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Abstract

In cutting and packing problems, Dual Feasible Functions (DFFs) represent a well established tool for
deriving high quality lower bounds in very short times. A well-known DFF lower bounding approach
consists of using DFFs to rapidly generate feasible values for the dual variables of a Column Generation
(CG) program (i.e., of an extended formulation commonly associated to CG). This paper presents a
method for extending this approach to problems such as Capacitated p-Median, Distance Constrained

General Routing and related variants (e.g., Capacitated Arc-Routing). In contrast to classical DFF
bounds for cutting and packing, our extended DFF bounds deal with non-equal column costs, i.e., the
column costs (primal objective function coefficients) have a more complex structure depending on some
sums of distances. The general idea is to use a (reformulated) classical CG model in which a feasible
dual solution is expressed as a linear combination of both DFF and non-DFF terms. In fact, one of the
proposed approaches (the mixed CG-DFF bound for Capacitated p-Median in Section 2.2) still requires
optimizing a restricted CG program, but with fewer variables and easier pricing sub-problems. The most
refined bound version is the “DFF warm-started CG” from Section 2.2.2: it takes dual constraints
generated while solving the above restricted CG program are re-uses them to warm-start a full CG
phase. In the best cases, this can yield a speed-up between 2 and 3 relative to the pure CG. We present
numerical experiments on Capacitated p-Median, Capacitated Arc-Routing (with fixed costs) and
Distance Constrained Arc Routing; the numerical comparisons with the CG bound concern both the
quality and the running time.

Keywords: Dual Feasible Functions, Column Generation, Fast Lower Bounds, p-Median, General
Routing

1. Introduction

The explicit or implicit use of Dual Feasible Functions (DFFs) has a long tradition in optimization—
see, chronologically, the work in [15, 19, 28, 11, 5, 12, 4, 2, 9, 6, 26, 3], or the survey [8]. The DFFs
are most often used to generate: (i) valid inequalities in certain Integer Linear Programs (e.g., for the
knapsack polytope) or (ii) high-quality fast lower bounds (LBs) for cutting and packing problems. Indeed,
a well-known DFF LB for these problems is determined by integrating in a Column Generation (CG)
program the values returned by a DFF: these values produce a dual solution whose feasibility can be
guaranteed without running the CG algorithm. Such guarantees arise from exploiting a similarity between
the dual constraints and the main DFF property (see below). The goal of our study is to show that the
above DFF approach can be extended to problems outside the cutting and packing field. We use similar
CG LPs (Linear Programs), but with different dual constraints (coming from routes or patterns) that
require more refined reformulations to integrate DFFs. For instance, while a cutting or packing problem
usually requires minimizing a number of patterns of equal (column) cost, the proposed approach deals
with configurations (clusters or routes) with more complex costs.

Given function f : [0, 1]→ [0, 1], capacity Q and some quantities q1, q2, . . . qn ∈ [0, Q], the fundamental
(D)DFF inequality is the following:

n∑
i=1

aif

(
qi
Q

)
≤ 1,∀ a1 . . . an ∈ Z+ such that

n∑
i=1

aiqi ≤ Q (?)
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If this inequality holds for any input quantities q1, q2, . . . qn ∈ [0, Q], then f is a general DFF. If this
inequality only holds for some given fixed values qi

Q , with i ∈ [1..n], then f is a Data-Dependent DFF

(DDFF). Denoting q = [q1 . . . qn]>, such a data-dependent function is also referred to as a q-DDFF.
This fundamental inequality has strong similarities with a class of dual constraints of the following

form: the sum of any selected dual values is at most 1 if the sum of their corresponding weights (see
below) is less than or equal to Q. Such constrains often arise in cutting and packing formulations (such as
the Gilmore-Gomory model) with capacity Q. More exactly, (?) is very similar to dual constraints of the
form a>y ≤ 1 (in dual variables y) associated to patterns (columns) a = [a1 a2 . . . an]> ∈ Zn+ with: (a)
fixed constant pattern cost (accounting for the right-hand value of 1) and (b) total weight (size, length,

supplied quantity) a>q not exceeding capacity Q. The terms f
(
qi
Q

)
are integrated in such constraints

by providing values for the dual variables y, i.e., the solution obtained via yi ← f( qiQ ) ∀i ∈ [1..n] satisfies

a>y ≤ 1. The above property (a) renders the classical DFF LB approach very well-suited to problems
that minimize a number of selected patterns, e.g., the number of bins in Bin-Packing, the number of
rolls in Cutting-Stock, the number of independent sets in Graph Coloring, etc. A challenging aspect
in this work is the need to address more complex costs (of routes or clusters) for which the above DFF
integration is less straightforward. For instance, in p-median (or Arc-Routing), the goal is to minimize
a total covering (traversal) distance and the dual constraints have fewer similarities with (?), e.g., the
dual constraints do no longer have 1 in the right-hand side.

The paper is organized as follows. Section 2 presents several DFF-based lower bounds for Capacitated
p−Median, as well as the convergent DFF warm-started CG (Section 2.2.2). Section 3 is devoted to a
study of (D)DFF applications to General Routing problem variants. Numerical experiments are carried
out in Section 4, followed by conclusions in the last section. Appendix A presents a case study of the
proposed approach for a different Capacitated p-median variant, showing how the DFFs can be (better)
integrated to more problems.

2. DFF Bounds for Capacitated p-Median

2.1. Problem Introduction and a Basic Bound

The p-Median problem is a core topic in customer allocation and distribution system design, and so, it
has been tackled with a large variety of algorithms [25], including Column Generation (CG) methods [18,
7, 1, 10, 13]. Besides location and distribution applications, p-Median problems can also arise in rather
unexpected fields such as cluster analysis (see references in the introduction of [1]), processor scheduling
or packet management in networks [14].

Consider a graph G = (V,E) with V = [1..n] and edges {i, j} ∈ E weighted by distance (cost) values
dij ≥ 0; one can interpret d as a function acting on {{i, j} : i, j ∈ V } with dij =∞ if {i, j} 6= E. There
are bi clients placed in each vertex i ∈ V (with bi = 1 in classical instances); each of these clients have
to be serviced from some median (facility) that can be placed anywhere on the vertices V . More exactly,
each client in i requires a supply (weight, quantity) of qi; a median can supply a maximum quantity of
Q to a cluster of clients (subset of V ). The goal is do choose exactly p ≤ n clusters and to assign all
clients from each cluster to a cluster median so as to minimize the total distance from medians to clients.
Remark that G is not oriented, and so, dji = dij ∀i, j ∈ [1..n]; also, we do not impose dii = 0 by default
(even if this is often the case in p-median instances).

Let us start with an introductory binary formulation: we simply copy the model of problem “P” from
[18, §2] and apply the notational translations: N → V and x → z. The binary decision variables zij
indicate if client i ∈ V is serviced by a median placed in j ∈ V ; zjj is 1 if and only if a median is placed
in j The objective function below simply minimizes the sum of the distances from each vertex to its
servicing median. The first constraint states that each vertex i ∈ V has a (unique) client that has to be
serviced once (i.e., we actually used bi = 1,∀i ∈ V ) from one median. The second equality constraints
fixes the number of medians to p. The third constraint imposes a limit of Q to the total quantity that
can be serviced from one median. The last constraint zij ∈ {0, 1} ∀i, j ∈ V reinforces the fact that each
vertex can accept at maximum one client and at maximum one median.
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min
∑
i∈V

∑
j∈V dijzij∑

j∈V zij = 1 ,∀i ∈ V∑
j∈V zjj = p∑
i∈V qizij ≤ Qzjj ,∀j ∈ V

zij ∈ {0, 1} ∀i, j ∈ V

In the rest of the paper, we will actually work on extended formulations for p-median. Compared
to above program, we introduce two novelties: (i) we allow non-equal numbers of clients (demand mul-
tiplicities) bi ≥ 0 to be placed at vertices i ∈ V , each client needing a supply of qi, (ii) we lift the
restriction of placing at maximum one median per vertex (such restrictions are not explicitly imposed in
all set-covering formulations, e.g., see also problem SCP in [18, §3]). However, property (i) is not relevant
in practical instances, because bi = 1∀i ∈ V . The restriction from property (ii) is also not very often
needed in practice; when bi = 1∀i ∈ V , practical (Euclidean) instances might not exhibit high-quality
solutions with multiple medians per vertex.

2.1.1. A Set-Covering Extended Formulation with an Equality Cardinality Constraint

Using interpretations above, we formulate a first Integer Linear Program (ILP) based on a set-covering
extended formulation with a prohibitively large number of variables. This ILP considers a variable for
each cluster, i.e., for each subset of V satisfying a knapsack constraint (see below) with capacity Q. The
resulting program is :

min
∑
daxa∑

aixa ≥ bi, ∀i ∈ V∑
xa = p

xa ∈ Z+ ∀[da a]> ∈ A,

(2.1)

where each sum is carried out over all configurations (clusters) [da a]> of set A, i.e., a = [a1 a2 . . . an]> ∈
{0, 1}n is a column and da is the objective function coefficient (cluster cost). To reduce clutter, please
accept the following notational shorthands: (i) we write [da a]> to mean [da a>]>, equivalent to [daa ]; (ii)
notation da with only one index is a (distance) cost of cluster, while notation di,j is a distance between
two vertices i, j ∈ V . This ILP formulation is constructed based on the following:

The objective function uses decision variables xa to indicate the number of selections of column a.
All sums are carried out over a (prohibitively large) set A with elements [da a]>. Any such element
[da a] comes from a cluster Va = {i ∈ V = [1..n] : ai = 1} with cost da. This representation does
not explicitly indicate the median. However, the best median location for cluster Va is at vertex
m(a) = m(Va) ∈ V such that

∑
i∈Va

di,m(a) ≤
∑
i∈Va

di,m̂, ∀m̂ ∈ V . Using this notation, the cost
of the cluster Va associated to column a is:

da =
∑
i∈Va

di,m(a) =

n∑
i=1

aidi,m(a) (2.2)

Since we only consider the capacitated version of the problem, a feasible column a needs to sat-
isfy

∑
aiqi ≤ Q. There are no other restrictions on the composition of clusters: m(a) does not

necessarily belong to Va, but it influences the cluster cost da.

the first primal constraint
∑
aixa ≥ bi is a set-covering constraint; bi ∈ Z can be seen as the number

of clients that require service at vertex i ∈ V (usually bi = 1);

the second primal constraint
∑
xa = p is an (equality) cardinality constraint imposing the selection

of an exact number of p clusters.

This model is very similar to other ILPs arising in CG studies for Capacitated p-Median, see (10)
in [18] or (6)-(8) in [7]. The former model is almost exactly the same as (2.1), up to the following
notational equivalences: they index the columns with k ∈ [1..m], the decision variables are noted xk and
the columns are indicated by vector Ak of cost ck—this cost ck is determined by solving n (i.e., |V |)
binary knapsack problems, i.e., one for each possible median m̂ ∈ V . The latter model [7] is slightly
different because it encodes the selection of the medians in the columns. As opposed to both above
papers, our model does not require the median m(a) to belong to the cluster Va.
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2.1.2. An Introductory Bound using a Modified Model

The above cardinality equality (
∑
xa = p) can be replaced with

∑
xa ≤ p, as also discussed in [7].

Indeed, given a primal ILP solution x in (2.1) such that
∑
xa ≤ p − 1, one can always derive an equal-

quality solution by repeating the following operation: split one of the selected clusters Va (i.e., with
xa 6= 0) in two and keep the same median location for both resulting clusters. This is always possible:
as long as

∑
xa ≤ p − 1 < n, there exists a selected cluster Va such that |Va| ≥ 2 that can be split into

non-empty disjoint V 1
a and V 2

a . As such, we can replace
∑
xa = p with

∑
xa ≤ p; we will use below

the equivalent form
∑
−xa ≥ −p, which is slightly more convenient to have only “≥” inequalities in the

primal. The initial set-covering ILP (2.1) leads after linear relaxation to the following CG primal-dual
LPs, in which all sums are carried out over all [da a]> ∈ A.

min
∑
daxa

y :
∑
aixa ≥ bi, ∀i ∈ [1..n]

µ :
∑
−xa ≥ −p

xa ∈ R+ ∀[da a]> ∈ A

(2.3a)

max b>y − pµ
x : a>y − µ ≤ da, ∀[da a]> ∈ A

y ≥ 0n
µ ≥ 0

P (2.3b)

Observe that we indicate in front of each constraint the corresponding dual variable. Given column
[da a]> ∈ A, recall that the (best) median m(a) of a satisfies

∑
i∈Va

di,m(a) ≤
∑
i∈Va

di,m̂, ∀m̂ ∈ V .
Using (2.2), the main constraint of the (dual) polytope P can be written:

a>y − µ ≤ da =

n∑
i=1

aidi,m(a)

We will more often make use of this constraint in the form:
n∑
i=1

ai(yi − di,m(a)) ≤ µ, (2.4)

Using notation dm(a) = [d1,m(a)d2,m(a) . . . dn,m(a)]
>, it can also be written a>

(
y − dm(a)

)
≤ µ.

We now start out with an introductory proposition. It is mainly useful for getting a very general idea
on the proposed DFF lower bounding approach.

Proposition 1. The dual values below yield a dual feasible solution in (2.3b), for any α ∈ [0, µ] and for
any (D)DFF f (one can use a general DFF f or a q-DDFF).

yi = αf

(
qi
Q

)
+ min
j∈[1..n]

di,j (2.5)

Proof. We need to show that the main (dual) constraint (2.4) holds for any feasible cluster a; this
constraint is expanded as:

n∑
i=1

(aiyi − di,m(a)) =

n∑
i=1

ai

(
αf

(
qi
Q

)
+ min
j∈[1..n]

di,j − di,m(a)

)
≤ µ,

Given that min
j∈[1..n]

di,j − di,m(a) ≤ 0 ∀i ∈ V , it is enough to show that:

α

n∑
i=1

aif

(
qi
Q

)
≤ µ,

which is true because α ≤ µ and f satisfies the fundamental (D)DFF inequality (?) with regards to
quantities qi ≤ Q, ∀i ∈ [1..n] – recall that all feasible clusters a verify the capacity constraint

∑n
i=1 aiqi ≤

Q.

This proposition actually allows one to derive a class of valid dual solutions, depending on variables
α ∈ [0, µ] and µ ≥ 0. The best LB value is reached by maximizing (under constraint α ≤ µ) the dual
objective function:

b>y − pµ =

n∑
i=1

bi

(
αf

(
qi
Q

)
+ min
j∈[1..n]

di,j

)
− pµ =

n∑
i=1

bi min
j∈[1..n]

di,j + α

n∑
i=1

bif

(
qi
Q

)
− pµ (2.6)
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This actually leads to only two cases:

(A)
∑n
i=1 bif(qi)− p > 0: the objective value can be made indefinitely large using an arbitrarily large

α = µ. In other words, the instance is infeasible because it is impossible to put all requested
quantities

∑n
i=1 biqi in p facilities with capacity Q. DFFs (and q-DDFFs) can actually serve as a

very fast tool for detecting such situations;

(B)
∑n
i=1 bif(qi)− p ≤ 0: the best objective value is reached using α = µ = 0.

Both of these cases lead to α = µ. The reason for having introduced two separated variables α and µ will
become obvious in the next section. Above proposition only aims at introducing the very general idea of

our approach, i.e., we combined DFF terms (like aif
(
qi
Q

)
) with non-DFF terms

(
like minj∈[1..n] d

j
i

)
.

A drawback of the dual feasible solution from Proposition 1 is related to this non-DFF term minj∈[1..n] d
j
i

in (2.5). In most practical instances, dii can be zero and this is not very helpful for obtaining high qual-
ity LB values using (2.6). To overcome this issue, the mixed CG-DFF approach from the next section
replaces minj∈[1..n] d

j
i with minj∈[1..n],j 6=i d

j
i . Furthermore, such minimizing terms might not even arise

at all in other p-median versions: we provide an example in this sense in Appendix A.

2.2. A Mixed Vk-Reduced CG-DFF Bound and DFF warm-started Full CG

Let us now decompose V = [1..n] into V = Vk ∪ Vk (small and large quantities), such that

Vk =

{
i ∈ V : qi ≤

Q

k

}
and Vk =

{
j ∈ V : qj >

Q

k

}
. (2.7)

The dual variables of Vk will be expressed using (D)DFF terms, while Vk will be associated to a
(Vk-reduced) set of “stand-alone” variables. We recall that notation m is used (above) as a function
m : 2V → V such that m(Va) is the best median location for cluster Va ∈ 2V . Please accept now a slight
notation abuse and let us use the same symbol m for a function m : V → V defined as follows: given i ∈ V ,

m(i) indicates (one of) the closest vertices to i that is different from i itself, i.e., d
m(i)
i = minj∈V−{i} d

j
i .

The following convention can avoid any confusion: (i) by writing m(i), we make reference to this latter
function m : V → V , and (ii) by writing m({i}) or m(Va) (equivalent to m(a)), we make reference to the
former function m : 2V → V .

Theorem 1. Let us consider a (D)DFF f and a Capacitated p-median instance acting on vertex set
V = [1..n] = Vk ∪ Vk, where Vk and Vk are defined by above formula (2.7) from weights qi (with i ∈ V ),
capacity Q and a fixed k ∈ Z+. A dual solution (y, µ) constructed from some given values of α, µ ≥ 0
and yj ≥ 0,∀j ∈ Vk via:

yj = yj ∀j ∈ Vk (2.8)

yi = αf

(
qi
Q

)
+

k

k + 1
di,m(i) (2.9)

= αf

(
qi
Q

)
+

k

k + 1
min

j∈[1..n]
i 6=j

di,j ∀i ∈ Vk

is (dual) feasible in (2.3b) if the following holds:

α ≤ µ (2.10)∑
i∈U

αf

(
qi
Q

)
+

k

k + 1

∑
i∈U

di,m(i) ≤ µ+
∑
i∈U

di,m(U) ,∀U ⊆ Vk with |U | ≤ k (2.11)∑
j∈Vk

ajyj ≤
∑
j∈Vk

ajdj,m(a) ,∀[da a]> ∈ A, (2.12)

where A is the set of columns associated to clusters completely contained in Vk:

A = {[da a]T ∈ A : ai = 0,∀i /∈ Vk}.
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Proof. Consider any feasible [da a] ∈ A. We need to show that the main dual constraint (2.4) holds; this
constraint can be written: ∑

i∈Vk

aiyi +
∑
j∈Vk

ajyj ≤ µ+
∑
i∈Vk

aidi,m(a) +
∑
j∈Vk

ajdj,m(a)

Replacing (2.8)-(2.9), this further reduces to:

α
∑
i∈Vk

aif

(
qi
Q

)
+
∑
i∈Vk

ai
k

k + 1
di,m(i) +

∑
j∈Vk

ajyj ≤ µ+
∑
i∈Vk

aidi,m(a) +
∑
j∈Vk

ajdj,m(a)

We now reduce the last sums on both sides. Consider cluster a obtained from a by setting aj = aj ,∀j ∈ Vk
and ai = 0,∀i ∈ Vk, i.e., we reduce a to elements from Vk and we obtain a. Using

∑
j∈Vk

ajdj,m(a) ≤∑
j∈Vk

ajdj,m(a), (2.12) guarantees that
∑
j∈Vk

ajyj ≤
∑
j∈Vk

ajd
m(a). Since aj = aj over j ∈ Vk, this is

equivalent to
∑
j∈Vk

ajyj ≤
∑
j∈Vk

ajd
m(a), and so, it is enough to prove that the following holds:

α
∑
i∈Vk

aif

(
qi
Q

)
+
∑
i∈Vk

ai
k

k + 1
di,m(i) ≤ µ+

∑
i∈Vk

aidi,m(a)

Denoting V ka = {i ∈ Vk : ai = 1}, this can be written:

α
∑
i∈V k

a

f

(
qi
Q

)
+
∑
i∈V k

a

k

k + 1
di,m(i) ≤ µ+

∑
i∈V k

a

di,m(a)

We show that the above constraint is true by distinguishing two cases:

(a) |V ka | ≤ k. The constraint becomes a particular case of (2.11) with U = V ka (all terms outside Vk are
already reduced);

(b) |V ka | ≥ k + 1. We reduce the first term on both sides. This is rather straightforward using α ≤ µ
(given by (2.10)) and the feasibility condition

∑
i∈V qi ≤ Q, coupled with the fundamental DFF

inequality (?), as in Proposition 1. As such, the constraint to prove reduces to:

∑
i∈V k

a

k

k + 1
di,m(i) ≤

∑
i∈V k

a

di,m(a)

Let us focus on the value of m(a). If m(a) /∈ V ka , the inequality di,m(i) ≤ di,m(a) holds for all i ∈ V ka
(recall di,m(i) = minj∈V−{i} di,j ≤ di,m(a)) and the above constraint simply results by summing this

inequality over all i ∈ V ka . We still have to address the case m(a) = im for some im ∈ V ka . By
separating the term corresponding to im in both sides of above constraint, we have to prove:

k

k + 1
dim,m(im) +

∑
i∈V k

a −{im}

k

k + 1
di,m(i) ≤ dim,im +

∑
i∈V k

a −{im}

di,im

Since 0 ≤ dim,im (we only consider non-negative service costs), we reduce the first term in the
right-hand side. Using k

k+1di,m(i) ≤ k
k+1di,im ,∀i ∈ V

k
a − {im}, it is enough to prove:

k

k + 1
dim,m(im) ≤

∑
i∈V k

a −{im}

1

k + 1
di,im , or

k · dim,m(im) ≤
∑

i∈V k
a −{im}

di,im .

This is true using dim,m(im) ≤ dim,i = di,im ,∀i ∈ V ka − {im} and the fact that the sum in the right-

hand side has exactly k terms—we are in case (b) corresponding to |V ka | ≥ k+1, or |V ka −{im}| ≥ k.
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Using this theorem, we can now formulate a mixed CG-DFF model. The objective function of the
initial dual LP (2.3b) is expanded by simply replacing (2.8)-(2.9):

b>y − pµ =
∑
i∈Vk

bi
k

k + 1
di,m(i) +

(∑
i∈Vk

bif

(
qi
Q

))
α+

∑
j∈Vk

bjyj − pµ (2.13)

This leads us to a restricted (Vk-reduced) LP with |Vk|+ 2 variables (α ≥ 0, µ ≥ 0 and yj ≥ 0, ∀j ∈ Vk)
defined by (dual) objective function above and by the the constraints (2.10)-(2.12) from Theorem 1. We
describe below how to solve this Vk-reduced model by CG: the resulting restricted pricing is (considerably)
simplified compared to the one for the initial dual LP (2.3b).

2.2.1. Simplified Pricing in the Vk-Reduced CG-DFF Model

We now present the pricing algorithms for the constraints (2.10)-(2.12) of the above CG-DFF model;
we pick out the key claims in boldface.

The pricing algorithm for constraints (2.11) is very fast, as the corresponding sub-problem
is not NP-hard. We consider every possible median location m(U) from (2.11) as a decision variable
m̂ ∈ V . The most negative reduced cost of constraints (2.11) is determined by solving sub-problem below
for the current values of the dual variables α and µ (observe other variables yj ≥ 0, ∀j ∈ Vk do not arise
in (2.11)).

min

{
µ+

∑
i∈U

(
di,m̂ − αf

(
qi
Q

)
− k

k + 1
di,m(i)

)
: U ⊆ Vk, m̂ ∈ V, |U | ≤ k

}

The pricing algorithm solves this sub-problem as follows: for each m̂ ∈ V , it sorts the |Vk| values(
di,m̂ − αf

(
qi
Q

)
− k

k+1di,m(i)

)
corresponding to all i ∈ Vk and it selects the lowest (only negative and

at most k) values of this form. The lowest sum of such values (i.e., for the best m̂) is the most negative
reduced cost; the corresponding (maximum k) selected values indicate the best U and the new column.
The total complexity is O(n|Vk| log(|Vk)), i.e., this is the asymptotic running time of n sorting algorithms.

The pricing for (2.12) represents a |Vk|-reduced variant of the initial pricing of (2.3b).
Equation (2.12) makes use of a median location m(a) that can be seen as a decision variable (m̂ below)
in the sub-problem. After few transformations, the pricing sub-problem can be formulated as:

min

∑
j∈U

dj,m̂ − yj : U ⊆ Vk, m̂ ∈ V,
∑
j∈U

qj ≤ Q


The pricing algorithm needs to try all n possible median locations m̂; for each one, it needs to solve a
binary knapsack problem with |Vk| items. Solving n times the knapsack problem is a common approach
for p-median pricing, already used in other algorithms from the literature [18]. However, the main
advantage of our |Vk|-reduced pricing is the reduction of the number of knapsack items from n to |Vk|.
Such reductions are more important than the number n of knapsack problems, because the latter factor
n only leads to a linear coefficient n in the total pricing complexity. As long as |Vk| can be considered
bounded (compared to n), solving these n knapsack problems is not NP-hard. Recall from (2.7) that
qj >

Q
k ∀j ∈ Vk, and so, the maximum number of selected items is k − 1; such knapsack problem can be

solved in O(|Vk|k−1). To construct a polynomial bound with this mixed CG-DFF approach, it is enough
to keep k (and implicitly Vk) at sufficiently low values, e.g., if the separation (CG pricing) sub-problem
is polynomial, so is the main problem (using the equivalence between separation and optimization).

Larger Vk sets can be useful in a slightly different manner: one could use k as a parameter
controlling a trade-off between the quality of the CG-DFF bound and its running time. As k becomes
larger, Vk converges to V and the CG-DFF bound converges towards the CG bound (the optimum of LP
(2.3b)). However, for a tighter convergence, the following version of Theorem 1 could be more useful.
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Corollary 1. (large Vk version for Theorem 1) The same argumentation from Theorem 1 holds if one

updates constraints (2.11)-(2.12) as follows: (a) in (2.11), replace µ in with
(∑

i∈U f
(
qi
Q

))
µ, and (b)

in (2.12), insert term
(∑

j∈Vk
ajf

(
qj
Q

))
µ.

Above replacements would make constraint (2.11) stronger (which could decrease the final DFF bound)
and constraint (2.12) weaker (which could increase the final DFF bound). As such, the bound version
from this corollary could be more useful when Vk (and implicitly k) is rather large and the latter constraint
is more important. When Vk is close to V , it approximates very well the initial program (2.3b). However,
we only use Theorem 1 in the rest of the paper, as our study is rather focused on fast bounds.

2.2.2. DFF Warm-started CG

As hinted above, the pricing for (2.12) is a |Vk|-reduced variant of the pricing for the initial dual
program (2.3b). The CG-DFF approach can be used to warm-start a full CG algorithm, resulting in a
hybrid DFF-CG method of two stages:

1. Compute the above CG-DFF bound by iteratively solving the |Vk|-reduced pricing problems de-
scribed in Section 2.2.1. By pricing (2.12) in this stage, we generate clusters with all selected
vertices in Vk, i.e., we generate elements from A ⊂ A.

2. Apply the classical CG for the initial model (2.3a)-(2.3b), but in the beginning insert the columns
corresponding to the clusters from A ⊂ A generated in Stage 1.

Such DFF warm-starting produces the following effect: the new CG method starts out with a number

of columns using only elements from Vk =
{
j ∈ V : qj >

Q
k

}
of larger weight (supply), see also (2.7). In

the best cases (usually associated to large sets Vk), the columns associated to A ⊂ A might constitute a
considerable proportion (even more than half) of the total number of columns required to fully converge.
We will also discuss in Section 4.1.2 a slight stabilization effect. However, the general CG “trajectory” is
always changed: the DFF warm-started version generates columns in a completely different order. When
Vk is smaller, Stage 1 generates fewer constraints with a more limited impact; however, the trajectory
change in itself leads to a slight variation in the total number of iterations. We propose to apply the new
method on large Vk values (|Vk| = 3

4 |V |), so as to exploit the fact that a larger number of columns can
be generated in the first stage.

3. DFF-based Bounds for Distance Constrained General Routing

3.1. Problem Definition and Column Generation Model

General Routing is a generalization of Arc Routing and Vehicle Routing in which service can be
required on both edges and vertices. The problem was first introduced in the 1970s [20] and many different
variations have been presented over the time. In this paper, we take interest in a version that considers
two route feasibility constraints: (classical) capacity constraints and distance (service time) constraints
(see an example in [21]). The former constraints state that the total quantity (supply) delivered to clients
(by a single route) needs to stay below a vehicle capacity Q. The latter constraints state that a single
route can provide service over a maximum distance of D. To illustrate this latter distance constraint, we
can refer to the formulation [21, §2], i.e., each edge service requires a pick-up time (depending on the
number of houses on a road, which is proportional to the edge length) and the distance constraint simply
comes from a (legislative) limit on the daily (shift) working time.

We now formalize our Distance Constrained General Routing variant. Consider a graph G =
(V,E), with V = {1, 2, . . . , n} and edge set E = {en+1, en+2, . . . en+m} ∈ V 2; to lighten the text, we
will also refer to edge ej only using its index j and say j ∈ E whenever j ∈ {n + 1, n + 2, . . . n + m} =
[n + 1..n + m]. For each vertex i ∈ V , there is a quantity (supply) demand qi that needs to be serviced
(delivered) bi times (bi is the covering demand of i). Similarly, each edge j ∈ E has a quantity demand
qj and a covering demand bj ; its length (distance or time) is denoted by dj . We are also given a fleet of
p vehicles of capacity Q that can each provide service over a maximum total distance of D; the use of a
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vehicle comes with a fixed cost F . A feasible route is a path in G that: (i) starts and ends at a special
vertex v0 ∈ V (the depot), (ii) delivers a maximum quantity of Q, (iii) provides service over a maximum
total distance of D.

The objective is to find at maximum p feasible routes with a minimum total cost that deliver all
requested demands. The cost da of a route a is calculated as the sum of a fixed cost F (for using the
vehicle) and a traversal cost (a sum over all traversed edges). CG models are often applied to such
problems; we present below the primal-dual LPs used for integrating DFFs.

min
∑

[da a]>∈A daxa
y :

∑
[da a]>∈A a`xa ≥ b`, ∀` ∈ [1..n+m]

µ :
∑

[da a]>∈A−xa ≥ −p

xa ≥ 0 ∀
[
da
a

]
∈ A

(3.1a)

max b>y − pµ

x : a>y − µ ≤ da, ∀
[
da
a

]
∈ A

y ≥ 0n+m
µ ≥ 0

P (3.1b)

We first provide below the interpretation for the primal objective, constraints and notations, followed by
their dual counterparts.

the primal objective function uses decision variables xa that indicate the number of times that route
a is used; xa is integer in the ILP version of (3.1a) and fractional after relaxation. Set A contains
columns [da a]> that encode feasible routes a of cost da. Vector a = [a1 a2 . . . an, an+1 . . . an+m]T ∈
Zn+m contains n positions corresponding to vertices and m corresponding to edges; a` is the number
of times (vertex or edge) ` is serviced, ∀` ∈ [1..n+m]. The cost of using route a is:

da = F +

n+m∑
j=n+1

atrj dj , (3.2)

where atrj is the number of traversals of edge j. If atrj > aj , then edge j is deadheaded (traversed
without service) atrj − aj times. Dead-heading is well-known phenomenon in Arc-Routing: a route
that traverses edge j can either choose to service j or to dead-head it (traverse it without service).
The necessity of considering deadheaded edges is lifted in Section 3.3. Besides natural contiguity
conditions, a feasible route a needs to verify the following:∑n

i=1 aiqi+
∑n+m
j=n+1 ajqj ≤ Q (route capacity constraint)∑n+m
j=n+1 ajdj ≤ D (route distance constraint)

the first (set covering) primal constraint in (3.1a) requires each edge or vertex ` to be serviced b`
times. Most routing instances use b = 1n+m, each service is to be provided only once. By setting
bj = 0,∀j ∈ E, one obtains a Vehicle Routing problem; bi = 0, ∀i ∈ V leads to an Arc-Routing

problem;

the second (fleet size) primal constraint states (using sign inversion) that one can use at maximum
p vehicles (routes);

the dual objective function has n + m + 1 variables (see below) with coefficients taken from the
right-hand sides of the primal constraints (above);

the dual constraints a>y − µ ≤ da set the boundaries of the dual polytope P over the non-negative
orthant. They are constructed from the primal LP using: (i) a variable µ for the primal constraint
on the fleet size, (ii) vector y of variables for to the n+m primal set-covering constraints, and (iii)
a right-hand side coefficient da from the primal objective function.

3.2. Feasible Dual Solutions on the General Case

Theorem 2. We consider a DFF (or a q-DDFF) fq and a DFF (or a d-DDFF) fd. For any α, β, µ ∈ R+

such that
α+ β − µ ≤ F, (3.3)

the formulas below determine a dual solution (y, µ) that is feasible in (3.1b).
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1. yi = αfq

(
qi
Q

)
, for all vertices i ∈ [1..n]

2. yj = dj + αfq

(
qj
Q

)
+ βfd

(
dj
D

)
, for all edges j ∈ [n+ 1..n+m]

Proof. We need to prove that the main (dual) constraint of the dual polytope P in (3.1b) (i.e., a>y−µ ≤
da) is verified by such solution (y, µ) for any route a with cost da. Given the route cost equation (3.2),
the main dual constraint can be written:

n∑
i=1

aiyi +

n+m∑
j=n+1

ajyj − µ ≤ F +

n+m∑
j=n+1

atrj dj (3.4)

In the right-hand side sum, the cost (naturally) depends on the number atrj of traversals of edge
j ∈ [n + 1..n + m], and not on the number of services aj provided to j. If atrj − aj > 0, than edge j
is dead-headed atrj − aj times. Any use of a dead-headed edge increases the right-hand side of above
constraint without modifying the left-hand side, i.e., the constraint is weakened by using more dead-
heading. Conversely, routes with less (or zero) dead-heading generally correspond to stronger constraints
(3.4). For instance, if a route performs no dead-heading at all, the right-hand side of (3.4) has no terms
with no match in the left-hand side, i.e., any right-hand term atrj dj > 0 is matched (balanced) by a
left-hand term atrj yj = ajyj . The necessity of considering dead-heading is completely lifted in Section
3.3, where atrj = aj is always satisfied. However, a sufficient condition for ensuring above constraint (3.4)
in general is:

n∑
i=1

aiyi +

n+m∑
j=n+1

ajyj − µ ≤ F +

n+m∑
j=n+1

ajdj (3.5)

Let us now write y in terms of fq, fd, α and β, using the formulas from the hypothesis.

n∑
i=1

aiαfq

(
qi
Q

)
+

n+m∑
j=n+1

aj

(
dj + αfq

(
qj
Q

)
+ βfd

(
dj
D

))
− µ ≤ F +

n+m∑
j=n+1

ajdj

After elementary simplifications, we need to prove that the constraint below holds.

α

m+n∑
`=1

a`fq

(
q`
Q

)
+ β

n+m∑
j=n+1

ajfd

(
dj
D

)
− µ ≤ F

Since fq satisfies by definition the fundamental (D)DFF inequality (?) with regard to q and Q (recall

the route capacity constraint
∑n+m
`=1 a`q` ≤ Q), we establish that

∑m+n
`=1 a`fq

(
q`
Q

)
≤ 1. Similarly, fd

satisfies the fundamental (D)DFF inequality (?) with regard to d and D, and so, using the route distance

constraint, we also state that
∑n+m
j=n+1 ajfd

(
dj
D

)
≤ 1. Replacing these sums with 1 in the above inequality,

we only need to prove α1 + β1− µ ≤ F , which is true from the hypothesis condition (3.3).

The best (Lower Bound) LB resulting from this theorem is determined by maximizing objective
function below (re-written in terms of variables α, β, µ)

b>y − pµ =

n+m∑
j=n+1

bjdj +

(
n+m∑
`=1

b`fq

(
q`
Q

))
α+

 n+m∑
j=n+1

bjfd

(
dj
D

)β − pµ (3.6)

under constraints α, β, µ ≥ 0 and α+β−µ ≤ F . This leads to a very small-size LP, i.e., the feasible area
is a 3-dimensional polyhedron with four constraints. Very elementary LP arguments show that there are
only two cases (analogously to Section 2.1.2): either the LP is unbounded, or the optimum is at a vertex
of the above 3-dimensional polyhedron. In former case, the objective function can be arbitrarily large
and the instance is infeasible (the fleet size is not large enough to perform all requested service). The
latter case leads to µ = 0, because the above polyhedron has no vertex with µ > 0 (such point could only
belong to maximum two of the four constraints).
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3.2.1. A mixed CG-DFF lower bound

If F is very low (e.g., F = 0), the constraint α+β−µ ≤ F imposes very strong limits on α and β (e.g.,
if µ = 0 as above, this can even lead to α = β = µ = F = 0), which could degrade the resulting LB value.
To tackle such situations, one can actually use, as in Section 2.2, a mixed CG-DFF model that can be
generally described as follows. We put aside a set of variables Y ⊆ [n+ 1..n+m] that are not expanded
as (D)DFF terms. Formally, yj ,∀j ∈ Y are “stand-alone” variables and only yi with i ∈ [1..n+m]− Y
are expanded as (D)DFF terms. Following the reasoning from Theorem 2, one develops (3.4) and the
condition α+ β − µ ≤ F reduces to:

α+ β − µ+
∑
j∈Y

ajyj ≤ F +
∑
j∈Y

atr
j
dj ∀

[
da
a

]
∈ A (3.7)

This mixed (Y -restricted) CG-DFF model requires solving a dual LP with |Y |+ 3 variables (α, β, µ and
yj ∀j ∈ Y ) and dual constraints (3.7) above. These constraints (3.7) can be generated one by one by
iteratively solving a reduced pricing sub-problem (as in Section 2.2.1). At each CG iteration, this pricing
sub-problem requires constructing a route a that minimizes F +

∑
j∈Y a

tr
j
dj − α− β + µ−

∑
j∈Y ajyj ;

observe that route a is here only evaluated with regards to the edges Y , i.e., it is a reduced-size sub-
problem. In fact, if Y is sufficiently small, the constraints (3.7) could even be enumerated. However, the
larger the set Y , the closer one gets to the initial CG model and to the pure CG bound.

3.3. Distance-Constrained Arc Routing

The proof of Theorem 2 uses a reduction of inequality (3.4) to (3.5), i.e., each atrj term is replaced by
aj . Such reductions lead to ignoring deadheading costs, making (possibly large) approximations that could
degrade the quality of the bound. This drawback does not necessarily arise in all Distance-Constrained
General Routing variants. We show this on Distance-Constrained Arc-Routing, a problem simply
obtained from Arc-Routing by replacing the capacity constraint with a distance (tour length) constraint.

3.3.1. Problem Definition

The problem is formally defined from Distance-Constrained General Routing as follows:

– no demand on vertices (Arc-Routing property), i.e., bi = yi = 0∀i ∈ [1..n] in the primal-dual LPs
(3.1a)-(3.1b);

– feasible routes have no capacity constraint (only the distances matter), i.e., use Q = ∞ and fq is
no longer needed (one could use fq = 0 in Theorem 2);

– the distance constraint acts on travelled edges and not only on serviced edges, i.e., route constraint∑n+m
j=n+1 ajdj ≤ D is replaced by

∑n+m
j=n+1 a

tr
j dj ≤ D. This is a natural interpretation: we limit the

total route duration (distance) and not only the service duration, as we did in Section 3.2.

3.3.2. A pure DFF lower bound

As in Theorem 2, one can express the remaining variables yj (with j ∈ [n + 1..n + m]) as DFF
terms. We focus on the main dual constraint (3.4) and we show that routes with non-zero deadheading
are dominated, i.e., any route involving some deadheading leads to a weaker dual constraint than some
route with no deadheading. Consider a dual constraint (3.4) generated by a route a that deadheads
edge j, i.e., atrj > aj . By replacing aj ← atrj , the route remains feasible because no route feasibility
constraint can be violated by increasing the number of services provided to edge j. Indeed, our model
places no upper bound on the value of aj (we did not apply any cycle-elimination in our model, e.g.,
we allow aj > bj even if this can degrade the final bound quality). As such, this replacement renders
dual constraint (3.4) even tighter: its right-hand side is unchanged, but the initial left-hand term ajyj is
replaced by atrj yj > ajyj . The tightest dual constraints correspond to routes with no dead-heading (with
aj = atrj , ∀j ∈ [n+ 1..n+m]), and so, (3.4) becomes

n+m∑
j=n+1

ajyj − µ ≤ F +

n+m∑
j=n+1

ajdj , ∀
[
da
a

]
∈ A (3.8)
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Setting yj = dj + βfd

(
dj
D

)
, this leads (using fq = 0 in Theorem 2) to: β

∑n+m
j=n+1 ajfd

(
dj
D

)
− µ ≤ F ;

condition (3.3) reduces to β − µ ≤ F .

3.3.3. A mixed CG-DFF lower bound

Using a similar modelling as in Section 3.2.1, we separate a set of “stand alone” variables yj (with

j ∈ Y ) that are not expressed as DFF values; (3.7) reduces to

β − µ+
∑
j∈Y

ajyj ≤ F +
∑
j∈Y

ajdj ∀
[
da
a

]
∈ A (3.9)

The strongest mixed CG-DFF bound of this form can be obtained by maximizing a reduced CG LP:
express dual objective function b>y − pµ as a linear function of dual variables β, µ ≥ 0 and yj ≥ 0

(with j ∈ Y ) and maximize it under constraints (3.9). These constraints can be generated one by one by
solving a (Y -reduced) pricing sub-problem as in Section 3.2.1.

4. Numerical Evaluation: Capacitated p-Median and two Capacitated Arc Routing Variants

The main goal of this evaluation is to compare the pure CG bound with the proposed DFF bounds,
both in terms of quality and running time. We first present below the functions used to calculate these
DFF bounds. Section 4.1 is devoted to p-median experiments (implementing Section 2.2) and Section 4.2
presents two General-Routing variants, i.e., Arc-Routing with Fixed Costs (implementing Section 3.2)
and Distance-Constrained Arc-Routing (implementing Section 3.3.2).

The most straightforward DFF is fiden(x) = x, ∀x ∈ [0, 1]; this trivial DFF is hereafter referred to as
the identity. The first (non-trivial) DFF used in this work is the Fekete-Schepers function fλ0 from [11]
(see also [8, § 4.1]). Using parameter λ ∈ [0, 0.5), it can be expressed as:

fλ0 (x) =


0 if x ≤ λ
x if λ < x < 1− λ
1 if x ≥ 1− λ

(4.1)

When all involved quantities qi are less than Q
2 , we only use λ = 0; in this case fλ0 is reduced to the

identity fiden. Function fλ0 can be more effective than fiden only when it is useful to valuate large
quantities qi >

Q
2 at 1.

The second function fkVB,2 was proposed in [8, § 4.4], by generalizing fkVB,1 from [28]. Using integer
parameter k ≥ 2, it can be written as:

fkVB,2(x) =


max(0,dkxe−1)

k−1 if x < 0.5

0.5 if x = 0.5

fkVB,2(1− x) if x > 0.5

(4.2)

This formula generates a stair-case function in which the length of each interval (stair) is usually 1
k

(except in the proximity of x = 1
2 ). Based on very limited preliminary experiments, it is reasonable to

consider all values of k from 2 to 300. By trying more parameter values and more functions (see many
examples in [8]), the quality of our DFF bounds could have been improved. However, the main goal of
the paper is not to present very refined “competition” results, but to describe a general technique for
applying (D)DFFs to new (capacitated) problems.

4.1. Capacitated p-Median

While less studied than its non-capacitated counterpart, Capacitated p-Median has already been
tackled with CG methods, see model (10) in [18] or model (6)-(8) in [7]. The former model is more similar
to our model (2.3a)–(2.3b). We made used several times of the work in [18], for three main reasons: (i) it
provides a set of real-life Capacitated p-Median instances (see www.lac.inpe.br/~lorena/instancias.
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html); (ii) it derives Lagrangeean/Surogate lower bounds (calculated with a limit of 300 iterations) that
can also be used for comparisons; and (iii) it also present results on the best-known integer feasible
solution (upper bound based on heuristics from [17]). Compared to our primal-dual LPs (2.3a)–(2.3b),
their model differs in that they impose the median m(a) to belong to the cluster a. As such, our primal
LP (2.3a) has actually more columns than their primal LP, and so, it could yield (slightly) lower optima.
The provided instances usually have a capacity Q between 700 and 1000; the quantities (weights) only
rarely exceed Q

2 .
The DFF bounds from this section are obtained using Theorem 1 (§2, p. 6); the objective value is

determined by (2.13). We recall that this bound resides on a reduced DFF-CG model that is optimized
by a classical CG algorithm based on two pricing sub-problems, one for (2.11) and the other for (2.12).
As described in Section 2.2.1, the former pricing is rather straightforward. The latter one is similar to
the pricing of the initial CG model (of (2.3b)) and it requires solving certain binary knapsack problems.
The speed-up of the DFF-CG model comes from reducing the number of knapsack items from n = |V |
to |Vk|, where Vk identifies the largest items, see (2.7). We solved the binary knapsack problems with
minknap, i.e., one of the best knapsack algorithms tested in [22] (we used the implementation available
at www.diku.dk/~pisinger/minknap.c).

We compare below the results of the DFF bound (Section 4.1.1) and of the DFF warm-started CG
(Section 4.1.2) with the results of the pure CG. This pure CG bound is obtained by solving to optimality
(2.3a) using a classical CG algorithm. As in other CG work on Capacitated p-median, the pricing
sub-problem requires solving n knapsack problems with n items, once for each possible median location
of the next column. We used the same minknap implementation as above for all these knapsack problems.

|Vk|
|V | goal

Capacitated p-Median instance
sjc1 sjc2 sjc3a sjc3b sjc4a sjc4b

n/p→ 100/10 200/15 300/25 300/30 402/30 402/40

1
4

LBDFF 10062 18954 27915 26003 36564 32625
speed-up of DFF bound 1/70 1/183 1/205 1/199 1/453 1/392

1
2

LBDFF 12385 24294 32649 29820 43842 38121
speed-up of DFF bound 1/17 1/18 1/29 1/29 1/47 1/43

3
4

LBDFF 14357 27568 38470 34651 51891 44460
speed-up of DFF bound 1/4 1/4 1/6 1/6 1/7 1/7
speed-up of DFF warm-started CG 1/1.22 1/1.35 1/2.04 1/2.38 1/2.05 1/3.08
iters in DFF stage w.r.t. tot iters 56% 55% 56% 60% 57% 79%
tot iters w.r.t. tot iters pure CG 100% 98% 91% 86% 87% 66%

1
LBCG 17263 33232 45315 40635 61850 52403
CPU Time[sec] for pure CGa 62 799 4232 3953 17305 14165

Lagr/Surr Bnd. [18, Tab. 1] 17150 33233 45245 40635 61851 52404
Best Known Feasible [17, 18] 17289 33396 45365 40636 62001 52642

Table 1: Results of two DFF-based lower bounding methods. After the heading, the first 6 rows indicate

the DFF bound and its speed-up for several values of the (goal) ratio |Vk|
|V | . Recall that Vk is the set

of stand-alone variables not expressed via DFFs. The next 3 rows (starting at row “DFF warm-started
CG”) provide several indicators concerning the method from Section 2.2.2 (we use the |Vk|-reduced

clusters generated by the DFF method for |Vk|
|V | = 3

4 to warm-start a full CG stage). The speed-up is

always expressed as a ratio of the CPU time of pure CG (the third row from the bottom). The last two
rows provide other bounds from the literature (a Lagrangean/Surrogate bound obtained with a limit of
300 iterations, rounded up) and the best known integer feasible solution (based on heuristics from [17]).

aAll running times are reported on a HP ProBook 4720 laptop clocked at 2.27GHz (Intel Core i3), using gnu g++ with
code optimization option -O3 on Linux Ubuntu, kernel version 2.6. (Cplex version 12.3)
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4.1.1. Analysing the results for the DFF bound of Theorem 1

Table 1 presents a summary of the results of the DFF bounds and of the DFF warm-started CG. Let
us here focus on comparing the DFF bounds (denoted LBDFF) with the pure CG bound (noted LBCG)

and to some upper bounds from the literature. For each “ |Vk|
|V | goal” value (Column 1), we consider the

lowest k that leads via (2.7) to a ratio |Vk|
|V | greater or equal to this goal. The “trade-off” between running

time and quality can be controlled by varying k, i.e., using a larger k, |Vk|
|V | becomes larger, and so, the

DFF bound is improved at the cost of increasing the running time. Denoting the running time of the
pure CG bound by tCG, Table 1 shows the following general facts:

– within about tCG

100 time (usually less), the quality of our mixed DFF-CG bound is about LBDFF ≈
1
2LBCG, see the rows with a value of 0 or 1

4 in Column 1;

– within about tCG

20 time (minimum tCG

43 , maximum tCG

17 ), LBDFF raises to almost 3
4LBCG, see the

rows with value 1
2 in Column 1;

– within tCG

4 time (or less), LBDFF raises to almost 4
5LBCG, see the rows having 3

4 in Column 1;

Since the objective value of the best-known feasible solution (see last row of Table 1) is always less than
101%LBCG, so is the integer optimum value OPTIP, i.e., we can state OPTIP ≤101%LBCG. As such,
the above quality remarks on LBDFF can generally be stated even with regards to OPTIP; for instance,
one can safely say that our DFF approach can reach, using 1

20 of the total CG convergence time, a LB
value of about 3

4LBCG ≥ 3
4 ·

100
101OPTIP ≈

3
4OPTIP. The DFFs used for this numerical experiment are

the following: for the goal |Vk|
|V | = 0, we tried f00 , f0.10 , . . . f0.40 and f2VB,2, f3VB,2, . . . f300VB,2; for the other goals,

we only tried f00 (equivalent to the identity).

4.1.2. Analysing the results of the DFF warm-started CG

The results of the DFF warm-started CG (Section 2.2.2) are also presented in Table 1, see the three
rows starting from row “speed-up of DFF warm-started CG”. These three rows provide the following
information: (1) the general CPU time speed-up of the new warm-started method relative to pure CG,
(2) the proportion of columns generated only by the pricing performed during the first DFF stage relative
to the total number of iterations of the new CG, and (3) the ratio (in percents) of the number of columns
generated by the new warm-started CG relative to the pure CG.

The main conclusion is that the speed-up is due to two reasons: (i) the fact that more than half of
the total number of columns are actually generated in the first DFF stage, and (ii) a slight reduction
(usually between 10% and 30%) of the number of iterations. The point (i) seems more important and
let us first comment on it. The columns generated in the DFF stage come from clusters constructed
by the |Vk|-reduced pricing (2.12) in Section 2.2.1. This DFF stage is very fast, as also resulting from

row “speed-up of the DFF bound” for |Vk|
|V | = 3

4 . This acceleration is not only due to the fact that the

number of variables is reduced by 1
4 ; since we eliminate the smallest items, our knapsack algorithm (i.e.,

minknap) is accelerated by more than 1
4 , as many dynamic programming states are eliminated. The

second point above (ii) is related to a certain stabilization effect that seem to have a variable amplitude.
However, the DFF-generated constraints provided to the new warm-started method allows it to start
with a significantly better objective function relative to the pure CG.

4.2. Arc Routing Problems

4.2.1. Capacitated Arc-Routing with Fixed Cost

To our knowledge, there are four Capacitated Arc Routing Problem (CARP) instance sets that are
publicly available (see www.uv.es/~belengue/carp.html for more information and references): standard-
size instances gdb, kshs, val (also called bccm) and large-scale instances egl (with |V |, |E| > 50). The
capacity Q ranges from from 5 to 305 (with very small capacities only for the gdb instances); the edge
lengths dj are in the same order of magnitude as the quantity demands qj (a few hundreds at maximum).
The fleet size p is always large enough to be able to provide all demanded service; no service is required
more than once (@j ∈ E s.t. bj ≥ 2). For each CARP instance, one can construct a Capacitated

Arc Routing With Fixed Cost counterpart by simply adding a fixed cost F in the route costs, as first
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proposed in the literature of the 1980s [27]. We simply tried several F values (F = 5C, F = C, F = 0.2C
and F = 0—pure CARP) and we applied them on some random instances from the four CARP instance
classes above.

The DFF bounds are obtained by applying a particular case of Theorem 2 (p. 10), in which we only
use dual variables for edges j ∈ E. We report the best objective function value (3.6) under constraint
(3.3), with β = 0—i.e., we ignore fd terms, because we do not (yet) consider distance constraints. The
following DFF have been considered: f00 , f0.10 , f0.20 . . . f0.40 and f1VB,2, f2VB,2, . . . f300VB,2.

The pure CG bound (denoted LBCG) is determined using an implementation of the method from [23]
that optimizes (3.1b). We did not try to generate only elementary routes, we did not apply refined k-cycle
reductions or other fancy strengthening methods; one can check that, for F = 0 (pure CARP), our pure
CG bound is similar to other pure CG bounds from the literature [16, 24].

The results are provided in Table 2. One first observes that the DFF running time is very low, i.e.,
as expected, in most cases, it is a matter of milliseconds. Larger fixed costs leads to DFF bounds within
90%−99.9% of the CG bound for all instances except egl (see below more discussions on these instances).
Even for F = 0.2C, the DFF bound stays at more than 80%LBCG in most cases. For F = 0 (pure CARP),
the DFF bound is simply equivalent to summing

∑
j∈E bjdj ; this case could be more effectively addressed

by a mixed CG-DFF bound, as sketched in Section 3.2.1. However, even for instances for which the DFF
bound is generally not very good, the quality ratio LBDFF/LBCG improves as the fixed cost increases,
e.g., for val1C, it increases from ≈ 50% (i.e., 146

229 ) at F = 0 to ≈ 95% (i.e., 1936
2029 ) at F = 5D.

Fixed Instance of Arc-Routing With Fixed Costs

cost gdb05 gdb06 gdb12 gdb23 kshs5 val1C val7C egl-e1-C egl-e4-C

F
=

5C

LBDFF 446 370 1396 1553 11493 1936 3044 8808 14718
speed-up 1/1416 1/450 1/1735 1/2762 1/1021 <1/10000 <1/10000 <1/10000 <1/10000
LBCG 489 392 1532 1563 12620 2029 3103 ≈ 12600 ≈ 23500

time[s]a 2.0 0.8 3.5 7.1 0.8 320 > 1000 > 1000 > 1000

F
=

1C

LBDFF 342 282 548 489 9721 504 808 2936 4906
speed-up 1/1565 1/712 1/1238 1/1505 1/843 <1/10000 <1/10000 <1/10000 <1/10000
LBCG 385 304 668 499 10820 592 865 ≈ 6700 ≈ 13500
time[s] 2.1 0.8 1.5 5 1.1 277 > 1000 > 1000 > 1000

F
=

0.
2
C LBDFF 321 264 378 276 9366 217 360 1761 2943

speed-up 1/1614 1/328 1/582 1/974 1/697 <1/10000 <1/10000 <1/10000 <1/10000
LBCG 364 287 487 286 10460 303 416 ≈ 5550 ≈ 11500
time[s] 2.2 0.6 1.1 4.4 0.9 445 > 1000 > 1000 > 1000

F
=

0

LBDFF 316 260 336 233 9278 146 249 1468 2453
speed-up 1/1054 1/1990 1/679 1/1354 1/809 <1/10000 <1/10000 <1/10000 <1/10000
LBCG 359 282 445 233 10370 229 301 ≈ 5250 ≈ 11000
time[s] 2.2 2.3 1.4 3.7 1.0 490 > 1000 > 1000 > 1000

ILP Opt. 377 298 458 233 10957 245 334 5595 11601

Table 2: DFF results and comparisons for several values of the fixed vehicle cost F in Arc Routing

instances. The speed-up indicates the running time ratio between the DFF bound and the method
from [23] for finding the optimum LBCG of the CG model.b However, the essential idea is that most DFF
bounds can be calculated in a time of milliseconds. The last row indicates the ILP optimum from [16]
(see also logistik.bwl.uni-mainz.de/benchmarks.php) for F = 0 (pure CARP): it represents less than
115% of the DFF bound in half of the cases.

aAll running times are reported on an ASUS UL laptop clocked at 1.30GHz (Intel Core Duo SU7300), using gnu g++

with code optimization option -O3 on Linux Ubuntu, kernel version 2.6.

bWhen our method took too long to fully converge, we provide approximate LBCG values based on some intermediate
bounds.

A disadvantage of the proposed DFF approach is that it can also provide low quality bounds for
certain instances. The last two columns of Table 2 present the worst-case scenario we ever encountered
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throughout all the tests we performed. In fact, these are the only CARP instances for which there exist
some non-required edges E′ ( E, i.e., such that bj′ = 0,∀j′ ∈ E′. In this case, most feasible routes
need to dead-head certain edges from E′ only to reach the required edges E − E′. This generates large
dead-heading costs that are ignored by the DFF bound from Theorem 2, see the arguments leading from
(3.4) to (3.5).

4.2.2. Distance-Constrained Arc-Routing

To construct a Distance-Constrained Arc-Routing instance (see Section 3.3.1) from a classical
CARP instance, one has to define: (i) the maximum distance route limit D, (ii) the fixed cost F , and
(iii) a fleet size p (the original value of p from the CARP instance might not be enough to execute all
required service, because of the new distance constraints). These values are respectively determined as
follows: (i) D is 5 times the longest edge for standard-size instances (gdb, val or kshs) or 10 times the
longest edge for large-scale instances (egl); (ii) we tested F = D

5 , F = D or F = 5D; (iii) p is rather

large (i.e., we used p = 2
∑

j∈E bjdj

D ) to ensure that the instance is feasible.
Table 3 below provides the results obtained using the DFF approach from Section 3.3.2. This DFF

bound is a particular case of the general DFF bound from Theorem 2, Section 3.2 (p. 10). The objective
function is given by formula (3.6) (p. 11) with the terms using fq removed. The corresponding dual
polytope P has (3.8) as main constraints, i.e., no dead-heading information intervene in describing P.

Regarding the pure CG bound LBCG, we calculate the optimum over above P by applying classical
CG. The pricing for (3.8) requires finding cycle of length not exceeding D that maximizes the total profit
(the edge profits at each iteration are given by the dual values); for this, we perform a classical deep-first
traversal of G. The main conclusions are:

– for standard-size instances (first seven in Table 3, with less than 50 edges), the DFFs usually
produce LBs within 90-99% of the CG bound and they require about 0.1− 0.5% of the CG time;

– for large-scale instances (last two instances in Table 3), the DFF bound is obtained in very small
times, but its quality stands at about 3/4 of the CG bound.

Fixed Instance of Distance-Constrained Arc-Routing

cost gdb05 gdb06 gdb12 gdb23 kshs5 val1C val7C egl-e1-C egl-e4-C

F
=

5D

LBDFF 19004 15668 20272 13473 556680 8833 15065 147180 147180
speed-up 1/427 1/271 1/902 1/366 1/415 1/460 1/477 <1/10000 <1/10000
LBCG 19157 16350 20378 13452 606280 8931 16813 200733 200756

time[s]a 0.40 0.21 0.75 0.71 0.21 0.61 1.07 1145.95 987.55

F
=
D

LBDFF 6328 5213 6742 4478 185560 2934 5005 49060 49060
speed-up 1/480 1/465 1/932 1/322 1/273 1/473 1/499 <1/10000 <1/10000
LBCG 6384 5350 6782 4484 195479 2977 5444 66906 66902
time[s] 0.43 0.37 0.74 0.62 0.15 0.65 1.11 1133.51 1301.83

F
=

0.
2
D LBDFF 3793 3122 4036 2679 111336 1754 2993 29436 29436

speed-up 1/453 1/243 1/1128 1/531 1/460 1/591 1/568 <1/10000 <1/10000
LBCG 3832 3150 4063 2690 113320 1786 3170 40140 40141
time[s] 0.43 0.19 0.95 1.04 0.25 0.84 1.31 1326.10 1627.63

Table 3: Comparison between the DFF bound LBDFF and the pure CG bound LBCG for several values
of the fixed cost F on Distance-Constrained Arc-Routing. The speed-up indicates the ratio between
the running times of DFF and CG bounding methods.

aAll running times are reported on an ASUS UL laptop clocked at 1.30GHz (Intel Core Duo SU7300), using gnu g++

with code optimization option -O3 on Linux Ubuntu, kernel version 2.6.

We finish by noting that the main advantage of all these Arc-Routing DFF bounds resides in their
speed, i.e., they require running times of milliseconds. This is not surprising given that the calculation
of a DFF bound only consists of a loop that computes a weighted sum. While the DFF bound can
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have a very high quality in certain cases (e.g., it can even reach the optimal IP solution for pure CARP
instance gdb23 in Table 2), it can also produce results of mixed quality in other cases. However, pure
CG methods do not seem to be able to compute a similar quality (Lagrangian) bound within such times
of milliseconds. Indeed, some preliminary experiments confirm that it could be very hard (or impossible)
to solve a single sub-problem within the time used to calculate a DFF bound.

5. Conclusions

(D)DFFs have often been used to generate very fast lower bounds for Bin-Packing and Cutting-Stock

problems. For such problems, all columns (patterns) have the same cost and the DFF lower bound has
a rather simple form (e.g.,

∑n
i=1 bif( qiQ ), up to notational equivalences); the dual variable of i takes the

value of a DFF function applied on qi
Q . We showed that (D)DFFs can be applied to new different (capaci-

tated) problems in which the cost of columns (routes or clusters) has a more complex structure, depending
on a sum of distances. The new lower bound formulas are more complex—see (2.13) for Capacitated

p-Median (p. 8) and (3.6) for General Routing (p. 11)—, but the (D)DFF bounds are usually still fast.
Numerical experiments confirm that, generally speaking, the proposed approach produces good quality
bounds, often using less than 1% of the total CG convergence time.

We also present a mixed CG-DFF lower bounding approach that can be slower, because it still needs
to optimize a restricted model by CG (see Section 2.2 for Capacitated p-Median or Sections 3.2.1 and
3.3.3 for General Routing). However, this restricted model has a smaller pricing sub-problem, i.e., the
sub-problem has a reduced number of variables |Vk| (or |Y | for General Routing) instead of n, where
Vk (or Y ) indicates a subset of dual values that are not expanded as DFF terms. Section 2.2.2 extended
this approach even further: the constraints generated by the above CG-DFF approach are used as initial
constraints in the beginning of a “DFF warm-started” CG. This new CG can find the CG bound 2-3
times more rapidly that the pure CG.
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Appendix A. Capacitated p-Median with Fixed Costs and Median Assignment Restrictions

A drawback of the Capacitated p-Median DFF approach from Section 2 is the fact that certain
dual values are expressed using terms like minj∈[1..n] di,j (Proposition 1, p. 5) or min

j∈[1..n],i6=j
di,j (Theorem

1, p. 6). It is enough to have only a few very small distances di,j to generate many dual variables of very
small value. This can degrade the quality of the resulting bound. The goal of this appendix is to show
that certain p-Median versions do not have such issues; let us introduce two (natural) assumptions:

(a) Given i, j ∈ V , we bound to c̃ij the maximum number of times median j can service i. This is
a median assignment restriction. It can arise, for instance, if a client i does not want to have all
demands bi supplied from only one provider.

(b) Add a fixed cost F to the cost of each column (cluster). The resulting model is more similar to a
Facility Location problem with fixed costs and a maximum number p of medians (locations).

To take the median assignment restriction (a) into consideration, we need to extend the col-
umn representation from the primal-dual LPs (2.3a)-(2.3b). Please accept a notational shorthand

that extends columns [da a]> ∈ A to [da a ã]> ∈ Ã by appending a 2-index column vector ã =
[ã11 . . . ã1n, ã12 . . . ã2n, . . . , ãn1 . . . ãnn]> with elements ãij : i is a serviced vertex and j is the cluster

median, i.e., aij = 1 if i ∈ V is serviced from median j ∈ V . All valid extended columns [da a ã]> ∈ Ã
need to respect contiguity relations between a and ã, e.g., ãij ≤ ai∀i, j ∈ V (to service i by median j, i
needs to be in the cluster). The new median assignment restriction acts on the primal solutions x and is
added (after a sign inversion) to (2.3a) under the form:

−
∑

[da a ã]>∈Ã

xaãij ≥ −c̃ij ,∀i, j ∈ [1..n],

This constraint is dualized using a 2-index column vector of dual variables ỹ =
[ỹ11 . . . ỹ1n, ỹ21 . . . ỹ2n, . . . , ỹn1 . . . ỹnn]>. The values c̃ij , ∀i, j ∈ [1..n] represent right-hand side values
in the median assignment constraints of the primal LP (2.3a); they are thus dualized into objective func-
tion coefficients in the dual LP (2.3b). Denoting c̃ = [c̃11 . . . c̃1n, c̃21 . . . c̃2n, . . . , c̃n1 . . . c̃nn]>, the dual
program (2.3b) becomes:

max b>y − c̃>ỹ − pµ
a>y − ã>ỹ − µ ≤ da, ∀[da a ã]> ∈ Ã
ỹ ≥ 0n2 i ∈ [1..n]
y ≥ 0n i ∈ [1..n]
µ ≥ 0

P (A.1)

The fixed-cost assumption (b) is taken into consideration by incorporating a fixed cost F in the
calculation of the cluster (column) cost da; (2.2) evolves to:

da = F +

n∑
i=1

aidi,m,

where m is the median of the cluster, i.e., the unique index m ∈ [1..n] for which ∃i ∈ [1..n] such that
ãim = 1.

Proposition 2. For any q-DDFF f , the dual values below yield a valid dual solution in (A.1).

yi = (µ+ F )f
(
qi
Q

)
+ dmax ∀i ∈ [1..n]

ỹij = dmax − di,j ∀i, j ∈ [1..n]
(A.2)

where dmax = maxi,j∈[1..n] di,j.
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Proof. Consider a valid column (cluster) with the median located in m. We need to prove that the main
(dual) constraint a>y − ã>ỹ − µ ≤ da is verified in (A.1); this constraint can be written as:

n∑
i=1

ai

(
(µ+ F ) f

(
qi
Q

)
+ dmax

)
−

n∑
j=1

n∑
i=1

ãij (dmax − di,j)− µ ≤ F +

n∑
i=1

aidi,m

The above inequality can be proved using two rather straightforward reductions. First, for each right-
hand side aidi,m, there is a left-hand side term ãijdi,j = aidi,m (recall that the definition of ã states that
ãij = ai at the cluster median j = m and ãij = 0 if j 6= m). As such, we only have to prove:

n∑
i=1

ai

(
(µ+ F ) f

(
qi
Q

)
+ dmax

)
−

n∑
j=1

n∑
i=1

ãijdmax − µ ≤ F

The dmax terms are also reduced: they arise twice for each i in the cluster, once with a positive sign
(first sum) and once with a negative sign (second sum). Indeed, each “aidmax” term in the first sum is
canceled by a “−ãijdmax” term in the second sum when j = m (other ãij values are 0 at j 6= m). As
such, we only have to prove:

n∑
i=1

ai

(
(µ+ F ) f

(
qi
Q

))
− µ ≤ F

This is simply equivalent to (µ + F )
∑n
i=1 aif

(
qi
Q

)
≤ µ + F , which is true due to the fundamental

D(DFF) property (?) of the q-DDFF f (given cluster capacity condition
∑n
i=1 aiqi ≤ Q).

After replacing (A.2) in the objective function of (A.1), we obtain the same two cases of Proposition

1 (see the end of Section 2.1) regarding µ: either µ =∞ if the instance is infeasible (
∑n
i=1 bif

(
qi
Q

)
> p),

or µ = 0 otherwise. The second case is more important an it leads to an objective function value

F

n∑
i=1

bif

(
qi
Q

)
−

n∑
i=1

n∑
j=1

c̃ij (dmax − di,j)

A fast DFF bound can simply be calculated by integrating a (D)DFF f in the above formula, as in
other examples throughout the paper. One could expect a higher LB quality for instances with rather
homogeneous distance values. However, if some values di,j are much larger than all others, it could be
easy to detect that no optimal solution can service i from median j. In such cases, one could (artificially)
set c̃ij = 0 so as to obtain a better (and still valid) DFF lower bound.
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