
Noname manuscript No.
(will be inserted by the editor)

Distance-Guided Local Search

Daniel Porumbel · Jin-Kao Hao

the date of receipt and acceptance should be inserted later

Abstract We present several tools that use distances between candidate so-
lutions to achieve intensification in Local Search (LS) algorithms. One of the
main drawbacks of classical LS is the fact that after visiting a very high-quality
solution, a LS can often “forget it” and continue by exploring other very dif-
ferent areas. We propose a method that works on top of a given LS to equip it
with a form of memory of the best visited areas. More exactly, it uses distances
between candidate solutions to perform a coarse grained recording of the LS
trajectory, by recording a number of discovered spheres. The (centers of the)
spheres are kept sorted in a priority queue in which new centers are contin-
ually inserted as in insertion-sort algorithms. After thoroughly investigating
a sphere, the proposed method resumes the search from the first best sphere
center in the queue. The resulting LS trajectory is no longer a continuous path,
but a tree-like structure, with closed branches (already investigated spheres)
and open branches (as-yet-unexplored spheres). Certain distance-based tools
can also be used effectively to prevent the search from indefinitely looping on
large (quasi-)plateaus, see Section 2.3. Experiments on three problems based
on different encodings (partitions, vectors and permutations) confirm the po-
tential of using such distance ideas for intensification in Local Search.

Keywords meta-heuristic methodologies · local search · distance between
solutions · intensification

D. Porumbel
CEDRIC, Conservatoire National des Arts et Métiers, 292, rue Saint Martin, Paris
daniel.porumbel@cnam.fr

J-K Hao
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
jin-kao.hao@univ-angers.fr

2 Daniel Porumbel, Jin-Kao Hao

1 Introduction

Local Search (LS) is one of the most popular approaches for solving large
and hard optimization problems in many fields of science. Most classical LS
algorithms lack a “global vision” over the search trajectory and evolution.
Typically, even if a LS algorithm visits a very high-quality solution s at a
given moment, it might often not intensify the search in the proximity of s,
thus missing better solutions close to s.

This paper is devoted to Distance-Guided Local Search (DGLS), an algo-
rithmic framework that operates on top of an underlying LS to help it overcome
such issues using a distance-based intensification mechanism. This mechanism
relies on a distance measure defined over the space of candidate solutions. The
distance between two solutions s1 and s2 is measured as the minimum number
of neighborhood transitions (moves) required to reach s2 from s1. Using such
a metric, we conveniently define the notion of sphere (c, r): the set of solutions
situated within a certain radius r from the sphere center c. In the proposed
DGLS method, a LS process launched from a center c is stopped as soon as
the distance d(s, c) between the current solution s and c reaches a maximum
radius value.

The proposed method guides the underlying LS to intensively examine a
part of the search space, i.e., it selects certain spheres that are thoroughly in-
vestigated by launching a number of runsPerSphere LS runs from the center
of each sphere. Each of the runsPerSphere LS runs launched from a center
leads to the discovery of a new sphere center. The new sphere centers are
recorded in a priority queue that can be sorted using criteria based on the
objective values of the centers or on the distances between existing sphere
centers. After launching these runsPerSphere LS processes from a center,
DGLS can resume from a very different center, i.e., from the first center in the
queue. Consequently, the resulting search trajectory becomes a tree-like struc-
ture with closed (already investigated) spheres and open (as-yet-unexplored)
spheres.

1.1 Context and Related Literature

Generally speaking, distances have been already used in the meta-heuristic
literature, but in rather disparate research threads, with limited common ob-
jectives. We discuss below several such research subjects, most of them from
the literature of evolutionary or memetic algorithms. To the best of our knowl-
edge, there are very few systematic studies of the potential use of distances to
improve local search algorithms.

The Tabu Search (TS) algorithm from [5] uses distances to make each step
of the TS move to “solutions with increasing distance from the center solu-
tion”. The main idea is to prevent the search from coming back to a center
solution, and to force the search to move away from it until a “prespecified
search depth” is reached. When this depth is reached, the current iteration

Distance-Guided Local Search 3

is finished; the search is then resumed to start a new iteration by selecting
another center solution from the best solutions considered during the last it-
eration. Compared to our proposal, the TS from [5] is also more complex: it
“resembles a genetic algorithm because a population of K members is main-
tained during the iteration”. Finally, the distances in this TS are not mainly
used for intensification reasons, but rather for diversification, by forcing “the
search away from previous solutions”.

Spacing Memetic Algorithms (SMA) [16] are a formal evolutionary model
devoted to a systematic control of the spacing (distances) among individuals in
genetic algorithms. This framework uses distances to choose which individuals
to insert in the population, which individuals to remove from the population,
and when to perform mutations. However, the main purpose of SMA is the
diversification rather than the intensification.

In Geometric Genetic Algorithms [12], the main evolutionary operators
(mutation and crossover) are interpreted in light of topological and geometric
terms. We notice, for instance, the definition of the notion of “closed ball” [12,
§2.3] that corresponds to a sphere in our study. However, this line of research
is focused on evolutionary or genetic algorithms rather than local search.

We now turn to a review of a more distantly related research thread in
evolutionary computing. Standard genetic algorithms can be used to (try to)
locate global optima of a continuous multi-modal function. In this context,
one can even promote crossover only inside the subpopulations [11,2] (“intra-
niche” crossover), so as to “crowd” new individuals on the same niches. One
of the best-known niching methods is crowding [3,2]. This technique, popular
in continuous optimisation, is commonly used to “induce niches by forcing
new individuals to replace individuals that are similar genomically” [17]. For
this purpose, the eliminated individual is selected from among the closest
individuals (in terms of distance) to the offspring solution.

Distances are also used for solution ranking in multi-objective optimiza-
tion [4]. However, such diversity measures are typically calculated in the ob-
jective function space and they rely on fitness differences—not meaningful in
our mono-objective context.

The notion of distance is also considered in the population-based scatter
search and path-relinking methods [7]. To generate new solutions from existing
solutions, both solution quality and distances among solutions are taken into
account to ensure the diversity of newly generated solutions.

The “limited discrepancy search” is often used in connection to exact meth-
ods to find the best solution within a certain “discrepancy” from a reference
solution. The notion of “discrepancy” can be seen as a particular type of dis-
tance. The principle is also applied to design “limited-discrepancy” heuristics
which take as input rounded solutions resulting from some relaxed formu-
lations or column generation models. This is motivated by the fact that a
high-quality starting solution could be obtained by rounding the fractional
optimal solution generated with exact methods [9]. The idea is relevant for
our study, because we will often launch DGLS from solutions not very far
from an optimal solution.

4 Daniel Porumbel, Jin-Kao Hao

We can conclude that, with regards to the LS literature, the potential
of distances is partially overlooked. The most related study is our TS-INT
algorithm [14] designed for the graph k-coloring problem. In fact, the current
study is based on and generalizes ideas from [14, §5].

1.2 Paper Organization

The remaining of the paper is organized as follows. Section 2 describes the
proposed approach, providing a complete specific pseudo-code. Section 3 is
devoted to distance examples for the three problems considered in this paper.
Section 4 presents numerical results, followed by conclusions in the last section.
In appendix, we provide more details on the underlying LS used for the k-
coloring, the k-cluster, and the capacitated arc-routing problem. A second
appendix provides 2D visualisations for three DGLS trajectories for k-coloring.

2 Distance-Guided Local Search

This section presents the general Distance-Guided Local Search (DGLS) frame-
work and its pseudo-code. We suppose we are given a distance measure and a
LS algorithm, which represent together the foundation upon which DGLS is
built.

2.1 Main Principles: LS with a Tree-like Trajectory

As hinted above, the proposed DGLS uses a distance measure d to compare
candidate solutions, such that d(s1, s2) is the minimum number of neighbor-
hood transitions (moves) required to reach s2 from s1. The notion of sphere
relative to the given distance is defined in a straightforward manner.

Definition 1 Given a distance measure d in the search space, a candidate
solution (center) c and an integer (radius) r, the sphere (c, r) is the set of all
candidate solutions s such that d(c, s) ≤ r.

If a sphere with numerous high-quality solutions is visited at a given mo-
ment, a classical LS could spend very limited time inside it and rapidly con-
tinue towards other areas of the search space. If the sphere is not examined
intensively at the given moment, the opportunity of finding better solutions
inside the sphere can pass by. To overcome such issues, DGLS will ensure
an intensive examination of each sphere associated to high-quality solutions.
This is achieved by performing several LS runs (parameter runsPerSphere)
launched from the center of such a sphere. Each run is stopped as soon as it
goes beyond the sphere boundary. This leads to a tree-like search trajectory:
each investigated sphere center has runsPerSphere (child) branches.

Distance-Guided Local Search 5

The best solution visited by such a LS run launched from a sphere center
becomes a center itself and it is inserted in an archive. We consider that the
best solution visited by a run is the one with minimum objective value, break-
ing ties using the distance from the center (the furthest solution is better).

The archive of all sphere centers is recorded as a priority queue that
can be sorted according to different (quality or diversity) criteria. The most
frequently-used criterion is the objective value of the center, but one can also
take into account the sum of the distances from the center to all other recorded
spheres in the archive.

2.2 The General Pseudo-code of Distance-Guided Local Search

By putting together all general principles from Section 2.1 above, we obtain the
pseudo-code of the Distance-Guided Local Search in Algorithm 1; the goal is
to minimize the objective value. The innermost repeat-until loop executes
a LS run launched from the sphere center c. The larger loop at Lines 5-23
performs a sphere examination by launching runsPerSphere LS runs.

Algorithm 1 Distance-Guided Local Search (DGLS)
1: c←initial-candidate-solution()

2: Qspheres ← {c} . the first sphere in the queue Qspheres

3: repeat
4: c← dequeue(Qspheres)
5: loop runsPerSphere times . This loop performs a sphere examination
6: s ← c
7: bst← c, distBst← 0 . best solution of current run with d(bst, c) = 0
8: repeat
9: s← LS-Step(s) . increase an iteration counter here

10: distToCenter← 0
11: if need-calc-dist() . It might not be necessary to calculate the
12: distToCenter = d(c, s) . distance at each iteration, see point 6 below
13: end if
14: if (obj(s) < obj(bst)) or
15: (obj(s) = obj(bst) and distToCenter > distBst)
16: bst← s
17: distBst← distToCenter

18: end if
19: until distToCenter > maxRadius or inner-stop-condition()

20: insert(bst,Qspheres) . insert it in the queue at the appropriate position
21: if general-stop-condition()

22: break
23: end loop
24: until general-stop-condition() . return best objective value ever reached

This pseudo-code relies on several external routines that we discuss below.
The ideas presented next are actually general guidelines for implementing a
DGLS rather than strict rules. The goal of DGLS is not to specify a unique
DGLS version with a fixed set of parameters, but to propose a set of distance-
guided tools that could be mixed together in different ways to achieve strong

6 Daniel Porumbel, Jin-Kao Hao

intensification. The implementation of the external routines below can sub-
stantially depend on the considered problem.

1. initial-candidate-solution(): This procedure simply provides the search
process with an initial candidate solution that is either obtained by external
means or generated at random.

2. dequeue(Qspheres): This operator simply returns the center of the first
sphere and removes it from the archive.

3. LS-step(s): This function calls the underlying LS operator to move from
the current solution s to a neighboring solution snext, returning snext. By
sequentially calling s ←LS-step(s) several times, one actually executes
the underlying LS. This LS should incorporate techniques to avoid getting
blocked on a unique local optimum, e.g., one should not use a simple de-
terministic Steepest Descent (or First Improvement) that is very prone to
looping by visiting and revisiting the same local minimum again and again.

4. insert(bst,Qspheres): This routine establishes bst as a sphere center and
inserts it at the appropriate position in Qspheres. We recall that Qspheres is
a priority queue that can be sorted according to different characteristics of
the spheres. For instance, one can sort Qspheres lexicographically using two
(minimization) criteria: (i) the objective value of the center; and (ii) the
sum of distances to all other existing sphere centers. This approach seems
well suited for graph coloring and arc-routing. For the k-cluster problem,
we preferred to replace the above criterion (ii) with a FIFO (First In First
Out) sorting order.

5. general-stop-condition() and inner-stop-condition() indi-
cate when a number of iterations (or a time limit) is reached,
e.g., one could use the iteration counter incremented at Line
9. We ask that inner-stop-condition() be stronger than
general-stop-condition(), in the sense that it has to return true

whenever general-stop-condition() returns true. One could make
inner-stop-condition() return true after reaching a maximum number
of iterations inside the current sphere, to avoid stagnation – see also
Section 2.3 below.

6. The function d(s, c) returns the distance from s to c. We mentioned at
Line 12 that it is not be necessary to compute this distance at every single
iteration. Indeed, after computing a distance d(c, s) at some iteration, the
distance calculation can be skipped for the next maxRadius− d(c, s) itera-
tions, because in the worst case each iteration increases the distance to the
center by one. As such, after maxRadius−d(c, s) iterations, the distance to
the center can become at most d(c, s)+(maxRadius−d(c, s)) = maxRadius,
enough to be sure that the condition (distToCenter > maxRadius) at
Line 19 is false, i.e., the innermost repeat-until loop can not be broken.
During these maxRadius−d(c, s) iterations, need-calc-dist() can return
false.1 Finally, the condition (distToCenter > distBst) at Line 15 is not

1 For instance, in practical cases for graph coloring, one can have maxRadius = 100 and if
d(c, s) = 20 at some iteration, then the distance calculation can be skipped 80 iterations!

Distance-Guided Local Search 7

needed at each iteration, but only when the best objective value obj(bst)
is rediscovered; we do not forbid DGLS implementations that completely
skip testing this condition, so that bst simply becomes the last visited best
solution.

The evolution of the search is controlled by the way spheres are sorted in
the priority queue Qspheres. The sorting criteria determine how DGLS selects
each new sphere to resume the search, which has an important impact on the
general search trajectory.

As long as the distance can be computed within a similar running time as
an iteration of the underlying LS, the total distance calculation overhead can
be kept within reasonable limits. While LS algorithms often use incremental
(streamlined) objective function evaluations, this could also be done for the
distance function. For example, we do perform such a streamlined distance
calculation for the k-cluster (k-clique) problem, as described in Appendix A.2.

2.3 Using the Distance Tools to Avoid Stagnation

It is well-acknowledged that an undesirable behavior of any heuristic algorithm
is to be stuck looping on plateaus around a local optimum. Distance based-
mechanisms could be very useful for detecting and tackling such issues; we
propose the following:

1. Fix a maximum number of iterations per sphere, to ensure that DGLS
can not stagnate looping indefinitely on a plateau inside a sphere. It is
enough to make the function inner-stop-condition() stop the sphere
examination after a number of iterations.

2. If the best solution bst visited by the current run launched from center c
is too close to c (e.g., if d(bst, c) < 1

2maxRadius), do not establish bst as a
sphere center and do not insert it in the priority queue (i.e., skip Line 20).
Choose instead the best visited solution situated at more than a threshold
(e.g., 3

4maxRadius) from the center c. Notice that by forbidding new sphere
centers at less than 1

2maxRadius from c, we actually exclude a relatively

small volume, e.g., a mini-sphere of
(
1
2

)k
the volume of a standard sphere

for the k-cluster problem (see Section 4.2).
3. If after a number of iterations maxIterCheck (e.g., use maxIterCheck ∈

[2n, 3n], where n is the number of variables), the best solution bst visited by
a LS run satisfies obj(bst) = obj(c) and d(bst, c) < 1

2maxRadius, then the
current LS run might be stagnating looping on a plateau around the center
c. The algorithm should apply repulsion mechanisms to make this run leave
the sphere. For example, on the k-cluster problem, we chose to increase the
Tabu List length for: (i) the vertices selected by the current solution s but
not selected by c, and (ii) the vertices not selected by s but selected by c.
As such, the vertices that contribute to the Hamming distance d(s, c) are
fixed for a longer time. This naturally repulses the search from the center.

8 Daniel Porumbel, Jin-Kao Hao

3 Problem Examples and Associated Distances

In this section, we illustrate three distance measures for the following three
well-known combinatorial optimization problems: graph k-coloring, k-cluster
(or k-clique), and capacitated arc-routing. They can be considered as repre-
sentatives for three large classes of problems that require partition, binary and
permutation representations and thus different distance measures.

3.1 A General Neighborhood Distance

We first provide the most general definitions of the distance function.

Definition 2 Given a set of candidate solutions (search space) S, an objective
function and a neighborhood function N : S → 2S , the landscape L = (S, EN)
is an attributed graph such that: (1) the vertex set S is the set of candidate
solutions, (2) there is an edge between two vertices (solutions) if and only if
they are neighbors according to N , (3) each vertex (solution) is labeled with
the objective value of the solution.

Definition 3 The Neighborhood Distance d(s1, s2) is the shortest path be-
tween s1 and s2 in the landscape (S, EN).

The distance d(s1, s2) is an indicator of the minimum number of local
search steps needed to reach solution s2 from s1. This correlation property
is important since all our LS algorithms rely on it. Without this property,
a LS process could reach very distant solutions in a few steps, reducing the
relevance of the distance value.

3.2 Distance Measures: Arrays, Partitions and Permutations

3.2.1 Graph k-Coloring

Given an input graph G = (V,E) and a number of colors k, this problem asks
to color V with k colors so as to minimize the number of conflicting edges
(edges with both end vertices of the same color). The candidate solutions of
this problem can be seen as partitions of the vertex set into k subsets. The
distance is given by the transfer partition distance [8]. We recall [15] that the
distance between partitions (colorings) Ca and Cb is |V | − s(Ca, Cb), where s
is a measure of similarity defined as follows:

s(Ca, Cb) = max
σ∈Π

∑
1≤i≤k

Mi,σ(i),

where Π is the set of all bijections from {1, 2, . . . , k} to {1, 2, . . . , k} and M is
a matrix such that Mij indicates the size of the intersection between the ith

color class of Ca and the jth color class of Cb, i.e., Mij = |Cia ∩ Cjb |.

Distance-Guided Local Search 9

In most cases, the computation of this distance requires an asymptotic
running time of O(k2 + |V |). In few other cases discussed in [15], the distance
calculation can require at O(k3+|V |) time. However, both asymptotic running
times are relatively large comparing to the complexity of the neighborhood
evaluation. On the other hand, the distance does not need to be computed
every single iteration, as we discussed at point 6 of Section 2.2.

3.2.2 k-cluster and k-clique

Given an input graph, this problem requires finding the densest induced sub-
graph with k vertices, i.e., the induced subgraph with the maximum number
of edges. The candidate solutions are represented by 0/1 arrays with exactly k
ones corresponding to the selected vertices. The distance between two arrays
can thus be given by the Hamming distance. In fact, it is the halved Hamming
distance that constitutes a neighborhood distance in the sense of Definition 3
(with regard to the bit swap neighborhood). However, we hereafter prefer to
only use the standard Hamming distance – all calculations could have been
done equivalently using the halved Hamming distance. We finally notice a
particular aspect: when k is smaller than n/2, there are numerous pairs of
solutions at distance 2 · k, i.e., pairs of solutions corresponding to disjoint
selections.

3.2.3 Capacitated Arc-Routing (CARP)

Given an input graph G(V,E) with a set of required edges (clients) ER ⊆ E,
this problem asks to find the least cost set of routes that service (visit) all edges
ER [6]. It is the edge-focused counterpart of the celebrated vehicle routing
problem. Using the approach from [13], this problem is cast in the space of
permutations, and so, it can be considered as a permutation problem [1]. More
exactly, this approach uses a decoder that transforms any permutation (of the
client set ER) into a set of routes.

The metric used to evaluate the distance between two permutations is
the Kendal tau rank distance [10]. In general terms, this counts the number
of pairwise disagreements between the two permutations. The Kendall tau
distance is also called the bubble-sort distance since it is equivalent to the
number of swaps that the bubble sort algorithm would make to place one
permutation in the same order as the other. Technically, the distance between
permutations τ1 and τ2 is:

d(τ1, τ2) = |{(i, j) : i < j, (τ1(i) < τ1(j) ∧ τ2(i) > τ2(j))

∨(τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}| (3.1)

We observe that this satisfies the properties of a neighborhood distance
from Definition 3 if one uses a neighborhood defined by adjacent transpositions
(e.g., the adjacent interchange neighborhood). The calculation of this distance

can be realized by comparing n·(n−1)
2 pairs, i.e., it requires calculations of

complexity O(n2).

10 Daniel Porumbel, Jin-Kao Hao

4 Numerical Experiments

This section reports computational results regarding the proposed distance
tools and ideas on three considered problems. We demonstrate that by em-
bedding LS algorithms into the DGLS framework, improved results can be
expected, especially due to the intensification strength of DGLS.

4.1 Graph k-Coloring Experiments

The underlying LS for graph k-coloring is the Tabu Search (TS) from [14, §2.2].
Essentially, this TS moves from solution to solution by changing the color of
a vertex v in conflict (sharing its color with a neighbor). After replacing the
current color of v by a new color, v can not receive again the lost color for

the next random(10) + 0.6 · obj(s) +
⌊
itersplat
1000

⌋
iterations, where random(10)

returns a random integer in [0..10], obj(s) is the current objective value (i.e.,
the number of conflicting edges), and itersplat is the number of last iterations
with no objective value variation.

The last term aims at keeping certain moves Tabu for a longer time when
the TS is blocked looping on a plateau with no objective function variation.
Each series of consecutive 1000 moves on such plateau lead to incrementing all
subsequent Tabu list lengths. In the worst case, most moves that keep the TS
on the plateau become Tabu for a long time, forcing the TS to choose other
moves and stop looping. The algorithm also uses streamlining calculations to
rapidly find the best move, as described in Appendix A.1.

4.1.1 General results on graph coloring

The number of iterations for both LS and DGLS is set atmaxIter = 300000
⌈
k

100

⌉
(the last term allows more iterations for larger instances). After brief prelimi-
nary experiments, the radius value is set at maxRadius = n

5 and the number of
runs per sphere is runsPerSphere = 3. We did not use any of the stagnation
avoidance techniques from Section 2.3.

Since DGLS is designed to for achieving intensification, it makes sense
to first compare DGLS and LS by launching them from a coloring relatively
close to an optimal solution (i.e., to a legal k-coloring). We first consider the
following protocol. For each graph, we take the best legal coloring reported in

our previous paper [14],2 we modify a number of colors (at least |V |3) and we
launch DGLS and standard LS from the resulting modified coloring.

Table 1 presents this comparison of DGLS and LS, reporting the instance
in Column 1 (the graph and the number of colors), the algorithm version in
Column 2 (one row on DGLS, one row on LS), the above number of modified
colors of a legal coloring (Column 3), the number of successful executions (find-
ing a legal coloring) out of 10 (Column 4), followed by statistical results on the

2 Colorings available on line at cedric.cnam.fr/~porumbed/graphs/tsdivint/

Distance-Guided Local Search 11

Algo- Start Succes Final objective values Iterations to success
Graph, k rithm dist. rate avg (std) min max avg (std) min max

le450 25c, 25 DGLS 150 5/10 1.1 (1.1) 0 2 69901 (97969) 774 262654
le450 25c, 25 LS 150 2/10 2 (1.5) 0 5 68060 (66132) 1928 134192
le450 25d, 25 DGLS 190 5/10 2 (2.3) 0 6 40906 (46484) 3468 122994
le450 25d, 25 LS 190 1/10 2.9 (1.8) 0 5 70035 (0) 70035 70035

flat300 28, 28 DGLS 200 5/10 12.3 (15.3) 0 36 72331 (84670) 2577 211600
flat300 28, 28 LS 200 0/10 35.9 (2) 31 38 – (–) – –
dsjc250.5, 28 DGLS 140 4/10 0.7 (0.6) 0 2 148541 (74090) 80443 273258
dsjc250.5, 28 LS 140 0/10 1.5 (0.5) 1 2 – (–) – –
dsjc500.1, 12 DGLS 300 6/10 1.1 (1.9) 0 6 31430 (38929) 1794 112656
dsjc500.1, 12 LS 300 0/10 3.3 (1.3) 1 5 – (–) – –
dsjc500.5, 48 DGLS 230 5/10 0.8 (0.9) 0 2 66981 (55317) 20765 173355
dsjc500.5, 48 LS 230 3/10 3.8 (3.8) 0 11 4900 (3779) 1985 10237
dsjc500.9, 126 DGLS 150 10/10 0 (0) 0 0 20398 (36871) 933 125062
dsjc500.9, 126 LS 150 4/10 0.7 (0.6) 0 2 61623 (87229) 1022 210958

dsjc1000.1, 21 DGLS 800 4/10 1.3 (1.4) 0 4 153604 (42788) 80134 185540
dsjc1000.1, 21 LS 800 1/10 2.4 (1.1) 0 4 257524 (0) 257524 257524
dsjc1000.5, 85 DGLS 450 4/10 8.1 (7.8) 0 25 116658 (43243) 53091 160702
dsjc1000.5, 85 LS 450 0/10 15.3 (7.2) 3 25 – (–) – –
dsjc1000.9, 223 DGLS 250 10/10 0 (0) 0 0 13631 (35213) 511 119226
dsjc1000.9, 223 LS 250 4/10 0.9 (0.8) 0 2 5904 (8547) 642 20701

Table 1: Comparison of DGLS and standard LS launched from a coloring obtained by
randomly modifying a number of colors (“Start dist.” in Column 3) of a legal coloring.
DGLS has significantly larger success rates.

final objective values reported at the end of the 10 executions (Columns “Final
objective values”) and statistical results on the number of iterations needed
by the successful executions (last 4 columns). The statistical results include:
the average value (columns “avg”), the standard deviation (columns “std”),
the minimum value (columns “min”) and the maximum (columns “max”).

Table 1 shows that DGLS can indeed achieve stronger intensification, i.e.,
it is able to find the path towards an optimal solution twice or three times more
often than the standard LS. Notice that DGLS does not find the optimum only
in the beginning of the search (by directly re-constructing the original optimal
solution). It might need sometimes more than 150000 iterations to reach an
optimal solution, after having examined tens or hundreds of spheres. We will
see in Section 4.1.2 below that a sphere examination can often take less than
1000 iterations.

We now consider a different experimental protocol, using the same param-
eters as above. We execute 5 times 300000 iterations the underlying LS and
we take the best solution ever visited. Then, we launch from this solution 10
times DGLS and 10 times the underlying LS.

Table 2 compares the results of DGLS and LS on a set of overly difficult
instances (we choose a number of colors one unit lower than the best known
upper bound). For both algorithms, we report the minimum (bst), average
(avg) and maximum (worst) number of conflicting edges (edges with both end
vertices of the same colors) obtained over 10 executions. Notice DGLS achieves
improved results on all instances, with regards to all three criteria.

12 Daniel Porumbel, Jin-Kao Hao

k-coloring instance LS DGLS
Graph, k bst avg worst bst avg worst

le450 25c.col, 24 21 22.7 24 20 21 22
le450 25d.col, 24 20 21.5 23 20 21.1 22

flat300 28 0.col, 30 29 31 32 24 26.4 28
dsjc250.5.col, 27 6 6.5 7 6 6.1 7
dsjc500.1.col, 11 27 27.1 28 27 27 27
dsjc500.5.col, 47 19 23.2 26 19 22 24
dsjc500.9.col, 125 4 4.1 5 4 4 4

dsjc1000.1.col, 19 34 34.6 35 34 34.1 35
dsjc1000.5.col, 82 82 91.3 98 82 86.7 93
dsjc1000.9.col, 221 9 10.7 13 7 9.3 11

Table 2: Graph k-coloring result on overly-difficult instances.

4.1.2 Insights into the sphere examinations

Natural questions regarding DGLS include:

– What does the global trajectory of DGLS looks like?
– How many candidate solutions are usually visited during a sphere exami-

nation?
– How many iterations can take a run launched from a center, or equivalently

how long is the innermost repeat-until loop of Algorithm 1 in Section
2.2 ?

– What is the average distance from the center c to the best solution found
by a run launched from c? Do different runs launched from c lead to finding
similar best solutions?

An intuitive tool for answering such questions consists of using a Multidi-
mensional Scaling (MDS) procedure that creates a 2D visualisation (projec-
tion) of the visited sphere centers and their distances. This MDS procedure3

takes as input a matrix of distances (between colorings) and generates a set
of Euclidean points such that the distances between these points represent an
approximation of the initial distances. The quality of this approximation can
be evaluated using a loss function (the Kruskall stress). In our cases, the value
of this loss function is usually between 0.2 and 0.3.

3 We used the tool MDSJ “Java Library for Multidimensional Scaling (Version 0.2)” from
University of Konstanz, available on-line at http://algo.uni-konstanz.de/software/mdsj/

Distance-Guided Local Search 13

Regarding the quality of the MDS pro-
jections, we can discuss an example on
Figure 1. The table on the right pro-
vides the real distances between the
points START, 1, 2, 3, 4 and 5. One
could check the Euclidean distances in
the figure are approximately not far
from the real distances in the table.

START 1 2 3 4 5
START 0 50 50 50 96 97

1 50 0 33 36 69 71
2 50 33 0 22 50 50
3 50 36 22 0 60 62
4 96 69 50 60 0 26
5 97 71 50 62 26 0

−80 −60 −40 −20 0 20 40 60

−60

−40

−20

0

20

50

50

50

50
50

52

120

10
2

142

53
2977

81

START

1 2

3

4

5

6

7

8

9

1011

OPT

Fig. 1: MDS plot of the running profile of a short successful DGLS execution on dsjc250.5

with maxRadius = 50. Each point represents a sphere center; each arrow i
iters−→ j indicates

that the sphere center j was discovered in iters iterations by a run launched from i. The
starting point labelled START was generated by randomly modifying 100 colors of a legal
coloring. OPT is the optimal solution found by DGLS.

−40 −20 0 20 40 60 80 100 120
−50

0

50
49
49
50

50
51

50

131

105

74

313

3
2
3 341

4275
7
3

1227

638

22
00
4

2342
12612

START

1
2

3

4

5

6

7

8

9

10

11
12

OPT

Fig. 2: MDS plot of the running profile of a longer DGLS execution on dsjc250.5 with
maxRadius = 50, using the same starting point as in Figure 1. After a long intensified search
close to sphere center 12, DGLS eventually finds its way towards an optimal solution.

Figures 1-2 plot the MDS representations of two DGLS executions on the
smallest random graph dsjc250.5 with k = 28 colors. Each arrow represents a

14 Daniel Porumbel, Jin-Kao Hao

run launched from a sphere center (start point). The end point of the arrow is
the best solution visited by the run (that also becomes a future sphere center).
The labels in blue indicate the order of the discovery of the centers and the
figures above each arrow indicate the run length in iterations.

We can safely conclude from Figures 1-2 that the number of iterations of
a run can vary from 50 = maxRadius to values of hundreds or thousands.
In the beginning, the starting solution has many conflicts that can be solved
directly, making the search rapidly leave the proximity of the starting solution.
Naturally, DGLS finds sphere centers of increasingly improved quality over the
time, and so, the search process spends more iterations on plateaus close to
such centers; thus, later runs take more iterations. The distance between the
sphere center and the best coloring reported by a run can evolve from very
large values in the beginning (close to maxRadius) to values close to zero (this
can be seen in Figure 2, starting with center 12).

We also notice that, in the beginning, the three runs launched from a
center follow quite similar paths, i.e., observe the three arrows originating
at point START in both figures. The underlying Tabu Search is basically
executing three times a similar Steepest Descent, as the center START has
many conflicts that can be easily solved. However, towards (the middle and)
the end of the DGLS execution, we observe the opposite behaviour: we notice
a star-like shape of three arrows originating at each point, i.e., the three runs
launched from the same center can seriously diverge in all directions.

As expected from theory, Figures 1-2 suggest that DGLS does follow a
tree-like trajectory. The execution in Figure 2 is more challenging: there are
quite numerous arrows pointing towards the top of the figure, representing
runs could lead DGLS away from the optimal solution (observe center 6, 16,
and those above 12). These branches were fortunately cut by DGLS and its
intensification mechanism managed to keep the main search process on a region
not far from the optimal solution.

The above conclusions are generally confirmed by other MDS representa-
tions for DGLS executions on different graphs. We refer the reader to Appendix
B for more MDS figures of other DGLS trajectories.

4.1.3 Comparing to random restarts and other sphere ranking criteria

Let us explore other DGLS variants, to get more insight into the different
choices and parameters of the standard DGLS. We will also compare these
DGLS flavors with two standard LS methods that do use restart mechanisms
as well. Specifically, we consider the following four algorithms:

1 A DGLS version in which the second criterion for ranking spheres (see
point 3 of the list below Algorithm 1 in Section 2.2) is replaced by a First
In First Out (FIFO) policy. The sphere centers in the priority queue are
still sorted by their objective values, but this DGLS variant breaks ties
using the FIFO (arrival) order.

Distance-Guided Local Search 15

Algorithm Start Succes Final objective values Restarts
Graph, k dist. rate avg (std) min max avg

le450 25c, 25

DGLS-standard

150 5/10 1.1 (1.1) 0 2 9.8
flat300 28, 28 200 5/10 12.3 (15.3) 0 36 203.8
dsjc250.5, 28 140 4/10 0.7 (0.6) 0 2 49.3
le450 25c, 25

DGLS with FIFO sphere
ranking (second criterion)

150 5/10 1.3 (1.6) 0 5 6.4
flat300 28, 28 200 4/10 18.6 (15.3) 0 35 162
dsjc250.5, 28 140 4/10 1 (1) 0 3 51.9
le450 25c, 25 DGLS that computes

distances only every 200
iterations

140 6/10 0.9 (1.1) 0 3 6
flat300 28, 28 200 1/10 30.1 (10.4) 0 37 122.8
dsjc250.5, 28 140 4/10 0.8 (0.7) 0 2 36.1

le450 25c, 25 Standard LS with a restart
applied every 30000

iterations

150 3/10 1.3 (1.5) 0 5 7.7
flat300 28, 28 200 1/10 28.3 (9.6) 0 35 9
dsjc250.5, 28 140 2/10 1 (0.6) 0 2 8.3
le450 25c, 25 Standard LS with a restart

applied every 100000
iterations

150 3/10 1.7 (1.3) 0 4 2.1
flat300 28, 28 200 0/10 33 (2) 30 36 3
dsjc250.5, 28 140 1/10 1.3 (0.6) 0 2 2.7

Table 3: Comparison of 3 DGLS variants with 2 LS variants with restarts

2 A DGLS version that calculates the distance value only every 200 iter-
ations. Recall that Algorithm 1 uses a function need-calc-dist() that
is generally used to skip computing distances when exact distance val-
ues are not needed. For instance, if the current solution is at distance
0.2 ·maxRadius from the center, the next 0.8 ·maxRadius iterations can not
lead to distances larger than maxRadius. But if the distance calculation
is skipped for 200 iterations, a LS run can leave the sphere during these
iterations. In such cases, the sphere examination is not really confined to a
sphere of radius maxRadius as usually. However, this is not always so bad
and it might not necessarily happen very often in practice.

3 A standard LS algorithm that applies a restart from the best-known solu-
tion every 30000 iterations.

4 A standard LS algorithm that applies a restart from the best-known solu-
tion every 100000 iterations.

Table 3 presents a comparison of the DGLS and LS variants presented
above, using three rows for each variant. The columns of this table are exactly
the same as those of Table 1, except for the fact that we replaced the last
columns with the number of restarts. For DGLS, this number of restarts in
the last column actually signifies the number of centers from which DGLS
launched LS runs. By dividing the number of iterations by this number of
restarts, one can form an opinion of the average number of iterations executed
by an individual run inside a sphere.

Table 3 shows that the success rate of a LS method with restarts is only
about half of the success rate of a DGLS variant, even if a LS with restarts can
perform better than a pure LS without restarts (compare with the LS data
from Table 1).

Comparing the three DGLS variants among them lead to more mixed con-
clusions. For example, the results of the DGLS version with a FIFO sphere

16 Daniel Porumbel, Jin-Kao Hao

ranking criterion are very similar to those of the standard DGLS, which hints
the second criterion for ranking spheres is not essential. The DGLS version
that computes distances at each 200 iterations produces slightly lower quality
results. On the other hand, this DGLS variant computes less distances.

It is worth noticing that DGLS accepts many variations. The pseudo-code
in Algorithm 1 was deliberatively designed to support a variety of (ways of
combining) intensification mechanisms, rather than a wouldbe “unique DGLS
way”. For instance, preliminary experiments suggest that it could be useful
to make DGLS even more aggressive as follows: allow DGLS to switch to a
new center s immediately after finding a solution s of better quality than the
current center c. One would need to modify Algorithm 1 to make it break the
loop starting at Line 5 whenever it finds a solution s better than the current
center c. As such, DGLS could (temporarily) abandon the goal of performing
all runsPerSphere runs from c. However, after finishing exploring the sphere
of s, DGLS could later come back to c (if c is at the beginning of the queue).

4.2 The k-clique and the k-cluster Problem

The goal of the k-cluster problem with unitary edge weights is to maximize
the number of edges in an induced subgraph of size k. In fact, we will present
results with regards to the minimization version of this problem, i.e., minimize
the number of non-edges (missing edges) in an induced subgraph of size k. We
will actually only test the k-clique version of the problem, i.e., we always
choose values of k for which we know there exists at least one complete k-
cluster (perfect clique) with k vertices.

We prefer to evaluate DGLS using a relatively basic canonical Tabu Search
(TS) algorithm as the underlying LS. This TS encodes candidate solutions
as 0/1 arrays with exactly k ones representing k selected vertices. At each
iteration, it chooses the best vertex swap: remove a selected vertex vin from
the current solution and replace it with some non-selected vertex vout. The
best swap is the one that leads to the highest objective value improvement,
breaking ties randomly in case of equality. The implemented TS does use
incremental streamlined calculations to rapidly evaluate the objective value
variation of each swap, see Appendix A.2.

After de-selecting vin, this vertex becomes Tabu for 10 +random(5) moves.
Despite this Tabu mechanism, our TS is more prone to stagnation than the LS
for graph coloring from Section 4.1. It could sometimes loop for a long time
on a plateau or on a quasi-plateau, i.e., on a set of connected solutions with
the same or very close4 objective values. Our TS uses the following technique
to prevent such looping. After the first 1000 iterations, the TS counts the
number itersplat of last consecutive iterations spent on a quasi-plateau. It
then increases the above Tabu list length by itersplat for all moves that keep

4 We chose to consider two objective values obj1 and obj2 to be very close if and only
|obj1 − obj2| ≤ ∆, where ∆ is the difference between the best and the third best objective
value ever discovered by the current run.

Distance-Guided Local Search 17

the search on the current quasi-plateau, similarly to what we did using the

term
⌊
itersplat
1000

⌋
in the Tabu list length for the graph coloring TS. The more

iterations are spent on a quasi-plateau, the longer the Tabu status of many
vertices typically selected by solutions of the quasi-plateau. This eventually
imposes the selection of other non-Tabu vertices, leading the search to new
areas.

To avoid slowing down DGLS with distance calculations, we also perform
an incremental calculation of the distance from the current solution to the
sphere center. This is relatively straightforward, because it is not difficult to
update the distance (to the center) value after swapping vertices vin and vout—
see exact calculation details in Appendix A.2.

The C++ source code of both LS and DGLS for the k-cluster problem are
publicly available on-line at cedric.cnam.fr/~porumbed/dgls/. We can

say it is a “human-size” code of about 1200 lines; the fact that the underlying
LS is canonical TS with few fancy features simplifies the understanding of the
code.

4.2.1 General results on k-clique instances

We will compare DGLS with LS using a total number of iterations ofmaxIter =
1.000.000. The spheres are sorted according to the objective value of the cen-
ter, breaking ties using the FIFO order. We set the number of runs per sphere
at runsPerSphere = 3 as in the graph coloring case. The radius value is
maxRadius = 1.5 · k, because we observed that maxRadius = k does not seem
enough, i.e., our TS can often reach a distance of k in only 1

2k iterations by
simply changing 1

2k vertices. We used rather limited tests to find these round
values, e.g., we did not try 1.4 · k or 1.6 · k. Fine-tuning the parameter values
could probably skew the results slightly more in DGLS’s favor, but not enough
to upset our main conclusions.

We did need the three techniques for stagnation avoidance from Section 2.3
as follows:

1. The maximum number of iterations per sphere is set at 10 · n.
2. If the best solution bst visited by a run launched from a sphere center
c satisfies d(bst, c) < 1

2maxRadius, then bst is not inserted in the prior-
ity queue but it is replaced with the best solution bstFar that satisfies
d(bstFar, c) ≥ 3

4maxRadius.
3. The repulsion technique described at point 3 of Section 2.3 is applied

here as follows. For each visited solution s such that obj(s) = obj(c) and
d(s, c) < 1

2maxRadius, we increase a repulsion force f with a ∆s,c value
inversely proportional5 to d(s, c). We then impose that all vertices v that

5 Many ∆s,c formulae seem acceptable in practice. We use ∆s,c = 1
d(s,c)+3

. For instance,

if the search revisits 30 times the center c, then we obtain a total repulsion value of 30· 1
3

= 10.
As such, the currently selected vertices that do not belong to the center stay Tabu 10
iterations more. This encourages DGLS to deselect vertices that do belong to the center,
thus repulsing the search away from it.

18 Daniel Porumbel, Jin-Kao Hao

contribute to the Hamming distance d(s, c) have to stay Tabu f iterations
more. Formally, these vertices v are those that satisfy one of the following:
(i) s[v] = 1 and c[v] = 0 or (ii) s[v] = 0 and c[v] = 1. This progressively
repulses the search from the center, because a high repulsion force discour-
ages moving vertices that contribute to the distance to c. If f is non-zero at
the end of a run launched from c, we then insert in the priority queue the
best solution bstV eryFar that satisfies d(bstV eryFar, c) ≥ 9

10maxRadius.

For many k-clique instances, the TS implemented in this section reports
the same result over all executions. One can also observe this phenomenon
for the faster TS from [18], where Table 1 announces a success rate of 100%
for all but three graphs. Our TS has less fancy features and allows a larger
variation of the final best objective values. However, we did need to restrict
the study to several graphs on which our TS does report significantly different

final results. We also introduce two new instances keller4+1 and keller4+2

obtained by modifying the keller4 instance. The original keller4 instance is
not very difficult, because it contains numerous perfect cliques of size 11. We
took one of these cliques of size 11 and removed some of the edges linking it
to the rest of the graph, so as to isolate (hide) it; finally, we added an artificial
vertex that is only linked to the chosen clique of size 11. The maximum clique
in the resulting instance is thus 12, but it is more difficult to find it.6

As in Section 4.1.1, the DGLS is primarily designed to achieve intensifica-
tion, and so, it makes sense to evaluate DGLS by launching it from a solution
that is moderately close to an optimal clique. For this purpose, we took a per-
fect clique for each graph, we relocated a number of vertices and we launched
both DGLS and LS from the resulting perturbed solution.

6 These two instances are publicly available on-line, along with the LS/DGLS source code
in C++ at http://cedric.cnam.fr/~porumbed/dgls/.

Algo- Disloca- Succes Final objective values Iterations to success
Graph, n, k rithm ted vtx rate avg (std) min max avg (std) min max

C1000.9, 1000, 68 DGLS 40 10/10 0 (0) 0 0 5061 (13185) 157 44605
C1000.9, 1000, 68 LS 40 9/10 0.1 (0.3) 0 1 294406 (191687) 166278 800226
C500.9, 500, 57 DGLS 40 10/10 0 (0) 0 0 7394 (11984) 379 36801
C500.9, 500, 57 LS 40 10/10 0 (0) 0 0 131209 (120215) 346 437266

MANN a27, 378, 126 DGLS 21 10/10 0 (0) 0 0 26756 (37578) 14 133534
MANN a27, 378, 126 LS 21 5/10 0.7 (0.8) 0 2 280488 (299632) 14 800954

c-fat500-2, 500, 26 DGLS 14 10/10 0 (0) 0 0 29084 (20134) 15 62210
c-fat500-2, 500, 26 LS 14 4/10 7.2 (5.9) 0 12 200016 (244950) 15 600018
c-fat500-5, 500, 64 DGLS 34 10/10 0 (0) 0 0 18864 (2651) 16359 23982
c-fat500-5, 500, 64 LS 34 0/10 31 (0) 31 31 – (–) – –

keller4+1, 172, 12 DGLS 5 8/10 0.2 (0.4) 0 1 231362 (167365) 6 415401

keller4+1, 172, 12 LS 5 1/10 0.9 (0.3) 0 1 6 (0) 6 6

keller4+2, 172, 12 DGLS 6 5/10 0.5 (0.5) 0 1 29525 (58946) 30 147417

keller4+2, 172, 12 LS 6 2/10 0.8 (0.4) 0 1 101532 (27384) 74148 128917

Table 4: Comparison of DGLS and standard LS launched from a solution obtained by
dislocating a number (“Dislocated vtx” in Column 3) of vertices from a perfect clique.

Distance-Guided Local Search 19

Table 4 (previous page) presents this comparison of DGLS and LS, report-
ing the instance in Column 1 (the graph, n and k), the algorithm version in
Column 2 (one row on DGLS, one on the standard underlying LS), the above
number of modified colors of a legal coloring (Column 3), the number of suc-
cessful executions (finding a perfect clique) out of 10 (Column 4), followed by
statistical results on the final objective values reported by the 10 executions
(Columns “Final objective values”) and statistical results on the number of
iterations needed by the successful executions (last 4 columns). The statisti-
cal results include: the average value (columns “avg”), the standard deviation
(columns “std”), the minimum value (columns “min”) and the maximum value
(columns “max”).

Table 4 shows that DGLS can indeed achieve stronger intensification. Ex-
cept for the first two graphs, if finds the path towards an optimal solution twice
or three times more often than the standard LS. Even for the first two graphs,
it needs far less iterations than the underlying LS to reach the optimum.

4.2.2 Insights into the sphere examinations

All questions regarding the graph coloring DGLS from Section 4.1.2 are equally
relevant for the k-clique problem. For instance, one might want to know how
far from the starting solution is the optimal solution found by DGLS, or how
long is the chain of runs needed to reach this optimal solution. One might
also want to form an opinion about the average distance from a center c to
the best solution reported by a run launched from c. We now use the same

−15 −10 −5 0 5 10 15 20 25 30

−20

0

20

START

1

2

3

4

5

6

7

8
9

10

11

12
OPT

Fig. 3: MDS representation of the running profile of a short successful DGLS execution
on c-fat500-2 with maxRadius = 40. The points represent sphere centers and the associate
labels indicate the order of the discovery of these centers; each arrow points to the best
solution (future center) reported by a run launched from a center. The starting point START
was generated by dislocating 14 selected vertices from a perfect clique, i.e., START is at
distance 28 from an optimal solution. However, the optimal solution OPT discovered by
DGLS is at distance 40 from START. The three solutions discovered from START are at
distance 28, i.e., DGLS “repaired” the 14 dislocated vertices at each run from START.

20 Daniel Porumbel, Jin-Kao Hao

Multidimensional Scaling procedure from Section 4.1.2 to provide an intuitive
visualisation of the DGLS trajectory, so as to (try to) offer an answer to such
questions.

Figures 3 and 4 confirm that DGLS follows a tree-like trajectory as ex-
pected from theory. In Figure 3, one notices many arrows (runs) that point
towards the optimal solution, without directly reaching it. However, it is clear
that the DGLS can find an optimal solution virtually with probability 100%,
by taking as starting center any of the end points of these arrows. On the
other hand, a standard LS could also follow a path towards a point like 4 and
thus miss the region at the right of the figure with optimal solutions.

Figure 4 shows a more challenging DGLS execution. One can notice that
many arrows do not point at all towards the optimal solution, and so, certain
runs could easily lead GDLS away from interesting areas. These branches were
fortunately cut by DGLS and its strong intensification mechanism managed to
lead the main search process to a region that does contain an optimal solution.

−100 −80 −60 −40 −20 0 20 40 60 80 100

−50

0

50

100

START

1 2

34

5

6

7
8

9

28

OPT

Fig. 4: Running profile of a more challenging successful DGLS execution on MANN a27 with
maxRadius = 189. Each point represents a sphere center. The path from the starting point
START to the optimum solution OPT is depicted in red; OPT is at distance 114 from
START. DGLS started out by visiting a quite far point 2, at distance 148 from START. It
then came back closer to START at point 5, before eventually finding a way towards OPT.

4.2.3 Comparing to other random restarts or sphere ranking criteria

As in Section 4.1.3 on graph coloring, we now investigate other DGLS and LS
variants. This will also be very useful for evaluating the contribution of the
different techniques incorporated into DGLS and LS. More exactly, we will
compare the standard DGLS with the following four algorithms:

1. DGLS with maxRadius = 0.25k instead of maxRadius = 1.5k.
2. DGLS with a maximum number of iterations per sphere of 1000 ·n instead

of 10 · n.

Distance-Guided Local Search 21

Algorithm Start Succes Final objective values Average
Graph, n, k dist. rate avg (std) min max restarts
C500.9, 500, 57

DGLS-standard

40 10/10 0 (0) 0 0 7
MANN a27, 378, 126 21 10/10 0 (0) 0 0 10.3

c-fat500-2, 500, 26 14 10/10 0 (0) 0 0 3.9
C500.9, 500, 57 DGLS with a small

maxRadius = 0.25k
instead of 1.5k

40 4/10 1.3 (1.2) 0 3 24265.2
MANN a27, 378, 126 21 9/10 0.1 (0.3) 0 1 4068.5

c-fat500-2, 500, 26 14 5/10 6 (6) 0 12 595.7
C500.9, 500, 57 DGLS with max

1000·n (100x more)
iterations per sphere

40 10/10 0 (0) 0 0 23.5
MANN a27, 378, 126 21 10/10 0 (0) 0 0 12.6

c-fat500-2, 500, 26 14 2/10 9.6 (4.8) 0 12 1.8
C500.9, 500, 57

DGLS with no
stagnation avoidance

40 7/10 0.6 (0.9) 0 2 871.5
MANN a27, 378, 126 21 10/10 0 (0) 0 0 254.2

c-fat500-2, 500, 26 14 3/10 8.4 (5.5) 0 12 4

C500.9, 500, 57 Standard LS with a
restart every 100000
iterations (max 10)

40 10/10 0 (0) 0 0 2.2
MANN a27, 378, 126 21 6/10 0.6 (0.8) 0 2 7.7

c-fat500-2, 500, 26 14 5/10 3.6 (5.5) 0 12 6.3

Table 5: Comparison of different DGLS and LS variants

3. DGLS with none of the stagnation avoidance techniques from Section 2.3.
4. LS with 10 restarts during the maxIter = 1.000.000 iterations.

Table 5 compares these algorithms, thus providing an image of the indi-
vidual impact of the different components that constitute DGLS. The second
block or rows (rows 6-8) suggest that using a very small radius maxRadius =
0.25k does not lead to a very effective DGLS flavor. Such DGLS can end up
generating (a web of) thousand of small spheres (see the last column) asso-
ciated to small-length runs that do not have enough intensification strength.
The third block of rows (rows 9-11) shows that imposing a maximum number
of iterations per sphere is not always necessary. Using a very large value for
this parameter, DGLS could still solve two instances with a 100% success rate,
but fail 8 times on c-fat500-2.

The impact of the stagnation avoidance techniques from Section 2.3 can
be evaluated using the fourth block of rows (rows 12-14) of Table 5. We notice
that by removing these techniques, the success rate is reduced for two graphs.
Even if the success rate for MANN 27 remains the same, the number of runs
launched from sphere centers is much larger, which suggests that this DGLS
variant needed more effort to find the optimum. The reason for the failures of
this DGLS variant on c-fat500-2 comes from the fact that the search process
is actually blocked looping on a plateau around a local optimum. Indeed, notice
that this DGLS launched in average only 4 runs (see last column) from sphere
centers during all 1.000.000 iterations.

Finally, the last three rows concern a LS variant that executes 10 random
restarts during the maxIter = 1.000.000 iterations. This LS variant does not
reach results that can change our main conclusions. For example, it fails almost
half of the time on MANN a27, while this instance is solved with a 100% success
rate even by the simplest DGLS variants.

22 Daniel Porumbel, Jin-Kao Hao

4.3 The Capacitated Arc Routing Problem (CARP)

In this section, the underlying LS is a simplified version of the Iterated Lo-
cal Search (ILS) from [13]. We recall that this LS works with permutations
of the set ER of edges requiring service; any permutation is decoded into ex-
plicit routes by applying a decoder based on dynamic programming. The main
simplifications compared to [13] come from the fact that we use no Column
Generation and no local search on explicit (decoded) routes. Additionally, our
neighborhood only consists of adjacent swaps on the permutations. More de-
tails on the algorithm are provided in Appendix A.3 or directly in [13].

Since the evaluation of each permutation requires a decoder that is rela-
tively computationally intensive,7 there is no important slowdown induced by
a straightforward distance calculation approach. Recalling the distance defini-
tion (3.1) from Section 3.2.3, we observe that the distance calculation requires
n(n−1)

2 comparisons. Finally, the sphere radius is set at r = 5 · n and the num-
ber of runs per sphere is runsPerSphere = 3 as for k-coloring and k-cluster.

Table 6 compares LS and DGLS on several CARP instances on which
the difference between the results of LS and DGLS are relatively large. For
both methods, we allow 300 seconds per execution. Columns 3 and 6 show
that DGLS obtains a better minimum objective value with only one excep-
tion (egl-S1-B). Columns 4 and 7 show that DGLS obtains a lower average
objective value in all instances but one (egl-S1-B). In Columns 5 and 8 one
observes that, with only two exceptions (egl-S1-C and egl-S2-B), DGLS
obtains a lower maximum objective value.

Finally, all results presented in this section were obtained on an Intel Xeon
CPU (E5-2630) clocked at 2.4GHz. The k-cluster and k-coloring algorithms
were implemented in C++ and compiled by gnu g++ with −03 optimization
option. The CARP algorithm was implemented in Java, version 1.7. Notice
there exists a benchmark for comparing coloring algorithms on different in-
stances,8 useful for providing a hardware-independent measure of CPU speed.
This benchmark leads the following user times on our machine: 5.05s for
r500.5.b, 1.33 for r400.5.b, 0.28 for r300.5.b, and 0.05 for r200.5.b. For
comparison, the machine we used in [14] reported 6.35s for r500.5.b.

5 Conclusions and Prospects

Distance measures have been used relatively rarely in local search algorithms.
Most related studies employ distances as a means to achieve diversification.
In this work, we show that distances can be used to help the LS to inten-
sify the search. The proposed distance-guided local search framework operates

7 For the k-coloring and k-clique problems, the evaluation of each neighbor requires O(1)
time, i.e., strong streamlining routines are used. In CARP, the evaluation of each neighbor
is linear in the number |ER| edges (clients), in the number of vehicles and in the size of the
longest route.

8 See http://mat.gsia.cmu.edu/COLOR03/ or more exactly the benchmark in the tar

archive available for download at mat.gsia.cmu.edu/COLOR03/BENCHMARK/benchmark.tar.

Distance-Guided Local Search 23

CARP instance LS DGLS
Graph, best bst avg worst bst avg worst

egl-S1-A, 5018 5154 5249.5 5336 5050 5180.8 5276
egl-S1-B, 6388 6454 6584 6658 6473 6599.7 6658
egl-S1-C, 8518 8725 8778.6 8852 8616 8710 8917
egl-S2-A, 9884 11057 11166.8 11379 10993 11148.9 11379
egl-S2-B, 13100 16251 16677.1 16861 16140 16602.9 16895
egl-S2-C, 16425 18998 19582.1 19868 19309 19568.9 19807
egl-S3-A, 10220 11236 11334.1 11391 11236 11289.9 11342
egl-S3-B, 13682 16251 16677.1 16861 15468 16007.1 16251
egl-S3-C, 17188 19392 19581.3 19650 19306 19460 19627

Table 6: Results of LS and DGLS on CARP considering a time limit of 300 seconds. For
each row, we execute 10 times LS and DGLS.

on top of an underlying local search and equips it with intensification tech-
niques based on distances. The trajectory of the resulting DGLS algorithm is
no longer a continuous path of visited solutions, but a tree-like structure com-
posed of examined spheres and non-examined spheres. Experiments on three
representative problems (k-coloring, k-clique and Capacitated Arc-Routing)
show that DGLS can improve the underlying local search and achieve better
results.

The proposed algorithm is not an exact recipe that has to be closely fol-
lowed in an attempt to improve an existing LS. One could only use a few
distance-based tools that are the most effective for a given problem. For in-
stance, it might not be always necessary to record the spheres in a priority
queue. Instead, one could only use the stagnation avoidance techniques from
Section 2.3 that can make an existing LS able to detect when it is stuck looping
on a plateau around a center, so as to change its trajectory.

Finally, the distance calculation overhead could always be kept within rea-
sonable limits, using a different idea for each of the three problems we consid-
ered. For graph coloring, the distance has to be computed only once in tens
of iterations, using arguments from the point 6 of Section 2.2. For the clique
problem, the distance to the center can be incrementally calculated in con-
stant time at each iteration, see Appendix A.2. For the CARP, the objective
function evaluation requires running a permutation decoder based on dynamic
programming and this is a more important computational bottleneck than the
distance calculation.

Acknowledgments

We are grateful to the reviewers for their valuable comments which helped us
to improve the paper.

24 Daniel Porumbel, Jin-Kao Hao

References

1. Vicente Campos, Manuel Laguna, and Rafael Mart́ı. Context-independent scatter and
tabu search for permutation problems. INFORMS Journal on Computing, 17(1):111–
122, 2005.

2. W. Cedeño and V.R. Vemuri. Analysis of speciation and niching in the multi-niche
crowding GA. Theoretical Computer Science, 229(1):177, 1999.

3. K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan Ann Arbor, MI, USA, 1975.

4. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–
197, 2002.

5. Zvi Drezner. A new heuristic for the quadratic assignment problem. Advances in
Decision Sciences, 6(3):143–153, 2002.

6. Moshe Dror. Arc routing: theory, solutions and applications. Springer Science & Busi-
ness Media, 2012.

7. Fred Glover, Manuel Laguna, and Rafael Mart́ı. Fundamentals of scatter search and
path relinking. Control and cybernetics, 29(3):653–684, 2000.

8. Dan Gusfield. Partition-distance: A problem and class of perfect graphs arising in
clustering. Information Processing Letters, 82(3):159–164, 2002.

9. Cédric Joncour, Sophie Michel, Ruslan Sadykov, Dmitry Sverdlov, and François Van-
derbeck. Column generation based primal heuristics. Electronic Notes in Discrete
Mathematics, 36:695–702, 2010.

10. MG Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
11. B. L. Miller and M.J. Shaw. Genetic algorithms with dynamic niche sharing for multi-

modalfunction optimization. In Proceedings of the IEEE International Conference on
Evolutionary Computation, pages 786–791, 1996.

12. Alberto Moraglio and Riccardo Poli. Topological interpretation of crossover. In Kalyan-
moy Deb, editor, Genetic and Evolutionary Computation Conference, pages 1377–1388.
Springer, 2004.

13. Daniel Porumbel, Gilles Goncalves, Hamid Allaoui, and Tient Hsu. Iterated local search
and column generation to solve arc-routing as a permutation set-covering problem.
European Journal of Operational Research, 256(2):349 – 367, 2017.

14. Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. A search space “cartog-
raphy” for guiding graph coloring heuristics. Computers and Operations Research,
37(4):769–778, 2010.

15. Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. An efficient algorithm
for computing the distance between close partitions. Discrete Applied Mathematics,
159(1):53–59, 2011.

16. Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. Spacing memetic algo-
rithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (GA track), pages 1061–1068. ACM, 2011.

17. R.E. Smith, S. Forrest, and A.S. Perelson. Searching for diverse, cooperative populations
with genetic algorithms. Evolutionary Computation, 1(2):127–149, 1993.

18. Qinghua Wu and Jin-Kao Hao. An adaptive multistart tabu search approach to solve
the maximum clique problem. Journal of Combinatorial Optimization, 26(1):86–108,
2013.

A The underlying local searches and their streamlined calculations

A.1 Graph k-Coloring

The underlying LS for graph k-coloring is the Tabu Search (TS) from [14]. A solution s
is represented as an array of length n such that sv is the color of vertex v. A neighboring
solution can be obtained by simply changing the color sv of any conflicting vertex v to
some s′v . By focusing on conflicting vertices, this neighborhood helps the search process to

Distance-Guided Local Search 25

concentrate on influential moves and to avoid irrelevant ones, because changing the color of
a non-conflicting vertex would not directly improve the objective function.

After executing a move and assigning a new color to a vertex v, v can not receive again
the lost color for the next T` iterations. The value of T` is set at random(10) + 0.6 · obj(s) +⌊
itersplat

1000

⌋
, where itersplat is the number of last moves with no objective function variation.

The last term is only introduced to change T` when the algorithm is blocked looping on a
plateau and the objective value does not change for 1000 moves. Each series of consecutive
1000 moves with no objective function variation triggers the increment of all subsequent
values of T` until the objective changes again. This additional term prevents the search
process from getting blocked looping on a plateau while not affecting its behavior outside
plateaus.

To rapidly choose the best neighbor of s, this TS uses a n× k table Γ such that Γv,s′v
indicates the number of conflicts of v if v received color s′v . As such, Γv,s′v

−Γv,sv represents
the objective function variation associated to the move that changes the color of v from sv
into s′v . After performing a move, Γ can be updated in O(n) time (because only columns sv
and s′v might require updating).

A.2 k-cluster: incremental calculations of objective value and distance

The main ideas of the k-clique Tabu Search (TS) algorithm were presented in the first
paragraphs of Section 4.2. We here describe how it uses incremental calculations to rapidly
find the best swap of vertices at each iteration. For this, the TS uses a table that associates to
each non-selected vertex vout the number of edges that it can bring to the current solution.
For a selected vertex vin, this table records the number of edges linked to vin in the current
solution. To find the best swap, it is enough to consider each selected vertex vin and each
non-selected one vout and to calculate (in constant time using the above table!) the objective
function variation of swapping vin with vout. After executing the move, the table values of
vin and vout are quite easily updated, by scanning their neighbors modified by the last
move. For a more complex and faster calculation streamlining scheme, we refer the reader
to [18]. However, using a slower (and more pedagogical) algorithm poses no problem for the
empirical evaluations needed in this paper.

The calculation of the distance from the current solution s to the current center c is also
incremental. If s′ is obtained from s by swapping a and b, then

d(s′, c) = d(s, c)−
(

[sa 6= ca] + [sb 6= cb]
)

︸ ︷︷ ︸
old contribution to the

Hamming distance

+
(

[sb 6= ca] + [sa 6= cb]
)

︸ ︷︷ ︸
new contribution to

the Hamming distance

,

where [S] is the Iverson bracket, i.e., [S] is 1 when the statement S is true and 0 otherwise.
If the move consists of deselecting a selected vertex a = vin and of selecting a non-selected
vertex b = vout, the above formula becomes

d(s′, c) = d(s, c)−
(

[1 6= ca] + [0 6= cb]
)

+
(

[0 6= ca] + [1 6= cb]
)
.

One can check all possible cases of ca and cb to see this leads to the following simpler
formula:

d(s′, c) = d(s, c) + 2 · ca − 2 · cb.

A.3 Capacitated Arc-Routing (CARP)

The underlying LS for CARP is based on a simplification of the Iterated Local Search (ILS)
from [13]. The original ILS considers a search space of permutations that are decoded into

26 Daniel Porumbel, Jin-Kao Hao

explicit routes using a decoder (see below). The main simplifications are the following. First,
all Column Generation (CG) components of the algorithm from [13] are removed, allowing
one to more easily compare LS with DGLS, using less external components. Secondly, the
neighborhood is restricted to only use adjacent transpositions (swaps), i.e., a neighbor per-
mutation is constructed by swapping consecutive elements of the current permutation. This
allows one to achieve a correlation between a distance d(sa, sb) and the number of LS moves
needed to reach sa from sb. Finally, we do not use the post-decoder acting on explicit
decoded routes.

We recall [13, §2.1] that the perturbation operator consists of inserting in the current
solution a route (sequence) discovered earlier by the ILS. More exactly, to perturb the
current permutation s, we extract a route r from a pool P , we inject r at the beginning
of s and we remove from s any duplicate element of r. The pool P is continually updated
throughout the search, by adding routes discovered by the ILS at different moments of the
search.

Finally, the decoder7 consists of a dynamic programming routine of linear complexity
in terms of the number of clients |ER|, i.e., the complexity is O(|ER|). More precisely,
given input permutation s = (s1, s2, . . . sm), the decoder determines a set of routes of
minimum total cost that service all required edges in the order s1, s2, . . . sm. Since the
decoder is relatively computationally intensive, the distance calculations do not introduce
an important slowdown in the search.

Distance-Guided Local Search 27

B MDS plots of other DGLS trajectories for graph k-coloring

−140 −120 −100 −80 −60 −40 −20 0 20 40 60 80 100 120

−100

−50

0

50

90

90
90

253

661
230

9
3
0
6

8644

192
11

3
0
9
4
3

12
80
51

65018

37413

0
1

2
3

4

5

6

7

8

9

10

11

12

13

le450 25c

−140 −120 −100 −80 −60 −40 −20 0 20 40 60 80 100

0

50

100

89
90

89

94 99

91

551

988

364

3926

2809

5672

66
78
1

170880

47477

0

1

2

3

4
5

6

7

8

9

10

11

12

13 14

15

le450 25d

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100

−50

0

50

100

5858

58

58 59
60

605959

72
6365

69
7172

72
7467

111

11096

153

20
999

14
8

15
1

133

126
35
2194170

0 1
2

3

4 5

6

78
9

10

11
12

13

14
15

16

1718

19

20 21

222324

25 26

27

28
2930

31

flat300 28

−160−140−120−100−80 −60 −40 −20 0 20 40 60 80 100 120 140 160
−50

0

50

100

100
10
0

100

1009999

108
107
115

325

257

403

3
9
2
5

36
45

4
0
7
6

44
3

0

1

2

3

4
5
6 7

8

9

10

11

12

OPT

dsjc500.1, maxRadius = 100

