
Semidefinite programming by
Projective-Cutting-Planes

Daniel Porumbel

Conservatoire National des Arts et Métiers, Paris

I first worked the idea of Projective-Cutting-Planes in a purely linear context



ob
jec

tiv
e fun

cti
on

ite
ra

tio
n 1

x1 = [0 0]>

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along x1 → d1 where d1 takes the value of the
objective function

6 / 21



ite
ra

tio
n 1

x1 = [0 0]> opt(P1)

x1+t∗1d1feasible solution

outer solution

Iteration 1 : found a first outer solution opt(P1) and a first inner
solution (contact point) x1 + t∗1d1

6 / 21



x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

Iteration 2 : an inner feasible solution (contact point) x2 + t∗2d2

and a new outer solution. We take d2 = opt(P1)− x2.

6 / 21



P

x3

x3+t∗3d3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 3 : the feasible solution x3 + t∗3d3 is almost optimal

6 / 21



P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Pk ) at each iteration k

The convergence proof takes two lines, cool !

6 / 21



P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147–197, 2016.

[2] Daniel Porumbel. Daniel Porumbel. Projective Cutting-Planes,
SIAM Journal on Optimization, 30(1) : 1007-1032, 2020

6 / 21



We now focus on the following standard (semidefinite programming) SDP prob-

lem, where
�� ��A>y =

∑k
i=1Aiyi . The implication in the last constraint indicates

that the SDP constraint can be expressed using an infinite number of linear cuts.

S0


max b>y

s.t X = C −A>y
X � 0 ⇐⇒ X· ss> ≥ 0 ∀s ∈ Rn

In some sense, the SDP cone is a polytope described by infinitely-many cuts.



S0


max b>y

s.t X = C −A>y
X � 0 ⇐⇒ X· ss> ≥ 0 ∀s ∈ Rn

We could address the problem by progressively separating infeasible solutions
yout ∈ Rn. This standard Cutting-Planes is rarely very effective (at least not in
any of my tests).

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the pro-
jection sub-problem: given feasible y in a feasible area S0 and an arbitrary direction
d, what is the maximum step-length t∗ so that y + t∗d ∈ S0?

2



S0


max b>y

s.t X = C −A>y
X � 0 ⇐⇒ X· ss> ≥ 0 ∀s ∈ Rn

We could address the problem by progressively separating infeasible solutions
yout ∈ Rn. This standard Cutting-Planes is rarely very effective (at least not in
any of my tests).

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the pro-
jection sub-problem: given feasible y in a feasible area S0 and an arbitrary direction
d, what is the maximum step-length t∗ so that y + t∗d ∈ S0?

In SDP programming, projecting y→ d requires solving t∗ = max{t : X + tD �
0} for this X � 0 and D:

• X = C −A>y is SDP when y is feasible

• D = C −A>d may be SDP or not.

3



We have to project X → D in the SDP cone, i.e., find:

t∗ = max{t : X + tD � 0}

4



We have to project X → D in the SDP cone, i.e., find:

t∗ = max{t : X + tD � 0}

An easy-to-implement approach: notice t∗ is the generalized eigenvalue of X
and −D. The corresponding generalized eigenvector v satisfies Xv = −t∗Dv.

I did not have the time to fully investigate this approach, but this is the practical
difficulty: we need a very particular generalized eigenvalue, namely, the lowest real
eigenvalue above 0. With existing software, computing all eigenvalues or only the
eigenvalues close to zero seems much too slow.

But there is a huge advantage: using this projection approach, the overall method
can be very easily implemented.

5



The main challenge is the speed of the projection algorithm. It should be closer
to computing Cholesky or the smallest eigenvalue of matrix. If the speed is closer
to computing the whole eigendecomposition, all seems lost.

And your speed it’s all you’ll ever need.
All you’ll ever need to know.
You and me we’re going nowhere slowly
You go down on the pedal and you’re ready to roll.

Meat Loaf - Nowhere slowly

6



We have to project X → D in the SDP cone, i.e., find:

t∗ = max{t : X + tD � 0}

Th projection sub-problem is quite simple if X � 0. In this case, there is a unique
Cholesky decomposition X = KK> and K is non-singular. We’ll see later that the
following projections are equivalent, using D′ = the unique solution of D = KD′K>.

• X → D;

• In → D′

– we can determine max{t : In + tD′ � 0} by computing λmin(D
′)

Thus, the projection computational cost is: one Cholesky ⊕ one minimum eigen-
value.

7



This projection is more difficult if X is not strictly SDP. Yet, the simplified pure
SDP case enabled us to solve some particular instances very rapidly.

Instance below was solved by advancing to the optimum trough a sequence of
strictly SDP matrices (strictly interior points): X0 = εIn, X1, X2, X3 . . .

0 1 2 3 4 5 6 7 8 9
8

10

12

14

16

Time

b
ou

n
d
(s
)
on

ob
j.
va
l.

k = 11, n = 400, eigs(Ai) ∈ [0.1, 2.5], eigs(C) ∈ [17, 50]

upper bounds of a standard cutting planes converging in 9.26s

lower&upper bounds of projective cutting planes converging in 1.15s

Mosek needs
7.21 seconds

Conic Bundle needs 2.23
seconds (and I gave it
the optimal trace)

8














