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We propose an aggregation method to reduce the size of column generation (CG) models for covering

problems in which the feasible subsets depend on a resource constraint. The aggregation relies on a correlation

between the resource consumption of the elements and the corresponding optimal dual values. The resulting

aggregated dual model is a restriction of the original one, and it can be rapidly optimized to obtain a feasible

dual solution. A primal bound can also be obtained by restricting the set of columns to those saturated by

the dual feasible solution obtained by aggregation. The convergence is realized by iterative disaggregation

until the gap is closed by the bounds. Computational results show the usefulness of our method for different

cutting-stock problems. An important advantage is the fact that it can produce high-quality dual bounds

much faster than the traditional lagrangian bound used in stabilized column generation.

1. Introduction

Column generation (CG) is a widespread technique for optimizing linear programs (LPs)

with prohibitively-many variables. Without loss of generality, we consider a minimization

objective function. A well-known drawback of CG is that it may converge rather slowly,

i.e., as [2, §1.2] put it, the standard CG can be desperately slow. As such, in the first CG

iterations, the classical Lagrangian lower bound is usually quite far from the optimum.

The last decades have seen a surge of interest in stabilization methods that speed-up the

convergence of CG and reduce the number of iterations [1, 2, 4, 5, 6, 7, 8, 11, 14, 15].

A different technique to reduce the size of large-scale LPs consists of aggregating some

of the problem data. Generally speaking, the idea of LP aggregation has a long history

in optimization. The goal is usually to transform LPs with high degree of detail into
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coarser LPs of smaller size. For example, one can aggregate close time instants [13], nearby

locations, related scheduling tasks. Our work is in part motivated by the recent progress

of aggregation techniques in CG. These techniques can limit degeneracy in the master LP,

reduce the number of dual variables and produce a stabilization effect [1, 7, 8].

We propose a new so-called linear dual aggregation that leads to a reduced-size CG

model whose optimum is a valid lower bound for sought non-aggregated CG optimum: the

aggregated model is a restriction of the original dual model. We now present the general

main idea. A covering problem is defined on a ground set I and the CG model uses a dual

variable yi for each i ∈ I. In a resource-constrained context, each i ∈ I is associated to a

resource consumption wi (e.g., weight) and all feasible subsets of I (columns) are required

to consume a total resource amount between some C− and C+. Our model exploits the

following assumption: when the resource constraints play a major role, the optimal solu-

tion selects many configurations with tight resource constraints (e.g., filled bins, patterns

without waste), and so, we expect a correlation between yi and wi at optimality (∀i∈ I).

Given a partition of I into k≥ 1 groups, the proposed aggregation forces the dual values

yi in each group to follow a linear function of wi. This leads to a smaller aggregated CG

model with 2k dual variables, which are the parameters of the affine functions for each

group. The aggregated model is iteratively refined by splitting groups, until it can be

proved that it has reached the optimum of the non-aggregated CG model. To ensure a

faster convergence, we intertwine the aggregation calculations with a fast CG process that

generates an upper bound for each value of k.

The remainder is organized as follows. Section 2 recalls the classical CG method and

discusses the most related aggregation work. Section 3 describes the aggregated model

for a fixed k-partition. Section 4 presents the convergent approach that iteratively breaks

groups, computing a lower and an upper bound for each k. In Section 5, we show that our

linear aggregation has better theoretical properties than a simpler equality aggregation.

Section 6 presents numerical tests, followed by conclusions in the last section; the appendix

presents the incremental calculations used to iterate from k to k+ 1 as fast as possible.

2. Column Generation for Covering Problems and Related Work
2.1. CG Models with Resource Constraints and Dynamic Programming Pricing

We first introduce the covering models considered throughout this paper. Such models

are very general and can be used to solve cutting and packing, vehicle routing, employee

scheduling problems, and many real-life problems.
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Let I = {1, . . . , n} be a ground set. We formulate a master covering integer LP (ILP) with

a prohibitively-large set A of columns a = (a1, . . . , an)> defined by all extreme solutions

of a specific subproblem. In this paper, as stated above, we consider that the subproblem

includes a resource constraint C− ≤w>a ≤ C+. The basic set-covering problem requires

finding the minimum number of configurations needed to cover each i ∈ I. However, we

here consider the most general multi-covering version: each element i∈ I has to be covered

at least bi times (bi ∈ Z+) and each configuration a ∈A has a cost µa, which depends on

the total resource consumption of the elements of a. We use primal decision variables λa

to indicate the number of selections of columns a ∈ A, leading to a well-known classical

ILP, whose linear relaxation can be stated as follows:
{

min
∑
a∈A

µaλa :
∑
a∈A

aiλa ≥ bi,∀i ∈

{1, . . . , n}, λa ≥ 0,∀a∈A
}

. Its dual can be written using a vector y = (y1, y2, . . . , yn)> ∈Rn
+

of dual variables and a possibly exponential number of constraints.

maxb>y

a>y≤ µa, ∀a∈A

yi ≥ 0, i∈ {1, . . . , n}

P (2.1)

This is the main dual covering problem (DCvr) formulation over polytope P. We will

write (2.1) as DCvr(P) = max
{
b>y : y ∈P

}
. Its optimum value OPT(DCvr(P)) is referred

to as the CG optimum and it is denoted by OPTCG. To determine OPTCG, a CG algorithm

dynamically generates a subset of the constraints of P (primal columns). In the dual space,

the CG can be seen as a cutting-plane method that iterates two steps: (i) find the optimal

solution y of the current dual polytope Pout ⊃ P described by the constraints generated

so far ; and (ii) pricing subproblem: generate a new valid constraint of P violated by y

and add it to Pout, or report OPT(DCvr(Pout)) = OPTCG if no such constraint exists. The

pricing CG subproblem seeks a configuration of most negative reduced cost:

min
{
µa−y>a : a∈A

}
, (2.2)

where y ∈Rn
+ is the current dual solution. As such, the pricing subproblem asks to select

ai times each i ∈ {1, . . . , n} so as to maximize the profit y>a minus the cost µa. A key

point in CG is the asymptotic running time needed to solve this pricing sub-problem.

In a resource-constrained context, all configurations a ∈ A satisfy C− ≤ w>a ≤ C+,

where w = (w1,w2, . . . ,wn)> ∈ Zn+ is a vector of resource consumptions and C−,C+ ∈ Z+
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are the two-sided bounds on the total consumption. In many such cases, the fastest pric-

ing algorithms use a pseudo-polynomial dynamic programming (DP) approach with a

complexity depending on C+. For this, one defines a profit function φmax that maps a

DP state (c, i) ∈ {0, . . . ,C+} × {1, . . . , n} to the maximum value φmax(c, i) of profit y>a

over all configurations a that satisfy w>a = c and that only use elements of {1, . . . , i}.

Starting with φmax(0,0) = 0, one can determine φmax(c, i) for all reachable states (c, i) ∈

{C−, . . . ,C+}×{1, . . . , n} using a recursion such as:

φmax(c, i) = max
r∈{0,...,bi}
r≤c/wi

{
φmax(c− r ·wi, i− 1) + r · yi

}
(2.3)

Regarding the costs µa of configurations a ∈A, they often depend substantially on the

total resource consumption w>a of a. Restricting to this case, the cost µa can be determined

separately as a preprocessing for each feasible value of resource consumption. By slightly

abusing notations, we can write µa = µ(w>a). The best reduced cost is thus attained in a

state (c∗, n) such that: φmax(c∗, n)−µ(c∗) = max
c∈{C−,...,C+}

φmax(c,n)−µ(c).

Depending on application-specific features, there are at least two widespread generaliza-

tions of this DP scheme. First, the state space can be increased to account for additional

information, e.g., the current vertex visited in routing problems (see examples in [16,

§4.2.3.2]), more resources in vector-packing, etc. Secondly, some transitions between states

(values of r in (2.3)) might not be valid, e.g., in bin packing with conflicts some pairs of

elements cannot be selected together.

The O(C+×n) states of DP can be constructed in O(C+×nb) time, where nb =
∑n

i=1 bi

is the number of individualized elements. We use nb instead of n: the elements with demand

multiplicities bi > 1 can be selected up to bi times, and so, r can vary from 0 to bi in (2.3).

2.2. Related Work in Aggregation Methods

If an ILP is too large to be directly tackled by generic solvers, it is often optimized by

outer approximation: start with an ILP with fewer constraints/variables and progressively

enrich it with new constraints by solving a separation problem. Cutting planes and CG

are among the most famous examples of such methods. Given this outer approach, the

convergence of CG is ensured by a sequence of dual infeasible solutions, i.e., before the

last iteration, all intermediate dual solutions in CG are dual infeasible.

Another way of obtaining a tractable model consists of aggregating constraints or vari-

ables. In some cases, this offers the advantage of constructing an inner approximation, in
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the sense that the aggregated models only contain feasible solutions—see also [16, §1.1.1.1]

for comparisons between inner and outer approximations. For instance, a static aggrega-

tion is presented by [18], which defines a smaller model whose size depends on a given

parameter. An interesting conclusion of [18] is that small values of this parameter are of-

ten sufficient to obtain excellent dual bounds. However this method is static and does not

converge toward the optimum of the initial model.

In the context of CG for covering or partitioning problems, aggregation methods are

used to group together elements that are either similar, or that appear very often together

in columns (in subproblem solutions). The latter property is used in the DCA algorithm

proposed in [1, 7, 8]. This aggregation approach starts by restricting the set of feasible

columns as follows. Given a partition of the ground set, all elements of the same group

are only allowed to arise together in any column. The aggregated master LP only contains

compatible columns, i.e., columns that contain either all or none of the elements of a

group. The master covering constraints of all elements of a group are replaced by a unique

representative aggregated constraint. From a dual perspective, a dual aggregated variable

represents a group of original dual variables and its value is equal to the sum of the

original dual values in the group. When the pricing subproblem is called, the dual variables

are disaggregated and the original subproblem is solved. The column produced by the

subproblem is added to the restricted master program if it is compatible with the current

partition, or put aside otherwise. The convergence is realized by iteratively updating the

partition. At each iteration, the current dual polytope (for the restricted master) includes

the original dual polytope (for the full master). Thus, the optimum of the current dual

program is an upper bound for the sought CG optimum.

A possible aggregation approach that produces a dual polytope inside the original dual

polytope consists of enforcing the dual values of “similar” elements to be equal. Such an

equality aggregation makes all elements of a group equivalent, i.e., they can be freely ex-

changed in an aggregated column with no impact on the column feasibility. This has the

advantage of reducing the size of the pricing subproblem (all dual variables of similar ele-

ments become one) and of stabilizing the CG process. A recent example of such exchanges

can be found in [9], although this is not explicitly used to aggregate the LP.

The latter type of methods relies on the fact that some elements are often almost “equiv-

alent” in the pricing problem (e.g., consider two similar-size articles in cutting-stock).
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However, if the resource has a more complex impact on the subproblem, the “equivalence”

of different elements may be less obvious. Such situations require a more refined correlation

between the dual value of an element and its resource consumption. For example, [5] proved

that the dual solution vector is always non-decreasing for the cutting-stock problem (when

elements are sorted by non-decreasing resource consumption). More generally, an empirical

study of optimal dual solutions for cutting-stock [3] show that restricting the dual values

to follow a piecewise linear function of the resource consumption with few pieces leads to

nearly-optimal dual solutions in a large majority of the cases. In what follows, we exploit

this feature to propose a new type of aggregation.

3. The Aggregated Model for a Fixed Partition of I

We here consider a fixed partition of I = {1, . . . , n} into k groups. The goal of the linear

aggregation is to enforce the dual values in each group to follow a linear function with

regards to the resource consumptions of the elements. For this, we add a new linear equality

for each of the k groups, constructing a restricted dual LP. As such, the optimum of the

resulting model is a lower bound for the original problem. We will also prove that certain

dual constraints (primal columns) are redundant in this new model, so as eventually reduce

both the number of dual variables and dual constraints. This allows to solve the aggregated

model using a smaller master problem and a smaller aggregated pricing subproblem.

3.1. The Aggregated Model : from Dimension n to Dimension 2k

yi

wi

yi

wiβ1

β2 α2

α3 = 0

α1 = 0

β3

Figure 1 Expressing all dual values by a group-wise linear function with k= 3 intervals.

Note. The figure on the left plots some dual values yi as a function of the consumption value wi. The right figure

shows a three-wise linear function that can underline such yi values, with solid lines inside each group.

Let Gk = {I1, I2, . . . , Ik} denote the partition of I and nj = |Ij| the cardinality of group

j. The linear restriction is implemented as follows: given any group j ∈ {1, . . . , k}, the

values of the dual variables yi for all i ∈ Ij are written as an affine function of their

resource consumptions wi. Formally, we impose that there exists αj, βj ∈R such that yi =
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αjwi + βj, ∀i ∈ Ij, as illustrated in Fig. 1. By linking the 2k new variables α1, α2, . . . , αk

and β1, β2, . . . , βk to the y variables in (2.1), we obtain the first restricted dual polytope in

space Rn
+×R2k:

maxb>y

a>y≤ µa, ∀a∈A

yi =wiα
j +βj, ∀j ∈ {1, . . . , k}, i∈ Ij

yi ≥ 0, ∀j ∈ {1, . . . , k}, i∈ Ij

αj, βj ∈R, ∀j ∈ {1, . . . , k}


Py,α,βk

(3.1)

Proposition 3.1. The projection of Py,α,βk onto the variables y yields projy(Py,α,βk )⊆P.

Proof: Observe that all constraints of P in (2.1) are still in place in (3.1). �

In general, we have projy(Py,α,βk ) (P, because only the vectors y ∈P with the suitable

group-wise affine structure do represent valid solutions of (3.1).

Model (3.1) can be reformulated using only variables αj and βj. We first rewrite the

objective function, by decomposing
∑n

i=1 biyi into k sums of the form
∑

i∈Ij biyi.

b>y =
k∑
j=1

∑
i∈Ij

biyi =
k∑
j=1

∑
i∈Ij

bi (wiαj +βj) =
k∑
j=1

(∑
i∈Ij

biwi

)
αj +

(∑
i∈Ij

bi

)
βj (3.2)

We now address the first constraints of (3.1). We decompose as above a>y into∑j
j=1

∑
i∈Ij aiyi. For each j ∈ {1,2, . . . , k}, we rewrite:

∑
i∈Ij

aiyi =
∑
i∈Ij

ai (wiαj +βj) =

(∑
i∈Ij

aiwi

)
αj +

(∑
i∈Ij

ai

)
βj (3.3)

We are now ready to express model (3.1) with variables αj and βj only. To simplify the

writing in (3.3), we use the following notational shortcuts.

Definition 3.1. Given a configuration a∈A and a group j, we introduce the following

notations. Observe cja and N j
a are resp. the coefficients of variables αj and βj in (3.3).

– cja =
∑

i∈Ij aiwi: total resource consumption of the elements of Ij selected in a.

– N j
a =

∑
i∈Ij ai: total number of elements of Ij selected in a.

– wj
min = min

i∈Ij
wi and wj

max = max
i∈Ij

wi: extremal resource consumptions in group j.

We substitute (3.2)-(3.3) in model (3.1) and we reformulate the non-negativity constraints.

This leads to an equivalent model in the space R2k:
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max
∑k

j=1

(∑
i∈Ij biwi

)
αj +

(∑
i∈Ij bi

)
βj∑k

j=1 c
j
aα

j +N j
aβ

j ≤ µa, ∀a∈A

wj
minα

j +βj ≥ 0 ∀j ∈ {1, . . . , k}

wj
maxα

j +βj ≥ 0 ∀j ∈ {1, . . . , k}

αj, βj ∈R, ∀j ∈ {1, . . . , k}


Pα,βk

(3.4)

Proposition 3.2. There is a bijection between the solutions of Py,α,βk and Pα,βk :

projα,β(Py,α,βk ) =Pα,βk .

Proof: The first constraint of Py,α,βk in (3.1) is equivalent to the first constraint of Pα,βk

in (3.4): it is enough to substitute (3.3) in (3.1) and to apply Def. 3.1 to obtain the first

constraint of Pα,βk . The non-negativity constraint yi ≥ 0 of Py,α,βk is also equivalent to the

last two constraints in (3.4): yi =wiα
j +βj ≥ 0,∀i∈ Ij⇐⇒wminα

j +βj,wmaxα
j +βj ≥ 0.�

The new model (3.4) uses less dual variables, which reduces the potential oscillations of

these variables and can speed-up the algorithm to solve the restricted master LP.

3.2. Restricting to extremal non-dominated configurations

So far we have built a master problem with less variables. We now show that many con-

straints become redundant in this model. This will allow us to reduce the number of

variables in the subproblem as well. For any configuration a = (a1, . . . , an) ∈ A, the asso-

ciated constraint in (3.4) only uses aggregated coefficients N j
a and cja. As such, we do not

need to express configurations a∈A as vectors in Zn+, but as aggregated Z2k
+ vectors of the

form a = (c1
a,N

1
a , c

2
a,N

2
a , . . . , c

k
a,N

k
a ). Such an aggregated configuration a represents all a∈A

that satisfy cja =
∑

i∈Ij aiwi and N j
a =

∑
i∈Ij ai for all j ∈ {1, . . . , k} (see also Def. 3.1).

Definition 3.2. Given group j ∈ {1, . . . , k}, the set Rj of feasible resource consumptions

is defined via : Rj = {cj ∈ {0, . . . ,C+} : ∃a∈A such that cj = cja}.

Definition 3.3. Given j ∈ {1, . . . , k} and cj ∈Rj, we define:

– N−(j, cj) and N+(j, cj): the minimum and respectively maximum value of N j
a (number

of selected elements, see Def. 3.1) over all a ∈ A such that cja = cj. These two values are

referred to as the cardinality coefficients of feasible resource consumption cj ∈Rj;

– Ak = {a∈A :N j
a =N+(j, cja) or N j

a =N−(j, cja), ∀j ∈ {1, . . . , k}}.

By replacing A with Ak in model (3.4), we obtain a smaller model:
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max
∑k

j=1

(∑
i∈Ij biwi

)
αj +

(∑
i∈Ij bi

)
βj∑k

j=1 c
j
aα

j +N j
aβ

j ≤ µa, ∀a∈Ak
wj

minα
j +βj ≥ 0 ∀j ∈ {1, . . . , k}

wj
maxα

j +βj ≥ 0 ∀j ∈ {1, . . . , k}

αj, βj ∈R ∀j ∈ {1, . . . , k}


Pk

(3.5)

Obviously, if two configurations a,a′ ∈ Ak yield N j
a = N j

a′, c
j
a = cja′ ∀j ∈ {1, . . . k}, only

one of them has to be explicitly considered. This model can be referred to as the Dual

Covering Problem (DCvr) LP over Pk and written DCvr(Pk) = max{
∑k

j=1

(∑
i∈Ij biwi

)
αj +(∑

i∈Ij bi
)
βj : (α1, . . . , αk, β1, . . . , βk)> ∈Pk}. We finish by formally showing that Pk can be

projected onto a polytope that is included in P.

Proposition 3.3. Any solution of Pk can be written as a valid solution of P in (2.1).

Proof: Prop. 3.1 states that projy(Py,α,βk )⊆ P. Prop. 3.2 shows that Py,α,βk is equivalent

to Pα,βk . It is enough to show that Pα,βk = Pk. Recall that above Pk is constructed from

Pα,βk by replacing A with Ak in (3.4). We will show that any configuration a ∈ A \Ak is

dominated by a configuration a′ ∈Ak, i.e., the constraint of a is weaker than that of a′.

Using the notations from Def. 3.3, we observe that a /∈Ak =⇒ ∃j ∈ {1, . . . , k} such that

N−(j, cja)<N
j
a <N

+(j, cja). As such, a yields a constraint in which the jth term cjaα
j +N j

a

is sandwiched by cjaα
j +N+(j, cja)β

j and cjaα
j +N−(j, cja)β

j. The constraint of a is thus

weaker than the constraint of some a′ that does verify N j
a′ =N+(j, cja) or N j

a′ =N−(j, cja).

By applying this for all groups j with above properties, we obtain a configuration a′ ∈Ak
that yields a constraint dominating the constraint of a. �

3.3. Computational Method: Aggregated CG to Optimize DCvr(Pk)

3.3.1. Pre-processing calculation of the values N+(j, cj) and N−(j, cj) To construct

the aggregated constraints of Pk in (3.5), one first needs to compute all values N+(j, cj)

and N−(j, cj) for all cj ∈Rj, ∀j ∈ {1, . . . , k}. This is done in a preprocessing stage, executed

only once. To determine N+(j, cj) and N−(j, cj) for all cj ∈Rj, we respectively replace yi

with 1 or -1 in (2.3) and maximize φmax as in Sec. 2.1. This DP scheme constructs the set

Rj at the same time for each group j. Considering all groups j ∈ {1, . . . , k} together, the

preprocessing has the same pseudo-polynomial complexity as the initial DP algorithm.
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3.3.2. Aggregated column generation Model (3.5) is optimized using CG. The pricing

problem could be solved by projecting the current solution into the original space, but

this would not benefit from the simpler structure of the model. Actually, the pricing prob-

lem can be solved without disaggregation. Given current solution (α1, . . . , αk, β1, . . . , βk)>of

(3.5), the aggregated version of the subproblem (2.2) is the following: find the aggre-

gated configuration a = (c1
a,N

1
a , c

2
a,N

2
a , . . . , c

k
a,N

k
a ) that maximizes the profit

∑k
j=1α

jcja +

βjN(j, cja) minus the cost µ
(∑k

j=1 c
j
a

)
. Formally, the aggregated pricing can be expressed

using c1, c2, . . . , ck as decision variables:

max
∑k

j=1α
jcj +βjN(j, cj)−µ(

∑k
j=1 c

j)

C− ≤
∑k

j=1 c
j ≤C+

cj ∈Rj ∀j ∈ {1, . . . , k},

(3.6)

where Rj is the set of feasible resource consumptions, and N(j, cj) =N+(j, cj) if βj ≥ 0 or
N(j, cj) =N−(j, cj) otherwise. Note that it is sufficient to determine the values of cj, since

all N+ and N− values are determined during preprocessing, all βj represent input data

and we choose from the beginning to use either N(j, cj) =N+(j, cj) or N(j, cj) =N−(j, cj),

depending on the sign of βj.

We now reformulate (3.6) using binary decision variables xjc such that xjc = 1 if and

only if group j uses a total resource amount of c ∈Rj (∀j ∈ {1, . . . , k}). Using notational

shortcut pjc = αjc+βjN(j, c), (3.6) becomes

max
∑k

j=1

∑
c∈Rj p

j
cx

j
c−µ

(∑k
j=1

∑
c∈Rj cx

j
c

)
C− ≤

∑k
j=1

∑
c∈Rj cx

j
c ≤C+∑

c∈Rj x
j
c = 1 ∀j ∈ {1, . . . , k}

xjc ∈ {0,1} ∀j ∈ {1, . . . , k}, c∈Rj

The resulting aggregated pricing subproblem is a multiple-choice variant of the non-
aggregated pricing. The standard dynamic programming (DP) from Sec.2.1 can be ex-

tended to an aggregated DP. All columns with the same resource consumption and number

of elements per group are aggregated into one column. This may reduce certain calcula-

tions, e.g., there is no longer need to scan all nb =
∑n

i=1 bi individualized elements for each

c∈ {0,1, . . . ,C+} as in Sec 2.1, but it is enough to scan Rj for all j ∈ {1,2, . . . k}.

4. The Convergent Algorithm

We have presented an aggregated CG method that optimizes (3.5) for a fixed partition

Gk = {I1, I2, . . . , Ik}. The resulting value, hereafter noted lbk is a lower bound of the sought

OPTCG. We now describe how this bound can be iteratively improved to compute OPTCG.
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Algorithm 1: Iterative Inner Dual Approximation

k← 1,G1←{I},A1←initialConstr() // write all constraints with 2 variables

repeat

calcCardCoefs(Gk) // calculate all N−, N+ values (Sec. 3.3.1)

lbk,Ak,y∗k←aggregatedCG(Ak)

Gk+1← groupSplit(Gk)

Ak+1← liftConstr(Ak,Gk+1) // lift constraints from Pk to Pk+1 (Sec. 4.2)

ubk← ubCgProcess(Ak,y∗k) // optional upper bound of OPTCG (Sec. 4.3)

k← k+ 1

until a stopping condition is reached // e.g., dlbke= dubke if µa ∈Z,∀a∈A

Alg. 1 provides the general steps of our Iterative Inner Dual Approximation (2IDA)

method. The main idea is to iteratively break the groups into smaller subgroups and

incrementally refine Pk. In the worst case, the convergence is realized when Pk becomes

equivalent to P in the last iteration. We further explain:

– how to split groups to obtain a new partition Gk+1 from Gk (Sec. 4.1);

– how to determine lbk+1 from lbk without optimizing Pk+1 from scratch (Sec. 4.2) ;

– how to compute an upper bound ubk from lbk (Sec. 4.3), to allow 2IDA to stop earlier

by closing the gap between lbk and ubk.

4.1. Group Split Operators

2IDA eventually converges towards OPTCG regardless of the way the groups are split: after

enough iterations, all groups can be reduced to a size of 1 or 2, leading to a model Pk
equivalent to P. However, the split decisions are crucial for the practical effectiveness of

2IDA. We first present (Sec. 4.1.1) a simple method, which can be used in a basic setting

of 2IDA. The second operator (Sec. 4.1.2) is more refined and needs the knowledge of a

reference solution that indicates a direction of evolution for the optimum Pk solution.

4.1.1. Basic Dichotomic Split Method This method considers only groups associated

to segments of [0,C+] with a regular length of the form 1
2`
C+ (` ∈ N). The initial split

operation takes the segment [0,C+] of the unique group k= 1 and breaks it into two sub-

groups I1 =
{
i ∈ I : wi ≤ C+

2

}
and I2 =

{
i ∈ I : wi >

C+

2

}
. If any of these two sub-groups

is empty, we break again the other sub-group in two; this can be repeated until we obtain

two proper non-empty sub-groups. At each 2IDA iteration k, we choose to split a group j∗



Author: Article Short Title
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

that maximizes the resource consumption spread, i.e., wj∗
max−w

j∗

min = max
j∈{1,...,k}

(wj
max−w

j
min).

Group j∗ is split by breaking its associated segment into two equal segments, as above.

4.1.2. Split Methods that Make Pk Evolve Towards Better Solutions In the remain-

der, to lighten the notation, we will work in the original space Rn. Let Pyk = projy(P
α,β
k ).

According to Proposition 3.3, this polyedral set is included in P. We now consider that

we are given a possibly infeasible solution yu ∈ Rn of higher quality than the optimum

solution y∗k of Pyk (i.e., b>yu > b>y∗k). For now we just assume that this solution is a good

approximation for the optimum of the original non-aggregated problem. The goal is thus

to remove the linearity restrictions that are the most violated by yu, so as to make Pyk
evolve to a polytope Pyk+1 that can contain solutions closer to yu.

Definition 4.1. Given a solution y ∈Pyk and some yu ∈Rn
+ we say that direction y→

yu is an open direction if there exists ε > 0 such that (y + ε(yu−y)) ∈ P. If, in addition,

b>yu > b>y, we say that y→ yu is an improving open direction. �

If y∗k→ yu is an improving open direction, then all y∗k + ε(yu − y∗k) are excluded from

the current Pyk only because yu is non-linear over some j ∈ {1, . . . , k}. We choose to split a

group j∗ over which yu−y∗k is well approximated by a 2-part linear function. By splitting

j∗ accordingly into two parts, y∗k+1 can become 2-part linear over group j∗, as in Fig. 2.

yi

wi× × ×

×

× × ×

× × × ×

× yu

y∗k

yi

wi

y∗k+1

Figure 2 A split operation guided by a better solution yu.

Note. The left figure plots the values of a current solution y∗k (blue circles) and of a reference solution yu (red crosses)

using 4 groups, delimited by dotted lines. The right figure plots possible values for y∗k+1 after splitting along the

thicker line the group number j∗ = 3, whose difference with yu is the largest.

The exact calculations behind this split method are further discussed in App. A.1

(Alg. 3), but the above ideas are enough to present all other 2IDA components. We only

say that yu can be obtained from: (i) an upper bound solution if available (see App. A.1.1)

or (ii) a solution generated by problem-specific methods (see App. A.1.2 for cutting-stock).
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4.2. Fast Calculation of lbk+1 From lbk by Lifting Pk Constraints

After solving DCvr(Pk) at step k, Alg. 1 splits a group j∗ and generates sub-groups j1 and

j2. A new model (3.5), associated to a new polytope Pk+1 has to be optimized. We lift the

constraints already generated at iteration k to warm-start the CG at iteration k+ 1, i.e.,

the standard aggregated CG from Sec. 3.3.2 is not run from scratch at each iteration. First,

the Pk constraints generated so far are lifted from dimension R2k to dimension R2k+2.

The optimal solution of DCvr(Pk) is also lifted as follows: set αj1 = αj2 = αj
∗

and βj1 =

βj2 = βj
∗

for j1 and j2, and keep unchanged αj and βj for all j ∈ {1, . . . , k}\{k∗}. We recall

that y∗k ∈Rn is the optimal solution of DCvr(Pk) expressed in dimension n.

In a first step, our approach uses a polytope P ′k+1 with P
′y
k+1 ⊃P

y
k constructed by lifting

Pk constraints satisfied with equality by y∗k. More exactly, we consider (constraint) set:

A′k+1 =
{
a′ ∈Ak+1 : ∃a∈Ak,a>y∗k = µa, s.t. cja = cja′, N j

a =N j
a′ ∀j ∈ {1, . . . , k} \ {k

∗}
}
.

To optimize over P ′k+1 by CG, we solve the same aggregated pricing as for Pk+1 but with

A′k+1 instead of Ak+1. In practice, the pricing routine scans the generated configurations a

satisfying a>y∗k = µa, recopies all their coefficients except those of group j∗, and computes

the best coefficients for new groups j1 and j2. For this, it uses the multi-choice aggregated

dynamic program from Sec. 3.3.2 with only two decision levels j1 and j2.

After determining OPT(DCvr(P ′k+1)) this way, it turns to the original aggregated

pricing for Pk+1. Since A′k+1 ⊂ Ak+1, we have OPT(DCvr(P ′k+1)) ≥ OPT(DCvr(Pk+1)) ≥
OPT(DCvr(Pk)). If OPT(DCvr(P ′k+1)) = OPT(DCvr(Pk)), we can directly state lbk+1 = lbk

only using lifted constraints. Our computational experiments show that lbk+1 can often be

computed this way in almost negligible time.

To summarize, 2IDA actually optimizes DCvr(Pk+1) in two steps: (1) it first lifts Pk
constraints to find the best solution of P ′k+1 ⊃ Pk+1 and (2) it seeks the best solution of

Pk+1 using the aggregated CG from Sec. 3.3.2. App. A presents the complete algorithm

for determining DCvr(Pk+1), followed by complexity and acceleration considerations.

4.3. An Upper Bound Generated From the Pk Optimum

We finish the 2IDA description with the optional upper bounding. It allows to stop 2IDA

earlier by closing the gap between lbk and ubk, but it is also useful to guide the split

operator (Sec 4.1.2). To avoid solving non-aggregated models from scratch, we propose a

CG process based on a smaller problem that exploits the current optimum y∗k ∈P
y
k .
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βj

y∗k

y∗

y2

y1

y2

y1

y∗

yu

y∗k

Figure 3 Computing an improving open direction.

Note. The picture is a projection on the plan defined by y1, y2 of the same group j for given values of αj , βj . On the

left-hand figure, P is the grey polyhedron, while Pk is the segment of the dashed line between the point (0, βj) and

y∗k. On the right hand figure, only the constraint that is tight for y∗k is kept. The grey polyhedron is now Pu. The

optimal solution for the corresponding problem is yu, which defines an improving direction to go from y∗k to y∗.

An important observation is that y∗k always verifies to equality at least one original

constraint a∈A. If there were no constraints a∈A such that a>y∗k = µa, then y∗k would be

dominated by a solution y∗k+ε(1, . . . ,1)> ∈Pyk for a small-enough ε. We use this observation

to restrict the CG algorithm in such a way that it generates only such y∗k-tight constraints.

This plays a stabilization role and reduces the number of possible subproblem solutions

by a wide range. We now define the corresponding polytope Pu ⊃ P, delimited only by

y∗k-tight constraints:

Pu =
{
y ∈Rn

+ : a>y≤ µa,∀a∈A such that a>y∗k = µa
}
. (4.1)

Let yu ∈ Rn
+ denote an optimal solution for max{b>y : y ∈ Pu}. In Fig. 3, we give

an example to illustrate the notions of y∗k-tight constraints and Pu. We now show in

Proposition 4.1 how yu is useful for our method. Property (2) is useful for guiding the above

group split heuristic (Sec. 4.1.2), while property (3) ensures that 2IDA stops whenever y∗k

is optimal for the original problem.

Proposition 4.1. Let yu ∈Rn
+ be an optimal solution of max{b>y : y ∈Pu}. Then yu

verifies the following properties:

(1) upper bounding: OPTCG ≤ b>yu;

(2) open direction: if y∗k is not an optimal solution of DCvr(P), then b>y∗k < b>yu and

y∗k→ yu is an improving open direction;

(3) optimality proving: if b>y∗k = OPTCG, then yu also satisfies b>yu = OPTCG.
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Proof: Property (1) actually follows from the Pu definition (4.1). Since Pu is constructed

from a subset of the constraints of P, we directly have Pu ⊃P, and so, b>yu ≥OPTCG.

We now prove (2). First, the non-optimality of y∗k directly shows that b>y∗k <OPTCG ≤

b>yu. To prove that the direction y∗k → yu is open, let us suppose the opposite: there

exists an arbitrarily small ε > 0 such that y∗k + ε(yu−y∗k) /∈P. As such, there is some a∈A

for which a>y∗k ≤ µa and a>y∗k + εa> (yu−y∗k)>µa. This would imply that a>y∗k = µa and

εa> (yu−y∗k)> 0, and so, a>yu > a>y∗k = µa, i.e., yu would violate the y∗k-tight constraint

a>y≤ µa. This is impossible, because yu ∈Pu satisfies all y∗k-tight constraints in (4.1).

We now prove (3). When y∗k is optimal in P, any solution better than y∗k would be cut

off by a y∗k-tight constraint in P, and so would be in Pu. �

We compute yu by CG: Pu has exactly the same structure as P in (2.1), but it has a

significantly smaller set of (only y∗k-tight) constraints. The pricing problem for Pu requires

finding a configuration a ∈ A with a>y∗k = µa that maximizes y>a for the current dual

solution y. To solve this problem, we use the dynamic programming ideas from Sec. 2.1,

but with a modified lexicographic objective: first maximize (y∗k)>a, and, subject to this,

maximize the y-profit y>a. The resulting Pu pricing requires the same asymptotic running

time as the classical P pricing.

Since Pu has far less constraints than P, the CG convergence is generally faster on Pu.

Furthermore, the availability of a dual feasible solution y∗k will be used to stabilize the CG

process using a trust region technique, i.e., by puting a box around y∗k in the first stage

of the CG process. The practical implementation will be discussed in Section 6.1.1.

5. Theoretical Properties of the Linear Aggregation

Up to now, we have described 2IDA on the dual formulation (2.1) of the master LP:{
min

∑
a∈A

µaλa :
∑
a∈A

aiλa ≥ bi,∀i ∈ {1, . . . , n}, λa ∈R+,∀a ∈A
}

. By restricting the dual LP,

our aggregation actually relaxes this master LP. Indeed, by adding linearity restrictions

in the dual LP, one implicitly introduces artificial primal columns in this master LP.

More exactly, the aggregated master model can implicitly use linear combinations of valid

columns and exchange vectors associated to the new linearity restrictions.

Sec. 5.1 below shows how our linear aggregation yields implicit artificial columns that:

(i) preserve the feasibility of the resource constraint, although

(ii) the coefficients of the new columns can be fractional, and so, infeasible.
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We further show (Sec. 5.2) that a more classical equality aggregation generate artificial

columns that are infeasible with regards to both these criteria. As such, the master relax-

ation produced by equality aggregation is weaker than the one obtained by linear aggre-

gation (it has more infeasible artificial columns).

5.1. The case of the linearity aggregation

Given the linear restriction yi = αjwi + βj, ∀i∈ Ij, we observe that any yi with i∈ Ij can

be expressed without the terms αj and βj, as a linear function of two variables yjmin and

yjmax (associated to the elements of lowest and resp. largest resource consumption in Ij).

Consider a selected column a with ai > 0 for some i ∈ Ij. Since yi can be written as a

linear combination of yjmin and yjmax, a is equivalent to a modified column â in which the ith

term is replaced by a combination of ajmin and ajmax; such a process is formalized through

a linearity-based exchange vector, as described below, see (5.1). An interesting property of

our linear aggregation is that the modified column cannot violate the resource constraints,

although it can be infeasible because its coefficients can be fractional.

Proposition 5.1. Let a ∈ Rn
+ be a feasible solution of subproblem (2.2), and e be a

linearity-based exchange vector. For any ψ ∈R, â = a +ψe verifies C− ≤ â>w≤C+.

Proof: Since a is feasible, it does satisfy C− ≤ a>w≤C+. Thus, it is enough to show that

a and â have the same resource consumption.

We focus on the exchange process restricted to a given group Ij. Without loss of gen-

erality, we consider that yjmin (resp. yjmax) is the first (resp. last) element of Ij, associated

to values wj
min (resp. wj

max) and ajmin (resp. ajmax). We examine how other elements yi with

i∈ Ij can be written as a combination of yjmin and yjmax. Using classical algebraic manipula-

tions of yjmin = αjwj
min +βj and yjmax = αjwj

max +βj, one can first determine αj =
yjmax−yjmin

wjmax−wjmin

,

followed by βj =
wjmaxy

j
min−w

j
miny

j
max

wjmax−wjmin

.

Replacing this in yi = αjwi + βj for i ∈ Ij, we obtain yi = wjmax−wi
wjmax−wjmin

yjmin +
wi−wjmin

wjmax−wjmin

yjmax,

and so, the exchange process a +ψe−→ â over group j can be written as:


ajmin

...
ai
...

ajmax

+ψ



w
j
max−wi

w
j
max−w

j
min

...
−1
...

wi−w
j
min

w
j
max−w

j
min

−→


ajmin+ψ
w
j
max−wi

w
j
max−w

j
min

...
ai−ψ

...
ajmax+ψ

wi−w
j
min

w
j
max−w

j
min

 , (5.1)
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where ψ can be positive or negative, which may respectively decrease or increase the ith

coefficient in the resulting artificial column â. Observe that the magnitude of ψ needs to

be limited (e.g., ψ≤ ai) to keep a +ψe≥ 0; however, the theorem holds for any ψ ∈R.

Note that in a + ψe, the only coefficients to be modified are related to ajmin, ajmax and

ai. In the original column a, the total resource consumption of these three elements is

ajminw
j
min + aiwi + ajmaxw

j
max. In a +ψe, this resource consumption becomes:(

ajmin +
wj

max−wi
wj

max−wj
min

ψ
)
wj

min + (ai−ψ)wi +
(
ajmax +

wi−wj
min

wj
max−wj

min

ψ
)
wj

max

This simplifies to ajminw
j
min +aiwi +ajmaxw

j
max, which means that the resource consumption

is the same in a and a+ψe, i.e., the initial resource consumption can not change through

the exchange process (5.1). �

5.2. The case of the equality aggregation

Let us compare the linear aggregation with a simpler aggregation that only imposes equal-

ity constraints, i.e., equivalent to fixing αj = 0,∀j ∈ {1, . . . , k}. We show below that the

artificial columns generated by equality aggregation may violate resource constraints. In-

deed, an equality aggregation yi = yi′ would make ai and ai′ interchangeable in any column

a. This would lead to an equality-based exchange vector with two non-zero components at

positions i and i′, see other examples in [10]. The associated exchange process would be:

(..., ai, ..., ai′ , ...)
>+ψ · (...,1, ...,−1, ...)> −→ (..., ai +ψ, ..., ai′ −ψ, ...)>, ∀ψ ∈ [−ai, ai′] (5.2)

Proposition 5.2. Given feasible configuration a∈Rn
+, an equality-based exchange vec-

tors e can lead (5.2) to columns violating the resource constraint C− ≤ (a +ψe)>w≤C+.

Proof: It is sufficient to give an example of an artificial column that violates the resource

constraints. Take C− = 8, C+ = 10, I = {1,2}, w1 = 8 and w2 = 3. Column a = (0,3)>

is valid; by applying the exchange vector e = (1,−1)> with ψ = 3 in (5.2), one obtains

artificial column (3,0)> with resource consumption 24. An artificial column that violates

the minimum resource constraint can be produced by taking a = (1,0)> and ψ=−1. �

6. Numerical Evaluation

We here perform an evaluation of 2IDA on three cutting-stock variants (Sec. 6.2, 6.3, and

resp. 6.4) that cover different features of the general LP (2.1): different configuration costs

µa, different demands, and two-sided limits C− and C+ on the total feasible consumption.
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Table 1 General characteristics of the CSP instances considered in this paper.

Name n C avg. demand b avg. w span description

wäscher 57-239 10000 1
[
1, 1

2
C
]

17 hard bin-packing instances [20]a

hard–sch ≈ 200 100000 [1,3]
[

20
100

C, 35
100

C
]

the ten hardest scholl instances [17]

vb50c1 50 10000
[
50,100

] [
1, 3

4
C
]

20 random instances [19]b

vb50c2 50 10000
[
50,100

] [
1, 1

2
C
]

20 random instances [19]b

vb50c3 50 10000
[
50,100

] [
1, 1

4
C
]

20 random instances [19]b

vb50c4 50 10000
[
50,100

] [
1
10
C, 1

2
C
]

20 random instances [19]b

vb50c5 50 10000
[
50,100

] [
1
10
C, 1

4
C
]

20 random instances [19]b

vb20 20 10000
[
10,100

] [
1, 1

2
C
]

25 random instances [19]b

vbInd
[
5,43

] [
4096,200000

] [
1,300

] [
1
10
C, 1

2
C
]

17 industrial instances [19]b

m01 100 100 1
[
1,100

]
1000 random instances [3];

m20 100 100 1
[
20,100

]
1000 random instances [3];

m35 100 100 1
[
35,100

]
1000 random instances [3];

a According to http://or.dei.unibo.it/library/bpplib, these instances are “the ones considered as the most difficult”.
b These instances can be found in the archive www.math.u-bordeaux1.fr/~fvanderb/data/randomCSPinstances.tar.Z resp. in
files CSTR50b50c1*, CSTR50b50c2*, CSTR50b50c3*, CSTR50b50c4*, CSTR50b50c5*, CSTR20b50c*, CSTR*p*.

We first map our general notation to the setting of a Cutting-Stock Problem (CSP).

We consider a set I = {1,2, . . . , n} of articles with weights (sizes) wi that need to be cut

(produced) bi times from rolls (bins) of capacity C (∀i∈ I). A feasible solution is composed

of cut patterns (configurations), i.e., subsets of I with a maximum total weight of C.

The pure CSP simply asks to minimize the number of patterns (consider µa = 1 for

any pattern a∈A in the models from Sec. 2). We use 12 CSP benchmark sets, each with

up to 1000 individual instances (with a total number of 3169 instances). The technical

characteristics of these CSP instances are provided in Tab. 1.

All times reported below have been obtained on a (Xeon E5-268) processor clocked at

2.50GHz by non-parallel programs compiled by gnu g++ with code optimization option

-O3 on Linux Suse, kernel version 3.19 (Cplex version 12.6).

6.1. Implementation of 2IDA and of a Stand-Alone Stabilized CG

6.1.1. 2IDA with Intermediate Upper Bounds using Trust Region Stabilization

Unless otherwise specified, we use the 2IDA version with the upper bounds from Sec. 4.3.

For each value of k, our method first generates a lower bound lbk and then an upper

bound ubk. The upper bound solution for each k is found using a CG process. This CG

process is stabilized by exploiting the lower bound solution y∗k. First, recall (Sec. 4.3) that

each ubk is generated only by y∗k-saturated constraints. Furthermore, we introduce a trust

region method to stabilize the CG process around y∗k, similarly to what is done in [4].

More exactly, this CG process keeps the current solution in a box around y∗k during the
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first iterations. The length of the box edge is fixed at 4/
∑
bi: this way, the upper bound

is at maximum four units larger than lbk. At the end of the CG process, we remove the

box and obtain the actual upper bound ubk.

For large values of k, the aggregated model tends to be as hard as the non-aggregated

one. For best numerical results, 2IDA can eventually converge earlier by launching a final

CG phase in any of the following conditions:

(a) k reaches a cut-off value kmax (this value is 10 for pure CSP in Section 6.2) or

(b) dlbke+ 1 = dubke or

(c) the CPU time for computing lbk is more than a third of the time for computing ubk.

We do not stabilize the final CG phase, since it takes profit from all columns generated by

the CG process, and so, it often proves to be quite short.

We use the split methods guided by reference solutions from Sec. 4.1.2. For the pure CSP,

the first 2IDA iterations use a Dual-Feasible Function f (see [3]) as reference solution. As

soon as 2IDA needs more intervals than the number of pieces of f , this reference solution is

given by the upper bound ubk. The exact details of this strategy are specified in App. A.1.

6.1.2. Stand-Alone Stabilized CG We compare 2IDA with a stand-alone Stabilized

CG algorithm based on dynamic programming for pricing. The following techniques, inspired

from [15], have been used to stabilize this stand-alone CG:

– penalty functions Instead of optimizing the classical dual objective value b>y, we

add to this objective a step-wise linear penalty [15, eq. (23)]. For all instances vb* and

wäscher, the penalty of y is given by a function p
(
|y − ylast|1

)
where ylast is the dual

solution obtained at the previous iteration. For vb*, we define p(x) = 0 for x < 0.002n

or p(x) = 1.5x otherwise. For wäscher, the penalty is milder: p(x) = 0 for x < 0.01n or

p(x) = 0.5x otherwise. The approach is different for instances m* and hard: the penalty is

0 over all y inside the box [ylast

10
,2ylast] and increases with slope 20 as y gets out of this

box (proportional to the largest deviation from the box boundary).

– dual solution smoothing Instead of applying the pricing on the current dual solution

y, we apply it on the smoothed dual solution αŷ + (1 − α)y, where ŷ is the previous

smoothed dual solution [15, eq. (23)]. We start with α= 0.2 (or 0.5 for vb* and wäscher),

but we gradually decrease it at each misprice (for each new constraint separating ŷ but

not separating y), eventually finishing at α= 0 (misprice impossible).
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We report in Tab. 2 the speedups obtained on the CSP by Stabilized CG compared

to the regular CG in terms of the number of iterations, i.e., iters(CG-NoStab)
iters(CG-Stab)

. All further

comparisons will be made with this stabilized version of CG.

Table 2 Reduction of the number of iterations
(

iters(CG-NoStab)

iters(CG-Stab)

)
in CG due to the stabilization techniques implemented.

Instance wäscher hard–sch vb50c1 vb50c2 vb50c3 vb50c4 vb50c5 vb20 vbInd m01 m20 m35

Speedup 1.20 1.16 1.12 1.13 1.10 1.08 1.05 1.13 1.13 1.19 1.44 2.27

Regarding the dual bounds obtained along the search, 2IDA calculates them by solving

to optimality the aggregated models, while Stabilized CG uses the Farley bound, which

is a well-known customization of the Lagrangian bound [2, 11, 19].1

6.2. The Standard Cutting-Stock Problem

Table 3 The computing effort required by 2IDA and Stabilized CG to fully converge.

Avg. CPU Time [s] Avg. nr. of pricing calls 2IDA vs CG (CPU)

Instance set 2IDA CG 2IDA (lbk, ubk, final CG) CGSTAB ≺ ' �
wäscher 78 117 479 (7+452+20) 480 16 1 0

hard-sch 31 77 227 (8+217+2) 663 10 0 0

vb50c1 5.2 13 124 (14+19+91) 112 17 1 2

vb50c2 22 35 177 (20+130+27) 197 19 1 0

vb50c3 15 29 82 (5+77+0) 144 20 0 0

vb50c4 16 23 181 (30+95+56) 185 20 0 0

vb50c5 11 22 73 (7+66+0) 152 20 0 0

vb20 2.1 3.2 52 (15+21+16) 56 22 0 3

vbInd 2.2 2.7 40 (12+26+2) 45 13 1 3

m01 0.11 0.09 203 (8+187+8) 161 574 42 384

m20 0.04 0.04 150 (8+119+23) 120 424 89 487

m35 0.02 0.01 107 (6+93+8) 59 36 25 939

Columns 2-3 and 4-5 report the average time and resp. the number of pricing calls. For 2IDA, this includes three types of
pricing subproblems (indicated in parenthesis):

– the aggregated pricing sub-problems of the lower bounding routine (lbk), included those obtained by lifting;

– the pricing calls for the upper bounding routine CG process (ubk);
– the pricing calls of the final CG phase (final CG).

The last 3 columns “2IDA vs CG (CPU)” report how many times 2IDA needs less time than CG (≺) ; needs a similar (difference
< 5%) time ('); needs mores time than CG (�).

Tab. 3 shows summarized CSP results obtained by 2IDA and Stabilized CG. Results

on individual instances are publicly available at cedric.cnam.fr/~porumbed/csp/ or in

the companion paper. Regarding the CPU time, Columns 2-3 show that 2IDA realizes a

speed-up of more than 2.4 for wäscher and 1.5 for hard-sch compared to Stabilized

1 The value of this bound is b>y
1−MRedCst

, where y and MRedCst are the dual solution and resp. the minimum reduced cost

at current iteration. If the costs µa of patterns a∈A are not fixed to 1, the bound value becomes b>y
1−MRedCst·mina∈Aµa

.
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CG. In terms of iterations (pricing calls), Columns 4-5 show that 2IDA has the potential

to converge on the hardest instances using 2 or 3 times fewer columns (aggregated or non-

aggregated). The last number in Column 4 also shows that the final CG phase of 2IDA is

relatively short in general. In other words, the intermediate lower and upper bounds lbk

and ubk are not very far from closing the gap before launching the final CG phase.

While 2IDA offers no clear advantage on the smallest instances m01, m20, m35, this is

in part because these instances can be solved in less than 0.1 seconds and 2IDA involves

more pre-processing that Stabilized CG. One should also notice that Stabilized CG is

actually very well stabilized on these instances, e.g., with a speed-up of 2.27 for the m35

instances (recall Tab. 2).

(a) Proportion of instances solved vs. time in milliseconds

(log. scale)

(b) Average relative gap between the dual bound and the

optimum vs. time in milliseconds (log. scale)

Figure 4 Comparison of 2IDA and Stabilized CG for CSP on all instances.

Fig. 4a (resp. Fig. 5a) reports the percentage of all instances (resp. of all the hardest

instances) that are solved along the time by 2IDA and Stabilized CG. This confirms

that 2IDA solves the smallest instances quickly, and is also able to solve the most difficult

ones before Stabilized CG. When restricting to the most difficult instances wäscher and

hard-sch in Fig. 5a, it becomes clear that 2IDA outperforms Stabilized CG. Fig. 4b

compares the relative gap between the optimum and the dual bounds produced by 2IDA

and CG along the time, considering all instances. One can see that the Stabilized CG

needs 1000 more time than 2IDA (on average) to obtain a relative gap close to 0.01. This

makes 2IDA a choice candidate to obtain excellent dual bounds in a short time. Once

again, restricting the experiments to the hardest instances (Fig. 5b) clearly shows that

2IDA outperforms Stabilized CG when the problem gets more difficult.
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(a) Proportion of instances solved vs. time in milliseconds

(log. scale)

(b) Average relative gap between the dual bound and the

optimum vs. time in milliseconds (log. scale)

Figure 5 Comparison of 2IDA and Stabilized CG for CSP (hardest instances : wäscher and hard-sch)

6.3. The Multiple-Length Cutting Stock

The Multiple-Length CSP (Mult Len-CSP) is a CSP variant in which the patterns do not

have all the same cost. We here consider two classes of instances: (i) one with two bin sizes

0.7C and C of costs 0.6 and resp. 1, and (ii) a second one in which we add a third bin size

0.2C of cost 0.1. In both cases, the cost µa of a pattern a∈A is evaluated by the smallest

bin that can hold w>a, e.g., if w>a = 0.43C, then µa = 0.6. A Mult Len-CSP particularity

is that one cannot compute lower bounds using the Dual Feasible Functions that proved

so effective in pure CSP [3]. Even the dual solution yi = wi
C

is not feasible here.

We consider the 2IDA implementation from Sec. 6.1.1, except that we used the group

splitting based on upper bounds from Sec. 4.1.2 without Dual Feasible Functions (DFFs).

As for the CSP, the iterative upper bounds ubk can stop 2IDA sooner: since all considered

costs µa are multiples of 0.1, 2IDA can stop as soon as d10 · lbke= d10 ·ubke.

Tab. 4 and 5 report an execution of 2IDA and Stabilized CG resp. on the above two

Mult Len-CSP classes of instances. They compare the CPU time used by 2IDA to find the

lower bounds lb1, lb2, . . . (e.g., in Columns 2 or 5) with the time required by Stabilized

CG to reach the same bound quality (e.g., Columns 4 or 7). We only show the first instance

of each set, but similar trends show up across most instances; summaries obtained from

all instances are reported in Fig. 6, see also cedric.cnam.fr/~porumbed/mlcsp/ or the

companion paper.

These tables show that 2IDA can find high-quality lower bounds very rapidly: the 2IDA

bounds for k= 1 could be generated 10 times more rapidly than by CG (compare Columns



Author: Article Short Title

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

Table 4 Results of 2IDA (fixing the number of iterations to kmax = 2) and Stabilized CC on several instances of
Mult Len-CSP with µ0.7C = 0.6 and µC = 1.

Instance

k=1 Time used by k=2 Time used by

OPTCG [Ts]2IDA CG to reach 2IDA CG to reach

lb1 [Ts] ub1 [Ts] lagr. bnd.≥ lb1 lb2 [Ts] opt [Ts] lagr. bnd.≥ lb2
wäscher-1 24 [0.22] 112.6 [0.64] 21 24.1 [3.1] 24.1 [14] 21 24.1 [21]

hard-sch-1 47.5 [1.1] 198.6 [5.4] 60 47.7 [70] 51.5 [132] 60 51.5 [85]

vb50c1-1 802.7 [0.56] 2453.8 [1.1] 8.6 803.4 [3.2] 866.3 [4.3] 8.6 866.3 [10]

vb50c2-1 626.4 [0.85] 2488 [1.4] 13 626.7 [4.4] 672.3 [7.2] 13 672.3 [17]

vb50c3-1 282 [1.1] 2369 [2.6] 43 282 [9.5] 282 [20] 43 282 [43]

vb50c4-1 576.7 [0.69] 2444.3 [1.3] 18 576.9 [3.5] 579.6 [7.0] 19 579.6 [19]

vb50c5-1 337.7 [0.95] 2288.4 [1.9] 33 337.7 [9.2] 337.7 [14] 33 337.7 [33]

vb20-1 252.9 [0.22] 938.6 [0.41] 1.3 254.9 [1.7] 265.6 [1.8] 1.3 265.6 [1.3]

vbInd30p0 76.7 [0.22] 703 [0.5] 3.1 76.7 [1.7] 76.7 [2.5] 3.1 76.7 [3.1]

m01-1 41.7 [≈ 0] 93.6 [0.01] 0.1 41.7 [0.02] 49.3 [0.14] 0.1 49.3 [0.13]

m02-1 47.4 [≈ 0] 98.6 [0.01] 0.09 48.4 [0.02] 56.6 [0.1] 0.1 56.6 [0.11]

m03-1 58.3 [≈ 0] 100 [≈ 0] 0.03 62.6 [0.01] 73.9 [0.06] 0.03 73.9 [0.04]

For each k, we provide three fields:

– the lower bound lbk and the cumulative CPU time at iteration k (Columns 2, 5),
– the upper bound and the cumulative CPU time at iteration k (Columns 3, 6),

– the CPU time needed by Stabilized CC to derive a Lagrangian bound of the same quality as lbk (Columns 4, 7).

Table 5 Results of 2IDA (fixing the number of iterations to kmax = 3) and Stabilized CC on Mult Len-CSP with
µ0.2C = 0.1, µ0.7C = 0.6 and µC = 1.

Instance

k=1 equiv. k=2 equiv. k=3 equiv.

OPTCG [Ts]2IDA CG 2IDA CG 2IDA CG

lb1 [Ts] ub1 [Ts] T lagr
s lb2 [Ts] ub2 [Ts] T lagr

s lb3 [Ts] opt [Ts] T lagr
s

wäscher-1 14.5 [0.16] 111.2 [0.94] 9.2 17.5 [5.7] 102.8 [6.8] 9.6 22.4 [11] 23.8 [21] 15 23.8 [16]

hard-sch-1 47.5 [0.97] 198.6 [5.4] 71 47.7 [70] 197.2 [74] 71 47.9 [75] 51.5 [136] 71 51.5 [85]

vb50c1p-1 538.9 [0.46] 2469.7 [0.94] 8.2 744 [4.5] 2457.3 [4.8] 9.5 764.7 [7.9] 866.3 [9.2] 9.5 866.3 [9.5]

vb50c2p-1 377.7 [0.75] 2489.3 [1.4] 13 633.6 [4.3] 2287 [5.4] 15 638.6 [6.1] 672.3 [9.0] 15 672.3 [16]

vb50c3p-1 166 [1.0] 2359.7 [2.7] 27 171.1 [13] 2359.7 [13] 30 171.1 [25] 238.8 [34] 30 238.8 [39]

vb50c4p-1 373.6 [0.66] 2500.1 [1.3] 16 543.8 [4.4] 2224.6 [5.5] 18 544.3 [14] 567.1 [17] 18 567.1 [18]

vb50c5p-1 200 [0.88] 2381.3 [2.2] 24 210.1 [6.6] 2157.3 [7.7] 25 210.2 [14] 277.1 [19] 25 277.1 [29]

vb20-1 172.2 [0.15] 931.7 [0.29] 1.0 225.8 [0.94] 855.2 [1.0] 1.3 243.1 [1.1] 255.4 [1.4] 1.3 255.4 [1.3]

vbInd30p0 47 [0.18] 672.1 [0.56] 2.1 50.2 [1.1] 625.6 [1.3] 2.2 51.2 [1.5] 63.8 [2.2] 2.2 63.8 [2.4]

m01-1 26.5 [≈ 0] 99.1 [0.01] 0.11 39.9 [0.02] 99.1 [0.03] 0.11 39.9 [0.04] 49.3 [0.15] 0.11 49.3 [0.14]

m02-1 47.4 [≈ 0] 99.6 [≈ 0] 0.09 48.4 [0.01] 99.6 [0.01] 0.09 48.4 [0.01] 56.6 [0.07] 0.09 56.6 [0.09]

m03-1 58.3 [≈ 0] 100 [≈ 0] 0.04 62.6 [0.01] 100 [0.02] 0.04 62.9 [0.02] 73.9 [0.06] 0.04 73.9 [0.04]

The interpretation of columns is the same as in Tab. 4. Results on more instances are publicly available on-line:

cedric.cnam.fr/~porumbed/mlcsp/

2 and 4). To our knowledge, 2IDA is the only method that can produce lower bounds of

this quality so rapidly for Mult Len-CSP, as DFFs can not be used.

Fig. 6 shows that 2IDA is generally faster than Stabilized CG, e.g., it converges more

rapidly for the instances needing more than 10000ms in Fig. 6a. The difference is more

obvious in Fig. 6b, which compares the evolution of the gap between the current best

lower bound and the optimal solution. This confirms that 2IDA can rapidly report nearly-
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(a) Proportion of instances solved vs. time in milliseconds

(log. scale)

(b) Average relative gap between the dual bound and the

optimum vs. time in milliseconds (log. scale)

Figure 6 Comparison of 2IDA and Stabilized CG for Mult Len-CSP

optimal dual bounds; the most difficult task remains to prove the optimality of a feasible

dual solution.

6.4. A Brief Study on Low-Waste Cutting Stock

The Low Waste-CSP imposes two limits C− and C+ on the total length of feasible patterns.

One can see C+ =C as the fixed width of a roll and C+−C− as a maximum acceptable

waste. Such constraints can arise in industry when it is not possible to recycle pieces of

waste larger than C+−C−. Overproduction is allowed to help feasibility.

Tab. 6 compares the 2IDA bounds with the Lagrangian CG bounds on Low Waste-CSP.

We used a straightforward version of 2IDA with no intermediate upper bounds based on

the basic dichotomic group split method from Sec. 4.1.1. Although we could speed-up the

convergence by designing customized Low Waste-CSP split operators, the main goal of the

paper is not to present a refined powerhouse for solving Low Waste-CSP, but to validate

our generic aggregation approach for different resource-constrained problems.

Even with this simple setting, the 2IDA bounds clearly outperform the Lagrangian

bounds computed by Stabilized CG within the same running time. More precisely, even

the first 2IDA bounds for k= 1 (Column 3) are usually larger than the Lagrangian bounds

reported after 2 or 3 times more computing time (Column 6).

6.5. General Experimental Conclusions

Let us conclude our experimental analysis with a few 2IDA trends. For the pure CSP, 2IDA

produces high-quality solutions y∗k by exploiting the structure of known Dual Feasible
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Table 6 Low Waste-CSP results on all benchmarks that can not be solved in less than 1 second.

Instance max waste k=1 k=2 OPTCG

C+−C− lb2IDA
1 [Ts] lbCG-lagr[Ts] lb2IDA

2 [Ts] lbCG-lagr[Ts] LW-CSP/CSP

wäscher-1 2 28 [0.06] 16 [0.08] 28 [0.65] 7 [0.66] 28/28

wäscher-2 2 23 [0.02] 6 [0.04] 23 [0.25] 13 [0.26] 24/23

wäscher-3 2 14 [0.02] 7 [0.02] 14 [0.13] 5 [0.14] 15/14

hard-sch-1 2 56 [0.22] 47 [0.23] 59a [5.6] 16 [5.7] 60/57

hard-sch-2 2 56 [0.15] 48 [0.19] 58a [7.7] 22 [7.7] 58/56

hard-sch-3 2 55 [0.2] 47 [0.23] 57a [5.4] 22 [5.4] 59/55

vb50c1p-1 3 940a [0.44] 851 [0.44] 954a [0.87] CG ended b 1131/939

vb50c1p-2 3 896 [0.53] 542 [0.55] 897 [1.1] 697 [1.1] 938/898

vb50c1p-3 3 939a[0.41] 681 [0.41] 964a [0.85] CG endedb 1160/928

vb50c2p-1 3 731 [0.77] 136 [0.77] 731 [1.6] 705 [1.6] 737/737

vb50c2p-2 3 679 [0.65] 289 [0.67] 679 [1.2] 567 [1.2] 680/679

vb50c2p-3 3 560 [0.69] 284 [0.69] 560 [1.5] 507 [1.5] 560/560

vb50c3p-1 3 329 [1.0] 173 [1.1] 329 [3.4] 208 [3.4] 329/329

vb50c3p-2 3 280 [0.83] 143 [0.89] 280 [2.7] 82 [2.7] 280/280

vb50c3p-3 3 317 [0.82] 167 [0.89] 317 [2.4] 60 [2.4] 317/317

vb50c4p-1 3 673 [0.59] 471 [0.6] 673 [1.3] 612 [1.3] 673/673

vb50c4p-2 3 640 [0.46] 366 [0.47] 640 [0.93] 457 [0.94] 640/640

vb50c4p-3 3 774 [0.35] 530 [0.36] 774 [0.69] 648 [0.69] 827/775

vb50c5p-1 3 394 [0.76] 188 [0.78] 394 [2.0] 394 [2.0] 394/394

vb50c5p-2 3 408 [0.55] 128 [0.56] 408 [2.7] CG endedb 408/408

vb50c5p-3 3 345 [0.92] 69 [0.93] 345 [1.6] 345 [1.7] 345/345

Columns 3 and 5 report the lower bound returned by 2IDA at the end of iterations 1 and resp. 2. Columns 4 and 6 resp. report

the Lagrangian bound obtained by a stand-alone CG using a similar (slightly larger) CPU time. Last column indicates the CG

optimum for LW-CSP and respectively for pure CSP.

a Remark that these 2IDA bounds are higher than the CG optimum OPTCG[CSP] for standard CSP from the last column.
Standard lower bounds for CSP (e.g., the DFFs) could never produce lower bounds of such quality.
b In these exceptional cases, the CG fully converged before the end of step k= 2 of 2IDA.

Functions (DFFs). In fact, y∗k is at least as good as the solution related to the best DFF that

is linear over the same k intervals, see App. A.1.2. However, for the multiple-length CSP,

we cannot use DFFs and this does not prevent 2IDA to find high quality dual solutions

for k= 1 or k= 2. This shows that 2IDA does not necessarily rely too much on the quality

of an input initial dual solution.

Our method needs three types of sub-problems : one to generate a lower bound solution

y∗k, one for the intermediate upper bound ubk, and one traditional CG subproblem for the

final CG phase. Only the last one is as difficult as a classical CG pricing. As such, even

when 2IDA uses more columns that CG, it may converge in a faster way. The incremental

construction of Pk+1 from lifted Pk constraints (Sec. 4.2) reduces considerably the time

needed to optimize Pk+1 and this is a key technique for fast lower-bounding in 2IDA.

Convergence without upper bounds remains rather difficult. The most efficient way to

converge is to intertwine the aggregation approach with a CG process for each k. However,

this CG process does exploit information obtained by aggregation: the fact that y∗k belongs

to the boundary of the dual polytope P, proved to be very useful in stabilizing the CG
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process. The source of stabilisation is twofold: (i) we use only y∗k-saturated constraints

(Sec. 4.3) and (ii) the first iterations of this CG process keep the dual solution in a box

around y∗k (Sec. 6.1.1). Even when the convergence is eventually ensured by launching a

final CG phase, this final CG is generally quite short (see last number in Column 4, Tab. 3).

7. Conclusions and Perspectives

We described an aggregation method that computes a sequence of dual bounds in column

generation models. The approach is designed for covering problems in which the feasibility

and the cost of configurations mainly depend on a unique resource. It relies on an expected

linear correlation between the dual values yi and the resource consumptions wi of the

elements. At each iteration k, it computes an optimal solution of a restricted dual LP in

which the dual values have to follow an affine function over k pre-defined intervals. The

slope and y-intercepts of these affine functions are the variables of this new smaller dual

LP.

Besides producing a lower bound, the proposed method can also compute an upper bound

for each k, by intertwining the aggregation with a column generation process. The upper

bound solution is first sought in the proximity of the feasible dual solution constructed

by aggregation. We use different computational techniques to incrementally calculate each

new lower or upper bound by re-using already-generated constraints; experiments show

that the resulting method has a much higher speed-up potential than stabilized column

generation for several versions of the cutting-stock problem.

Further work will focus on other ideas for anticipating the form of optimal dual solutions.

If an aggregation method can rapidly generate nearly-optimal dual feasible solutions, this

can be useful both for producing high-quality lower bounds and for stabilizing a column

generation process (e.g., using trust region methods). The optimality can thus be ensured

through the convergence of both dual feasible and dual infeasible solutions. In light of

these observations, it will be interesting to determine strategies to aggregate in the case of

multiple resources (e.g. demands and distances in vehicle routing) or consider configuration

costs determined by both the resource consumption and external factors.
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Appendix A: On the update from Pk to Pk+1

While the exact incremental calculations used to update Pk to Pk+1 have a limited theoretical impact on our

study, they are essential for the practical speed of 2IDA and they deserve further analysis. We here provide

the pseudo-code of the routine from Sec. 4.2. Recall that it starts building Pk+1 by lifting Pk constraints.

Algorithm 2: A Two-Step CG for DCvr(Pk+1): optimize over P ′yk+1 ⊃P
y
k , then over Pyk+1

Data: Optimal solution (α1, . . . , αk, β1, . . . , βk) of Pk equivalent to y∗k ∈P
y
k

Result: lbk+1 = OPT(DCvr(Pk+1))

Lift aggregated solution (α1, . . . , αk, β1, . . . , βk)∈Pk to the space of Pk+1;
– αj1 , αj2← αj

∗
and βj1 , βj2← βj

∗
// break j∗ into two groups j1, j2 ;

– keep unchanged the values αj and βj for all j 6= j∗ ;
repeat

for a∈Ak : a>y∗k = µa do
– given current [α β], solve the aggregated multiple-choice pricing (Sec. 3.3.2) with 2
levels (j1,j2) and capacities C−−

∑
j 6=j∗

cja and C+−
∑
j 6=j∗

cja to lift a to a′ ∈Ak+1;

– A′k+1←A′k+1 ∪{a′};
– optimize over current P ′k+1 described by configurations A′k+1 only
– update OPT(DCvr(P ′k+1)) and the current dual solution [α,β]

until no configuration a′ of negative reduced cost can be found ;



Step 1:
lift Pk to
P ′k+1⊃Pk+1

if OPT(DCvr(P ′k+1)) = lbk return lbk;
repeat

– given current [α,β], solve the aggregated multiple-choice pricing (Sec. 3.3.2) on k + 1
levels and generate a new configuration a;
– Ak+1←Ak+1 ∪{a};
– optimize current Pk+1 described by above Ak+1 and update [α,β] ;

until no configuration a of negative reduced can be found ;
return OPT(DCvr(Pk+1));


Step 2:

standard
Pk+1

optim
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Observe that Step (1) of Algorithm 2 generates new configurations a′ by reusing coefficients (cja,N
j
a) from

non-split groups j 6= j∗ of already-generated configurations a ∈Ak. For any such a, the lifted configuration

a′ is computed by determining the coefficients of the new sub-groups j1 and j2. This is carried out using

a dynamic programm significantly faster than the original one from Section 3.3.2. Besides only using two

decision levels (j1 and j2), it also uses a residual capacity reduced from C+ to C+ −
∑

j∈{1,...,k}−{j∗} c
j
a (it

removes the amount consumed by lifted values from a∈Ak).

A.1. Customizing the Group Split Methods

While the group split operator has no great impact in theory, in practice it is important to take the best

split decisions. In Sec. 4.1, we briefly presented:

1. A dichotomic split operator (Sec. 4.1.1) that only maintains the regularity of the generated groups.

2. A splitting strategy (Sec. 4.1.2) that aims at making the current polytope cover a reference solution of

better quality than the current lower bound.

We here develop this latter strategy in greater detail, using as reference solution the 2IDA upper bound in

Sec. A.1.1 and resp. a dual solution constructed from dual-feasible functions (DFFs) in Sec. A.1.2 (for CSP

and Low Waste-CSP only). These DFFs are well-acknowledged for their speed in pure CSP [3, 12], i.e., they

only require applying a (often piece-wise linear) function on the item weights.

A.1.1. Guiding the Split Operator using Upper Bound Solutions We assume that the elements

within each group are sorted by increasing weight. The goal is to determine: (i) a group j∗ ∈ {1, . . . , k} to

split and (ii) a split point i∗ such that the first i∗ elements of group j∗ are assigned to the first (sub-)group

and the remaining nj∗ − i∗ elements to the second (sub-)group. These decisions rely on a comparison of the

current optimal solution y∗k of Pyk to an outside reference solution. This reference is given by an upper bound

solution yu (see Sec. 4.3) that indicates a direction of evolution that y∗k can follow to reach a better y∗k+1.

The main idea is that that y∗k→ yu is an improving open direction (see Def. 4.1), i.e., there is no legitimate

P constraint that can block a (sufficiently small) advance from y∗k to yu. We need to identify and break

aggregation restrictions that do block such advances. This can be done by evaluating the difference between

y∗k and yu over segments [i1, i2] = {i1, i1 + 1, . . . i2} of each group Ij (we only use groups with continuous

consecutive indices). More exactly, we define the operator ∆j(i1, i2) =
∑i2

i=i1
bi · (yu−y∗k)i.

Alg. 3 gives the pseudo-code of this split operator. We describe it on the case ∆j(1, nj)> 0, i.e., the advance

y∗k→ yu generates a positive trend (“push”) on the elements of group j. The negative case ∆j(1, nj)≤ 0 is

symmetric and can be reduced to the positive with the simple inversion from Lines 2-4. If ∆j(ia, ib) were

strictly positive for all ia, ib ∈ {1,2, . . . nj}, no linearity constraint could stop the increasing trend y∗k→ yu

over group j. The goal is then to break groups j such that the trend y∗k→ yu is positive over some [1, ia],

negative over some [ia, ib] and (possibly) positive over [ib, nj ].

Technically, Alg. 3 determines ia = min{i ∈ {1, . . . , nj} : ∆j(1, i− 1) ≥ 0,∆j(i, i) < 0} and ib = max{i ∈
{ia, . . . , nj} : ∆j(ia, i)< 0}. The split point i∗(j) is either ia− 1 (to cut group j into intervals [1, ia− 1] and

[ia, nj ]) or ib. If ∆j(1, ia− 1)>∆j(ib + 1, nj), we use i∗(j) = ia− 1 and otherwise we use i∗(j) = ib.

The interest in splitting j at i∗(j) is quantified by a heuristic score h(j) initially defined by max
(
∆j(1, ia−

1),∆j(ib + 1, nj)
)
. Then, we multiply h(j) by the weight spread wjmax−w

j
min, so as to discourage splitting
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Algorithm 3: Group Split Operator Guided by an Upper Bound Reference Solution

Data: y∗k and yu

Result: (i) group j∗ to split, (ii) the number i∗ of elements of the first sub-group

1 for j← 1 to k do
2 if ∆j(1, nj)< 0 then
3 y∗k←−y∗k // simple inversion to reduce the

4 yu←−yu // negative case to a positive case

5 ia←min
{
i∈ {1, . . . , nj} : ∆j(1, i− 1)≥ 0,∆j(i, i)< 0

}
6 ib←max

{
i∈ {ia, . . . , nj} : ∆j(ia, i)< 0

}
7 if ∆j(1, ia− 1)>∆j(ib + 1, nj) then
8 i∗(j)← ia− 1 // Choose sub-groups [1, ia− 1] and [ia, nj ] for group j

9 h(j)←∆j(1, ia− 1)
10 else
11 i∗(j)← ib // Choose sub-groups [1, ib] and [ib + 1, nj ] for group j

12 h(j)←∆j(ib + 1, nj)

13 h(j)← h(j) · (wjmax−w
j
min) // Discourage splitting groups with similar weights

14 if j = 1 or j = k then h(j)← h(j) · 2 // Encourage splitting extremal groups

15 if h(j)>h(j∗) then j∗← j // Initially, j∗ was 0 and h(j∗) was −∞
16 return (j∗, i∗(j∗))

groups with similar weights (Line 13). We finally multiply by 2 the interest of splitting extremal groups 1

and k (Line 14), because the smallest and the largest items can have a higher importance, e.g., in CSP, many

small (resp. large) items will have a dual value of 0 (resp. 1) at optimality and this has a strong influence

on the way all other groups are determined.

A.1.2. Guiding the Split Operator using Dual-Feasible Functions We recall that f : [0,C]→ [0,1]

is a dual-feasible function (DFF) if and only if∑
i∈I aiwi ≤C =⇒

∑
i∈I aif(wi)≤ 1

holds for any index set I, any ai ∈ Z+ and wi > 0 (∀i ∈ I). This ensures that a dual solution yi = f(wi) is

feasible in CSP or Low Waste-CSP, but not in Mult Len-CSP (because the patterns do not have all the same

cost 1).

All classical DFFs surveyed in [3] have a piece-wise linear form. A well-known DFF is the identity function

f(x) = x
C

which produces the dual feasible solution yi = wi

C
. However, most DFFs are given by staircase

functions. To guide the split operator using high-quality reference solutions, we always choose from [3] the

DFF f with 10 intervals (pieces) that yields the highest objective value.

The proposed DFF-based split operator identifies kD ≤ 10 intervals of [0,C] before starting the construction

of Pk,i.e., these kD intervals are chosen so that f is linear over each of them. When 2IDA reaches iteration

k= kD, the polytope Pyk has to include the solution yi = f(wi), because f is linear over all groups of Pyk . As

such, the 2IDA bound lbk = OPT(DCvr(Pk)) dominates the DFF bound
∑

i∈I bif(wi) associated to f .


