = W (ps, cs, vs) ≤ C represent the minimum
weight (load) of a configuration in state s = (ps, cs, vs), i.e., the minimum load (supply delivered) by an
open route ending at vs with a profit of ps and a (deadheading) cost of cs. After generating all relevant
states, the DP process returns the lowest cost/profit ratio reached by some state (p∗, c∗, v0).
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4.2.3.3 The DP recursion and comparisons with CG pricing We provide below the main recursion
formula for W . We use the following slight abuse of notation c: (i) the usual one-index notation ca refers to
the total cost of configuration a, (ii) as a function, c(u, v) is the shortest path between u, v ∈ V , and (iii)
when no index is used, c indicates the cost of a state (p, c, v).

W (p, c, v) = min

{
W (p, c− c (u, v) , u) ,∀u, v ∈ V
w(u, v) +W (p− r (u, v) , c, u) ,∀{u, v} ∈ ER not serviced at (p− r (u, v) , c, u)

(4.9)

This recurrence is exploited by Algorithm 4 (Appendix B, p. 36) that provide the full pseudocode. Its
running time does not directly depend on the fractionality or the range of w and C, because these values
have no direct influence on the number of DP states (see below).

To our knowledge, all existing CG pricing algorithms do explicitly use states or iterations indexed by
feasible values of total weight in [1..C], leading to a pricing complexity of at least O(C(|E|+ |V | log |V |)) [18].
Other variants can have a complexity of O(C|VR|2) (VR represents the vertices with at least an incident
required edge) or more often O(C|ER|2), as argued in [18, § 3.1]—see also the more recent pricing algorithm
discussed in [4, § 7.1]. However, the term C is always present; the instances commonly tackled by CG
(see Section 5.2.1) have an average capacity of about one hundred. On the other hand, state-of-the-art CG
pricing algorithms can be very fast in terms of the complexity factors |V |, |VR| or |ER|.

The number of states in our DP scheme is at most |V |pcntccnt, where pcnt and ccnt are reasonably-large
integers in many practical instances:

• pcnt is the number (count) of realizable profit values; pcnt is naturally (much) smaller than the number
of realizable profit values in a knapsack problem with profits r, weights w and capacity C.

• ccnt is the maximum number of states that can be discovered for any v and p. For some v and p, there
needs to exist ccnt cost values c1 < c2 < . . . cmax such that W (p, c1, v) > W (p, c2, v) > . . .W (p, cmax, v).
Indeed, the only case in which a state (p, c`+1, v) with c`+1 > c` is not dominated by (p, c`, v) is when it
has a lower weightW (p, c`+1, v) < W (p, c`, v). To limit cmax, certain exceedingly high-cost states can be
pruned (dominated) by low-cost states. For instance, a state (c, p, v) can be pruned if c

p+pMaxRes ≥ tub,

where pMaxRes is a maximum residual profit that can be obtained from state (c, p, v), and tub is the
minimum cost/profit ratio reached so far (see Stage 4, Algorithm 4, Appendix B).

5 Elastic Cutting Stock and Capacitated Arc Routing Experiments

This section performs an IRM evaluation5 on four Elastic Cutting Stock variants and on Capacitated

Arc Routing. For all experiments, we will consider two types of instances: (i) the original standard-size
instances and (ii) scaled instances that we define as follows. Given a standard instance with capacity C and
weights wi (∀i ∈ [1..n]), the scaled instance is constructed using a scaled capacity of 1000C and scaled weights
1000wi − ρi , where ρi is a (small) random “noise” adjustment (i.e., we used ρi = i mod 10). This noise
only renders the scaled instance more realistic; without it, the scaling operation could be easily reversed by
dividing all weights by their greatest common divisor. Both instance versions use integer data, but the scaled
weights can be seen as fractional weights recorded with a precision of 3 decimals. Preliminary experiments
show that a higher precision (scale factors larger than 1000) could slightly skew the results, but not enough
to upset our main conclusions.

Practical instances usually have the same IP optimum in both scaled or unscaled versions. In standard
Cutting Stock and Arc Routing, the feasibility of a configuration (pattern, route) is not influenced by
scaling: (i) any valid configuration remains valid after scaling (

∑n
i=1 aiwi ≤ C =⇒

∑n
i=1 ai(wi − ρi) ≤

5The implementation used for this evaluation is publicly available on-line at http://www.lgi2a.univ-artois.fr/~porumbel/
irm/. The main IRM algorithm consists of a core of problem-independent IRM routines. The integration of a (new) problem
requires providing two functions (i.e., loadData and irmSub-problem) to be linked to the IRM core (the file subprob.h describes
the exact parameters of these functions). It is worthwhile noticing that it is much easier to manipulate 1

t∗ than t∗ in the code.
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1000C), and (ii) any configuration exceeding C is turned into a configuration exceeding 1000C (observe that∑n
i=1 aiwi ≥ C + 1 =⇒

∑n
i=1 ai(1000wi − ρi) ≥ 1000C + 1000−

∑n
i=1 aiρi > 1000C). The last inequality

is only valid if 1000 >
∑n
i=1 aiρi (for any configuration a), but this is surely valid if 100 >

∑n
i=1 ai (recall

ρi < 10, ∀i ∈ [1..n]), which is typically true because practical configurations have less than 10-20 items (or
serviced edges).

The computing effort is typically indicated as an expression “iters (discr)/time-fails” where iters

is the number of iterations (in parentheses, the number discr of discretization refining calls), time is the
CPU time in seconds and fails is an (optional) number of failures, i.e., instances not solved within the
allowed time (if any). If these failures represents more than 25% of a benchmark set, we simply report “tm.
out”. All times are reported on a HP ProBook 4720 laptop clocked at 2.27GHz (Intel Core i3), using gnu

g++ with code optimization option -O3 on Linux Ubuntu, kernel version 2.6 (Cplex version 12.3).

5.1 Cutting-Stock and Elastic Cutting-Stock

5.1.1 Problem Classes, Knapsack Algorithms and Benchmark Sets

The IRM is compared with classical CG on a set of 13 benchmark sets and 4 Elastic problem variants
(discussed in Section 4.1). For a fair comparison, we did our best to use the fastest knapsack algorithms for
CG pricing, i.e., the following three approaches have been considered:

Minknap This is one of the most competitive knapsack algorithms from the literature. The evaluation on the
extensive benchmark sets from [24] indicates that it “has an overall stable performance, as it is able to
solve all instances within reasonable time. It is the fastest code for uncorrelated and weakly correlated
instances”. Such weak correlations between profits and weights can be natural in CG sub-problems.
Even for rather strongly correlated instances, Minknap is one of the best three algorithms from the
literature when the weights have wide ranges [24, Table 6-8]. We adapted and used the code available
at www.diku.dk/~pisinger/minknap.c.

Cplex This is the IP solver provided by Cplex. The CG results on classical Cutting-Stock are very close
to those that would have been reported by the Cutting-Stock CG implementation from the C++
examples of Cplex Optimization Studio (version 12.3).

Std-DP Standard Dynamic Programming with weight-indexed states (implemented with linked lists).

We summarize below the applicability of above approaches on our Elastic problem variants; we identify
a Elastic variant by the elastic penalty function, using the notations from Section 4.1.1.

fCS This Elastic variant is the pure Cutting-Stock; the pricing sub-problem is the knapsack problem
that can be solved by all above knapsack algorithms;

fVSBP−m In Variable-Sized Bin Packing, one can simply run any of the above knapsack algorithms m+1
times, once for each capacity in C = C0, C1, C2, . . . Cm. We used m = 10, C` = C + ` C10 ∀` ∈ [1..m],
and so, the maximum bin size is Cm = 2C;

f2(x) = x2,∀x > 1 The CG sub-problem for this Elastic variant can be written as a quadratic IP, using
(4.3). We could solve it with Std-DP and with the Cplex solver for Quadratic IP. Minknap could not
be adapted to this pricing sub-problem, because it uses too many specialized pure knapsack features.

f3(x) = x3,∀x > 1 The sub-problem becomes a Cubic IP that could only be solved by Std-DP. The Cplex

solver does not address Cubic IPs. We are not aware of other conventional (and practical) algorithms
for this sub-problem. The situation is similar to that of other Elastic power functions (e.g., x4,
x5) or polynomials. We are far from claiming that such sub-problems can never be solved with other
techniques, but the goal of this paper is not to delve into the depths of polynomial integer programming.

Given an instance of pure Cutting-Stock, any f -Elastic variant can simply be constructed by a applying

function f : the cost of a pattern a becomes f(a>w
C ). The 13 Cutting-Stock benchmark sets are described
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in Appendix D (see Table 5 for references and instance characteristics). Most instances have at most n = 100
items and the capacity C can be 100, 10.000, 30.000 and rarely 100.000 (only for Hard instances, the most
difficult ones). The capacity of scaled instances thus ranges from 105 to 108.

5.1.2 Numerical Comparison IRM-CG: Standard and Scaled Instances

Tables 1 and 2 (on next two pages) present the results for scaled instances (observe suffix “scl” in the instance
name) and respectively for unscaled instances. Both tables use the following format: the first two columns
indicate the instance set (the Elastic function in Column 1 and the benchmark set in Column 2), Column 3
reports the average IRM computing effort (under the format described by the third paragraph of Section 5)
to reach a gap of 10% between the lower and the upper bound (i.e., b>xlb ≥ 9

10b>xub), Column 4 provides
the average IRM computing effort for complete convergence (we stop when db>xlbe = db>xube). The last
three columns indicate the CG computing effort, i.e., there is one column for each of the three CG pricing
approaches discussed above (Section 5.1.1).

We present the main conclusions of these tables, picking out the key claims along the way in boldface.
The IRM is a very reasonable approach for standard instances and it is generally faster than

CG on scaled instances. Confirming theoretical arguments, the 1000-fold weight increase (the scaling) has
a limited impact on IRM time running time (i.e., a CPU time increase in [−10%, 30%]). We compare IRM
with the above three CG algorithms:

(i) The results of CG[Minknap] are on a par with those of IRM, but it can only be applied to pure
Cutting-Stock and Variable-Sized Bin Packing (see more detailed Minknap comparisons below).

(ii) CG[Cplex] seems quite slow and it can never compete with IRM.

(iii) CG[Std-DP] is the only CG approach that can be used on all Elastic versions. It requires a sim-
ilar number of iterations as IRM, but the 1000-fold weight increase can make the w-indexed DP in
CG[Std-DP] 10 times slower than the r-indexed DP in IRM. Confirming theoretical arguments from
Section 3.2.2 and 4.1.2, the state space is often smaller in r-indexed DP than in w-indexed DP. Indeed,
Std-DP indexes states using weight values that are usually (substantially) larger than the values of the
rays r used for indexing DP states in IRM. The very first value of r is b (e.g., 1n for Bin-Packing),
and, even after a few discretization refining operations (usually less than 5, see columns “Gap 10%” in
Table 2), the ray values r can still be generally smaller than values of the (unscaled) weights w. This
is why IRM can also scale r = b down if b contain some very large values (see Line 2 in Algorithm 1).

On pure Cutting Stock, IRM competes well with CG[Minknap]. The fact that IRM can solve most
Hard and vb instances in less than 15 seconds (on a mainstream PC) can be generally seen as acceptable,
even compared to some stabilized CG methods. On Variable-Sized Bin Packing, IRM is generally faster
than CG[Minknap], because the latter one requires solving 11 sub-problems at each CG iteration. In terms of
iterations, IRM stays in the same order of magnitude compared to all CG versions. However, the number of
CG iterations can be very different among the three CG versions. For example, on m35, all dual constraints
have the form xi +xj ≤ 1 (i, j ∈ [1..n]); since the values of x are often in {0, 0.5, 1}, numerous columns have
the same reduced cost (−0.5), leading to very different ways of breaking ties at each iteration.

The only important IRM disadvantage is a certain lack of robustness. It can fail in solving
100% of all instances in certain sets. This is due to some early excessive discretization refining that slows
down the r-indexed DP. At the first IRM iterations, the upper bound can be far from the optimum, and so,
it can lead the ray generation (Algorithm 2, Section 2.3) to ineffective new rays, which can further trigger
too rapidly some (unfortunate) discretization refining. We consider that such issues could be addressed
by further IRM studies, e.g., by the use of other ray generation methods, by applying IRM stabilization
techniques, by reversing the discretization refining when possible, etc.
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Elast. Instance IRM Computing Effort CG Computing Effort
Ver. Set

(
iters (discr)/time-fails

) (
iters/time-fails

)
Gap 10% Full convergence Minknap Cplex Std. DP

f
(x

)
=
x

3

vb10scl 5(0.0) / 0.01 21(1.6) / 0.05 — — tm. out
vb20scl 9(0.0) / 0.03 41(1.8) / 1.2−1 — — tm. out
vb50-c1scl 56(0.0) / 0.2 162(4.8) / 1.4 — — tm. out
vb50-c2scl 27(0.0) / 0.3 160(3.5) / 26.2−2 — — tm. out
vb50-c3scl 12(0.0) / 0.3 85(2.6) / 20.9−4 — — tm. out
vb50-c4scl 30(0.0) / 0.1 171(3.4) / 17.2−2 — — tm. out
vb50-c5scl 13(0.0) / 0.1 115(3.3) / 38.0−5 — — tm. out
vb50-b100scl 30(0.0) / 0.1 tm. out — — tm. out
m01scl 154(2.2) / 0.4 272(5.5) / 1.1 — — tm. out
m20scl 158(1.6) / 0.5 249(6.0) / 0.8 — — 291 / 62.4−2

m35scl 97(2.3) / 0.3 161(6.2) / 0.4 — — 246 / 19.4
Hardscl 149(2.1) / 1.1 578(6.0) / 16.2−1 — — tm. out
Tripletsscl 43(1.0) / 0.1 76(1.4) / 0.3 — — tm. out

f
(x

)
=
x

2

vb10scl 5(0.0) / 0.01 23(2.1) / 0.01 — 23 / 1.4 tm. out
vb20scl 9(0.0) / 0.03 41(2.1) / 1.0−1 — tm. out tm. out
vb50-c1scl 51(0.0) / 0.2 155(4.0) / 1.6 — 138 / 26.9 tm. out
vb50-c2scl 26(0.0) / 0.2 154(3.6) / 22.8−4 — tm. out tm. out
vb50-c3scl 12(0.0) / 0.3 86(2.8) / 24.4−2 — tm. out tm. out
vb50-c4scl 29(0.0) / 0.1 159(3.4) / 16.3−3 — tm. out tm. out
vb50-c5scl 13(0.0) / 0.1 tm. out — tm. out tm. out
vb50-b100scl 29(0.0) / 0.1 tm. out — tm. out tm. out
m01scl 138(2.3) / 0.4 265(5.6) / 1.1 — 210/46.4−8 tm. out
m20scl 144(2.1) / 0.4 224(5.8) / 0.8 — 202/35.2−3 292 / 63.2−1

m35scl 88(2.5) / 0.2 150(6.1) / 0.5 — 208/16.3 290 / 22.6
Hardscl 151(2.1) / 1.0 517(6.1) / 14.9−1 — tm. out tm. out
Tripletsscl 42(1.0) / 0.1 71(1.0) / 0.2 — tm. out tm. out

V
ariab

le
S

ized
C
u
t
.
S
t
o
c
k

vb10scl 5(0.0) / 0.01 21(2.2) / 1.0 32×11/ 1.0 32×11/ 60.03 tm. out
vb20scl 8(0.0) / 0.04 37(2.4) / 4.0 55×11/ 4.9 tm. out tm. out
vb50-c1scl 33(0.0) / 0.1 139(4.1) / 23.0−4 184×11

/ 34.3−1 tm. out tm. out
vb50-c2scl 23(0.0) / 0.3 97(3.4) / 17.7−5 131×11/ 25.2 tm. out tm. out
vb50-c3scl 11(0.0) / 0.7 67(3.0) / 20.4−1 97×11

/ 17.0 tm. out tm. out
vb50-c4scl 25(0.0) / 0.0 110(3.4) / 19.9−5 134×11/ 24.3 tm. out tm. out
vb50-c5scl 13(0.0) / 0.1 82(3.4) / 27.4−3 101×11

/ 15.6 tm. out tm. out
vb50-b100scl 24(0.0) / 0.1 tm. out 133×11

/ 46.8 tm. out tm. out
m01scl 70(1.9) / 0.2 236(5.1) / 1.0−2 149×11/ 0.5 tm. out tm. out
m20scl 94(2.4) / 0.3 201(5.6) / 1.2−2 176×11

/ 0.6 tm. out tm. out
m35scl 98(2.6) / 0.3 231(6.2) / 1.4 206×11

/ 0.8 tm. out tm. out
Hardscl 165(2.0) / 1.4 445(5.3) / 8.2−1 715×11

/ 37.8 tm. out tm. out
Tripletsscl 44(1.0) / 0.2 73(1.0) / 0.5 398×11

/ 13.6 tm. out tm. out

f
C
S (x

)
=

1,
p

u
re

C
u
t
.
S
t
o
c
k

vb10scl 5(0.0) / 0.01 17(0.9) / 0.03 14 / 0.03 15 / 1.0 15 / 1.1
vb20scl 10(0.0) / 0.02 41(2.0) / 0.8 51 / 0.3 tm. out tm. out
vb50-c1scl 55(0.0) / 0.1 116(2.0) / 0.4 105 / 0.3 104 / 13.2 tm. out
vb50-c2scl 28(0.0) / 0.1 176(3.5) / 7.0−1 201 / 3.2 tm. out tm. out
vb50-c3scl 12(0.0) / 0.1 93(2.7) / 12.3−1 124 / 1.7 tm. out tm. out
vb50-c4scl 30(0.0) / 0.0 183(3.3) / 7.4 181 / 2.3 tm. out tm. out
vb50-c5scl 12(0.0) / 0.0 132(3.6) / 19.8−2 133 / 1.8 132 / 70.4−1 tm. out
vb50-b100scl 30(0.0) / 0.0 199(4.8) / 7.5−2 181 / 4.1 tm. out tm. out
m01scl 109(0.9) / 0.3 307(3.5) / 1.2 123 / 0.4 129 / 7.9 132 / 4.8
m20scl 98(0.9) / 0.2 303(1.9) / 1.0−1 198 / 0.5 141 / 6.9 247 / 1.1
m35scl 199(0.2) / 0.5 199(0.4) / 0.6 165 / 0.4 89 / 1.8 199 / 0.6
Hardscl 254(2.0) / 1.9 872(6.1) / 14.9−1 716 / 13.5 tm. out tm. out
Tripletsscl 317(1.9) / 2.5 1001(2.7) / 15.8 546 / 5.2 tm. out 551 / 23.7

Table 1: Results for Elastic Cutting Stock scaled (large-range) instances with a time limit of 100 seconds.

-f f is the number of failures, instances not solved in 100 seconds. If f represents ≥ 25% of instances, we mark “tm. out”.
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Elast. Instance IRM Computing Effort CG Computing Effort
Ver. Set

(
iters (discr)/time-fails

) (
iters/time-fails

)
Gap 10% Full convergence Minknap Cplex Std. DP

f
(x

)
=
x

3

vb10 5(0.0) / 0.01 21(1.7) / 0.04 — — 20 / 18.7
vb20 9(0.0) / 0.03 43(2.3) / 2.4 — — tm. out
vb50-c1 56(0.0) / 0.2 165(4.7) / 1.5 — — tm. out
vb50-c2 27(0.0) / 0.3 165(3.6) / 29.0−2 — — tm. out
vb50-c3 12(0.0) / 0.3 84(2.7) / 22.3−2 — — tm. out
vb50-c4 30(0.0) / 0.1 170(3.3) / 19.7−2 — — tm. out
vb50-c5 13(0.0) / 0.1 116(3.3) / 34.3−5 — — tm. out
vb50-b100 30(0.0) / 0.1 tm. out — — tm. out
m01 159(2.1) / 0.4 277(5.2) / 0.8 — — 199 / 3.7
m20 172(1.7) / 0.4 258(5.4) / 0.6 — — 289 / 3.5
m35 97(2.2) / 0.2 154(5.9) / 0.3 — — 244 / 2.3
Hard 148(2.2) / 0.7 568(6.0) / 19.3−1 — — tm. out
Triplets 43(1.0) / 0.1 76(1.4) / 0.2 — — tm. out

f
(x

)
=
x

2

vb10 5(0.0) / 0.01 24(2.1) / 0.04 — 23 / 1.3 22 / 19.1
vb20 9(0.0) / 0.03 41(2.2) / 4.2 — 56 / 14.2−1 tm. out
vb50-c1 51(0.0) / 0.2 156(4.0) / 1.6 — 140 / 28.9 tm. out
vb50-c2 26(0.0) / 0.2 153(3.5) / 23.9−3 — tm. out tm. out
vb50-c3 12(0.0) / 0.3 83(2.8) / 20.6−2 — 129 / 43.7 tm. out
vb50-c4 29(0.0) / 0.1 160(3.6) / 18.2−2 — tm. out tm. out
vb50-c5 13(0.0) / 0.1 109(3.2) / 34.6−4 — tm. out tm. out
vb50-b100 29(0.0) / 0.1 175(3.5) / 33.7−5 — tm. out tm. out
m01 141(2.2) / 0.4 255(5.7) / 1.1 — 204 / 13.6 218 / 4.0
m20 143(2.1) / 0.4 223(5.9) / 0.8 — 190 / 11.6 292 / 3.6
m35 88(2.5) / 0.3 150(6.1) / 0.5 — 199 / 7.7 289 / 2.7
Hard 153(2.2) / 1.1 526(6.3) / 17.5−1 — tm. out tm. out
Triplets 42(1.0) / 0.1 71(1.0) / 0.1 — tm. out tm. out

V
aria

b
le

S
ized

C
u
t
.
S
t
o
c
k

vb10 5(0.0) / 0.01 21(2.2) / 0.7 32×11/ 0.9 32×11/ 60.20−2 tm. out
vb20 8(0.0) / 0.04 37(2.5) / 2.6 55×11

/ 3.5 tm. out tm. out
vb50-c1 33(0.0) / 0.1 136(4.0) / 15.3−4 185×11

/ 27.6−1 tm. out tm. out
vb50-c2 23(0.0) / 0.4 tm. out 132×11/ 16.9 tm. out tm. out
vb50-c3 11(0.0) / 0.7 66(2.9) / 15.4−2 98×11

/ 8.0 tm. out tm. out
vb50-c4 25(0.0) / 0.1 111(3.5) / 20.5−5 134×11/ 19.5 tm. out tm. out
vb50-c5 13(0.0) / 0.1 82(3.4) / 25.5−3 101×11

/ 9.8 tm. out tm. out
vb50-b100 24(0.0) / 0.1 tm. out 132×11

/ 37.2 tm. out tm. out
m01 70(1.8) / 0.2 232(5.1) / 0.9−6 148×11/ 0.7 140×11/ 73.35 138×11/ 57.6
m20 94(2.4) / 0.3 197(5.6) / 1.1−2 175×11

/ 0.9 tm. out 145×11
/ 42.7

m35 99(2.6) / 0.3 230(6.2) / 1.3−3 206×11/ 1.0 tm. out 157×11/ 36.0
Hard 165(2.0) / 1.4 442(5.3) / 8.0−1 715×11

/ 37.3 tm. out tm. out
Triplets 44(1.0) / 0.2 73(1.0) / 0.5 398×11

/ 13.7 tm. out tm. out

f
C
S (x

)
=

1,
p

u
re

C
u
t
.
S
t
o
c
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vb10 5(0.0) / 0.01 17(0.9) / 0.03 14 / 0.03 16 / 1.12 15 / 0.6
vb20 10(0.0) / 0.02 42(1.9) / 0.6 35 / 0.1 49 / 11.06−1 51 / 61.5
vb50-c1 55(0.0) / 0.1 115(2.0) / 0.3 105 / 0.4 101 / 12.3 tm. out
vb50-c2 28(0.0) / 0.1 169(3.5) / 5.7−1 154 / 1.3 tm. out tm. out
vb50-c3 12(0.0) / 0.1 91(2.8) / 12.2 82 / 0.5 124 / 32.3 tm. out
vb50-c4 30(0.0) / 0.1 186(3.4) / 6.6 153 / 1.2 tm. out tm. out
vb50-c5 12(0.0) / 0.0 131(3.5) / 12.8−3 101 / 0.8 130 / 61.3 tm. out
vb50-b100 30(0.0) / 0.1 199(4.8) / 6.6−2 171 / 3.2 tm. out tm. out
m01 109(0.9) / 0.3 300(3.5) / 1.1 122 / 0.4 128 / 6.7 130 / 0.9
m20 97(0.9) / 0.3 302(1.9) / 1.1−1 199 / 0.5 141 / 6.7 248 / 0.9
m35 199(0.2) / 0.6 199(0.4) / 0.6 166 / 0.4 89 / 2.0 199 / 0.6
Hard 254(2.0) / 1.9 872(6.1) / 14.8−1 454 / 4.5 tm. out tm. out
Triplets 317(1.9) / 2.5 1001(2.7) / 15.8 546 / 4.9 tm. out 551 / 23.7

Table 2: Results for Elastic Cutting Stock unscaled (standard) instances with a time limit of 100 seconds.

-f f is the number of failures, instances not solved in 100 seconds. If f represents ≥ 25% of instances, we mark “tm. out”.
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5.1.3 Comparisons with Lagrangian lower bounds

Above results show that IRM can reach in one second a lower bound within 90% of the upper bound for
all Elastic variants (see Columns “Gap 10%” in both Tables 1 and 2). We now perform a more detailed
comparison of these lower bounds with the Lagrangean bounds in CG. A well-known Lagrangean bound
in the Cutting-Stock literature is the Farley bound—see [6, § 2.2], [26, § 3.2] or [20, § 2.1] for interesting
descriptions or Appendix C.

Figure 4 below compares the evolution of the IRM and the CG (Farley) lower bounds on several classical
and elastic Cutting-Stock instances. While the performance of the two bounds seem globally similar, a
closer investigation of the first iterations reveals the following IRM advantage: CG might require hundreds
of iterations to reach the bound reported by IRM in the very beginning. This phenomenon is most visible on
the first (Triplets) instance: the optimal dual solution x = 1n

3 is reported at the very first IRM iteration
(when r = b = 1n and t∗ = 1

3 ), while CG actually needs to finish the search to reach a similar performance.
The Bin-Packing instances m01, m20 reveals the same phenomenon at a closer look. However, on the rest
of the instances, the lower bounding performances are globally in the same order of magnitude.
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Figure 4: Comparison between the IRM lower bounds (dotted black lines) and the Farley CG lower bounds
(solid gray lines) on various unscaled Cutting-Stock instances, using both classical and f3–elastic versions.

5.2 Capacited Arc Routing

5.2.1 Benchmark Sets

We focus on four Capacitated Arc Routing (CARP) benchmark sets that are publicly available on-line
(see www.uv.es/~belengue/carp.html): gdb, kshs, val (also called bccm) and egl. All these instances
are defined using integer data; the capacity C ranges from from 5 to 305 (with very small C only for gdb

instances). Using the scaling operation from the first paragraph of Section 5, we generate for each such
instance a scaled (large-range) version with 1000-fold increased weights and capacities. The CARP instances
vary substantially in size: n ranges from 11 (gdb19) to 190 (egl-s*) and |V | ranges from 7 (gdb14 and
gdb15) to 140 (egl-s*). Existing CG work [18, Table 6] show, broadly speaking, that: (i) gdb and kshs

instances can be solved within a few seconds, (ii) the val instances require 10-20 times more running time
and (iii) the egl instances requires 100-300 more time then gdb or kshs. Based on this, we impose the
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following time limits to IRM: 100 seconds to gdb and kshs (rarely reached in practice), 500 seconds to val,
and 5000 seconds to egl.

The number of vehicles is not taken into account in our IRM model (4.8), p. 22. It would be possible to
add a fleet size primal constraint and a corresponding dual variable in the sub-problem algorithm, but we do
not think this is essential for evaluating the IRM. To focus on the essential IRM aspects, please accept the
use of an unlimited fleet. This relaxes the original (primal) problem, and so, the optimum of our model can
be smaller that the optimum of other models that do enforce a fleet size constraint. Benchmark sets val and
egl provide several instance classes associated to the same graph: they are referred to, in increasing order
of their fleet size, as A, B, C, and (or) D. In each case, we only report results for the instance class with the
largest fleet size (C or D), so as to (try to) reduce the impact of relaxing this fleet constraint.

5.2.2 Numerical Results and Comparison with Existing CG Results

The CARP results are provided on the next two pages, first for scaled instances (Table 3, see suffix “scl” for
“scaled”) and then for unscaled instances (Table 4). Both tables use the following format: the first three
columns provide instance information (instance name, n = |ER| and |V |), Column 4 reports the computing
effort (under the format described by the third paragraph of Section 5) required to reach an optimality
gap of 10%, Column 5 provides the computing effort needed to fully converge, Columns 6-7 indicate the
lower and upper bounds returned by the IRM in the end. In the case of Table 4, there are some additional
columns that provide: (i) two CG lower bounds “[18]bst” (best CG optimum in columns E and NE in Tables
1-4) and “[21]bst” (best CG optimum in columns ER and NER in Tables 1-4) in the next-to-last column
and (ii) the IP optimum when available (or an upper bound marked with a star) in the last column (see
logistik.bwl.uni-mainz.de/benchmarks.php).

We comment below these CARP results, by picking out the key claims along the way in boldface.
IRM can tackle scaled instances with 1000-fold larger capacities then standard-size instances

used so far in CG CARP work. The 1000-fold capacity increase might easily lead to serious slowdowns in
other DP pricing routines in classical CARP CG. This comes from the fact that all elements of [0..1000C]×VR
can generate a state in the DP CG pricing schemes we are aware of (see Section 4.2.3.3).

IRM provides reasonable lower bounds before fully converging. Indeed, IRM could be used to
produce lower bounds even if the full convergence (either for CG or IRM) takes too long, i.e., on instances
of very large size in both |V | and C. For example, in less than 30 minutes, IRM reached an optimality gap
of less than 10% on egl-e1-Cscl (with n = 51, |V | = 77 and C = 160000!). To compare these lower bounds
of large-scale instances (Table 3) to their (yet-unknown) IP optimum, one can refer to the IP optimum of
standard-size instances (last columns in Table 4). Under reasonable route length conditions (see the second
paragraph of Section 5), the set of valid routes does not change by scaling.

On standard-size gdb and kshs instances, the running time of IRM is generally comparable
to that of other CG methods from the literature, i.e., about one second or less—see also the NE-S
(non-elementary sparse) column in [18, Table 6]. However, as the graph size increases (i.e., val and egl

instances have |V | > 30), the IRM running time increases more rapidly than the typical running time of
classical CG. This is rather due to the intersection sub-problem: as discussed at the end of Section 4.2.3.3,
the CG pricing routines are usually faster in terms of complexity factors |V | or |E|.

The number of IRM iterations is similar in large-range and standard-size instances, but
the large-range version requires 2-10 more CPU time. Such CPU time increases come from a sub-problem
algorithm slowdown, which is rather due to the noise adjustment introduced by scaling than to the 1000-fold
weight increase itself. Indeed, by introducing this noise, certain equivalent routes in the unscaled version
can be discriminated in the scaled version, i.e., they no longer have exactly the same weight. This implicitly
causes more state updates in the IRM sub-problem DP. In fact, Algorithm 4 (Appendix B) can waste time
“rediscovering” states that only differ by small noise weight differences. Each rediscovery of a state s can
trigger the rediscovery of numerous other states that are generated from s.
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Instance IRM Computing Effort Final IRM
Name n |V |

(
iters (discr)/time

)
bounds

Gap 10% Full converg. lb ub
gdb1scl 22 12 76(0)/0.6 133( 5 )/2.5 284 284
gdb2scl 26 12 73(0)/1.0 119( 2 )/1.5 313 313
gdb3scl 22 12 41(0)/0.2 134( 4 )/1.7 250 250
gdb4scl 19 11 61(0)/0.3 85( 3 )/0.6 270 270
gdb5scl 26 13 84(0)/1.1 126( 4 )/2.9 359 359
gdb6scl 22 12 55(0)/0.3 103( 3 )/1.0 282 282
gdb7scl 22 12 523(0)/1.1 538( 1 )/1.7 291 291
gdb8scl 46 27 163(1)/57 time out 317 328
gdb9scl 51 27 147(0)/74 time out 274 298
gdb10scl 25 12 17(0)/0.1 49( 2 )/0.3 254 254
gdb11scl 45 22 33(0)/1.2 149( 3 )/28.0 364 364
gdb12scl 23 13 63(0)/0.7 101( 8 )/1.5 445 445
gdb13scl 28 10 58(0)/0.7 146( 6 )/4.0 526 526
gdb14scl 21 7 18(0)/0.1 68( 6 )/0.4 99 99
gdb15scl 21 7 13(0)/0.1 40( 0 )/0.4 57 57
gdb16scl 28 8 30(0)/0.3 89( 3 )/0.8 122 122
gdb17scl 28 8 18(0)/0.2 88( 7 )/1.6 86 86
gdb18scl 36 9 30(0)/0.7 72( 0 )/3.0 159 159
gdb19scl 11 8 10(0)/0.05 14( 0 )/0.09 53 53
gdb20scl 22 11 25(1)/0.2 71( 3 )/2.8 114 114
gdb21scl 33 11 28(0)/0.3 136( 3 )/1.9 152 152
gdb22scl 44 11 39(0)/0.5 152( 4 )/3.4 197 197
gdb23scl 55 11 79(0)/1.5 261( 7 )/6.8 233 233
kshs1scl 15 8 52(0)/2.1 103(10)/6.6 13553 13553
kshs2scl 15 10 58(0)/1.6 101(10)/5.4 8681 8681
kshs3scl 15 6 13(0)/0.2 63( 7 )/0.8 8498 8498
kshs4scl 15 8 17(0)/0.4 47( 7 )/1.5 11297 11297
kshs5scl 15 8 46(0)/0.8 113(10)/2.9 10358 10358
kshs6scl 15 9 15(0)/0.3 104( 8 )/38.1 9213 9213
val1cscl 39 24 93(0)/23 204( 6 )/152 225 225
val2cscl 34 24 100(1)/42 159( 7 )/231 453 453
val3cscl 35 24 141(1)/36 188( 5 )/143 131 131
val4dscl 69 41 time out 414 1621
val5dscl 65 34 time out 443 848
val6cscl 50 31 145(0)/97 time out 295 296
val7cscl 66 40 time out 264 414
val8cscl 63 30 time out 426 557
val9dscl 92 50 time out 298 790
val10dscl 97 50 time out 426 1480
egl-e1-Cscl 51 77 98(2)/1755 time out 5043 5300
egl-e2-Cscl 72 77 time out 7345 8193
egl-e3-Cscl 87 77 time out 8046 10276
egl-e4-Cscl 98 77 time out 7972 13322
egl-s1-Cscl 75 140 time out 7324 8252
egl-s2-Cscl 147 140 time out 6006 67850
egl-s3-Cscl 159 140 time out 3380 78561
egl-s4-Cscl 190 140 time out 4187 92326

Table 3: IRM results for scaled (large-scale capacity) CARP instances. The values lb and ub represent final
lower and upper bounds at the end of the search (they are equal unless IRM times out).
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Instance IRM Computing Effort Final IRM OPTCG
a OPTIP

Name n |V |
(
iters (discr)/time

)
bounds [18]bst, [21]bst (best IP∗)

Gap 10% Full Conv lb ub
gdb1 22 12 71(0)/0.4 125( 4 )/1.7 284 284 285, 288 316
gdb2 26 12 51(0)/0.2 95( 3 )/0.6 313 313 314, 318 339
gdb3 22 12 61(0)/0.2 146( 5 )/1.3 250 250 250, 254 275
gdb4 19 11 66(0)/0.5 90( 3 )/0.7 270 270 272, 272 287
gdb5 26 13 91(0)/0.6 137( 5 )/1.8 359 359 359, 364 377
gdb6 22 12 85(0)/0.5 134( 3 )/1.2 282 282 284, 287 298
gdb7 22 12 221(0)/0.3 261( 3 )/1.4 291 291 293, 293 325
gdb8 46 27 188(0)/60 time out 320 327 330, 331 348
gdb9 51 27 204(0)/98 time out 271 297 294, 294 303
gdb10 25 12 16(0)/0.1 50( 0 )/0.2 254 254 254, 256 275
gdb11 45 22 32(0)/0.6 126( 2 )/6.2 364 364 364, 368 395
gdb12 23 13 63(0)/0.4 101( 8 )/1.0 445 445 444, 445 458
gdb13 28 10 51(0)/0.2 178( 4 )/3.0 526 526 525, 526 536
gdb14 21 7 17(0)/0.04 61( 3 )/0.2 99 99 98, 100 100
gdb15 21 7 12(0)/0.03 39( 0 )/0.1 57 57 56, 58 58
gdb16 28 8 29(0)/0.1 75( 5 )/0.3 122 122 122, 122 127
gdb17 28 8 20(0)/0.1 79( 3 )/0.5 86 86 85, 87 91
gdb18 36 9 36(0)/0.4 60( 0 )/0.7 159 159 159, 164 164
gdb19 11 8 10(0)/0.03 14( 0 )/0.07 53 53 55, 55 55
gdb20 22 11 23(0)/0.1 85( 3 )/3.4 114 114 114, 114 121
gdb21 33 11 25(0)/0.1 149( 5 )/1.0 152 152 151, 152 156
gdb22 44 11 39(0)/0.2 168( 8 )/1.7 197 197 196, 197 200
gdb23 55 11 76(0)/0.7 268( 7 )/2.8 233 233 233, 233 233
kshs1 15 8 52(0)/0.4 103(10)/2.7 13553 13553 13553, 13876 14661
kshs2 15 10 58(0)/0.5 101(10)/2.7 8681 8681 8723, 8929 9863
kshs3 15 6 12(0)/0.03 63( 7 )/0.1 8498 8498 8654, 8614 9320
kshs4 15 8 17(0)/0.1 47( 7 )/0.5 11297 11297 11498, 11498 11498
kshs5 15 8 46(0)/0.1 113(10)/0.7 10358 10358 10370, 10370 10957
kshs6 15 9 15(0)/0.05 104( 8 )/24.2 9213 9213 9232, 9345 10197
val1c 39 24 93(0)/19 193( 6 )/205 225 225 239b 235 245
val2c 34 24 91(1)/30 140( 7 )/169 453 453 457b, 457 457
val3c 35 24 104(1)/28 146( 5 )/97 131 131 131b, 131 138
val4d 69 41 time out 418 1164 499b, 500 530
val5d 65 34 time out 442 819 546b, 547 575
val6c 50 31 158(0)/86 257( 5 )/459 296 296 298b, 299 317
val7c 66 40 time out 265 394 304b, — 334
val8c 63 30 time out 431 551 502b, — 521
val9d 92 50 time out 299 612 357b, — 388
val10d 97 50 time out 434 1340 486b, — 525
egl-e1-C 51 77 115(1)/1382 time out 5110 5275 5472, 5473 5595
egl-e2-C 72 77 time out 7199 8138 8187, 8188 8335
egl-e3-C 87 77 time out 8725 10035 10086, 10086 10292∗

egl-e4-C 98 77 time out 7621 13093 11416, 11411 11562∗

egl-s1-C 75 140 196(2)/4897 time out 7498 8169 8423, 8247 8518
egl-s2-C 147 140 time out 7086 65255 16262, 16262 16425
egl-s3-C 159 140 time out 3380 78561 17014, 17014 17188
egl-s4-C 190 140 time out 4187 92326 20197, 20144 20481∗

Table 4: IRM results for standard CARP. The CG optima from next-to-last columns indicate the best value
of all CG bounds from [18] and [21]. Each CG model defines its feasible routes in slightly different manners.a

aSome pricing schemes allow non-elementary (NE) routes and some not, others apply 2-cycle eliminations, different domina-
tion criteria or various strengthening methods. Our IRM sub-problem (Appendix B) allows non-elementary routes, eliminates
2-cycles and forbids the repetitive use of the same service segment. An important particularity of our model is the use of an
unlimited fleet size (relaxed primal constraint). This makes the IRM bound of (slightly) lower quality than the CG bound
based on pricing without NE routes, but one can make no absolute comparison with regards to CG with NE routes.

bFor these 10 instances, we subtracted the following offset from the values reported in [18]: 74, 71, 24, 122, 143, 107, 103, 136,
127, and respectively 209—see the “offset” column in the corresponding tables at logistik.bwl.uni-mainz.de/benchmarks.php.
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5.3 General Experimental Conclusions

Let us insist on a few IRM advantages that show up across several numerical tests and problems. Generally
speaking, notice we tried to address problems with rather diverse features, e.g., there is no restriction on the
column costs (they have large variations in CARP) or on the covering demands b (they vary in Cutting-Stock).

(1) On large-range (scaled) instances, IRM is never less effective than CG, especially when the 1000-fold
weight increase (scaling) renders the separation sub-problem prohibitively-hard for CG. Indeed, the
IRM was able to solve certain large-range instances for which conventional CG could take excessively
long time, e.g., see the IRM-CG experimental comparison on large-range versions of f2-Elastic and
f3-Elastic Cutting-Stock (Section 5.1), or also the large-range Capacitated Arc Routing results
(Section 5.2). Generally speaking, the IRM running time stays in the same order of magnitude for
standard-size and large-range input—compare Tables 1 and 2 (Section 5.1), or Tables 3 and 4 (Sec-
tion 5.2).

(2) On standard-size instances, the results of IRM are on a par with those of CG. For instance, the IRM
solves certain pure Cutting Stock instances within a similar time as CG with Minknap pricing. One
should be aware that Minknap is actually one of the most competitive knapsack algorithms from a very
vast literature. IRM solves the intersection sub-problems using a rather ad-hoc implementation of the
r-indexed (profit-indexed) DP. In terms of the number of iterations, the comparison between CG and
IRM can be described as balanced (both in Cutting-Stock and Arc-Routing).

(3) IRM offers intermediate lower bounds b>xlb as a built-in component, while CG only offers an option
(not systematically used) to determine Lagrangean intermediate lower bounds. Coupled with upper
bounding techniques, the IRM can generally reach an optimality gap of 10% using about 25% of its
total convergence time for roughly half of the tested instances (of either problem, see columns “10%
Gap” in Tables 2 and 4). At best, the IRM lower bound b>xlb = b>(t∗r) can even be nearly optimal
from the first iterations. Indeed, certain Bin-Packing instances (e.g., the triplets) have an optimal
dual solution of the form x∗ = t∗b (b is 1n in Bin-Packing) that is “hit” at the very first iteration
with r = b;

Finally, let us emphasize the main reasons lying behind the success of IRM over CG on large-range
instances. The most important IRM performances are rather due to the rapidity of the sub-problem algorithm
than to the number of iterations—which usually stays in the same order of magnitude for both methods.
This rapidity comes from the fact that IRM can more easily provide very small r values as input to the
sub-problem, speeding-up the r-indexed DP (Section 3.2). Indeed, if r is smaller than w, the number of
states in r-indexed DP is naturally smaller than in w-indexed DP. For instance, when r = b = 1n in
Bin-Packing, the sub-problem becomes equivalent to solving a knapsack problem with equal profits, which
is very easy (regardless of the weight range). As long as r is generally smaller than x, IRM can usually
solve its sub-problems more rapidly. Also, IRM does not generally need more than 5 discretization refining
operations throughout the search (see Tables 1-4), which is enough to keep r at relatively low values at most
times, i.e., r contains values that are usually no larger than 25 = 32, less than typical weight values (that
can easily exceed 1000 in many cases, see Table 5, p. 38 for the Cutting-Stock instances).

6 Conclusions

We proposed a ray projection approach for optimizing (primal or dual) LPs in which the feasible area is a
polytope P with prohibitively many constraints. Such LPs are commonly optimized by cutting-planes (if P
is a primal) or CG (if P is a dual). In these methods, one uses a separation sub-problem to gradually refine
an outer polytope PA ⊃ P, so as to iteratively converge a sequence of dual bounds OPT(PA). Our Integer
Ray Method (IRM) relies on an intersection sub-problem that generalizes the separation sub-problem: given
a (feasible or infeasible) solution r, find the maximum t∗ such that t∗r ∈ P. By iterating over such rays
r, the IRM evolves as a primal method (see Section 1.1.1.1), i.e., it relies on a sequence of built-in primal
bounds xlb = t∗r that converges to the optimum.
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The IRM was tested on various Set-Covering dual LPs that are typically solved by CG. The conclusions
of the experimental tests (Section 5.3) confirm the practical interest in the approach, especially on large-range
instances on which the classical CG sub-problem seems prohibitively-hard.

Last but not least, the application of the IRM to a new LP would only require providing two routines:
(i) a routine for the intersection sub-problem and (ii) a routine indicating the number of variables n, along
with a feasible interval for each variable. This applies both to the theoretical design of Algorithm 1 and to
the implementation (publicly available on-line, see Footnote 5, p. 23). We hope this paper can shed useful
light for solving other primal LPs such as (1.1) or dual LPs such as (3.1). A direct continuation of this work
consists of applying IRM in a primal context, by implementing the above two routines for a primal LP.
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A A Small LP Optimized by Iterating over Rays

We here illustrate the convergence process the LP from Figure 1, copied here to ease the reading. Importantly,
the ray choices from this example do not accurately represent the real IRM choices: the ray generator is
voluntarily simplified, as we only want to illustrate the general idea of iterating over rays rather then the
details of our ray generator.
Step 1 IRM starts out with r1 = b = [1 1]. The intersection

sub-problem leads to:

– t∗ = 5;

– ca = 15 and a = [2 1], i.e., 2x1 + x2 ≤ 15;

– xlb = [5, 5];

– xub = [0 15], i.e., the optimal solution over the poly-
tope delimited by x ≥ 0n and above “first-hit” con-
straint 2x1 + x2 ≤ 15.

Step 2 As hinted above, the ray generator from this example
is voluntary simplifieda and we consider that the next
ray is rnew = xub = [0 15]. After solving the intersection
sub-problem, we obtain:

– t∗ = 10/15;

– ca = 10 and a = [0 1], i.e., x2 ≤ 10;

– xlb = [0, 10],

– xub = [2.5, 10], i.e., the above first-hit constraint
separates the old xub = [0 15], thus updating xub =
[2.5, 10]. In the figure, we observe that xub1 ad-
vances towards xub2.

Step 3 IRM could take rnew = [3 10], using a rounding of the
form bxub + 1

21nc. The intersection sub-problem leads to:

– t∗ = 50/55 = 10/11;

– ca = 50 and a = [5 4], i.e., 5x1 + 4x2 ≤ 50;

– xlb = [ 30
11 ,

100
11 ];

– xub = [2 10].

Observe that b>xlb = 130
11 ≈ 11.78 and that b>xub = 12,

i.e., the gap is very small.

Step 4 IRM could consider r = xub = [2 10], solve the inter-
section sub-problem to find xlb = xub =OPT(P) = [2 10].

aThe ray generator from Algorithm 2 (Section 2.3.1) would search for
new rays by rounding points of the form r + β(xub − xlb), with β < 1

t∗ .
Technically, Algorithm 2 tries to locate new rays on the segment joining
r = [1 1] and r+ 1

5
([0 15]−[5 5]), i.e., it advances from [1 1] in the direction

of [−5 10]. This could yield rays [1 2] and [0 2].

x150
0

5

x2

r1 = (1, 1), i.e., obj. func.

xlb1 = 5r1

= (5, 5)

r3 = (3, 10), i.e., closest
integer to xub2 (bxub2 + 1

2 c)

10

15 xub1 = (0, 15)
r2 = xub1

xub3

xub2

max x1 + x2
2x1 + x2 ≤ 15
x2 ≤ 10
5x1 + 4x2 ≤ 50

2x
1
+
x

2 ≤
15

x2 ≤ 10

5x
1 +

4x
2 ≤

50

xlb3

xlb2

B Algorithm for the CARP Intersection Sub-problem

The states from Section 4.2.3 are recorded as follows. For a given v ∈ V , a list data structure states[v]
keeps all states (ps, cs, v) sorted in a lexicographic order, i.e., first ordered by profit and then by cost. In fact,
for each integer profit p > 0, one can access all states (p, cs, v) as if they were recorded in a separate sublist
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corresponding to a fixed profit p. Since all existing instances use integer edge lengths, we can consider that
the deadheading traversal costs cs are also integer (they are sums of edge lengths). This is not a theoretical
IRM requirement, but it is useful for reducing the number of states in practice.

Algorithm 4 IRM Sub-problem Algorithm for CARP

Require: ray r ∈ Zn, G = (V,E), required edges ER, cost c(u, v) ∀u, v ∈ V , weights w, and capacity C
Ensure: minimum cost/profit ratio t and an associated route a that yields this optimum t value

1: states[v0]← {(0, 0, v0)} . null state: no move, 0 profit, 0 dead-heading cost
2: do

Stage 1: Build service segments by chaining serviced edges {u, v}: increase profits, keep costs fixed
3: repeat
4: for (u ∈ V, (p, c, u) ∈ states[u]) do . For each segment ending in u,
5: for {u, v} ∈ ER do . augment service with {u, v}
6: newW ←W (p, c, u) + w(u, v)
7: if newW ≤ C then
8: oldW ←W (p+ r(u, v), c, v) . W returns ∞ if (p+ r(u, v), c, v) /∈states[v]
9: states[v]←states[v] ∪ {(p+ r(u, v), c, v)}

10: W (p+ r(u, v), c, v)← min(newW, oldW ) . State update
11: end if
12: end for
13: end for
14: until {no state update in the last iteration} . no W improvement in Line 10 (newW ≥ oldW )

Stage 2: Add segment transfers from u to v: keep profits fixed, increase costs
15: for u, v ∈ V (with u 6= v) do
16: for (p, c, u) ∈states[u] do
17: newW ←W (p, c, u) . total weight (load) uninfluenced by deadheading
18: oldW ←W (p, c+ c(u, v), v) . W returns ∞ if (p, c+ c(u, v), v) /∈states[v]
19: states[v]← states[v] ∪ {(p, c+ (u, v) , v)}
20: W (p, c+ c(u, v), v)← min(newW, oldW ) . State Update
21: end for
22: end for

Stage 3: Check for better (lower) cost/profit ratios
23: for (p, c, v0) ∈states[v0] do . complete routes ending in v0

24: tub = min(tub,
c
p )

25: end for
Stage 4:Prune: (A) old states, not generated from last Stage 1 or 2, or (B) states with large costs

26: for (v ∈ V, (p, c, v) ∈ states[v]) do
27: wRes = C −W (p, c, v)
28: pMaxRes = pMaxResidual(wRes) . profit bound using capacity wRes

29: if
(
W (p, c, v) not updated in Line 10 or 20 OR c

p+pMaxRes ≥ tub

)
then

30: states[v]←states[v]− {(p, c, v)}
31: end if
32: end for
33: while states6= ∅
34: return tub . An associated route is reconstructed by following precedence relations between states

The (rather self-explanatory) pseudocode is provided in Algorithm 4 and commented upon in the subse-
quent paragraphs. We emphasize the following key stages:

Stage 1: build continuous service segments Any required edge {u, v} ∈ ER can be used to augment
(continue) a service segment ending in u ∈ V . Each repeat-until iteration of Stage 1 (Lines 3-14)
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considers all such segments (in Line 4) and tries to augment them to higher weights (increased load)
by servicing any edge {u, v} ∈ ER (in Line 5). When all such service increases lead to higher weights
exceeding C, the Stage 1 ends by breaking the repeat-until loop with the condition in Line 14. Also,
at each new update of s ∈states[v], we record the state (p, c, u) ∈states[u] and the edge (i.e., {u, v})
that led to s. We thus build a network of precedence relations between states that is later useful to:
(i) reconstruct an actual optimal route a in the end, (ii) eliminate 2-cycles (U-turns).6

Stage 2: continue with transfer segments For any u, v ∈ V (u 6= v), a single transfer u → v may be
required to link a service segment ending in u to a service segment starting in v. This transfer can
only increase the dead-heading cost, but not the weight (load). By chaining Stage 1 and 2, one can
generate any sequence of service and dead-heading segments. The null service (no move) is added in
Line 1 to allow Stage 2 to discover routes that actually directly start by dead-heading.

Stage 3: optimum update Check for better cost/profit ratios on complete routes (ending at v0) in Lines 23–
25.

Stage 4: prune useless states Remove as many states as possible so as to break the main do-while loop
(Lines 2-33) as soon as possible by triggering the condition in Line 33 (i.e., no state left). Given v ∈ V ,
a state (p, c, v) ∈ states[v] can be removed in one of the following cases:

(A) (p, c, v) was not updated by the last call of Stage 1 or Stage 2. This indicates that state (p, c, v) has
already generated other states in Stage 1 or 2 and any future use becomes redundant. However,
the value W (p, c, v) is recorded because it can still be useful: if state (p, c, v) is re-discovered later,
there is no use to re-insert it—unless the rediscovered weight is smaller than W (p, c, v).

(B) the cost c is so high that the state (p, c, v) can only lead to ratios cost/profit thare are guaranteed
to stay above the current upper bound tub. For instance, if tub = 0 and c > 0, all states can be
removed and the algorithm finishes very rapidly—at the second call of Line 33, after removing
already-existing states using (A).

The only external routine is pMaxResidual(wRes) in Stage 4, Line 28. It returns the maximum profit
realized by a route ending at the depot using a capacity of no more then wRes (for any starting point).
We used the following upper bound for this profit: ignore the dead-heading costs (the vehicle can directly
“jump” from one vertex to another when necessary) and obtain a classical knapsack problem with capacity
wRes, weights w and profits r. This upper bound can be calculated once (e.g., via DP) for all realizable
values wRes ∈ [0..C] in a pre-processing stage.

C Intermediate Lagrangean Bounds in Column Generation

To (try to) make the paper self-contained, let us discuss in greater detail the Lagrangean CG lower bounds
mentioned throughout the paper. The numerical Cutting-Stock experiments from Section 5.1.3 rely on the
Farley bound, which is one of the specializations of the Lagrangean CG bound. While such CG bounds are
a very general CG tool, their calculation can be different from problem to problem. To ease the exposition,
we recall the main Set-Covering CG model from Section 3 and we present below both the primal (left) and
the dual (right) programs:

min
∑
caλa

x :
∑
aiλa ≥ bi, ∀i ∈ [1..n]

λa ∈ R+ ∀[ca a]> ∈ A

max b>x
λ : a>x ≤ ca, ∀[ca,a] ∈ A,

xi ≥ 0, i ∈ [1..n]
where all sums are carried out over all primal columns [ca,a] ∈ A.

We describe the Lagrangean bound on the primal (left) program, by reformulating ideas from work such
as [6, § 2.2], [26, §. 3.2], [20, §. 2.1] or [7, § 1.2]. Each iteration of the CG process yields some dual values x

6However, k-cycles with k > 2 are not detected, but this would require more computational effort; the situation is analogous
to that of CG pricing methods for CARP [18, §3.1] and VRP [16]. By going more steps back on precedence relations, we could
avoid longer cycles, but this study is mainly focused on IRM and not on cycle elimination.
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that we use as Lagrangean multipliers to relax the primal set-covering constraints
∑
aiλa ≥ bi. More exactly,

for any such fixed x, the Lagrangean bound Lx is simply obtained from the primal by introducing penalty xi
for violating

∑
aiλa ≥ bi. Technically, the primal becomes: Lx = minλ

(∑
caλa + x>(b−

∑
aλa)

)
, where

all sums are carried out over all primal columns [ca,a] ∈ A. After classical algebraic reformulations, we
obtain the following relation between the CG optimum OPTCG and Lx.

OPTCG ≥ Lx = min
λ≥0

(∑
(ca − a>x)λa

)
+ b>x ≥ min

λ≥0

(
mrdc

∑
λa

)
+ b>x, (C.1)

where mrdc = min[ca,a]∈A ca−a>x ≤ 0 is the minimum reduced cost at the current iteration. Assuming that

a primal upper bound ub is known, one could add
∑
λa ≤ ub to the primal; as such,

∑
λa ≤ ub also holds

in (C.1), which can that evolve to:
OPTCG ≥ b>x + ub ·mrdc, (C.2)

We see that one requires an upper bound value ub. This can be obtained, for instance, by classical primal
heuristics. However, for pure Cutting-Stock, the fact that ca is always 1 leads to

∑
λa =

∑
caλa ≤ OPTCG,

i.e., one can use ub = OPTCG, which would transform (C.2) into OPTCG ≥ b>x + OPTCG · mrdc. The
Farley lower bound LFx follows immediately:

LFx =
b>x

1−mrdc
≤ OPTCG.

Since all our Elastic Cutting-Stock problems verify ca ≥ 1,∀[ca,a] ∈ A, we could still use ub =
OPTCG, simply because

∑
λa ≤

∑
caλa ≤ OPTCG; in this case, the above bound LFx is still correct.

In any case, to exploit (C.2), one needs a primal upper bound ub on
∑
λa. Generally speaking, to obtain

high-quality upper bounds for other problems, one might need more specific modelling work.

D Cutting-Stock Instances: Characteristics and References

Name n C avg. b span avg. w span Description

vb10 10 10000 [10, 100] [1, 1
2C] 20 random instances [26]: CSTR10b50c[1-5]* filesa

vb20 20 10000 [10, 100] [1, 1
2C] 25 random instances [26]: CSTR20b50c[1-5]* filesa

vb50-c1 50 10000 [50, 100] [1, 3
4C] 20 random instances [26]: CSTR50b50c1* filesa

vb50-c2 50 10000 [50, 100] [1, 1
2C] 20 random instances [26]: CSTR50b50c2* filesa

vb50-c3 50 10000 [50, 100] [1, 1
4C] 20 random instances [26]: CSTR50b50c3* filesa

vb50-c4 50 10000 [50, 100] [ 1
10C,

1
2C] 20 random instances [26]: CSTR50b50c4* filesa

vb50-c5 50 10000 [50, 100] [ 1
10C,

1
4C] 20 random instances [26]: CSTR50b50c5* filesa

vb50-b100 50 10000 [1, 210] [ 1
10C,

1
2C] 20 random instances [26]: CSTR50b100c4* filesa

m01 100 100 1 [1, C] 1000 random bin-packing instances [8];

m20 100 100 1 [ 20
100C,C] 1000 random bin-packing instances [8];

m35 100 100 1 [ 35
100C,C] 1000 random bin-packing instances [8];

Hard ≈ 200 100000 1− 3 [ 20
100C,

35
100C] Bin-packing instances, known to be more difficult

Triplets
15,45,75
. . . 285

30000 1
[C3 −

n−1
2 ,

C
3 + n−1

2 ]
The smallest 10 triplets; the optimal solution con-
sists of n

3 bins, all filled with exactly 3 items.

Table 5: Original Cutting-Stock instance files. The columns “avg. b span” and “avg. w span” indicate the
general interval of the demand value, and, respectively, item weights.

aIn the archive http://www.math.u-bordeaux1.fr/~fvanderb/data/randomCSPinstances.tar.Z
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