Semidefinite programming by
Projective-Cutting-Planes

Daniel Porumbel

Conservatoire National des Arts et Métiers, Paris

I first worked the idea of Projective- Cutting-Planes in a purely linear context

S
N
27
6}/
. Q)//
5
/
/
Qb///
O/
'Q%/
-/X1 = [0 O]T

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along x; — d; where d; takes the value of the
objective function

6/21

feasible solution — g

outer solution

—~opt(Py)

lteration 1 : found a first outer solution opt(Py) and a first inner
solution (contact point) x4 + t;d;

6/21

lteration 2 : an inner feasible solution (contact point) X, + £;d>
and a new outer solution. We take d, = opt(Py) — Xo.

6/21

lteration 3 : the feasible solution x3 + t;d3 is almost optimal

6/21

lteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Px) at each iteration k

@ The convergence proof takes two lines, cool !

6/21

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147-197, 2016.

[2] Daniel Porumbel. Daniel Porumbel. Projective Cutting-Planes,
SIAM Journal on Optimization, 30(1) : 1007-1032, 2020

6/21

We now focus on the following standard (semidefinite programming) SDP prob-

lem, where [ATy = Zle AZyJ The implication in the last constraint indicates

that the SDP constraint can be expressed using an infinite number of linear cuts.

max b'y
So st X=C—-A'y
X>0 < Xess >0VscR"

In some sense, the SDP cone is a polytope described by infinitely-many cuts.

max b'y
Spd st X=0-A'y

X=0 < X ess' >0VseR"”

We could address the problem by progressively separating infeasible solutions
Yout € R™. This standard Cutting-Planes is rarely very effective (at least not in
any of my tests).

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the pro-
jection sub-problem: given feasible y in a feasible area Sy and an arbitrary direction
d, what is the maximum step-length ¢* so that y 4+ t*d € Sp?

max b'y
So st X=C—-A'y
X>0 < Xess >0VscR"

We could address the problem by progressively separating infeasible solutions
Yout € R™. This standard Cutting-Planes is rarely very effective (at least not in
any of my tests).

In Projective-Cutting-Planes, we upgrade the separation sub-problem to the pro-
jection sub-problem: given feasible y in a feasible area Sy and an arbitrary direction
d, what is the maximum step-length ¢* so that y 4+ t*d € Sp?

In SDP programming, projecting y — d requires solving t* = max{t : X +¢D =
0} for this X = 0 and D:

e X =C — ATy is SDP when y is feasible
e D=C — A"d may be SDP or not.

We have to project X — D in the SDP cone, i.e., find:
t* = max{t: X +tD > 0}

We have to project X — D in the SDP cone, i.e., find:
t* =max{t: X +tD » 0}

An easy-to-implement approach: notice ¢t* is the generalized eigenvalue of X
and —D. The corresponding generalized eigenvector v satisfies Xv = —t*Dv.

I did not have the time to fully investigate this approach, but this is the practical
difficulty: we need a very particular generalized eigenvalue, namely, the lowest real
eigenvalue above 0. With existing software, computing all eigenvalues or only the
eigenvalues close to zero seems much too slow.

But there is a huge advantage: using this projection approach, the overall method
can be very easily implemented.

The main challenge is the speed of the projection algorithm. It should be closer
to computing Cholesky or the smallest eigenvalue of matrix. If the speed is closer
to computing the whole eigendecomposition, all seems lost.

And your speed it’s all you’ll ever need.

All you’ll ever need to know.

You and me we’re going nowhere slowly

You go down on the pedal and you’re ready to roll.
Meat Loaf - Nowhere slowly

We have to project X — D in the SDP cone, i.e., find:
t* =max{t: X +tD » 0}

Th projection sub-problem is quite simple if X > 0. In this case, there is a unique
Cholesky decomposition X = KK " and K is non-singular. We’ll see later that the
following projections are equivalent, using D’ = the unique solution of D = KD'KT.

e X — D;
o [, =~ D
— we can determine max{t : I,, + tD’ > 0} by computing A\, (D’)

Thus, the projection computational cost is: one Cholesky ¢ one minimum eigen-
value.

This projection is more difficult if X is not strictly SDP. Yet, the simplified pure
SDP case enabled us to solve some particular instances very rapidly.

Instance below was solved by advancing to the optimum trough a sequence of
strictly SDP matrices (strictly interior points): Xo = el,,, X1, X2, X3...

16 upper bounds of a standard cutting planes converging in 9.26s)
E
14 |
g Conic Bundle needs 2.23
pt seconds (and I gave it Mosek needs
g the optimal trace) 7.21 seconds
- 12 B
=1
g lower&upper bounds of projective cutting planes converging in 1.15s
2 10t :
1 k=11, n=1400, eigs(A;) € [0.1,2.5], eigs(C) € [17,50] | |
8 — Il Il I I I I I I 1
0 1 2 3 4 5 6 7 8 9

Time

Property 1. We will see that the projection X — D can be calculated more
rapidly if D belongs to the image of X. This means that each column (and row)
of D can be written as a linear combination of the columns (or rows, resp.) of
X . We can equivalently say that the null space of X is included in the null space
of D; thus, Xd =0 = Dd =0 Vd € R". We will show below in cases A) and
B) how it is easier to project when this property holds; if possible, Projective
Cutting-Planes should thus adapt it§ own evolution to seek this property.

A) This case is characterized by X > 0, i.e., X is non-singular; PerE surely
holds because the image of a non-singular X is R™. We apply the Cholesky
decomposition to determine the unique non-singular K such that X = KK'.
We then solve D = KD'K ' in variables D’ by back substitution; this may
require O(n?) in theory, but Matlab is able to compute it much more rapidly in
practice because K is triangular. Let us re-write (3) as:

max {t: KI,K' +tKD'K' = 0}. (4)

This is eqivalent (by congruence according to Prop|2) to

max {t : I,, +tD" = 0} . (5)

The sought step length is t* = — }wﬂl{D;}, or t* = oo if Amin(D") > 0.

We still have to find a first-hit cut v € R"™: in fact, technically, the first-hit
cut will be (Al . va) Y1 + (flg . va) Yo + -+ (A;f . va) yr < C' e vv .

If v is an eigenvector of K (I, +t*D’')K " with an eigenvalue of 0, this means
v K(I, +t*D"YK'v = 0. Thus, u = K ' v is eigenvector of I,, + t*D’ with an
eigenvalue of (0. This latter eigenvector u can be computed when determining
Amin(D") < 0 above, because if the eigenvalue of u with regards to D’ is Ayin (D’)
its eigenvalue with regards to I,, + t*D’ is 0 (since recall t* = —}”ml{D,}). The

sought v solves K' v = u and it can rapidly be computed by back-substitution.
We have u' Du <0 = v'KD'K'v <0 = v'Dv < 0. We thus have
v (X +t*D)v=0and v' (X + (t* +€)D)v < 0 for any € > 0.

B) In this case Prop |1|is still satisfied, but X has rank ¢ < n. This means
X contains ¢ independent rows (and columns by symmetry), referred to as core
rows (or columns); the other dependent rows (or columns) are non-core positions.
Using the LDL decomposition of X, we will factorize X = K,,. K, ., where K. €
R™*€¢, The image of K,,. is equal to the image of X. Since Prop is vatisfied,
we will see we can still solve D = K,,.D'K' in variables D’. A first intuition
i1s to notice that we can project X — D only over the core rows and columns,

because the non-core positions are dependent on the core ones.

But the most difficult task is to determine these core positions. We first
apply the LDL decomposition and write X = Ldiag(p)L' with p > 0,,. The
contribution of each p; in Ldiag(p)L ' is actually p;L;L,, where L; is column
i of L (Vi € [1.n]). If all n x n elements of p;L;L; are below some precision
parameter, we consider ¢ 1S a non-core position; otherwise, it is a core position.
By reducing all non-core positions p; to zero, we can say that all n — ¢ non core
columns of L vanish in the decomposition X = Ldiag(p)L'. After removing

these vanished n — ¢ columns from L and the corresponding zeros from p, we can
write X = Ldiag(p)L' = Ldiag(p)%diag(p)%LT — K, K with K,,. € R"*¢,

r.c

We next solve D = K,,.D'K. in variables D’. For this, we first reduce this

TLC
system to work on ¢ X ¢ matrices, i.e.Rwe transform it into D,. = K..D'K,.

where K. is K, restricted to the ¢ core rows and D,.. i1s D restricted to the ¢x ¢
core rows and columns. To solve this square system, we apply back-substitution
twice and this is very fast because K .. is lower triangular. If the resulting solution
D’ also satisfies D = K,,.D’ K . then we are surely in case B). We obtained a

et

reduced-size version of {E) working in the space of ¢ X ¢ matrices:

Instance Projective Cutting-Planes ConicBundle Mosek
o " Eigs Eigs [|Itera-| All |Compute|Proj|LP time|Send data|| Trace Trace
A;'s C tions [time| X & D [time| (cplex) | to LP [|[unknown|provided
800 80 [-20, 100{ [0,100((| 1108 | 410 179 44 70 102 1051 94 320
600 40 [-20, 100{ [0,100ff| 155 | 17 4 6 1 3 148 22 72
400 100 [-20, 100{ [0,100([| 2075 | 572 94 Df 13 384 71 490 42 60
Huge instances below have y > 0, a random b and < fixed null eigenvectors for all A;’s and C
200 2000 |40, 100| |10,40]|| 31 11) 0.2 0.2) timeout 717
200 3000 [40, 100| |10,40]|| 70 | 49 27 0.4 0.7 18 timeout 1346
4000 20 [20,25] [20,25] 8 76 17 44 0 11 timeout timeout
5000 20 |20,25| [20,25] 7 139 27 87 0 18 timeout timeout

Table 2. Seven runs of Projective Cutting-Planes, ConicBundle and Mosek on more
varied instances. The last four instances have y > 0; such linear constraints on y
simplify the problem for Projective Cutting-Planes, but this may be a non-trivial
change for ConicBundle (or other algorithms that do not embed the SDP problem in

a lightweight LP over y).

