Using Dual Feasible Functions to Construct Fast Lower Bounds for

Routing and Location Problems
Daniel Porumbel*, Gilles Goncalves*
* Univ Lille Nord de France, F-59000 Lille, France
UArtois, LGI2A, F-62400, Béthune, France
Contact: daniel.porumbel@univ-artois.fr, gilles.goncalvesQuniv-artois.fr
tel: +333.21.63.72.78
fax: +333.21.63.71.21

Using Dual Feasible Functions to Construct Fast Lower Bounds for
Routing and Location Problems

Daniel Porumbel, Gilles Goncalves

Abstract

In cutting and packing problems, Dual Feasible Functions (DFFs) represent a well established tool for
deriving high quality lower bounds in very short times. A well-known DFF lower bounding approach
consists of using DFF's to rapidly generate feasible values for the dual variables of a Column Generation
(CG) program (i.e., of an extended formulation commonly associated to CG). This paper presents a
method for extending this approach to problems such as Capacitated p-Median, Distance Constrained
General Routing and related variants (e.g., Capacitated Arc-Routing). In contrast to classical DFF
bounds for cutting and packing, our extended DFF bounds deal with non-equal column costs, i.e., the
column costs (primal objective function coefficients) have a more complex structure depending on some
sums of distances. The general idea is to use a (reformulated) classical CG model in which a feasible
dual solution is expressed as a linear combination of both DFF and non-DFF terms. In fact, one of the
proposed approaches (the mixed CG-DFF bound for Capacitated p-Median in Section 2.2) still requires
optimizing a restricted CG program, but with fewer variables and easier pricing sub-problems. The most
refined bound version is the “DFF warm-started CG” from Section 2.2.2: it takes dual constraints
generated while solving the above restricted CG program are re-uses them to warm-start a full CG
phase. In the best cases, this can yield a speed-up between 2 and 3 relative to the pure CG. We present
numerical experiments on Capacitated p-Median, Capacitated Arc-Routing (with fixed costs) and
Distance Constrained Arc Routing; the numerical comparisons with the CG bound concern both the
quality and the running time.

Keywords: Dual Feasible Functions, Column Generation, Fast Lower Bounds, p-Median, General
Routing

1. Introduction

The explicit or implicit use of Dual Feasible Functions (DFFs) has a long tradition in optimization—
see, chronologically, the work in [15, 19, 28, 11, 5, 12, 4, 2, 9, 6, 26, 3], or the survey [8]. The DFFs
are most often used to generate: (i) valid inequalities in certain Integer Linear Programs (e.g., for the
knapsack polytope) or (ii) high-quality fast lower bounds (LBs) for cutting and packing problems. Indeed,
a well-known DFF LB for these problems is determined by integrating in a Column Generation (CG)
program the values returned by a DFF: these values produce a dual solution whose feasibility can be
guaranteed without running the CG algorithm. Such guarantees arise from exploiting a similarity between
the dual constraints and the main DFF property (see below). The goal of our study is to show that the
above DFF approach can be extended to problems outside the cutting and packing field. We use similar
CG LPs (Linear Programs), but with different dual constraints (coming from routes or patterns) that
require more refined reformulations to integrate DFFs. For instance, while a cutting or packing problem
usually requires minimizing a number of patterns of equal (column) cost, the proposed approach deals
with configurations (clusters or routes) with more complex costs.

Given function f : [0, 1] — [0, 1], capacity @ and some quantities g1, qa, . . . ¢, € [0, @], the fundamental
(D)DFF inequality is the following:

Zaif <(b) <1,Vai...an € Z; such that Z%%‘SQ ()
i=1 @ i=1

Preprint submitted to Elsevier March 6, 2014

If this inequality holds for any input quantities gi,¢qs,...¢, € [0,Q)], then f is a general DFF. If this

inequality only holds for some given fixed values q@ with ¢ € [1..n], then f is a Data-Dependent DFF

(DDFF). Denoting q = [q; ... ¢s] ", such a data-dependent function is also referred to as a g-DDFF.
This fundamental inequality has strong similarities with a class of dual constraints of the following
form: the sum of any selected dual values is at most 1 if the sum of their corresponding weights (see
below) is less than or equal to Q. Such constrains often arise in cutting and packing formulations (such as
the Gilmore-Gomory model) with capacity). More exactly, (%) is very similar to dual constraints of the
form a’y <1 (in dual variables y) associated to patterns (columns) a = [a1 as...a,]" € Z" with: (a)
fixed constant pattern cost (accounting for the right-hand value of 1) and (b) total weight (size, length,

supplied quantity) a” q not exceeding capacity @. The terms f (%) are integrated in such constraints
by providing values for the dual variables y, i.e., the solution obtained via y; < f (q@) Vi € [1..n] satisfies

a'y < 1. The above property (a) renders the classical DFF LB approach very well-suited to problems
that minimize a number of selected patterns, e.g., the number of bins in Bin-Packing, the number of
rolls in Cutting-Stock, the number of independent sets in Graph Coloring, etc. A challenging aspect
in this work is the need to address more complex costs (of routes or clusters) for which the above DFF
integration is less straightforward. For instance, in p-median (or Arc-Routing), the goal is to minimize
a total covering (traversal) distance and the dual constraints have fewer similarities with (%), e.g., the
dual constraints do no longer have 1 in the right-hand side.

The paper is organized as follows. Section 2 presents several DFF-based lower bounds for Capacitated
p—Median, as well as the convergent DFF warm-started CG (Section 2.2.2). Section 3 is devoted to a
study of (D)DFF applications to General Routing problem variants. Numerical experiments are carried
out in Section 4, followed by conclusions in the last section. Appendix A presents a case study of the
proposed approach for a different Capacitated p-median variant, showing how the DFFs can be (better)
integrated to more problems.

2. DFF Bounds for Capacitated p-Median

2.1. Problem Introduction and a Basic Bound

The p-Median problem is a core topic in customer allocation and distribution system design, and so, it
has been tackled with a large variety of algorithms [25], including Column Generation (CG) methods [18,
7, 1, 10, 13]. Besides location and distribution applications, p~Median problems can also arise in rather
unexpected fields such as cluster analysis (see references in the introduction of [1]), processor scheduling
or packet management in networks [14].

Consider a graph G = (V, E) with V = [1..n] and edges {i,j} € E weighted by distance (cost) values
d;; > 0; one can interpret d as a function acting on {{3,5}: i,j € V} with d;; = oo if {3, j} # E. There
are b; clients placed in each vertex i € V (with b; = 1 in classical instances); each of these clients have
to be serviced from some median (facility) that can be placed anywhere on the vertices V. More exactly,
each client in ¢ requires a supply (weight, quantity) of ¢;; a median can supply a mazimum quantity of
Q to a cluster of clients (subset of V). The goal is do choose exactly p < n clusters and to assign all
clients from each cluster to a cluster median so as to minimize the total distance from medians to clients.
Remark that G is not oriented, and so, dj; = d;; Vi,j € [1..n]; also, we do not impose d;; = 0 by default
(even if this is often the case in p-median instances).

Let us start with an introductory binary formulation: we simply copy the model of problem “P” from
[18, §2] and apply the notational translations: N — V and @ — z. The binary decision variables z;;
indicate if client 7 € V' is serviced by a median placed in j € V; z;; is 1 if and only if a median is placed
in j The objective function below simply minimizes the sum of the distances from each vertex to its
servicing median. The first constraint states that each vertex ¢ € V has a (unique) client that has to be
serviced once (i.e., we actually used b; = 1,Vi € V) from one median. The second equality constraints
fixes the number of medians to p. The third constraint imposes a limit of @ to the total quantity that
can be serviced from one median. The last constraint z;; € {0,1} Vi, j € V reinforces the fact that each
vertex can accept at maximum one client and at maximum one median.

min EiEV ZjGV dijzij

Zje\/zij =1 Nt eV
jev 7ig =P '

>iev Gi%ij < Qzj; Vjev

zi; € {0,1} Vi,j eV

In the rest of the paper, we will actually work on extended formulations for p-median. Compared
to above program, we introduce two novelties: (i) we allow non-equal numbers of clients (demand mul-
tiplicities) b; > 0 to be placed at vertices ¢ € V, each client needing a supply of ¢;, (ii) we lift the
restriction of placing at maximum one median per vertex (such restrictions are not explicitly imposed in
all set-covering formulations, e.g., see also problem SCP in [18, §3]). However, property (i) is not relevant
in practical instances, because b; = 1Vi € V. The restriction from property (ii) is also not very often
needed in practice; when b, = 1Vi € V, practical (Euclidean) instances might not exhibit high-quality
solutions with multiple medians per vertex.

2.1.1. A Set-Covering Extended Formulation with an Equality Cardinality Constraint
Using interpretations above, we formulate a first Integer Linear Program (ILP) based on a set-covering

extended formulation with a prohibitively large number of variables. This ILP considers a variable for
each cluster, i.e., for each subset of V satisfying a knapsack constraint (see below) with capacity . The
resulting program is :

min Y dgz,

Zaixa > bi, YieV

Z Tg =P

x, €Ly V[d, a]" € A,

where each sum is carried out over all configurations (clusters) [d, a]” of set A, i.e., a = [a) as...a,] €
{0,1}™ is a column and d, is the objective function coefficient (cluster cost). To reduce clutter, please
accept the following notational shorthands: (i) we write [d, a]" to mean [d, a']", equivalent to [4]; (ii)
notation d, with only one index is a (distance) cost of cluster, while notation d; ; is a distance between
two vertices ¢,j € V. This ILP formulation is constructed based on the following:

(2.1)

The objective function uses decision variables z, to indicate the number of selections of column a.
All sums are carried out over a (prohibitively large) set A with elements [d, a]T. Any such element
[d, a] comes from a cluster V, = {i € V = [l..n] : a; = 1} with cost d,. This representation does
not explicitly indicate the median. However, the best median location for cluster V, is at vertex
m(a) = m(V,) € V such that }; y, dimea) < Djey, dim, Vr € V. Using this notation, the cost
of the cluster V,, associated to column a is:

dq = Z di,m(a) - Z aidi,m(a) (22)
1

i€V, i=
Since we only consider the capacitated version of the problem, a feasible column a needs to sat-

isfy > a;q; < Q. There are no other restrictions on the composition of clusters: m(a) does not
necessarily belong to V,, but it influences the cluster cost d,,.

the first primal constraint Y a;x, > b; is a set-covering constraint; b; € Z can be seen as the number
of clients that require service at vertex i € V (usually b; = 1);

the second primal constraint) z, = pis an (equality) cardinality constraint imposing the selection
of an exact number of p clusters.

This model is very similar to other ILPs arising in CG studies for Capacitated p-Median, see (10)
in [18] or (6)-(8) in [7]. The former model is almost exactly the same as (2.1), up to the following
notational equivalences: they index the columns with k € [1..m], the decision variables are noted x;, and
the columns are indicated by vector Ay of cost c¢,—this cost ¢ is determined by solving n (i.e., |V|)
binary knapsack problems, i.e., one for each possible median 7 € V. The latter model [7] is slightly
different because it encodes the selection of the medians in the columns. As opposed to both above
papers, our model does not require the median m(a) to belong to the cluster V.

2.1.2. An Introductory Bound using a Modified Model

The above cardinality equality (> x, = p) can be replaced with >z, < p, as also discussed in [7].
Indeed, given a primal ILP solution x in (2.1) such that Yz, < p — 1, one can always derive an equal-
quality solution by repeating the following operation: split one of the selected clusters V, (i.e., with
Zq # 0) in two and keep the same median location for both resulting clusters. This is always possible:
as long as Yz, < p— 1 < n, there exists a selected cluster V, such that |V,| > 2 that can be split into
non-empty disjoint V! and V2. As such, we can replace > x, = p with Yz, < p; we will use below
the equivalent form Y —x, > —p, which is slightly more convenient to have only “>” inequalities in the
primal. The initial set-covering ILP (2.1) leads after linear relaxation to the following CG primal-dual
LPs, in which all sums are carried out over all [d, a] " € A.

min Y dyx,

. maxb 'y — pu

yi Tamzb, Viellnl a0 Rt T e

B>, =Ty > —p y >0, P (2.30)
l‘GER.;_ V[daa]TEA MEO

Observe that we indicate in front of each constraint the corresponding dual variable. Given column

[d, a]T € A, recall that the (best) median m(a) of a satisfies Yicv, Giim(a) < Diey, dim, VY € V.
Using (2.2), the main constraint of the (dual) polytope P can be written:
aTy —u<d, = Zn: aidiﬂn(a)
i=1
We will more often make use of this constraint in the form:
Zn: ai(yi — di m(a)) < 1, (2.4)
i=1

Using notation d”(®) = [d1,m(a)d2,m(a) - - - dnym(a)]—r, it can also be written a' (y - dm(a)) < pu.
We now start out with an introductory proposition. It is mainly useful for getting a very general idea
on the proposed DFF lower bounding approach.

Proposition 1. The dual values below yield a dual feasible solution in (2.3b), for any « € [0, u] and for
any (D)DFF [(one can use a general DFF f or a q-DDFF).

- 4 in d .
=t (3) it @5

Proof. We need to show that the main (dual) constraint (2.4) holds for any feasible cluster a; this
constraint is expanded as:

Zﬂ Zn qi .
a; iidim = a; | @ = |+ min dl '7dim > < 5
i:l(! , (a)) i=1 (/ <Q> jeltn] @) a

Given that min d; j — d;) < 0 Vi €V, it is enough to show that:

j€E[1..n]
n g
Ser(5) <
; <Q

which is true because @ < p and f satisfies the fundamental (D)DFF inequality (x) with regards to
quantities ¢; < @, Vi € [1..n] —recall that all feasible clusters a verify the capacity constraint Y ., a;,q; <

Q. O

This proposition actually allows one to derive a class of valid dual solutions, depending on variables
a € [0,u] and p > 0. The best LB value is reached by maximizing (under constraint o < p) the dual
objective function:

by —pu= Zbi (af (g) + min di,j) —pu = Zbijén[linn] di; + az b f (g) —pu (2.6)
i=1 i=1 - i=1

JEl..n]

This actually leads to only two cases:

(A) > bif(q;) —p > 0: the objective value can be made indefinitely large using an arbitrarily large

o = L.

very fast tool for detecting such situations;

In other words, the instance is infeasible because it is impossible to put all requested
quantities . | b;g; in p facilities with capacity Q. DFFs (and g-DDFFs) can actually serve as a

(B) >0, bif(g:) — p < 0: the best objective value is reached using o = p = 0.

Both of these cases lead to @ = p. The reason for having introduced two separated variables o and p will

become obvious in the next section. Above proposition only aims at introducing the very general idea of

our approach, i.e., we combined DFF terms (like a; f (

A drawback of the dual feasible solution from Proposition 1 is related to this non-DFF term min ey &

i

Q

)) with non-DFF terms (like minje(i. .y df)

in (2.5). In most practical instances, d! can be zero and this is not very helpful for obtaining high qual-
ity LB values using (2.6). To overcome this issue, the mixed CG-DFF approach from the next section
replaces minje(y.) d! with M1, n], i d!. Furthermore, such minimizing terms might not even arise
at all in other p-median versions: we provide an example in this sense in Appendix A.

2.2. A Mized Vi.-Reduced CG-DFF Bound and DFF warm-started Full CG
Let us now decompose V = [1..n] into V = V;, UV}, (small and large quantities), such that

Vk:{iEV: qi<§3} ande:{jEV: q; >

__The dual variables of Vi will be expressed using (D)DFF terms, while V; will be associated to a
(Vi-reduced) set of “stand-alone” variables. We recall that notation m is used (above) as a function

Q

k

b

(2.7)

m : 2¥ — V such that m(V,) is the best median location for cluster V, € 2V. Please accept now a slight
notation abuse and let us use the same symbol m for a function m : V' — V defined as follows: giveni € V|

m(i) indicates (one of) the closest vertices to 4 that is different from i itself, i.e., d
The following convention can avoid any confusion: (i) by writing m(¢), we make reference to this latter
function m : V' — V, and (ii) by writing m({i}) or m(V,) (equivalent to m(a)), we make reference to the

former function m : 2V — V.

Theorem 1. Let us consider a (D)DFF f and a Capacitated p-median instance acting on vertexr set

— J
i = minjey g4y dy.

V = [1.n] =V}, U VL, where Vi, and Vj, are defined by above formula (2.7) from weights q; (with i € V),
capacity Q and a fized k € ZF. A dual solution (y,p) constructed from some given values of o, > 0

andy; > 0,Yj € Vi, via:

Yi =Y, Vje Vi (2.8)
qi k
Yy = af (Q> + il di m(s) (2.9)
gi k : .
= = — d; Vi eV
1(&) weap en
i#E]
is (dual) feasible in (2.3b) if the following holds:
a < 7 (2.10)
g k .
> af (Q) + Y dimiy S p+ Y dim@y VU C Vi with |U| < k (2.11)
iU iU iU
Y@y, < Y Gidjm@ Vldzall €4, (2.12)
JEVR JEVi

where A is the set of columns associated to clusters completely contained in Vj,:

A={ldza" € A: a;=0,Yi ¢ Vi}.

K2

Proof. Consider any feasible [d, a] € A. We need to show that the main dual constraint (2.4) holds; this

constraint can be written:
g a;y; + E a;y; < p+ E a;di m(a) + E ajd; m(a)
1€V]evk 1€V]Evk

Replacing (2.8)-(2.9), this further reduces to:

azaz (> Zazk+1 1m()+za]yj<,u+zaz 1m(a)+zafj j,m(a)

1€V i€V jEVk i€V]EVk

We now reduce the last sums on both sides. Consider cluster @ obtained from a by setting @; = a;,Vj € Vi
and @; = 0,Vi € Vj, i.e., we reduce a to elements from V, and we obtain a. Using devk @jdjm@ <

2 jevi @jdjm(a), (2.12) guarantees that 3, v a;7; < > v @;d™®). Since @; = a; over j € Vg, this is
equivalent to) eV 05 < > JeVe a;d™ (@) and so, it is enough to prove that the following holds:

azazf(qz> Zalk-‘rl i,m(4) _,u""zaz i,m(a)

1€V 1€V i€V

Denoting V¥ = {i € V} : a; = 1}, this can be written:

O‘Zf<qZ) Zk+1 zm(z)_ﬂ+zdzm(a)

icVE ieVk i€VE
We show that the above constraint is true by distinguishing two cases:

(a) |V¥| < k. The constraint becomes a particular case of (2.11) with U = V¥ (all terms outside Vj, are
already reduced);

(b) |VF| > k4 1. We reduce the first term on both sides. This is rather straightforward using o < p
(given by (2.10)) and the feasibility condition), ¢; < @, coupled with the fundamental DFF
inequality (x), as in Proposition 1. As such, the constraint to prove reduces to:

Z k+1 “’L(Z) — Z dzm(a)

ieVk ieVk

Let us focus on the value of m(a). If m(a) ¢ V¥, the inequality i m(i) < dim(a) holds for all i € %
(recall d; ;) = minjey iy dij < dj ;m(a)) and the above constraint simply results by summing this
inequality over all i € V*. We still have to address the case m(a) = i,, for some i,, € V. By
separating the term corresponding to ., in both sides of above constraint, we have to prove:

k k
mdim,m(im) + Z mdi,m(i) <dip iy + Z diiy,
1€VE—{in} 1€VE—{in}
Since 0 < d;,, ;,, (we only consider non-negative service costs), we reduce the first term in the

right-hand side. Using ki_i_ldi,m(i) < kiﬂdmm,w € V¥ — {i,,}, it is enough to prove:

k 1
o< Y di o
k+1 v B

k- dim,m(im) S Z di,im'
i€VE—{im}

This is true using d;,, (i) < di,..i = diji,,, Vi € VF—{i,,} and the fact that the sum in the right-
hand side has exactly k terms—we are in case (b) corresponding to |[V.*| > k+1, or |VE—{i,,}| > k.

O

Using this theorem, we can now formulate a mixed CG-DFF model. The objective function of the
initial dual LP (2.3b) is expanded by simply replacing (2.8)-(2.9):

S obif <é)> a+ > by —p (2.13)

k
by —pp= E bimdi,m(i) + (
i€Vy jEVL

1€Vy

This leads us to a restricted (Vj-reduced) LP with [V + 2 variables (a >0, x>0 and g; >0, Vj € Vi)
defined by (dual) objective function above and by the the constraints (2.10)-(2.12) from Theorem 1. We
describe below how to solve this V-reduced model by CG: the resulting restricted pricing is (considerably)
simplified compared to the one for the initial dual LP (2.3b).

2.2.1. Simplified Pricing in the Vi -Reduced CG-DFF Model

We now present the pricing algorithms for the constraints (2.10)-(2.12) of the above CG-DFF model;
we pick out the key claims in boldface.

The pricing algorithm for constraints (2.11) is very fast, as the corresponding sub-problem
is not NP-hard. We consider every possible median location m(U) from (2.11) as a decision variable
m € V. The most negative reduced cost of constraints (2.11) is determined by solving sub-problem below
for the current values of the dual variables o and p (observe other variables y; >0, Vje Vi do not arise
in (2.11)).

. qi k .
min {u—i—z (di,m —af (Q) - Mdi’m(i)> cUCV, meV, UL k}

i€U
The pricing algorithm solves this sub-problem as follows: for each 7 € V, it sorts the |Vi| values
(d“h —af (%) — kiﬂdi,m(i)) corresponding to all i € Vj, and it selects the lowest (only negative and
at most k) values of this form. The lowest sum of such values (i.e., for the best /m) is the most negative
reduced cost; the corresponding (maximum k) selected values indicate the best U and the new column.
The total complexity is O(n|Vy|log(|Vk)), i.e., this is the asymptotic running time of n sorting algorithms.
The pricing for (2.12) represents a |Vj|-reduced variant of the initial pricing of (2.3Db).

Equation (2.12) makes use of a median location m(a) that can be seen as a decision variable (12 below)
in the sub-problem. After few transformations, the pricing sub-problem can be formulated as:

min Zdjym—yjiﬁgvk;me‘/a ZqJSQ
jeu jeu

The pricing algorithm needs to try all n possible median locations ; for each one, it needs to solve a
binary knapsack problem with |Vj| items. Solving n times the knapsack problem is a common approach
for p-median pricing, already used in other algorithms from the literature [18]. However, the main
advantage of our |Vj|-reduced pricing is the reduction of the number of knapsack items from n to |V4|.
Such reductions are more important than the number n of knapsack problems, because the latter factor
n only leads to a linear coefficient n in the total pricing complexity. As long as |Vj| can be considered
bounded (compared to n), solving these n knapsack problems is not NP-hard. Recall from (2.7) that
q; > % Vj € V4, and so, the maximum number of selected items is k — 1; such knapsack problem can be
solved in O(|V;|¥~1). To construct a polynomial bound with this mixed CG-DFF approach, it is enough
to keep k (and implicitly V;) at sufficiently low values, e.g., if the separation (CG pricing) sub-problem
is polynomial, so is the main problem (using the equivalence between separation and optimization).
Larger V), sets can be useful in a slightly different manner: one could use k as a parameter
controlling a trade-off between the quality of the CG-DFF bound and its running time. As k becomes
larger, Vj, converges to V and the CG-DFF bound converges towards the CG bound (the optimum of LP
(2.3b)). However, for a tighter convergence, the following version of Theorem 1 could be more useful.

Corollary 1. (large Vi, version for Theorem 1) The same argumentation from Theorem 1 holds if one
updates constraints (2.11)-(2.12) as follows: (a) in (2.11), replace p in with (ZieUf (%)) w, and (b)

in (2.12), insert term (Zjevkajf (%)) K-

Above replacements would make constraint (2.11) stronger (which could decrease the final DFF bound)
and constraint (2.12) weaker (which could increase the final DFF bound). As such, the bound version
from this corollary could be more useful when V4, (and implicitly k) is rather large and the latter constraint
is more important. When Vj, is close to V, it approximates very well the initial program (2.3b). However,
we only use Theorem 1 in the rest of the paper, as our study is rather focused on fast bounds.

2.2.2. DFF Warm-started CG

As hinted above, the pricing for (2.12) is a |Vi|-reduced variant of the pricing for the initial dual
program (2.3b). The CG-DFF approach can be used to warm-start a full CG algorithm, resulting in a
hybrid DFF-CG method of two stages:

1. Compute the above CG-DFF bound by iteratively solving the |Vj|-reduced pricing problems de-
scribed in Section 2.2.1. By pricing (2.12) in this stage, we generate clusters with all selected
vertices in Vj, i.e., we generate elements from A C A.

2. Apply the classical CG for the initial model (2.3a)-(2.3b), but in the beginning insert the columns
corresponding to the clusters from A C A generated in Stage 1.

Such DFF warm-starting produces the following effect: the new CG method starts out with a number

of columns using only elements from Vj, = { jeV: g > %} of larger weight (supply), see also (2.7). In

the best cases (usually associated to large sets V},), the columns associated to A C A might constitute a
considerable proportion (even more than half) of the total number of columns required to fully converge.
We will also discuss in Section 4.1.2 a slight stabilization effect. However, the general CG “trajectory” is
always changed: the DFF warm-started version generates columns in a completely different order. When
Vi is smaller, Stage 1 generates fewer constraints with a more limited impact; however, the trajectory
change in itself leads to a slight variation in the total number of iterations. We propose to apply the new
method on large Vj, values (|Vi| = 2|V]), so as to exploit the fact that a larger number of columns can
be generated in the first stage.

3. DFF-based Bounds for Distance Constrained General Routing

3.1. Problem Definition and Column Generation Model

General Routing is a generalization of Arc Routing and Vehicle Routing in which service can be
required on both edges and vertices. The problem was first introduced in the 1970s [20] and many different
variations have been presented over the time. In this paper, we take interest in a version that considers
two route feasibility constraints: (classical) capacity constraints and distance (service time) constraints
(see an example in [21]). The former constraints state that the total quantity (supply) delivered to clients
(by a single route) needs to stay below a wvehicle capacity Q). The latter constraints state that a single
route can provide service over a maximum distance of D. To illustrate this latter distance constraint, we
can refer to the formulation [21, §2], i.e., each edge service requires a pick-up time (depending on the
number of houses on a road, which is proportional to the edge length) and the distance constraint simply
comes from a (legislative) limit on the daily (shift) working time.

We now formalize our Distance Constrained General Routing variant. Consider a graph G =
(V,E), with V = {1,2,...,n} and edge set £ = {epi1,€ni2,---nim}t € V?; to lighten the text, we
will also refer to edge e; only using its index j and say j € E whenever j € {n+1,n+2,...n+m} =
[n 4 1..n 4+ m]. For each vertex i € V, there is a quantity (supply) demand ¢; that needs to be serviced
(delivered) b; times (b; is the covering demand of 7). Similarly, each edge j € E has a quantity demand
¢; and a covering demand b;; its length (distance or time) is denoted by d;. We are also given a fleet of
p vehicles of capacity @ that can each provide service over a maximum total distance of D; the use of a

vehicle comes with a fixed cost F'. A feasible route is a path in G that: (i) starts and ends at a special
vertex vy € V' (the depot), (ii) delivers a maximum quantity of @, (iii) provides service over a maximum
total distance of D.

The objective is to find at maximum p feasible routes with a minimum total cost that deliver all
requested demands. The cost d, of a route a is calculated as the sum of a fixed cost F' (for using the
vehicle) and a traversal cost (a sum over all traversed edges). CG models are often applied to such
problems; we present below the primal-dual LPs used for integrating DFF's.

T
minz[da a}TEA daxa ma‘Xb Y — DU d
y: Z[da a]TeA Ula > by, V€ [1n+m] X : aTy —pu<d,, V |:aa:| cA
I Xd a)TeA ~Ta = 7P] (3.1a) >0 P (3.1b)
Tq 20 v |:;:| €A M >0

We first provide below the interpretation for the primal objective, constraints and notations, followed by
their dual counterparts.

the primal objective function uses decision variables x, that indicate the number of times that route
a is used; z, is integer in the ILP version of (3.1a) and fractional after relaxation. Set A contains
columns [d, a] " that encode feasible routes a of cost d,. Vector a = [a; a3 ...an, Gpi1---Gnim)? €
Z™™ contains n positions corresponding to vertices and m corresponding to edges; ay is the number
of times (vertex or edge) ¢ is serviced, V¢ € [1..n +m]. The cost of using route a is:

n+m

do=F+ Y afd;, (3.2)
Jj=n+1

where a;r is the number of traversals of edge j. If a;-r > a;, then edge j is deadheaded (traversed
without service) a3* — a; times. Dead-heading is well-known phenomenon in Arc-Routing: a route
that traverses edge j can either choose to service j or to dead-head it (traverse it without service).
The necessity of considering deadheaded edges is lifted in Section 3.3. Besides natural contiguity
conditions, a feasible route a needs to verify the following;:

> aiqz-+2?:+7ﬁ1 ajq; < Q (route capacity constraint)
Z;::fH ajd; <D (route distance constraint)

the first (set covering) primal constraint in (3.1a) requires each edge or vertex ¢ to be serviced by
times. Most routing instances use b = 1,,4,,, each service is to be provided only once. By setting
b; = 0,Vj € E, one obtains a Vehicle Routing problem; b; = 0, Vi € V' leads to an Arc-Routing
problem;

the second (fleet size) primal constraint states (using sign inversion) that one can use at maximum
p vehicles (routes);

the dual objective function has n + m + 1 variables (see below) with coefficients taken from the
right-hand sides of the primal constraints (above);

the dual constraints a'y — ; < d, set the boundaries of the dual polytope P over the non-negative
orthant. They are constructed from the primal LP using: (i) a variable p for the primal constraint
on the fleet size, (ii) vector y of variables for to the n +m primal set-covering constraints, and (iii)
a right-hand side coefficient d, from the primal objective function.

3.2. Feasible Dual Solutions on the General Case

Theorem 2. We consider a DFF (or a Q-DDFF) f, and a DFF (or a d-DDFF) f;. For any o, 8,0 € Ry
such that
at+f-p<F, (3.3)

the formulas below determine a dual solution (y,) that is feasible in (3.1b).

10

1 yi=afy (%), for all vertices i € [1..n]
2. y; =d; —&-afq(qf) +ﬂfd<) for all edges j € [n+ 1..n + m)|
Proof. We need to prove that the main (dual) constraint of the dual polytope P in (3.1b) (i.e., a’y —pu <

d,) is verified by such solution (y,) for any route a with cost d,. Given the route cost equation (3.2),
the main dual constraint can be written:

n+m n+m
Z a;y; + Z ajy; —pu < F+ Z a; d; (3.4)
j=n+1 j=n+1

In the right-hand side sum, the cost (naturally) depends on the number agr of traversals of edge

€ [n + 1.n + m], and not on the number of services a; provided to j. If ai* —a; > 0, than edge j
is dead-headed a;r — a; times. Any use of a dead-headed edge increases the right-hand side of above
constraint without modifying the left-hand side, i.e., the constraint is weakened by using more dead-
heading. Conversely, routes with less (or zero) dead-heading generally correspond to stronger constraints
(3.4). For instance, if a route performs no dead-heading at all, the right-hand side of (3.4) has no terms
with no match in the left-hand side, i.e., any right-hand term a}*d; > 0 is matched (balanced) by a
left-hand term a yJ = a;yj. The necessity of considering dead-heading is completely lifted in Section
3.3, where al* = a] is always satisfied. However, a sufficient condition for ensuring above constraint (3.4)

J
in general is:

n n+m n+m
Zaiyi + Z a;y; — K S F + Z ajdj (35)
1=1 Jj=n-+1 Jj=n-+1

Let us now write y in terms of f;, fq, @ and 3, using the formulas from the hypothesis.

n n+m n+m
St (8) 550 (v (8) 0(2) 20 5 o
i=1

Jj=n+1 j=n+1

After elementary simplifications, we need to prove that the constraint below holds.

m—+n n+m
Ozzaefq<qe>+ﬁ > ajfd(>—M§F

j=n+1

Since f, satisfies by definition the fundamental (D)DFF inequality (%) with regard to q and @ (recall
the route capacity constraint Z?ilm arqe < @), we establish that Zm+" ag fq (‘“) < 1. Similarly, fq
satisfies the fundamental (D)DFF inequality () with regard to d and D, and so, using the route distance

constraint, we also state that Z;Li:il a; fa) < 1. Replacing these sums with 1 in the above inequality,

we only need to prove al + 81 — u < F, which is true from the hypothesis condition (3.3). O

The best (Lower Bound) LB resulting from this theorem is determined by maximizing objective
function below (re-written in terms of variables «, 3, i)

n+m n+m n+m p
Ty —pu=) bid; +<Zbefq(qz>>a+ > bfd() B—pu (3.6)

j=n+1 j=n+1

under constraints o, 8, ¢ > 0 and o+ 8 — pu < F. This leads to a very small-size LP, i.e., the feasible area
is a 3-dimensional polyhedron with four constraints. Very elementary LP arguments show that there are
only two cases (analogously to Section 2.1.2): either the LP is unbounded, or the optimum is at a vertex
of the above 3-dimensional polyhedron. In former case, the objective function can be arbitrarily large
and the instance is infeasible (the fleet size is not large enough to perform all requested service). The
latter case leads to u = 0, because the above polyhedron has no vertex with g > 0 (such point could only
belong to maximum two of the four constraints).

11

3.2.1. A mized CG-DFF lower bound

If F is very low (e.g., F' = 0), the constraint a+ 5 —p < F imposes very strong limits on « and 3 (e.g.,
if p = 0 as above, this can even lead to a = = p = F = 0), which could degrade the resulting LB value.
To tackle such situations, one can actually use, as in Section 2.2, a mixed CG-DFF model that can be
generally described as follows. We put aside a set of variables Y C [n 4 1..n + m] that are not expanded
as (D)DFF terms. Formally, y;,V} €Y are “stand-alone” variables and only y; with i € [1.n+m]| —Y
are expanded as (D)DFF terms. Following the reasoning from Theorem 2, one develops (3.4) and the
condition o + 8 — u < F reduces to:

. d
a—l—ﬂ—p—l—Za;y;ﬁF—&-Za?d; V[;}EA (3.7)
JjEY JjEY

This mixed (Y-restricted) CG-DFF model requires solving a dual LP with |Y|+ 3 variables (o, 8, p and
Y3 Vj € Y) and dual constraints (3.7) above. These constraints (3.7) can be generated one by one by
iteratively solving a reduced pricing sub-problem (as in Section 2.2.1). At each CG iteration, this pricing
sub-problem requires constructing a route a that minimizes F' + Zie? a‘%rd; —a—0B4+u— Z}e? azy;;
observe that route a is here only evaluated with regards to the edges Y, i.e., it is a reduced-size sub-
problem. In fact, if Y is sufficiently small, the constraints (3.7) could even be enumerated. However, the
larger the set Y, the closer one gets to the initial CG model and to the pure CG bound.

3.3. Distance-Constrained Arc Routing

The proof of Theorem 2 uses a reduction of inequality (3.4) to (3.5), i.e., each af* term is replaced by
a;. Such reductions lead to ignoring deadheading costs, making (possibly large) approximations that could
degrade the quality of the bound. This drawback does not necessarily arise in all Distance-Constrained
General Routing variants. We show this on Distance-Constrained Arc-Routing, a problem simply
obtained from Arc-Routing by replacing the capacity constraint with a distance (tour length) constraint.

8.8.1. Problem Definition
The problem is formally defined from Distance-Constrained General Routing as follows:

— no demand on vertices (Arc-Routing property), i.e., b; = y; = 0Vi € [1..n] in the primal-dual LPs
(3.1a)-(3.1b);

— feasible routes have no capacity constraint (only the distances matter), i.e., use Q@ = oo and f, is
no longer needed (one could use f, = 0 in Theorem 2);

— the distance constraint acts on travelled edges and not only on serviced edges, i.e., route constraint
Zyiﬁl ajd; < D is replaced by Z?Lﬁl a¥*d; < D. This is a natural interpretation: we limit the
total route duration (distance) and not only the service duration, as we did in Section 3.2.

3.8.2. A pure DFF lower bound

As in Theorem 2, one can express the remaining variables y; (with j € [n + 1.n + m]) as DFF
terms. We focus on the main dual constraint (3.4) and we show that routes with non-zero deadheading
are dominated, i.e., any route involving some deadheading leads to a weaker dual constraint than some
route with no deadheading. Consider a dual constraint (3.4) generated by a route a that deadheads
edge 7, i.e., a}r > a;. By replacing a; < a§r, the route remains feasible because no route feasibility
constraint can be violated by increasing the number of services provided to edge j. Indeed, our model
places no upper bound on the value of a; (we did not apply any cycle-elimination in our model, e.g.,
we allow a; > b; even if this can degrade the final bound quality). As such, this replacement renders
dual constraint (3.4) even tighter: its right-hand side is unchanged, but the initial left-hand term a;y; is
replaced by a;-ryj > a;y;. The tightest dual constraints correspond to routes with no dead-heading (with
aj =a;*, Vj € [n+ 1.n +m]), and so, (3.4) becomes

n+m n+m d
Z a;y; — W < F+ Z ajdj, A |:;:| cA (38)
j=n+1 j=n+1

12

Setting y; = d; + /4 (%), this leads (using f;, = 0 in Theorem 2) to: 52?:;11 ajfa (%) —u<F;
condition (3.3) reduces to 8 — pu < F.

3.8.8. A mized CG-DFF lower bound
Using a similar modelling as in Section 3.2.1, we separate a set of “stand alone” variables Y3 (with
j €Y) that are not expressed as DFF values; (3.7) reduces to

da

jey jey
The strongest mixed CG-DFF bound of this form can be obtained by maximizing a reduced CG LP:
express dual objective function b'y — pu as a linear function of dual variables 8, > 0 and y; =20
(with j € Z) and maximize it under constraints (3.9). These constraints can be generated one by one by
solving a (Y-reduced) pricing sub-problem as in Section 3.2.1.

4. Numerical Evaluation: Capacitated p-Median and two Capacitated Arc Routing Variants

The main goal of this evaluation is to compare the pure CG bound with the proposed DFF bounds,
both in terms of quality and running time. We first present below the functions used to calculate these
DFF bounds. Section 4.1 is devoted to p-median experiments (implementing Section 2.2) and Section 4.2
presents two General-Routing variants, i.e., Arc-Routing with Fixed Costs (implementing Section 3.2)
and Distance-Constrained Arc-Routing (implementing Section 3.3.2).

The most straightforward DFF is figen(x) = @, Va € [0, 1]; this trivial DFF is hereafter referred to as
the identity. The first (non-trivial) DFF used in this work is the Fekete-Schepers function f3 from [11]
(see also [8, § 4.1]). Using parameter A € [0,0.5), it can be expressed as:

0 ifz<A
fix)=L{z ifx<z<l-—2X\ (4.1)
1 ifz>1-)\

When all involved quantities ¢; are less than %, we only use A = 0; in this case fg is reduced to the
identity figen. Function fg‘ can be more effective than figen only when it is useful to valuate large
quantities ¢q; > % at 1.

The second function fiy , was proposed in [8, § 4.4], by generalizing ff; from [28]. Using integer

parameter k > 2, it can be written as:

max(@ kel if ¢ < 0.5
fiea() =205 ifz=0.5 (4.2)
flao(l—2) ifx>05

This formula generates a stair-case function in which the length of each interval (stair) is usually +
(except in the proximity of z = %) Based on very limited preliminary experiments, it is reasonable to
consider all values of k from 2 to 300. By trying more parameter values and more functions (see many
examples in [8]), the quality of our DFF bounds could have been improved. However, the main goal of
the paper is not to present very refined “competition” results, but to describe a general technique for

applying (D)DFFs to new (capacitated) problems.

4.1. Capacitated p-Median

While less studied than its non-capacitated counterpart, Capacitated p-Median has already been
tackled with CG methods, see model (10) in [18] or model (6)-(8) in [7]. The former model is more similar
to our model (2.3a)—(2.3b). We made used several times of the work in [18], for three main reasons: (i) it
provides a set of real-life Capacitated p-Median instances (see www.lac.inpe.br/~lorena/instancias.

13

html); (ii) it derives Lagrangeean/Surogate lower bounds (calculated with a limit of 300 iterations) that
can also be used for comparisons; and (iii) it also present results on the best-known integer feasible
solution (upper bound based on heuristics from [17]). Compared to our primal-dual LPs (2.3a)—(2.3b),
their model differs in that they impose the median m(a) to belong to the cluster a. As such, our primal
LP (2.3a) has actually more columns than their primal LP, and so, it could yield (slightly) lower optima.
The provided instances usually have a capacity @ between 700 and 1000; the quantities (weights) only
rarely exceed % .

The DFF bounds from this section are obtained using Theorem 1 (§2, p. 6); the objective value is
determined by (2.13). We recall that this bound resides on a reduced DFF-CG model that is optimized
by a classical CG algorithm based on two pricing sub-problems, one for (2.11) and the other for (2.12).
As described in Section 2.2.1, the former pricing is rather straightforward. The latter one is similar to
the pricing of the initial CG model (of (2.3b)) and it requires solving certain binary knapsack problems.
The speed-up of the DFF-CG model comes from reducing the number of knapsack items from n = |V
to |Vi|, where V;, identifies the largest items, see (2.7). We solved the binary knapsack problems with
minknap, i.e., one of the best knapsack algorithms tested in [22] (we used the implementation available
at www.diku.dk/~pisinger/minknap.c).

We compare below the results of the DFF bound (Section 4.1.1) and of the DFF warm-started CG
(Section 4.1.2) with the results of the pure CG. This pure CG bound is obtained by solving to optimality
(2.3a) using a classical CG algorithm. As in other CG work on Capacitated p-median, the pricing
sub-problem requires solving n knapsack problems with n items, once for each possible median location
of the next column. We used the same minknap implementation as above for all these knapsack problems.

- Capacitated p-Median instance

% goal sjcl sjc2 sjc3a sjc3b sjc4a sjcdb
n/p— | 100/10 200/15 300/25 300/30 402/30 402/40

1 LBprr 10062 18954 27915 26003 36564 32625

1 speed-up of DFF bound Li70 lhgs lhos lhgg liss 1392

1 LBprr 12385 24294 32649 29820 43842 38121

2 speed-up of DFF bound Ly 18 L9 L9 L7 143
LBprr 14357 27568 38470 34651 51891 44460

speed-up of DFF bound 1y 1y s g L7 L7

3 speed-up of DFF warm-started CG | 1122 1h35 1Roa 1p38 lRos 1/3.08

iters in DFF stage w.r.t. tot iters 56% 55% 56% 60% 57% 79%

tot iters w.r.t. tot iters pure CG 100% 98% 91% 86% 87% 66%
1 LBcc 17263 33232 45315 40635 61850 52403
CPU Time[sec] for pure CG* 62 799 4232 3953 17305 14165
Lagr/Surr Bnd. [18, Tab. 1] 17150 33233 45245 40635 61851 52404
Best Known Feasible [17, 18] 17289 33396 45365 40636 62001 52642

Table 1: Results of two DFF-based lower bounding methods. After the heading, the first 6 rows indicate
the DFF bound and its speed-up for several values of the (goal) ratio %” Recall that Vj, is the set
of stand-alone variables not expressed via DFFs. The next 3 rows (starting at row “DFF warm-started
CG”) provide several indicators concerning the method from Section 2.2.2 (we use the |Vj|-reduced
clusters generated by the DFF method for % = % to warm-start a full CG stage). The speed-up is
always expressed as a ratio of the CPU time of pure CG (the third row from the bottom). The last two
rows provide other bounds from the literature (a Lagrangean/Surrogate bound obtained with a limit of

300 iterations, rounded up) and the best known integer feasible solution (based on heuristics from [17]).

2All running times are reported on a HP ProBook 4720 laptop clocked at 2.27GHz (Intel Core i3), using gnu g++ with
code optimization option -03 on Linux Ubuntu, kernel version 2.6. (Cplex version 12.3)

14

4.1.1. Analysing the results for the DFF bound of Theorem 1
Table 1 presents a summary of the results of the DFF bounds and of the DFF warm-started CG. Let

us here focus on comparing the DFF bounds (denoted LBppr) with the pure CG bound (noted LBcg)
«|Vi|

and to some upper bounds from the literature. For each V] goal” value (Column 1), we consider the
lowest & that leads via (2.7) to a ratio ‘IV?kI greater or equal to this goal. The “trade-off” between running

time and quality can be controlled by varying k, i.e., using a larger k, % becomes larger, and so, the

DFF bound is improved at the cost of increasing the running time. Denoting the running time of the
pure CG bound by tcq, Table 1 shows the following general facts:

— within about €& time (usually less), the quality of our mixed DFF-CG bound is about LBppp =~

100
%LBC(;, see the rows with a value of 0 or i in Column 1;

— within about t;’—OG time (minimum %7 maximum tf—?), LBprr raises to almost %LBC(;,, see the
rows with value % in Column 1;

within tCTG time (or less), LBppr raises to almost %LBcg, see the rows having % in Column 1;

Since the objective value of the best-known feasible solution (see last row of Table 1) is always less than
101%LBcg, so is the integer optimum value OPTip, i.e., we can state OPTp <101%LBcg. As such,
the above quality remarks on LBppp can generally be stated even with regards to O P11p; for instance,
one can safely say that our DFF approach can reach, using % of the total CG convergence time, a LB
value of about %LBCG > % AN PT ~ %OPTIP. The DFFs used for this numerical experiment are

101
0.4 300 .

the following: for the goal HV—E‘l =0, we tried f§, f81,... f§* and fsz,Q, f\?B,Q? .. Jyp.2; for the other goals,

we only tried fJ (equivalent to the identity).

4.1.2. Analysing the results of the DFF warm-started CG

The results of the DFF warm-started CG (Section 2.2.2) are also presented in Table 1, see the three
rows starting from row “speed-up of DFF warm-started CG”. These three rows provide the following
information: (1) the general CPU time speed-up of the new warm-started method relative to pure CG,
(2) the proportion of columns generated only by the pricing performed during the first DFF stage relative
to the total number of iterations of the new CG, and (3) the ratio (in percents) of the number of columns
generated by the new warm-started CG relative to the pure CG.

The main conclusion is that the speed-up is due to two reasons: (i) the fact that more than half of
the total number of columns are actually generated in the first DFF stage, and (ii) a slight reduction
(usually between 10% and 30%) of the number of iterations. The point (i) seems more important and
let us first comment on it. The columns generated in the DFF stage come from clusters constructed

by the |Vj|-reduced pricing (2.12) in Section 2.2.1. This DFF stage is very fast, as also resulting from
row “speed-up of the DFF bound” for % = %. This acceleration is not only due to the fact that the

number of variables is reduced by i since we eliminate the smallest items, our knapsack algorithm (i.e.,
minknap) is accelerated by more than ;11, as many dynamic programming states are eliminated. The
second point above (ii) is related to a certain stabilization effect that seem to have a variable amplitude.
However, the DFF-generated constraints provided to the new warm-started method allows it to start
with a significantly better objective function relative to the pure CG.

4.2. Arc Routing Problems
4.2.1. Capacitated Arc-Routing with Fized Cost

To our knowledge, there are four Capacitated Arc Routing Problem (CARP) instance sets that are
publicly available (see www.uv.es/~belengue/carp.html for more information and references): standard-
size instances gdb, kshs, val (also called bccm) and large-scale instances egl (with |V, |E| > 50). The
capacity @ ranges from from 5 to 305 (with very small capacities only for the gdb instances); the edge
lengths d; are in the same order of magnitude as the quantity demands ¢; (a few hundreds at maximum).
The fleet size p is always large enough to be able to provide all demanded service; no service is required
more than once (#j € E s.t. b; > 2). For each CARP instance, one can construct a Capacitated
Arc Routing With Fixed Cost counterpart by simply adding a fixed cost F' in the route costs, as first

15

proposed in the literature of the 1980s [27]. We simply tried several F' values (F =5C, FF = C, F =0.2C
and F = 0—pure CARP) and we applied them on some random instances from the four CARP instance
classes above.

The DFF bounds are obtained by applying a particular case of Theorem 2 (p. 10), in which we only
use dual variables for edges j € E. We report the best objective function value (3.6) under constraint
(3.3), with 8 = 0—i.e., we ignore f; terms, because we do not (yet) consider distance constraints. The
following DFF have been considered: fJ, 1, f§2... f§* and f\}B,27 f\?B,27 5’]?’%.

The pure CG bound (denoted LBc) is determined using an implementation of the method from [23]
that optimizes (3.1b). We did not try to generate only elementary routes, we did not apply refined k-cycle
reductions or other fancy strengthening methods; one can check that, for F' = 0 (pure CARP), our pure
CG bound is similar to other pure CG bounds from the literature [16, 24].

The results are provided in Table 2. One first observes that the DFF running time is very low, i.e.,
as expected, in most cases, it is a matter of milliseconds. Larger fixed costs leads to DFF bounds within
90% —99.9% of the CG bound for all instances except egl (see below more discussions on these instances).
Even for F' = 0.2C, the DFF bound stays at more than 80%L B¢ in most cases. For F' = 0 (pure CARP),
the DFF bound is simply equivalent to summing > jeE b;d;; this case could be more effectively addressed
by a mized CG-DFF bound, as sketched in Section 3.2.1. However, even for instances for which the DFF
bound is generally not very good, the quality ratio LBprr/LBcg improves as the fixed cost increases,
e.g., for valiC, it increases from ~ 50% (i.e., 335) at F =0 to ~ 95% (i.e., 1338) at F' = 5D.

' 229
Fixed Instance of Arc-Routing With Fixed Costs
cost gdb05 gdb06 gdbl2 gdb23 kshsb vallC val7C egl-el-C egl-e4-C
O LBprr 446 370 1396 1553 11493 1936 3044 8808 14718
Lﬁ speed-up| /1416 1450 141735 lRme2 11021 <1/10000 <1/10000 <1/10000 <1/10000
Y LBog | 439 302 1532 1563 12620 2029 3103 ~ 12600 ~ 23500
timels]® 2.0 0.8 3.5 7.1 0.8 320 > 1000 > 1000 > 1000
0 LBprr 342 282 548 489 9721 504 808 2936 4906
W speed-up| /1565 /712 l123s 11505 1R43 <lAoooo <l/oooo <l/oooo <1/10000
& LBca 385 304 668 499 10820 592 865 ~ 6700 ~ 13500
time[s] | 2.1 0.8 1.5 5 1.1 277 > 1000 > 1000 > 1000
(C\J] LBprr 321 264 378 276 9366 217 360 1761 2943
S speed-up| 1614 15328 182 lora Ysgr <lhoooo <0000 <lAoooo <1/10000
Il LBcq 364 287 487 286 10460 303 416 ~ 5550 ~ 11500
~ timels] 2.2 0.6 1.1 4.4 0.9 445 > 1000 > 1000 > 1000
LBprr | 316 260 336 233 9278 146 249 1468 2453
speed-up| L1054 11990 Y7o lassa lgog <lioooo <l/10000 <1/10000 <1/10000
I LBce | 359 282 445 233 10370 229 301 ~ 5250 ~ 11000
timel[s] 2.2 2.3 1.4 3.7 1.0 490 > 1000 > 1000 > 1000
ILP Opt| 377 298 458 233 10957 245 334 5595 11601

Table 2: DFF results and comparisons for several values of the fixed vehicle cost F' in Arc Routing
instances. The speed-up indicates the running time ratio between the DFF bound and the method
from [23] for finding the optimum LBcg of the CG model.” However, the essential idea is that most DFF
bounds can be calculated in a time of milliseconds. The last row indicates the ILP optimum from [16]
(see also logistik.bwl.uni-mainz.de/benchmarks.php) for F' = 0 (pure CARP): it represents less than
115% of the DFF bound in half of the cases.

2All running times are reported on an ASUS UL laptop clocked at 1.30GHz (Intel Core Duo SU7300), using gnu g++
with code optimization option -03 on Linux Ubuntu, kernel version 2.6.

bWhen our method took too long to fully converge, we provide approximate LBcg values based on some intermediate
bounds.

A disadvantage of the proposed DFF approach is that it can also provide low quality bounds for
certain instances. The last two columns of Table 2 present the worst-case scenario we ever encountered

16

throughout all the tests we performed. In fact, these are the only CARP instances for which there exist
some non-required edges E’ C E, i.e., such that b, = 0,Vj’ € E’. In this case, most feasible routes
need to dead-head certain edges from E’ only to reach the required edges E — E’. This generates large
dead-heading costs that are ignored by the DFF bound from Theorem 2, see the arguments leading from
(3.4) to (3.5).

4.2.2. Distance-Constrained Arc-Routing

To construct a Distance-Constrained Arc-Routing instance (see Section 3.3.1) from a classical
CARP instance, one has to define: (i) the maximum distance route limit D, (ii) the fixed cost F, and
(iii) a fleet size p (the original value of p from the CARP instance might not be enough to execute all
required service, because of the new distance constraints). These values are respectively determined as
follows: (i) D is 5 times the longest edge for standard-size instances (gdb, val or kshs) or 10 times the
longest edge for large-scale instances (egl); (i) we tested F' = %, F = D or F = 5D; (iii) p is rather

, g bids . . .
large (i.e., we used p = 2%) to ensure that the instance is feasible.

Table 3 below provides the results obtained using the DFF approach from Section 3.3.2. This DFF
bound is a particular case of the general DFF bound from Theorem 2, Section 3.2 (p. 10). The objective
function is given by formula (3.6) (p. 11) with the terms using f; removed. The corresponding dual
polytope P has (3.8) as main constraints, i.e., no dead-heading information intervene in describing P.

Regarding the pure CG bound LBcg, we calculate the optimum over above P by applying classical
CG. The pricing for (3.8) requires finding cycle of length not exceeding D that maximizes the total profit
(the edge profits at each iteration are given by the dual values); for this, we perform a classical deep-first
traversal of G. The main conclusions are:

— for standard-size instances (first seven in Table 3, with less than 50 edges), the DFFs usually
produce LBs within 90-99% of the CG bound and they require about 0.1 — 0.5% of the CG time;

— for large-scale instances (last two instances in Table 3), the DFF bound is obtained in very small
times, but its quality stands at about 3/4 of the CG bound.

Fixed Instance of Distance-Constrained Arc-Routing
cost gdb05 gdb06 gdbl2 gdb23 kshsb5 vallC val7C egl-el-C egl-e4-C
o LBprr [19004 15668 20272 13473 556680 8833 15065 147180 147180
w speed-up | oz lhri o logoo lses lais laso Lt <l/ioooo <1/10000
L! LBca 19157 16350 20378 13452 606280 8931 16813 200733 200756
time[s]® 0.40 0.21 0.75 0.71 0.21 0.61 1.07 1145.95 987.55
Q LBppr 6328 5213 6742 4478 185560 2934 5005 49060 49060
| speed-up | lago 1aes sz Ysoo Yprs lazs Va9 <1/10000 <1/10000
S LBcc | 6384 5350 6782 4484 105479 2077 5444 66906 66902
time[s] 0.43 0.37 0.74 0.62 0.15 0.65 1.11 1133.51 1301.83
g LBppr 3793 3122 4036 2679 111336 1754 2993 29436 29436
s speed-up | Y53 lhaz lh128 s3r laeo ko1 1kes <1/10000 <1/10000
I LBce | 3832 3150 4063 2690 113320 1786 3170 40140 40141
~ time[s] | 043 019 095 104 025 0.84 1.31 1326.10 1627.63

Table 3: Comparison between the DFF bound LBppr and the pure CG bound LBcg for several values
of the fixed cost F' on Distance-Constrained Arc-Routing. The speed-up indicates the ratio between
the running times of DFF and CG bounding methods.

2All running times are reported on an ASUS UL laptop clocked at 1.30GHz (Intel Core Duo SU7300), using gnu g++
with code optimization option -03 on Linux Ubuntu, kernel version 2.6.

We finish by noting that the main advantage of all these Arc-Routing DFF bounds resides in their
speed, i.e., they require running times of milliseconds. This is not surprising given that the calculation
of a DFF bound only consists of a loop that computes a weighted sum. While the DFF bound can

17

have a very high quality in certain cases (e.g., it can even reach the optimal IP solution for pure CARP
instance gdb23 in Table 2), it can also produce results of mixed quality in other cases. However, pure
CG methods do not seem to be able to compute a similar quality (Lagrangian) bound within such times
of milliseconds. Indeed, some preliminary experiments confirm that it could be very hard (or impossible)
to solve a single sub-problem within the time used to calculate a DFF bound.

5. Conclusions

(D)DFFs have often been used to generate very fast lower bounds for Bin-Packing and Cutting-Stock
problems. For such problems, all columns (patterns) have the same cost and the DFF lower bound has
a rather simple form (e.g., >, bif (%), up to notational equivalences); the dual variable of i takes the
value of a DFF function applied on % We showed that (D)DFF's can be applied to new different (capaci-
tated) problems in which the cost of columns (routes or clusters) has a more complex structure, depending
on a sum of distances. The new lower bound formulas are more complex—see (2.13) for Capacitated
p-Median (p. 8) and (3.6) for General Routing (p. 11)—, but the (D)DFF bounds are usually still fast.
Numerical experiments confirm that, generally speaking, the proposed approach produces good quality
bounds, often using less than 1% of the total CG convergence time.

We also present a mixed CG-DFF lower bounding approach that can be slower, because it still needs
to optimize a restricted model by CG (see Section 2.2 for Capacitated p-Median or Sections 3.2.1 and
3.3.3 for General Routing). However, this restricted model has a smaller pricing sub-problem, i.e., the
sub-problem has a reduced number of variables |V;| (or |Y| for General Routing) instead of n, where
Vi (or Y) indicates a subset of dual values that are not expanded as DFF terms. Section 2.2.2 extended
this approach even further: the constraints generated by the above CG-DFF approach are used as initial
constraints in the beginning of a “DFF warm-started” CG. This new CG can find the CG bound 2-3
times more rapidly that the pure CG.

References

[1] P. Avella, A. Sassano, and I. Vasil’ev. Computational study of large-scale p-median problems.
Mathematical Programming, 109(1):89-114, 2007.

[2] R. Baldacci and M. A. Boschetti. A cutting-plane approach for the two-dimensional orthogonal
non-guillotine cutting problem. European Journal of Operational Research, 183(3):1136-1149, 2007.

[3] G. Belov, V. Kartak, H. Rohling, and G. Scheithauer. Conservative scales in packing problems. OR
spectrum, 35(2):505-542, 2013.

[4] M. A. Boschetti. New lower bounds for the three-dimensional finite bin packing problem. Discrete
Applied Mathematics, 140(1):241-258, 2004.

[5] M. A. Boschetti and A. Mingozzi. The two-dimensional finite bin packing problem. part i: New
lower bounds for the oriented case. 40R, 1(1):27-42, 2003.

[6] A. Caprara and M. Monaci. Bidimensional packing by bilinear programming. Mathematical
programming, 118(1):75-108, 2009.

[7] A. Ceselli. Two exact algorithms for the capacitated p-median problem. Quarterly Journal of the
Belgian, French and Italian Operations Research Societies, 1(4):319-340, 2003.

[8] F. Clautiaux, C. Alves, and J. Carvalho. A survey of dual-feasible and superadditive functions.
Annals of Operations Research, 179(1):317-342, 2009.

[9] F. Clautiaux, A. Moukrim, and J. Carlier. New data-dependent dual-feasible functions and lower
bounds for a two-dimensional bin-packing problem. International Journal of Production Research,
47(2):537-560, 2009.

18

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete
Mathematics, 194(1):229-237, 1999.

S. P. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems. Mathematical
Programming, 91(1):11-31, 2001.

S. P. Fekete and J. Schepers. A general framework for bounds for higher-dimensional orthogonal
packing problems. Mathematical Methods of Operations Research, 60(2):311-329, 2004.

R. Garfinkel, A. Neebe, and M. Rao. An algorithm for the m-median plant location problem.
Transportation Science, 8(3):217-236, 1974.

L. E. Jackson, G. N. Rouskas, and M. F. Stallmann. The directional p-median problem: Definition,
complexity, and algorithms. European Journal of Operational Research, 179(3):1097 — 1108, 2007.

D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Tech-
nology, 1973.

A. Letchford and A. Oukil. Exploiting sparsity in pricing routines for the capacitated arc routing
problem. Computers & Operations Research, 36:2320-2327, 2009.

L. A. N. Lorena and E. L. F. Senne. Local search heuristics for capacitated p-median problems.
Networks and Spatial Economics, 3(4):407-419, 2003.

L. A. N. Lorena and E. L. F. Senne. A column generation approach to capacitated p-median
problems. Computers & Operations Research, 31(6):863-876, 2004.

G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b]. In 24th Annual
Symposium on Foundations of Computer Science, pages 289-297. IEEE, 1983.

C. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35-64, 1974.

R. Pandi and B. Muralidharan. A capacitated general routing problem on mixed networks.
Computers & operations research, 22(5):465-478, 1995.

D. Pissinger. Where are the hard knapsack problems? Computers & Operations Research, 32(9):2271
— 2284, 2005.

D. Porumbel. The integer ray method: Optimizing polytopes with prohibitively many constraints in
set-covering column generation models. Submitted Paper (preprint at www.optimization-online.
org/DB_HTML/2013/09/4056 .html).

M. P. R. Martinelli, D. Pecin and H. Longo. Column generation bounds for the capacitated arc
routing problem. In XLII SBPO, 2010.

J. Reese. Solution methods for the p-median problem: An annotated bibliography. Networks,
48(3):125-142, 2006.

J. Rietz, C. Alves, and J. V. de Carvalho. Worst-case analysis of maximal dual feasible functions.
Optimization Letters, 6(8):1687-1705, 2012.

G. Ulusoy. The fleet size and mix problem for capacitated arc routing. European Journal of
Operational Research, 22(3):329-337, 1985.

F. Vanderbeck. Exact algorithm for minimising the number of setups in the one-dimensional cutting
stock problem. Operations Research, 48(6):915-926, 2000.

19

Appendix A. Capacitated p-Median with Fixed Costs and Median Assignment Restrictions

A drawback of the Capacitated p-Median DFF approach from Section 2 is the fact that certain

dual values are expressed using terms like min;ey.) d; (Proposition 1, p. 5) or [mi? . d;,; (Theorem
jEll..n] i%j

1, p. 6). It is enough to have only a few very small distances d; ; to generate many dual variables of very

small value. This can degrade the quality of the resulting bound. The goal of this appendix is to show

that certain p-Median versions do not have such issues; let us introduce two (natural) assumptions:

(a) Given i,j € V, we bound to ¢;; the maximum number of times median j can service ¢. This is
a median assignment restriction. It can arise, for instance, if a client ¢ does not want to have all
demands b; supplied from only one provider.

(b) Add a fixed cost F to the cost of each column (cluster). The resulting model is more similar to a
Facility Location problem with fixed costs and a maximum number p of medians (locations).

To take the median assignment restriction (a) into consideration, we need to extend the col-
umn representation from the primal-dual LPs (2.3a)-(2.3b). Please accept a notational shorthand
that extends columns [d, a]T € A to [d, a a]T € A by appending a 2-index column vector a =
[@11 ... A1ny A12...G2ny -y Api-- .Zinn]T with elements a;;: i is a serviced vertex and j is the cluster
median, i.e., a;; = 1if i € V is serviced from median j € V. All valid extended columns [d, a a]" € A
need to respect contiguity relations between a and a, e.g., a;; < a;Vi,j € V (to service ¢ by median j,
needs to be in the cluster). The new median assignment restriction acts on the primal solutions x and is
added (after a sign inversion) to (2.3a) under the form:

- Z Talij > —Cij, Vi, j € [1.n],
[do a a]T€A

This constraint is dualized using a 2-index column vector of dual variables y =

[J11 - Yins Y21 - - - Y2ns -« -+ Uni - - - Unn) | - The values ¢;;, Vi,j € [l..n] represent right-hand side values
in the median assignment constraints of the primal LP (2.3a); they are thus dualized into objective func-
tion coefficients in the dual LP (2.3b). Denoting € = [¢11...C1n,C21-+-C2ny--+sCnl -+ Cnn) , the dual

program (2.3b) becomes:

maxb'y —¢'y — pu
aly—-a'y—-u<d, V[aﬁ]TEg
— as a

y >0, i€[l.n] P (A1)
y >0, i€ [l.n]
>0

The fixed-cost assumption (b) is taken into consideration by incorporating a fixed cost F' in the
calculation of the cluster (column) cost d,; (2.2) evolves to:

da =F+ iaidi,ma
i=1

where m is the median of the cluster, i.e., the unique index m € [1..n] for which 3i € [1..n] such that

Qi = 1.

Proposition 2. For any q-DDFF f, the dual values below yield a valid dual solution in (A.1).

yi=(n+F)f (%) + diax Vi € [1..1]
gij = dmax — di,j VZ,] € [].TL}

where dmax = Max; je1..n) dij-

20

Proof. Consider a valid column (cluster) with the median located in m. We need to prove that the main
(dual) constraint a’'y —a'y — u < d, is verified in (A.1); this constraint can be written as:

n

zai <(:u + F) f <Z§) + dmax) - Z zazy (dmax - di,j) —p< F+ Zaidi,m
j=1i=1

=1 =1

The above inequality can be proved using two rather straightforward reductions. First, for each right-
hand side a;d; , there is a left-hand side term @;;d; ; = a;d; », (recall that the definition of a states that
a;; = a; at the cluster median j = m and a;; = 0 if j # m). As such, we only have to prove:

n

Zai ((:U/—i_F)f (Z) +dmax) - Zzﬁijdmax Y < F
j=11i=1

i=1

The dyax terms are also reduced: they arise twice for each ¢ in the cluster, once with a positive sign
(first sum) and once with a negative sign (second sum). Indeed, each “a;dpmax” term in the first sum is
canceled by a “—a;jdmax” term in the second sum when j = m (other a;; values are 0 at j # m). As

such, we only have to prove:
n
> ai ((IH'F)f (é)) —h<F

i=1

This is simply equivalent to (u+ F)Y." a;f (%) < p+ F, which is true due to the fundamental
D(DFF) property (*) of the g-DDFF f (given cluster capacity condition >, a;q; < Q). O

After replacing (A.2) in the objective function of (A.1), we obtain the same two cases of Proposition
1 (see the end of Section 2.1) regarding p: either y = oo if the instance is infeasible (Y., b; f (%) > p),
or = 0 otherwise. The second case is more important an it leads to an objective function value

FZ b, f (g) - Z Zaj (dmax — di 5)
im1

i=1 j=1

A fast DFF bound can simply be calculated by integrating a (D)DFF f in the above formula, as in
other examples throughout the paper. One could expect a higher LB quality for instances with rather
homogeneous distance values. However, if some values d; ; are much larger than all others, it could be
easy to detect that no optimal solution can service 4 from median j. In such cases, one could (artificially)
set ¢;; = 0 so as to obtain a better (and still valid) DFF lower bound.

21

