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Abstract The Column Generation (CG) method can be seen as a Cutting Planes
algorithm working on the dual of the master Linear Program (LP). It proceeds
by progressively removing infeasibility in the dual space using the separation
sub-problem. We have proposed in [11] the generalization of the separation
sub-problem to the intersection sub-problem: given any point y in the dual
space, find the maximum t∗ such that t∗y is dual-feasible. In [11], this sub-
problem was only used inside the Integer Ray Method. The goal of this short
note is to present the advantage of the intersection sub-problem in a pure
CG framework: we consider a canonical CG algorithm in which we use the
intersection sub-problem to derive dual-feasible solutions. This is the main
advantage of the intersection sub-problem: it can be used to derive a dual
(lower) bound at each iteration. Using this lower bounding approach, we pro-
pose a more general proof of the Farley (Lagrangian) lower bound. Compared
to the Lagrangian proof, the new proof is more general in the sense that it
also produces a dual-feasible solution and not only a bound value. Then, we
present a procedure that transforms a primal heuristic solution into a dual-
feasible solution; for the graph coloring problem, this procedure can be easily
implemented because it does not even need to explicitly solve any LP. Finally,
we extend the Farley bound to the case of columns with different objective
coefficients in the primal formulation. Numerical results are presented on the
graph coloring problem and on the capacitated arc routing problem.

1 Introduction

Column Generation (CG) is a well established technique for optimizing lin-
ear programs with prohibitively many columns and variables. Such programs
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arise very often in operations research; the columns can represent cutting pat-
terns (e.g., in cutting stock and bin packing [7,3]), paths/routes (in routing
problems [4,8]), subsets of clients (in p-median [9,14]), etc—see more exam-
ples and references in the introduction of [17,4] or in the book [5]. A classical
CG process starts out with a subset of columns and it iteratively adds (only)
necessary columns by solving a pricing (dual separation) sub-problem.

We recall the Column Generation model associated to Set Covering prob-
lems. Without loss of generality, we consider a minimization problem described
(after linear relaxation) by the following primal-dual LPs.

min
∑
caxa

y :
∑
aixa ≥ bi, ∀i ∈ [1..n]

xa ≥ 0 ∀[ca,a] ∈ A
(1.1a)

max b>y
x : a>y ≤ ca, ∀[ca,a] ∈ A

y ≥ 0n

, (1.1b)

where all the sums are carried out over all columns [ca,a] ∈ A. We do not
formally impose any condition on the size of the column set A, but we con-
sider that the listing of all columns is computationally very exhausting, if not
impossible. As such, a CG algorithm generates only relevant columns by iter-
atively solving a pricing (dual separation) sub-problem. Given current y, this
sub-problem asks to minimize ca−a>y over all [ca,a] ∈ A; if the result is less
than zero, a new primal column (dual constraint) has to be inserted.

The main disadvantage of a CG algorithm is that it can require too many
iterations, i.e., as [2] put it, a CG process can be “desperately slow”. Lower
bounds can then be used for tail-cutting, ensuring an earlier termination.

1.1 Overview of the Farley Lagrangian bound

The classical approach to derive lower (dual) bounds in CG relies on the
Lagrangian relaxation. We here briefly recall this approach. Using Lagrangian
multipliers y ≥ 0n to relax the primal constraints

∑
axa ≥ b, the primal

objective function becomes min
x≥0

∑
caxa − y>(

∑
a>xa − b). After several

algebraic reformulations (see work such as [11, Appendix C], [1, § 2.2], [16,
§. 3.2], [10, §. 2.1] or [2, § 1.2]), the Lagrangian bound can be written as:

b>y + ub ·mrdc, (1.2)

where mrdc = min[ca,a]∈A
(
ca − a>y

)
is the minimum reduced cost with re-

gards to multipliers y, and ub ≥
∑
xa is an upper bound of the sum of all

primal variables
∑
xa.

We say that the optimum of the CG model OPTCG satisfies OPTCG ≥
b>y + ub ·mrdc for any multipliers y ≥ 0n. In case ca = 1,∀[ca,a] ∈ A, the
objective of (1.1a) is already a sum of variables ; we can thus insert

∑
xa =∑

caxa ≤ OPTCG in all primal formulations. As such, we can use OPTCG

instead of ub as an upper bound over the sum of variables
∑
xa. This yields
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OPTCG ≥ b>y + OPTCG ·mrdc which directly leads to the Farley bound [6]:

OPTCG ≥
b>y

1−mrdc
. (1.3)

Notice that 1−mrdc = 1− min
[ca,a]∈A

(
1− a>y

)
= − min

[ca,a]∈A
−a>y = max

[ca,a]∈A
a>y,

and so, the Farley bound is equivalent to:

OPTCG ≥
b>y

max
[ca,a]∈A

a>y
. (1.4)

1.2 Overview of the new lower bounding approach

This paper presents a new approach for deriving lower bounds, without using
the Lagrangian relaxation. It is based on projecting towards dual solutions
in the dual space using the intersection subproblem. Generally speaking, the
intersection sub-problem along 0n → y requires finding the maximum t∗ such
that t∗ ·y is dual feasible (see also Figure 1). We will show in Section 2 that the
objective value of t∗ ·y is equal to the value of the Farley bound from (1.3)-(1.4)
above. Besides reporting this bound value, the advantage of the intersection
sub-problem is that it also generates the dual-feasible solution t∗ · y.

0n

t∗ · y

y

Fig. 1: An intuitive illustration of a ray projection. Besides finding a first-hit constraint (in
red) that separates y, the intersection sub-problem also produces dual feasible solution t∗ ·y.

We will present experimental results on the intersection sub-problem for
graph coloring and for the capacitated arc routing problem. In both cases,
we produce a vector y using a CG model and we solve the intersection sub-
problem along 0n → y. This leads to a lower bound value and to a dual-feasible
solution. Unlike the Farley bound, the new lower bounding approach also works
on CG models with different objective coefficients in the primal formulation.

The rest of the paper is organized as follows. Section 2 is devoted to the
new proof of the Farley Lagrangian bound (Section 2.1) and to a generaliza-
tion to the case of columns with different objective coefficients in the primal
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formulation (Section 2.2). Section 3 presents numerical results, followed by
conclusions in the last section.

2 Generalizing a theoretical result on the Farley bound

To ease the exposition, we only deal with the case ca ≥ 0 and a ≥ 0n ∀[ca,a] ∈
A. Under this condition, the solution 0n is dual feasible in (1.1b).

Definition 1 Given any y ∈ Rn
+, the intersection subproblem along ray 0n →

y asks to find the maximum step length t∗ ≥ 0 such that t∗ · y is (dual)
feasible in (1.1b). This maximum is found by minimizing the fraction ca

a>y

over all columns [ca,a] ∈ A that verify a>y > 0.

A short proof and related discussions on the above min-max equivalence can
be found in Proposition 3 of [11, §3.2]. The condition a>y > 0 is necessary
to avoid zero denominators in the minimized fraction. For instance, if y has
only one non-zero component yi 6= 0 for some i ∈ {1, 2, . . . , n}, than there are
many columns [ca,a] ∈ A with ai = 0 that yield a>y = 0.

2.1 The new proof of the Farley bound

We show that the Farley bound can be proved without using the Lagrangian
relaxation, by projecting towards dual solution y. Indeed, by projecting in
the dual space along any 0n → y, one obtains a dual feasible solution t∗ · y
of objective value t∗ · b>y. When ca = 1 ∀[ca,a] ∈ A, the intersection sub-
problem asks to find t∗ by minimizing ca

a>y
= 1

a>y
over all [ca,a] ∈ A. This

requires maximizing max
[ca,a]∈A

a>y, and so, we obtain t∗ = 1

max
[ca,a]∈A

a>y
. The

lower bound value t∗ · b>y becomes b>y

max
[ca,a]∈A

a>y
, equivalent to (1.4).

The above proof of the Farley bound is not only shorter than the Lagrangian-
based proof, but also more general in the sense that it produces a dual feasible
solution y

max[ca,a]∈A a>y
. The availability of a dual feasible solution can be po-

tentially useful for stabilization reasons in CG.

2.2 The case of columns with different objective coefficients ca

Using the intersection sub-problem, we can further generalize the Farley bound
to address problems in which the values ca are not all equal to 1. To determine
this generalized bound, it is enough to calculate t∗ and report bound t∗ ·b>y.
Compared to the case ca = 1∀a ∈ A, the only difference is that t∗ can no longer
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be determined by maximizing max
[ca,a]∈A

a>y. This leads to a slightly modified

lower bounding procedure. After calculating

t∗ = min
[ca,a]∈A
a>y>0

ca
a>y

(2.1)

we obtain the lower bound t∗ · b>y, that can be written:

min
[ca,a]∈A
a>y>0

ca
a>y

· b>y (2.2)

While the separation sub-problem requires minimizing a difference of the
form ca−a>y, the intersection sub-problem requires minimizing a ratio ca/a

>y
as in (2.1)-(2.2) above. When dynamic programming is used, the intersection
sub-problem might have the same computational difficulty as the classical
separation sub-problem. This is true especially if the states can be indexed by
integer y values [11, §4.2.3].

3 Numerical Experiments

3.1 Graph Coloring

We here present a procedure that takes as input an upper bound of the chro-
matic number χ of a graph and returns a lower bound and a dual-feasible
solution. The graph coloring problem fits well the model (1.1a)-(1.1b): each
stable represents a column with cost ca = 1. Notice there is a prohibitively
large number of columns corresponding to all stable sets of the graph. For
each vertex i ∈ {1, 2, . . . , n}, there is a dual variable yi associated to a cover-
ing constraint with bi = 1.

We use the following experimental protocol. Given a k-coloring found by
a heuristic [15], we take each of the k constituent stables and distributes uni-
formly a value of 1 to all its vertices, i.e., each vertex of stable Vj receives the
dual value 1

|Vj | for all j ∈ {1, 2, . . . k}. Given the dual values y obtained this

way, we observe that b>y = 1>n y = k. It is enough to solve the intersection
sub-problem along 0n → y to find lower bound t∗ · b>y = t∗k.

To determine t∗, the intersection sub-problem asks to minimize 1
a>y

over

all columns a associated to stables, or, equivalently, to maximize a>y. This
reduces to finding the maximum weighted stable Smax using weights y. We
obtain t∗ = 1

Smax
and the resulting lower bound is k

Smax
; we also obtain the

dual-feasible solution y
Smax

. Notice one can use a relaxation (an upper bound)
of the maximum weighted stable, e.g., the fractional maximum weighted stable
that can be more easily calculated. Indeed, we can write k

Smax
≥ k

Srlxd
max

, where

Srlxd
max is the value of the fractional maximum weighted stable.

Table 1 presents graph coloring results using 4 columns: the instance name,
the number of vertices, the upper bound k found by the heuristic, and the
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Instance n Upper bound k Lower bound
dsjc125.1 125 5 3.30
dsjc125.5 125 18 12.25
dsjc125.9 125 44 24
dsjc250.1 250 9 4.5∗

dsjc250.5 250 28 19.58
dsjc250.9 250 73 49.21
dsjc500.1 500 12 4.4∗

r125.1 125 5 2.31
r125.1c 125 46 25.09
r125.5 125 36 20.57
r250.1 250 8 3.31
r250.1c 250 64 36.57
r250.5 250 65 24.11∗

Table 1: Graph coloring results. The values marked ∗ correspond to lower bounds obtained
using a relaxation (upper bound) of the maximum stable.

lower bound calculated with our intersection sub-problem. The results marked∗

represent lower bounds obtained using a relaxation of the maximum stable,
i.e., we stopped Cplex after 10 minutes and we took the best upper bound of
the weighted stable.

In general, the upper bound k ≥ χ leads to a lower bound between k
2 and

k
3 . While this bound is not very tight, one should be aware that it is obtained
only by simply solving a maximum weighted stable problem. To solve this
problem, one does not even need to explicitly use any LP, i.e., one could use
a purely combinatorial algorithm1 to determine Smax, or a meta-heuristic to
find Srlxd

max .

3.2 Capacitated Arc Routing

We here illustrate the proposed lower bounding approach on the Capacitated
Arc-Routing Problem (CARP), i.e., edge-focused counterpart of the celebrated
capacitated vehicle routing problem. The goal is to find a set of routes of total
minimum cost that service a set of required edges. The problem fits well the
model (1.1a)-(1.1b): a column a corresponds to the incidence vector associated
to the required edges of a feasible route and the cost ca is the total distance
traversed by the route. As such, the objective function coefficients in the primal
formulation differ from route to route. Notice there is a prohibitively-large
number of columns corresponding to all feasible routes. For each required
edge, there is a dual variable yi associated to a covering constraint with bi =
1 ∀i ∈ {1, 2, . . . , n}.

The experimental protocol consists of first generating n initial columns
as follows: for each required edge e, we consider a route that only goes to e,
services e and goes back to depot. Then, we generate 4·n columns by calling 4·n

1 Off the shelf software is available on the internet, e.g., for example, the Cliquer (users.
aalto.fi/~pat/cliquer.html) due to S. Niskanen and P. Österg̊ard.
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times the pricing algorithm presented in [12, §4] and we obtain the current dual
solution y. This is followed by a call to the intersection sub-problem towards
a direction obtained by transforming y as described next.

First, to ease the intersection sub-problem, we need to use the model (4.8)
from [11, §4.2.2]. The main particularity of this model is the use of a change
of variable: we replace yi with y′i + ci, where ci is the length of edge i. As
described in [11, §4.2.2], the cost of a route in the resulting model in variables
y′ is no longer the total travelled distance, but the total distance travelled
without service (the sum of the lengths of the deadheaded edges). This is
necessary to simplify the algorithm for the intersection sub-problem. The new
dual variables y′i have negative lower bounds, i.e., we no longer have y ≥ 0n,
but y′i ≥ −ci.2

Secondly, recall [11, §4.2.3] that the intersection algorithm uses a dynam-
ical programming scheme in which the states are indexed by integer ray co-
efficients. To run the intersection algorithm in a reasonable time, we have to
transform y′i into a (small) integer value. If n > 50, we divide each y′i by 20
and round it to the nearest integer. If n < 50, we multiply each y′i by a large
integer factor3 and round it to the nearest integer.

After solving the intersection sub-problem, we obtain a lower bound via (2.2),
more easily than by applying the Lagrangean relaxation. We recall that the
Lagrangian bound (1.2) would require the availability of an upper bound ub
over the sum of variables

∑
xa.

Table 2 presents the lower bounds obtained by our new method on different
CARP instances. Column 1 is the instance name, Column 2 indicates the
number of required edges, Column 3 shows the number of vertices, Column 4
indicates the optimum or the best known integer feasible solution, and Column
5 is the lower bound obtained with our new approach.

This table shows that the gap with regards to the best known integer
solution (Column 4) varies from less than 15% (e.g., instances gdb2, gdb4,
gdb5, all kshs instances, val3C) to 50% (especially on larger egl instances).
However, when comparing it to other bounds, one should take into account
that the time required by our bound is minimal, i.e., it only needs to run
several CG iterations and to solve an intersection sub-problem. In many cases,
this can require less than one second on a mainstream computer.

Finally, all results from this paper have been obtained using C++ pro-
grams compiled by gnu g++ with code optimization option -O3. The maxi-
mum weighted stable from Section 3.1 and the LPs of the CG algorithm from
Section 3.2 were solved by Cplex 12.6. We used a mainstream Linux laptop
(kernel version 3.16) with a CPU i7-5500U with two cores (4 threads) clocked
at 2.40GHz.

2 When solving the intersection sub-problem in this model, one has to pay attention that
the optimal solution t∗ · y′ (the hit point) can belong to a facet y′i ≥ −ci.

3 We tried both 1000 and 9 · 5 · 8 · 11.
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Instance n |V | OPTIP(best∗) Lower bound
gdb1 22 12 316 283.33
gdb2 26 12 339 312.8
gdb3 22 12 275 237.53
gdb4 19 11 287 270
gdb5 26 13 377 358.5
gdb6 22 12 298 273.32
gdb7 22 12 325 274.89
gdb8 46 27 348 243.86
gdb9 51 27 303 257.6
gdb10 25 12 275 253.6
gdb11 45 22 395 356
gdb12 23 13 458 444.12
gdb13 28 10 536 509
gdb14 21 7 100 98.47
gdb15 21 7 58 56.5
gdb16 28 8 127 121.66
gdb17 28 8 91 84
gdb18 36 9 164 158
gdb19 11 8 55 51.8
gdb20 22 11 121 105
gdb21 33 11 156 151.41
gdb22 44 11 200 196.19
gdb23 55 11 233 223
kshs1 15 8 14661 13553
kshs2 15 10 9863 8387.54
kshs3 15 6 9320 8498
kshs4 15 8 11498 11296.33
kshs5 15 8 10957 10357.8
kshs6 15 9 10197 9210.7
val1C 39 24 245 203.35
val2C 39 24 457 263.99
val3C 35 24 138 123.41
val4C 69 41 530 343
val5C 65 34 575 367
val6C 50 31 317 257.14
egl-e1-C 51 77 5595 2836.864
egl-e2-C 72 77 8335 3797.222
egl-e3-C 87 77 10292∗ 5696.75
egl-e4-C 98 77 11562∗ 6423.769
egl-s1-C 75 140 8518 4312.842
egl-s2-C 147 140 16425 5336.901
egl-s3-C 159 140 17188 6025.717
egl-s4-C 190 140 20481∗ 4186

Table 2: Capacitated Arc Routing results

4 Conclusion and Perspectives

We presented an approach for calculating lower (dual) bounds in CG models
using the intersection sub-problem. Compared to existing methods, the new
approach has the following advantages:

– it provides a very short (the first paragraph of Section 2.1) and more general
proof of the Farley’s bound. Compared to the Lagrangean relaxation proof,
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the new proof is more general in the sense that it can produce a dual feasible
solution and not only a bound value;

– it allows one to transform a primal heuristic solution (an upper bound)
into a dual-feasible solution (a lower bound), using a single call to the
intersection sub-problem. For graph coloring, the intersection sub-problem
reduces to calculating a maximum weighted stable (Section 3.1).

– by solving the intersection sub-problem, one can determine lower bounds
(and dual-feasible solutions) for problems with columns having different
objective coefficients in the primal formulation (Section 3.2).

The paper is a continuation of [11] and it is a part of a sequence of
planned work concerning the intersection sub-problem in different mathemat-
ical programming fields (e.g., Benders decomposition [13], robust programs
with prohibitively-many constraints).
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