
Using quadratic cuts to iteratively strengthen
convexifications of box quadratic programs

Amélie Lambert1 and Daniel Porumbel1

1Cedric-Cnam, 292, rue Saint-Martin 75141 Paris Cedex 03 France.

Contributing authors: amelie.lambert@cnam.fr;
daniel.porumbel@cnam.fr;

Abstract
We seek the global minimum of a quadratic function f with box constrained
variables. For this goal, we underestimate f by a convex piecewise-quadratic
function defined as the maximum of p ≥ 1 convex quadratic functions (p under-
estimators). We show that when p→∞ the optimal solution of this relaxation
converges to an optimal solution of the strong “Shor plus RLT” semi-definite
relaxation of the initial problem. To compute the new relaxation, we introduce
an iterative algorithm that adds convex quadratic cuts (or cutting-quadrics) one
by one in a cutting plane fashion. The resulting convexification is tighter than
the one produced by previous related methods that use p = 1, i.e., using mul-
tiple underestimators leads to a stronger convexification than using a unique
one (as in past work). Its integration into a spatial branch-and-bound algorithm
brings a second advantage: compared to previous work, we can refine the lower
bound at each node of the branching tree. This is because we are able to com-
pute underestimators that act specifically on any particular node of the branching
tree. Numerical results show that even a small value of p ∈ {2, 3} can often be
enough to reduce the branching tree size by half compared to sticking to p = 1.
The resulting algorithm is also competitive in terms of CPU time compared to
well-established solvers that rely on other techniques.

Keywords: Quadratic Programming, piecewise-quadratic underestimator,
cutting-quadrics algorithm

1

1 Introduction and literature review
Our goal is to find the exact solution of the following non-convex Quadratic Box-
constrained Program (QBP):

(QBP)

{
min f(x) ≡ 〈Q, xx>〉+ c>x

`i ≤ xi ≤ ui ∀i ∈ I (1)

where 〈A,B〉 =
∑n

i=1

∑n
j=1aijbij , I = {1, . . . , n}, (Q, c, `, u) ∈ Sn × Rn × Rn × Rn,

and Sn is the set of real symmetric matrices of order n. Without loss of generality,
we assume that the box constraints (1) take the form xi ∈ [0, 1] and that the feasible
domain of (QBP) is non-empty.

(QBP) is a fundamental NP-hard global optimization problem [1]. It can be
used to formulate numerous applications (e.g., the elastic–plastic torsion problem [2],
the molecular conformation analysis [3], the optimal design problems [4]), or can be
a sub-problem of more complex problems in various areas (see for instance [5, 6]).
Although (1) is the simplest non-convex quadratic optimization program, finding its
global optimum remains very challenging even for medium sized instances. Since f is
not a convex function, many local optima may not be global; standard approaches
for solving (QBP) to global optimality include spatial branch-and-bound algo-
rithms [7–9] combined with convex relaxations to determine lower bounds (see for
instance [10, 11]). These convex relaxations are typically either linear, quadratic con-
vex or semi-definite. The solution space is partitioned by branching along the spatial
branch-and-bound execution, so as to tighten the convex relaxation as the nodes
cover a smaller and smaller feasible area. This family of methods also apply to more
general classes of quadratic problems involving quadratic constraints or mixed-integer
variables (see for instance [11–14]).

1.1 Main relaxations from the literature

1.1.1 Linear and semidefinite relaxations

Many relaxations of (QBP) express the quadratic function in an extended space of
variables, introducing new variables Yij that are meant to satisfy Yij = xixj , for all
(i, j) ∈ I2, where I2 is the cartesian product of set I. This standard approach was
first used for linearizing f , obtaining the following reformulation of (QBP):

(LP)


min fL(x, Y) ≡ 〈Q,Y 〉+ c>x

`i ≤ xi ≤ ui ∀i ∈ I (2a)
Y = xx> (2b)

Problem (LP) is equivalent to problem (QBP), since when (x∗, Y ∗) is a feasible solu-
tion to (LP), x∗ is also feasible for (QBP), and both problems have the same objective
value (i.e. fL(x∗, Y ∗) = f(x∗)). Thus, (QBP) can be solved by a spatial branch-and-
bound based on the linear relaxation obtained by relaxing the non-convex feasible set

2

(2a)–(2b) by its convex hull. Since it may be hard to completely describe this convex
hull (see [15–17]), it is preferable to construct an outer approximation based on the
McCormick’s envelopes [18] captured by the following setM:

M := (x, Y) ∈ Rn × Sn :



Yij ≤ ujxi + `ixj − `iuj (i, j) ∈ I2

Yij ≤ `jxi + uixj − ui`j (i, j) ∈ I2

Yij ≥ ujxi + uixj − uiuj (i, j) ∈ I2

Yij ≥ `jxi + `ixj − `i`j (i, j) ∈ I2
`i ≤ xi ≤ ui ∀i ∈ I

(3a)

(3b)

(3c)

(3d)
(3e)

In the resulting linear relaxation called (LP), inequalities (3a)–(3e) involve the
lower and upper bounds (` and u) on the original variables x. Then, since the branching
rules update the interval [`, u] at each node of the branching tree, these inequalities
become tighter in the course of the spatial branch-and-bound; this improves the value
of the relaxation along the search, as deeper sub-nodes with shorter intervals [`, u]
are generated. This approach is used by several authors (see for instance [18–20]).
In order to tighten (LP), several families of valid linear inequalities were introduced
(see for instance [10, 21]), and added to the formulation in a cutting-planes manner.
This idea is used by most software implementing the methods described above, see,
e.g., Baron ([22]), GloMIQO ([13, 23, 24]), or Gurobi ([25]). Although the evaluation
of a linear relaxation is fast, the associated bound is often too weak, and the use of
(LP) or its extensions in a spatial branch-and-bound may in practice fail to solve
medium-sized problems to global optimality.

In order to get tighter relaxations of (QBP), the use of semi-definite relaxations
within branch-and-bound frameworks was also widely studied ([8, 9, 11, 26–28]). A
semi-definite relaxation of (QBP) can be obtained by lifting x to a symmetric matrix
X = xxT where these non-convex constraints are relaxed into X − xxT � 0 – nota-
tion M � 0 means that M is positive semidefinite. By using the Schur complement,
X − xxT � 0 is equivalent to (4e) below. After linking variables X and x with the
McCormick constraints (4a)-(4d) and linearizing the objective function, we obtain the
following model (introduced in [26]) referred to as the “Shor’s plus RLT” relaxation
of (QBP). The associated bound is very tight, but solving (SDP) in practice may
be prohibitively slow even for medium-sized programs; this makes its direct and full
integration into a branch and bound framework rather impractical.

(SDP)



min f(X,x) ≡ 〈Q,X〉+ cT x

Xij ≤ ujxi + `ixj − `iuj (i, j) ∈ I2 (4a)

Xij ≤ `jxi + uixj − ui`j (i, j) ∈ I2 (4b)

Xij ≥ ujxi + uixj − uiuj (i, j) ∈ I2 (4c)

Xij ≥ `jxi + `ixj − `i`j (i, j) ∈ I2 (4d)(
1 xT

x X

)
� 0 (4e)

x ∈ Rn X ∈ Sn (4f)

3

The idea of strengthening such an SDP relaxation using cuts comes with a price
that has been already discussed in the literature: if the SDP program integrates too
many cuts, the computational cost of solving it may become prohibitively high. Thus,
it is important to determine the most appropriate and effective cuts, while limiting
their number. Different ideas were implemented in this direction, e.g., the polarity cuts
and the lift-and-project methodology from [29] or the polynomial separation approach
from [30]. We do share the idea that we should find only the most appropriate cuts
and to limit their number, but our context is not exactly the same as in above work
because we will actually strengthen a convex quadratic program and not an SDP one.

1.1.2 Convex quadratic relaxations

A third family of classical approaches relies on convex quadratic relaxations, including
in particular methods MIQCR (Mixed Integer Quadratic Convex Reformulation)
and extensions ([31–33]). In these approaches, a quadratic convex relaxation of (QBP),
referred to as (PS∗0) and formally defined below, is calculated by exploiting the above
(SDP) relaxation. The strength of this approach is that the optimal value of (PS∗0)
is equal to that of (SDP). In fact, any SDP matrix S0 � 0 can produce a relaxation
(PS0

), but the optimal one, in the sense that it leads to the tighter lower bound, is
obtained by constructing matrix S∗0 from the optimal dual solution of (SDP). Hence,
one needs to solve (SDP) only once for this very purpose.

Once the optimal S∗0 is determined, the original problem is then solved by a
branch-and-bound based on the relaxation (PS∗0). The problem is also expressed in the
extended (x, Y) space; the reformulated objective can be seen as a quadratic surface
(quadric) described by:

fS0
(x, Y) = 〈S0, xx

>〉+ c>x+ 〈Q− S0, Y 〉, (5)

where S0 � 0 can be any SDP matrix. It is easy to check that for any S0 � 0, the
function fS0 is convex; we also have fS0(x, Y) = f(x) if Y = xx>. Note moreover
that if S0 is the positive semi-definite null matrix, we have fS0(x, Y) = fL(x, Y),
which corresponds to simply linearising f . In other words, the reformulated objective
function above includes the linear relaxation as special case (when taking S0 = 0).

Putting all above information together, we obtain a model (PS0) indexed by matrix
S0 � 0, which is equivalent to (QBP) but has a convex objective.

(PS0
)


min fS0

(x, Y) ≡ 〈S0, xx
>〉+ c>x+ 〈Q− S0, Y 〉 (6a)

Y = xx> (6b)
`i ≤ xi ≤ ui i ∈ I (6c)
Y ∈ Sn (6d)

Then, as for the linear relaxation, the non-convex feasible set can be relaxed with
the outer approximation based on the setM of McCormick envelopes, leading to the
following quadratic convex relaxation:

(PS0
)

{
min fS0

(x, Y) ≡ 〈S0, xx
>〉+ c>x+ 〈Q− S0, Y 〉 (7a)

(x, Y) ∈M (7b)

4

One strength of this method is that (SDP) is solved only once at the root node of
the spatial branch-and-bound leading to a quadratic convex relaxation with the same
value as the optimum of (SDP). The equivalence between both problems holds at the
root node, i.e. for the initial lower and upper bounds ` and u only. The classical MIQCR
uses the same S∗0 along the spatial branch-and-bound: the same non-SDP convex
program (PS∗0) is solved at each sub-node of the branching tree, even if the interval
[`, u] is updated along the execution. This is significantly faster than solving a semi-
definite optimization problem at each sub-node of the tree, i.e., for each [`, u]. However,
for a given sub-node (i.e., when ` and u are updated), the optimal value of (PS∗0) is
no longer equal to that of the (SDP) program associated to the updated ` and u.

1.2 Our contributions
Our goal is to design an approach that aims at reaching the value of (SDP) for
any interval [`, u] corresponding to any sub-node of the branching tree. As mentioned
previously, problem (PS∗0) captures the tightness of (SDP) at the root node (i.e. for
the initial values of ` and u), but not for each sub-node (i.e. with updated values of
` and u). We aim at improving the value of (PS∗0) at each sub-node by strengthening
it with specifically tailored quadratic cuts, to make the convexification at the local
sub-node for the current [`, u] tend to the associated value of (SDP).

For this purpose, our main idea is to replace the unique function fS0 with multiple
functions fSk

,Sk � 0, with k = 0, 1, 2, . . . p and p a given integer. We then minimize,
over all (x, Y) ∈M, the following function:

f∗(x, Y) = max
k={1,...,p}

fSk
(x, Y)

Let us focus on Figure 1. Since each function fSk
is quadratic and convex, notice

we obtain a piecewise-quadratic convex underestimator f∗. In our main algorithm, the
idea is to generate the functions fk one by one in a cutting-planes fashion, since each
function fk+1 aims at cutting the current optimal solution (xk, Y k) at iteration k by
making it sub-optimal. In our new general scheme, the relaxation (PS0

) corresponds
to the case p = 1. Figure 1 also illustrates how this approach with multiple quadratic
cuts (p > 1) may generate a tighter more refined convexification than MIQCR (p = 1)
even without necessarily improving the value of the general lower bound.

The above piece-wise quadratic function f∗ is convex, but it is particularly com-
putationally demanding to optimize it repeatedly. Each time f∗ integrates a new
quadric (at each iteration), we have to call a convex QCQP (quadratically constrained
quadratic programming) solver to determine its new optimal solution. This is the main
computational bottleneck of the overall approach and it is very important to accelerate
this solver in practice. We thus propose the following speed-up technique: identify the
variables that do no change too much from one QCQP call to another and strongly
limit their variation at each new QCQP call. The effect is similar to reducing the
number of variables. If the resulting optimal solution stays strictly inside the box
associated to the imposed variation limit, we considered the speed-up technique was

5

fS2
fS0

fS1 A D B C (x,Y)

f

Fig. 1: Convex function fS0
in black may reach its minimum over many solutions of the

(x, Y) space (see the long flat segment [A,D]), because S0 may have a large null space, often of
dimension close to n

2 . The resulting convexification in light-gray is weaker than the piecewise-
quadratic convexification from the striped area (max of fS0

, fS1
and fS2

) that has the same
minimum; this latter convex function reaches its minimum over a segment [B,C] shorter than
[A,D].

successful. Otherwise, the technique failed and we may have remove the box and call
the full solver; this is described in Section 4.2.

The road-map of the paper is as follows. Section 2 introduces (PK), a parameter-
ized family of piecewise-quadratic and convex relaxations of (QBP). We then show
that for any [`, u], the associated value of (SDP) is equal to the optimal value of
(PK), i.e., it is equal to the best relaxation within this family. Section 3 introduces
an iterative Cutting Quadrics Algorithm (CQA) that iteratively refines convexifi-
cation (PK) by adding convex quadratic cuts one by one. This algorithm proceeds in
cutting-plane fashion, using quadratic hyper-surfaces (or quadrics) instead of hyper-
planes to iteratively tighten the relaxation. In Section 4, we integrate Algorithm CQA
within a branch-and-bound scheme to solve (QBP) to global optimality. Finally,
Section 5 presents experimental results on the boxqp instances, suggesting that our
new approach is faster than state-of-the-art solvers, and is able to significantly reduce
the number of nodes in comparison to the basic MIQCR algorithm.

2 A family of convex piecewise-quadratic relaxations
Given a set K = {Sk � 0 , k = 0, 1, . . . , p} of SDP matrices, the multi-cut version of
(PS0

) from (6a)–(6d) takes the form below, forming a family of equivalent formulations
of (QBP) indexed by set K:

(PK)



min t

t ≥ 〈Sk, xx>〉+ c>x+ 〈Q− Sk, Y 〉 Sk ∈ K (8a)
Y = xx> (8b)
`i ≤ xi ≤ ui i ∈ I (8c)
Y ∈ Sn, t ∈ R (8d)

6

Like in the mono-cut version (6a)–(6d), the only non-convexity of (PK) comes
from constraints (8b) that we can classically relax using the set M of McCormick
envelopes (3a)–(3d). We thus obtain (PK) a family of convex relaxations of (QBP)
indexed by the same set K as above:

(PK)


min t

t ≥ 〈Sk, xx>〉+ c>x+ 〈Q− Sk, Y 〉, Sk ∈ K (9a)
(x, Y) ∈M (9b)
Y ∈ Sn, t ∈ R (9c)

Clearly, for any set K, the problem (PK) is a relaxation of (QBP), since for any
solution x̄ of (QBP) of value t, the solution (x̄, x̄x̄>, t) is feasible for (PK) with the
same value t. Moreover, since all matrices Sk ∈ K are positive semi-definite, each
constraint (9a) define a quadratic convex set, and so, (PK) is a convex problem. Now,
given an integer p, we consider the problem (LBp) of determining the best set of
matrices K∗ = {S0, S1, . . . Sp}, in the sense of leading to the tightest lower bound of
(QBP):

(LBp)

{
max

S0,S1,...Sp�0
v
(
PK={S0,S1,...Sp}

)
where v(P) stands for the optimal value of problem (P).

This connects our work with previous convex relaxations [31–33], since when we
restrict (PK) to p = 1 (i.e. K = {S0}), we obtain the original MIQCR method from [32].
It is proven in [33], that, the optimal solution of (LB1) can be derived from the
optimal dual solution of (SDP) from (4a)–(4f). It is, moreover, proven in [33] that, if
strong duality holds for (SDP), the optimal value of (LB1) equals the optimal value
of (SDP) which is always the case in a quadratic box-constrained problem. We now
state Proposition 1
Proposition 1. v(LB∞) = v(LBp) = . . . = v(LB1) = v(SDP).
Proof. The last equality (for p = 1) follows from [33, Theorem 3.1]. Moreover, by
construction, we obviously have v(LB∞) ≥ v(LBp) ≥ . . . ≥ v(LB1) = v(SDP). We
now show v(LB∞) ≤ v(SDP). Take a feasible solution (x,X) of (SDP) of objective
value f(X,x) = 〈Q,X〉+ cTx. The solution (Y = X,x = x) is feasible for (PK) with
a value of

max
k∈K
〈Sk, xx> −X〉+ c>x+ 〈Q,X〉 ≤ f(X,x)

since 〈Sk, xx> − X〉 ≤ 0, which is true for any Sk � 0 given that xx> − X � 0 by
virtue of (4e). 2

Our idea in the rest of the paper is to use Proposition 1 to reinforce at each sub-node
of the spatial branch-and-bound the value of the lower bound, if possible up to reaching
the optimum (SDP). Starting from any initial set K, we introduce a cutting quadrics
algorithm, which adds convex quadratic hyper-surfaces (which amounts to adding
positive semi-definite matrices to set K) at each iteration. We will next present the
Cutting Quadrics Algorithm (CQA) algorithm as well as its proof of convergence.

7

Y

x

f(x)

fS1(x0, Y0)–fS0(x0, Y0)

fS0

{

(x0, Y 0) =

opt(PK0
) and

x0x0>−Y 0 � 0

• Y

x

f(x)

•

fS1

(x1, Y 1) =

opt(PK1
) and

x1x1>−Y 1 � 0

•

Fig. 2: The Cutting Quadrics Algorithm (CQA) starts from an initial convex function fS0

(blue surface) of problem (PK0
) whose optimal solution is (x0, Y 0), see the small blue disk.

Then it generates matrix S1 to make point (x0, Y 0) reach a penalized higher objective value
of fS1

(x0, Y 0), as marked by the black vertical arrow in both figures. Thus, after adding
function fS1

(red surface) to (PK0
), the optimal solution of (PK1

) moves to (x1, Y 1).

3 An algorithm for computing a tight quadratic
convex relaxation

We now introduce our Cutting Quadrics Algorithm (CQA) that aims at solving
(LB∞) by extending the cutting-planes idea to the case of quadratic convex hyper-
surfaces. Our idea is to start from an initial relaxation (PK0

) associated to an initial
set K0 of positive semi-definite matrices. We consider the assumption that the set K0

contains at least the null matrix (denoted by 0n), but it can also be composed of any
other positive semi-definite matrices like for instance the best matrix S∗0 determined
by MIQCR. At each iteration k, CQA calls a convex QCQP (quadratically constrained
quadratic programming) solver to determine the optimal solution (xk, Y k, tk) of (PKk

),
where tk is its optimal value. It then constructs a matrix Sk+1 � 0 such that solu-
tion (xk, Y k, tk) becomes sub-optimal for (PKk+1

), i.e., for the new program (9a)-(9c)
enriched with the following convex quadric:

t ≥ fSk+1
= 〈Sk+1, xx

>〉+ c>x+ 〈Q− Sk+1, Y 〉

Let us focus on Figure 2 please. Each new iteration k+ 1 aims at cutting solution
(xk, Y k) when solving (PKk+1

). We can say (xk, Y k) is separated in a cutting-planes
fashion, but we use convex quadratic cuts instead of separating hyperplanes.

The key idea is to determine a new matrix Sk+1 such that the additional quadric
penalizes (very heavily) the optimal solution from the previous iteration (xk, Y k). For
a given rk > 0, we take Sk+1 = rk ·vmaxv>max, where vmax is the eigenvector of matrix
(xkxk

>−Y k) of maximum eigenvalue (which is positive when xkxk>−Y k � 0). With
an appropriate setting of the parameter rk, this choice ensures that solution (xk, Y k)
will become sub-optimal in the new program (PKk+1

), i.e., defining Sk+1 as above

8

with a very large rk will induce a prohibitively large penalty 〈Sk+1, x
kxk
> − Y k〉 on

point (xk, Y k). The choice of matrix Sk+1 is not unique, and in practice, we can also
define Sk+1 = rk

∑
viv

T
i , where the sum is carried out over all eigenvectors vi having

a positive eigenvalue. This will enable the new quadric to penalize larger areas of the
(x, Y) space, i.e., more solutions (x, Y) such that 〈Sk+1, xx

> − Y 〉 > 0.
An important slowdown of the overall method comes from the fact that we solve

each new program (PKk+1
) from scratch, without being able to re-use any information

from the previous program (PKk
) constructed before integrating matrix Sk+1. In other

words, we did not find any solver implementing a reoptimization step to incrementally
compute (PKk+1

) by exploiting the solution of (PKk
) – similarly to performing a

dual pivot step in the Simplex algorithm after adding a cut to an LP. Any future
progress of commercial solvers in this sense may speed-up the proposed ideas. Still,
we propose in Section 4.2 a reoptimization feature that proved useful to speed-up the
(re-)optimization (PKk+1

) by limiting the variation of certain variables that did not
change in previous iterations.

The overall solution method is summed up in Algorithm 1, and we prove its conver-
gence in Theorem 1. Note that, as previously mentioned, we start with the assumption
that set K0 will at least integrate the null matrix 0n (see the very first instruction).

Algorithm 1: The Cutting-Quadrics Algorithm (CQA)
Input : variable bounds ` and u, initial penalty parameter r0, precision

parameter δ, (optional) initial matrices K0

Output: The best lower bound on (LB∞)
K0 ← K0 ∪ {0n} // K0 may contain the optimal matrix used by MIQCR
(x0, Y 0, t0) ← Solve(PK0

) // variable t0 is the optimum obj. value
k ← 0
while (xkxk> − Y k � 0) // In practice we use λmax(xkxk

> − Y k) ≥ δ
do
rk = r0 + k // A penalty parameter;
vk ←the eigenvector of xkxk

> − Y k of maximum eigenvalue
Sk+1 ← rk · vkv>k // Or rk ·∑ viv

T
i , where the sum is carried

// out over all eigenvectors vi having a positive eigenvalue
Kk+1 = Kk ∪ Sk+1

(xk+1, Y k+1, tk+1) ← Solve
(
PKk+1

)
k ← k + 1

return tk as the optimal solution of (QBP) if Y k = xkxk
>, or as a lower bound

otherwise

We now state Theorem 1 ensuring that our algorithm stops when tk reaches the
optimal value of (SDP).
Theorem 1. When k → ∞, the value of the solutions tk generated by Algorithm 1
converge to the optimal value of (SDP).

9

Proof. In order to prove that QCA converges to the optimal value of (SDP), i.e. that
tk
∗

= v(SDP), we decompose the proof in three steps:

i) we first show that each intermediate optimal solution (xk, Y k, tk) such that
λmax(xkxk

> − Y k) > 0 will be separated by CQA;
ii) we prove that λmax(xkxk

> − Y k) converges to 0 as k →∞;
iii) we finally prove that tk reaches the optimal value of (SDP) when k →∞.

(i) Recall (xk, Y k, tk) is the optimal solution to (PKk
) of iteration k of objective value

tk. We first prove that the new quadric fSk+1
forces CQA to change the current optimal

solution (xk, Y k, tk), or equivalently that the value of (PKk+1
) at point (xk, Y k) is

always greater or equal than tk. Let vk be the eigenvector of matrix (xkxk
> − Y k)

of maximum eigenvalue λmax. By definition, we have Sk+1 = rk · vkv>k and we can
develop:

fSk+1
(xk, Y k)− fSk

(xk, Y k) = 〈Sk+1, x
kxk
>〉+ c>xk + 〈Q− Sk+1, Y

k〉
− 〈Sk, xkxk

>〉 − c>xk − 〈Q− Sk, Y k〉
= 〈Sk+1, x

kxk
> − Y k〉 − 〈Sk, xkxk

> − Y k〉
= 〈rk · vkv>k , xkxk

> − Y k〉 − 〈rk−1 · vk−1v>k−1, xkxk
> − Y k〉

= rkλmax − 〈rk−1 · vk−1v>k−1, xkxk
> − Y k〉

> rkλmax − rk−1λmax,

where the last inequality holds for any Sk of the form rk−1vk−1v>k−1, based on the
following well-known property [34, §3.2]:

λmax = max
u∈Rn||u||=1

〈uu>, xkxk> − Y k〉

This proves fSk+1
(xk, Y k) > fSk

(xk, Y k) = tk, because rk > rk−1. Recall the first line
of the while loop constructs rk = rk−1 + 1 (and after another i iterations rk+i is even
higher) so that the penalty imposed on (xk, Y k) by the use of Sk+1 forces CQA to move
from (xk, Y k, tk) to another solution.

We still need to show that fSk+1
(xk, Y k) > fSk

(xk, Y k) also holds for the very first
step, when k = 0 and Sk no longer has a form rk−1vk−1v>k−1. The initial quadrics
belong to a set K0 provided by the user. The inequality remains true using a high
enough r0 since

fK0
(x0, Y 0) = max

Si∈K0

{〈Si, x0x0>〉+ c>x0 + 〈Q− Si, Y 0〉}

fK0
(x0, Y 0) <〈r0 · v0v>0 , x0x0

>〉+ c>x0 + 〈Q− r0 · v0v>0 , Y 0〉, (10)

10

where in the last inequality we used 〈v0v>0 , x0x0
> − Y 0〉 > 0 which is true because

vector v0 corresponds to the maximum eigenvalue of x0x0> − Y 0 which is considered
positive here. Still, depending on the initial set K0, we may need a very large initial
r0 (in theory).
(ii) We will now prove that for any δ > 0 no matter how small, there exists some k
such that λmax

(
xkxk

> − Y k
)
< δ for any k ≥ k.

Suppose for the sake of contradiction that this is not the case. This means that the
algorithm generates an infinite number of matrices (xkxk

>−Y k) ∈ Sn that all satisfy
λmax

(
xkxk

> − Y k
)
≥ δ. The Bolzano-Weierstrass theorem states that any infinite

sequence in a bounded set (recall that (x, Y) belong to the unit hypercube) contains
a convergent subsequence. This means that there exists a subsequence (ki) such that
(xkixki

>−Y ki) converges to some fixed point xx>−Y when i→∞. By assumption,
this convergence point satisfies λmax

(
xx> − Y

)
≥ δ.

Let us study how the above subsequence (ki) stays in a box very close to (x,X).
For any infinitesimal ε, there exists some kε such that for any ki > kε in the above
subsequence, any element in matrix (xkixki

>−Y ki) is at a distance smaller than ε from
the corresponding element of (xx>−Y), i.e., it stays in a neighborhoodNε of (xx>−Y)
of ∞-norm below ε. Moreover, since λmax is a continuous function, we also have for a
sufficiently small ε, λmax(xx>−Y) > δ′ > 0 ∀(x, Y) ∈ Nε for some δ′ arbitrarily close
to δ. All points ki > kε in above subsequence will satisfy λmax(xkixki

> − Y ki) > δ′.
But here comes the contradiction : for a sufficiently large k̂i, we have rk̂i = r0 +

k̂i so that fSk̂i
(x, Y) will include a penalty of at least rk̂iδ′ that can become large

enough to make any (x, Y) ∈ Nε sub-optimal. In other words, at some iteration k̂i,
the weight rki will become large-enough to cut the whole box, since the associated
penalty rk̂iλmax(xk̂ixk̂i

>
− Y k̂i) > rk̂iδ′ is very large. Thus, no iteration after k̂i of

above subsequence can stay in Nε and this is a contradiction.
(iii) We now prove that tk → v(SDP).

Let us first take any convergence point (x, Y , t) of Algorithm 1 that has to satisfy
λmax(xx> − Y) ≤ 0 according to point (ii) above. This means xx> − Y � 0. We will
use this x and Y to build a feasible solution of (SDP) such that t ≥ v(SDP). Since
(xx> − Y) � 0, the solution (x = x,X = Y) is feasible for (SDP) with a value of
c>x + 〈Q,Y 〉 ≥ v(SDP). The optimal value t can be written as below (regardless of
how exactly K was constructed):

t =max
S∈K

〈S, xx> − Y 〉+ c>x+ 〈Q,Y 〉 = c>x+ 〈Q,Y 〉

The last equality holds since max
S∈K

〈S, xx> − Y 〉 = 〈0n, xx
> − Y 〉 = 0 which is true

because 00 ∈ K0 and because 〈S, xx> − Y 〉 ≤ 0 for any positive semi-definite matrix
S ∈ K.

Since (x̄, Ȳ) is feasible for (SDP), this proves that t ≥ v(SDP).
We now show t ≤ v(SDP). Take the optimal solution (x̃, Ỹ) of (SDP) and notice

that it is feasible for (PKk
), i.e., for program (9a)-(9c) using any quadrics K = Kk

11

constructed by the algorithm. The value of t has to be lower or equal to the objective
value of (x̃, Ỹ) in (PKk

) which is

max
S∈Kk

〈S, x̃x̃> − Ỹ 〉+ c>x̃+ 〈Q, Ỹ 〉 = max
S∈Kk

〈S, x̃x̃> − Ỹ 〉+ v(SDP) ≤ v(SDP),

where we simply used 〈S, x̃x̃> − Ỹ 〉 ≤ 0. This follows from S � 0 and x̃x̃> − Ỹ � 0,
which holds by virtue of (4e). 2

The proof of Theorem 1 implies the following Corollary.

Corollary 1. Algorithm 1 solves problem (SDP). In particular, if (x, Y , t) is a con-
vergence point of Algorithm 1, (Y , x) is an optimal solution to (SDP) with a value
of t = v(SDP).

Theorem 1 thus states that Algorithm 1 computes a quadratic convex relaxation
that reaches the value of (SDP). Within a branch and bound framework, we obtain
the same lower bound as MIQCR at the root node but we may obtain improved lower
bounds at the subnodes discovered by branching. Moreover, as mentioned previously,
the additional quadrics may tighten the convexification by reducing the set of optimal
equivalent solutions at each sub-node (like in Figure 1). This increases the potential of
the new convexification when integrated within a spatial branch-and-bound algorithm.
The numerical experiments will show that the total number of nodes may be halved
even if Algorithm 1 only produces very few quadrics (few iterations of the while loop).

Recall that Algorithm 1 can start from any set K0. To improve its convergence,
we describe hereafter several ways to populate K0, whose size is not limited. The
first one consists of adding to K0 the optimal matrix calculated by MIQCR, which is
S∗0 = Q+ Φ1 + Φ2 −Φ3 −Φ4, where Φ1, Φ2, Φ3, Φ4 are the symmetric matrices built
from the optimal dual variables associated with the McCormick constraints (4a)–(4d)
of (SDP). While solving a large SDP problem at the root node is computationally
costly, it increases the quality of all resulting bounds and reduces the number of
branch-and-bound nodes. Another choice relies on extracting the convex part of Q, by
constructing the matrix

S+
0 =

∑
λiviv

T
i (11)

where the sum is carried over all non-negative eigenvalues λi of Q associated to eigen-
vectors vi. Preliminary tests show that integrating these SDP matrices in K0 is a good
choice for all CQA variants.

However, the practical utility of integrating a particular SDP matrix in K0 can
only be evaluated on an instance by instance basis, by trying and testing it. We here
mention two other potentially useful ideas. A very classical way of transforming Q into
an easy-to-compute SDP matrix consists of taking Sλmin = Q − λmin(Q) · In, where
λmin(Q) is the minimum eigenvalue of Q. A more general approach consists of restoring
definiteness [35]: starting from any X̂ � 0 take the SDP matrix obtained by solving
max

{
t : X̂ + t · (Q− X̂) � 0

}
; this reduces to finding the intersection between the

12

segment [X̂,Q] and the boundary of the SDP cone. Observe that, matrix Sλmin may
be have been obtained using this restoring definiteness methodology with X̂ = In.

3.1 A running example of CQA

We consider a toy instance:

(PEX)
{

min
0≤x≤1

〈Q, xx>〉+ c>x

where c = −(8, 10, 3)> and Q = 1
2

 5 6 −1
6 4 −1
−1 −1 7

.

Running the classical MIQCR
We start by solving (PEX) with algorithm MIQCR. For this, we solve the associated
SDP relaxation from which we compute matrix S∗0 as described in [33]. Providing only
two decimals to lighten the text, this matrix is:

S∗0 =

 2.50 1.25 −0.50
1.26 1.26 −0.84
0.50 −0.84 3.50


This leads to the following quadratic convex relaxation of (PEX):

(PEXS∗0)


min t

t ≥ 〈S∗0 , xx>〉+ c>x+ 〈Q− S∗0 , Y 〉
(x, Y) ∈M
Y ∈ Sn, t ∈ R

The optimal solution (Ȳ , x̄) of (PEXS∗0) is x̄ = (0.53, 1, 0.65)>, Ȳ =

 0.53 0.53 0.35
0.53 1.00 0.65
0.35 0.65 0.65

,

and the objective function value is t = −9.82357704.

In such a solution, we have max
i,j
{x̄ix̄j − Ȳij} = 0.2491. Hence, since Ȳ 6= x̄x̄>, we

cannot prove the global optimality of (Ȳ , x̄), and we thus have to start a branch-and-
bound process to solve (PEX) to global optimality.

Running the new QCA
We consider algorithm QCA that starts with three quadratic cuts associated to initial
matrices K0 = {S∗0 ,03, S

λ
min}, where S∗0 is computed above by MIQCR, 03 is the zero

matrix, and Sλmin is constructed as described in the last paragraph above the heading

13

of Section 3.1. We obtain the following quadratic convex relaxation:

(PEXK0
)



min t

t ≥ 〈S∗0 , xx>〉+ c>x+ 〈Q− S∗0 , Y 〉
t ≥ c>x+ 〈Q,Y 〉
t ≥ 〈Sλmin, xx

>〉+ c>x+ 〈Q− Sλmin, Y 〉
(x, Y) ∈M
Y ∈ Sn, t ∈ R

Solving (PEXK0
) gives an initial solution (Y 0, x0) not very different from that of

MIQCR, and even identical up to a tolerance of 2 decimals, i.e. (Y 0 ∼= Ȳ , x0 ∼= x̄), with
a slightly different objective value, t0 = −9.82357704.

Contrary to MIQCR, CQA now starts generating more and more quadratic cuts:
Iteration 1 λmax(x0x0> − Y 0) = 0.20, with eigenvector v = (0.38, 0,−0.92)>. Using

r = 10, we generate a new quadratic cut associated to matrix:

S1 =

 14.65 0 −35.36
0 0 0

−35.36 0 85.35



This leads to solution (Y 1, x1), with x1 = x0, Y 1 =

 0.38 0.53 0.25
0.53 1.00 0.65
0.24 0.65 0.32

,

and t1 = −9.82352931.
Iteration 2 λmax(x1x1> − Y 1) = 0.14, with eigenvector v = (0.38, 0, 0.92)>. Using

r = 10, we generate a new quadratic cut associated to matrix:

S2 =

 14.64 0 35.35
0 0 0

35.35 0 85.36



This leads to solution (Y 2, x2), with x2 = x1, Y 2 =

 0.28 0.53 0.34
0.53 1.00 0.65
0.34 0.65 0.42

,

and t2 = −9.82352914.
Iteration 3 We have Y 2−x2x2> = 0. We thus stop not only because x2x2>−Y 2 � 0,

but also because we reach the equality Y 2 = x2x2
>, certifying at the root

node of the branching tree that (Y 2, x2) is an optimal solution of the
initial program (PEX).

This toy example confirms the logic from Figure 1: at the root node of the tree, we do
not improve the lower bound (the infinitesimal increase t0 < t1 < t2 is a phenomenon
arising due to the tolerances of the quadratic solver), but the overall convexification

14

is tighter. We could numerically verify that the final convex relaxation has a unique
optimal solution – identical to that of the original problem (over the x variables).

4 The spatial branch-and-bound to optimally solve
(QBP)

We are now interested in computing the optimal solution of (QBP). A classical way
is to use a branch-and-bound algorithm (see [36] for a complete description), where
the lower bound is computed at each node using the new CQA algorithm. We proved
in Section 3 that CQA converges to an optimal solution of (SDP), but each (non-final)
iteration of CQA does provide a valid lower bound of (QBP). Moreover, since each
CQA iteration solves a computationally-expensive convex optimization problem (PKk

),
we need to find the best trade-off between the tightness of the convexification and
its computation time. Thus, in our numerical experiments, we will only consider CQA
variants that perform relatively few iterations at each branch-and-bound node.

We first provide in Section 4.1 below the general framework of the branch-and-
bound. We then present in Section 4.2 two techniques to speed up the solution of
(PK), because the calls to the convex QCQP solver that optimizes (PK) represent the
main computational bottleneck of the overall method. Finally, we describe our upper
bounding procedure in Section 4.3.

4.1 The dynamics of the branch-and-bound tree construction
We consider a branching tree that contains only fully evaluated nodes, meaning that
the lower and upper bounds of each node are known at all times. Each lower bound
is determined by calling CQA and each upper bound is determined using the heuristic
described in Section 4.3. A branching decision is automatically taken at the end of the
node evaluation, unless the node is pruned. However, there are two types of nodes:

– A node is closed if the branching decision was implemented and the node produced
two evaluated child nodes.

– A node is open or childless if, although evaluated, its branching decision was not
yet implemented to produce child nodes.

Each branch-and-bound step performs the following: (i) seek an open node; (ii)
implement the branching decisions determined when the parent node was evaluated
(at a previous moment) and (iii) evaluate the two resulting child nodes. The selected
parent node is thus no longer childless and is marked closed. Its two child nodes are
considered open. After evaluating the child nodes, we take a branching decision right
away, to be implemented later.

4.1.1 How many iterations per node

The evaluation of the lower bound at each node of the branching tree is performed
from scratch, starting from the same K0. We did try to enable certain nodes to inherit
quadratic cuts from some ancestor nodes, but the observed speed-up is not large

15

enough to warrant complicating the overall branch-and-bound. The most important
decision for making CQA reach its full potential in practice concerns the number of
iterations that should be executed at each node. More iterations means fewer nodes in
the general branching tree, but this comes at the cost of needing more computational
work per node.

We thus consider two different stopping criteria for CQA. Since the algorithm is
supposed to stop when matrix (xkxk

> − Y k) � 0, we replace this condition with
λmax(xkxk

> − Y k) > δ. Thus, by varying the value δ, we can choose to make an
additional iteration only if matrix (xkxk

>−Y k) is far to be semidefinite negative, i.e.,
if its largest eigenvalue can be considered large enough. Our second stopping criteria
is simply a bound on the number of iterations of the while loop in Algorithm 1.

4.1.2 The branching decision

The variable selection strategy is as follows. Let εb > 0 be a very small precision
parameter for considering an imperfect equality as satisfied. Denoting the solution of
(PKk

) at the current node by (xk, Y k), two cases are possible:
1. If −εb ≤

(
Y − xx>

)
ij
≤ εb for all (i, j) ∈ I2, then (x, Y) is the optimal solution

of the considered branch.
2. Else, we determine i∗ by only looking for the diagonal values so that x2i 6= Yii.

We first restrict to variables i with a decent range ui− `i above a given threshold
γ fixed to 0.1 in the beginning. We thus solve

i∗ = argmax
ui−`i>γ

|x2i − Yii|

If this scanning finds no satisfactory solution, we divide the above parameter γ
by 3. And the process is repeated until we find a satisfactory variable i to be split.

The feasible interval [`i∗ , ui∗] of the selected variable xi∗ is always split in half:
the two child nodes are xi∗ ∈

[
`i∗ ,

`i∗+ui∗
2

]
and xi∗ ∈

[
`i∗+ui∗

2 , ui∗
]
.

Regarding the selection of the next sub-problem to solve, we use the “best-first”
strategy, in the sense that we select the node with the highest evaluated lower bound.
If this lower bound is higher than the current best-known upper bound, the node is
pruned. Otherwise, we implement the branching decision and evaluate the child nodes
as described in Section 4.1.

4.2 Using boxes to speed-up the QCQP solver that iteratively
optimizes the programs (PKk

)

We now present a technique that may speed-up the convex solver that is called
iteratively at each sub-node to optimize (PKk

), because this operation is the main com-
putational bottleneck of the overall method. The solvers we are aware of can not take
advantage of the fact that program (PKk+1

) is simply program (PKk
) enriched with a

16

new quadratic constraint. The Simplex algorithm may simply perform a unique pivot-
ing step when a new linear constraint is added, but – far from such a re-optimization
potential – our QCQP solver restarts from scratch when a new constraint is added. Any
future research or improvement in QCQP re-optimization may speed-up our algorithm.

Generally, our speed-up idea relies on restricting the allowed variation of certain
variables, by putting a box around them. If the optimal solution of the resulting
overly-restricted convex program is strictly inside the box, then this is the also the
optimal solution of the initial relaxation. Otherwise, we remove the artificial box and
the convex solver may have to be called a second time.

4.2.1 Boxes in relation to father and ancestor nodes

The optimal solution in a child node is sometimes not fundamentally different from
that of the father node, in the sense that many variables stay fixed in both the current
and the father nodes. To speed up the first call to the convex solver at each node,
we restrict the decision variables as follows. We first identify the variables that never
changed in any ancestor node on the genealogical lineage upwards for β levels, where
β is a parameter. We first solve the node by strongly limiting the variation of these
variables (we almost fix them) compared to their value in the father node. If the
optimal solution is within the box we succeed in speeding up this optimization stage.
Otherwise, we failed because we have to call the convex solver a second time after
removing the box. In many cases, there are multiple optimal solutions. If at least some
of them stay inside the box, this technique will succeed.

4.2.2 Boxes acting on the iterations of CQA

While the above technique is applied before starting the while loop of Algorithm 1, we
now present a technique to be applied inside this while loop. We build the following
box. First, we compute the maximum variation xMax (or YMax respectively) over all
optimal x (or Y , resp.) values observed during the convex solver calls from previous
iterations (including at the QCQP call before the while loop). We then limit the
variation of variables x and Y within a box of radius xMax and YMax, respectively.
If the obtained optimal solution stays inside the box, we succeeded in speeding-up
the QCQP convex solver. Otherwise, we failed and we do not consider the reported
solution and node lower bound reliable. In the latter case, we simply do not update
the evaluated lower bound of the considered node; yet, we do not call the convex solver
a second time.

4.3 A heuristic for computing upper bounds
We use a rather basic coordinate descent heuristic to determine upper bounds. We
start from the solution xk of (PKk

) at the current node (ignoring all Y k components),
that is also feasible for the original (QBP). Our coordinate descent begins by iter-
ating over all i ∈ [1..n]; for each i, we fix all variables to their current values except
for xki . We then solve an optimization sub-problem with only one decision variable,
namely xki . This requires minimizing a simple quadratic function in dimension one
that can be determined using elementary mathematics, regardless of its convexity

17

status. We decided to keep xi in its range [li, ui], but this could be relaxed. After
scanning all variables once, we can repeat the process as long as there is at least one
variable i for which we detect a possible improvement.

5 Numerical results
To evaluate our new solution method hereafter called Cutting-Quadric
Branch-and-Bound (CQBB), we consider the set of box-constrained quadratic
instances labelled boxqp and introduced in [8, 9]. We first evaluate the efficiency
improvements of CQBB over the original method MIQCR [33], and then compare it with
the standard solvers Cplex 22.1 [37], Baron 24.3.19 [22], and Gurobi 11.0.3 [25],
as well as with two literature algorithms: QuadProgBB [11] and GloMIQO 2 [24].

Our algorithm versions CQBB-1 and CQBB-2 and their parameter configuration
We use two variants of CQA for computing the lower bound at each node of the branch-
and-bound tree, leading to methods CQBB-1 and CQBB-2.

− CQBB-1: the stopping criterion of CQA is λmax(xkxk
> − Y k) > δ, with δ = 0.8.

Additionally, we limit for each node the maximum number of iterations of the while
loop to 3.

− CQBB-2: We perform exactly one iteration of the while loop of CQA, taking δ = 0.

Both CQBB-1 and CQBB-2 start from the initial set K0 = {S+
0 , S

∗
0 ,0}, where S+

0

is given by (11) and S∗0 is the optimal matrix of method MIQCR. It is obtained by
solving (SDP) heuristically by calling the solver Mosek [38] together with the Conic
Bundle library [39] within a Lagrangian duality framework as described in [40]. We
only use r0 = 1000 to compute all Sk with k ≥ 1, a value that proved more than
sufficient to make inequality (10) hold. The QCQP solver for optimizing (PKk

) at each
CQA iteration is the Mosek solver using the C interface. We define Sk+1 = rk

∑
viv

T
i ,

summing over all eigenvectors vi associated to an eigenvalue no smaller than 0.01. We
computed all eigenvalues and eigenvectors using the C++ Eigen library.

Regarding the parameters of the boxes in relation to ancestor nodes (described in
Sections 4.2.1), we use β = 3 for instances with up to 90 variables (i.e., we restrict
the variables that did not change for the father, grandfather or great-grandfather
node), and β = 12 for the instances with n ≥ 100.

Characteristics of the instances
We consider the boxqp instances that require minimizing a continuous quadratic
function within box constraints. The sizes of the instances vary from n = 20 to 125
and the densities (% of non-zero elements) of matrix Q from 20% to 100%.

Technical configuration and time limit
We run our experiments on a cluster under Open Suze Linux with 2 CPU Intel Xeon
of 2.3 GHz. We set the time limit to one hour for all instances (for all compared
methods, using one thread); the relative optimality gap of the branch-and-bound to

18

εb = 10−4.

5.1 Comparing CQBB-1 and CQBB-2 with the starting point MIQCR

We start by a detailed comparison of the two versions CQBB-1 and CQBB-2 with the
original method MIQCR [33]. Recall that the latter approach consists at each node of
the branch-and-bound, in evaluating once the relaxation (PK) where the set K is a
static set only composed of S∗0 . To make a fair comparison, we will use a new imple-
mentation of MIQCR, with the same branching strategy and upper bound heuristic as
that of CQBB. Moreover, for MIQCR, we solve (SDP) as described above for algorithm
CQBB.

Tables 1-3 report the results of methods MIQCR, CQBB-1 and CQBB-2 on small
instances (20 ≤ n ≤ 40), medium-sized instances (50 ≤ n ≤ 90) and respectively large
instances (n ≥ 100). For each of these three tables, the column “Instance” represents
the instance under the name n-d-k, where n is the number of variables, d is the density
in percents, and k is a numeration label. The column “Nodes” report the total number
of nodes needed by the branch-and-bound; Column “CPU ” provides the CPU time (in
seconds) required for solving the instance to global optimality. When the instance is
not solved within one hour, we report the final gap (g%), where g =

∣∣ub−lb
ub

∣∣×100, with
ub and lb the upper and lower bounds of the algorithms after one hour of CPU time,
respectively. Finally, the columns “#calls” indicate the total number of calls to the
QCQP solver; a “–” symbol means that the instance was not solved within one hour.

The general rankings of the 3 algorithms are the following:

number of nodes: 1) CQBB-2; 2) CQBB-1; 3) MIQCR.
cpu time: 1) CQBB-1; 2) CQBB-2; 3) MIQCR.

More precisely, we observe that MIQCR develops 34% more nodes than CQBB-1 on
average over all instances (solved within the time limit), and the number of nodes
is further significantly reduced by method CQBB-2 since MIQCR requires 78% more
nodes than CQBB-2 on average. As such, CQBB-2 was able to reduce the number of
nodes by half (or more) for almost a third of the small and medium instances. The
most spectacular improvement is visible on instance 080-25-1: CQBB-2 reduced the
number of nodes from 391 to 23.

Regarding the total CPU time, we observe that MIQCR is 60% slower than CQBB-1
on average over all the instances (solved within the time limit), and 20% slower than
CQBB-2. In fact, despite a reduced number of nodes, the time spent at each node penal-
izes the overall branch-and-bound of algorithm CQBB-2. Clearly, the stopping criteria
of CQBB-1 that rely on the accuracy of the positivity of the maximum eigenvalue seems
to be a good trade-off between bound quality and CPU time.

Finally, it may be interesting to comment on the number of calls to the QCQP
solver (Column #calls). As expected, method MIQCR performs exactly one call per
node. The number of calls for our new approaches is not fixed and depends on the

19

Table 1: The main results of the two considered CQA versions against the
original MIQCR on the smallest instances
instance MIQCR CQBB-1 CQBB-2

Nodes CPU #calls Nodes CPU #calls Nodes CPU #calls
020-100-1 9 0.2 9 3 0.0 3 3 0.0 4
020-100-2 13 0.2 13 9 0.1 9 9 0.1 13
020-100-3 5 0.1 5 3 0.0 3 3 0.0 4
030-060-1 33 1.0 33 31 0.5 31 27 1.2 48
030-060-2 1 0.0 1 1 0.0 1 1 0.0 1
030-060-3 29 0.6 29 19 0.3 19 19 0.6 32
030-070-1 71 1.9 71 63 1.0 66 65 2.2 105
030-070-2 5 0.1 5 3 0.1 3 3 0.1 4
030-070-3 41 0.9 41 37 0.6 41 17 0.5 27
030-080-1 69 2.0 69 67 1.4 100 73 3.0 155
030-080-2 3 0.1 3 5 0.1 5 5 0.2 7
030-080-3 13 0.3 13 7 0.1 7 9 0.3 14
030-090-1 7 0.2 7 3 0.1 3 3 0.1 4
030-090-2 13 0.3 13 11 0.3 17 3 0.1 5
030-090-3 3 0.1 3 3 0.1 3 3 0.1 4
030-100-1 11 0.3 11 9 0.2 9 7 0.2 11
030-100-2 9 0.3 9 9 0.2 9 7 0.3 11
030-100-3 27 0.6 27 21 0.4 23 13 0.4 20
040-030-1 7 0.3 7 3 0.1 3 3 0.1 4
040-030-2 13 0.5 13 5 0.2 5 5 0.3 7
040-030-3 5 0.2 5 3 0.1 3 3 0.2 4
040-040-1 445 15 445 263 7 275 249 12 416
040-040-2 7 0.3 7 5 0.2 5 5 0.3 7
040-040-3 27 1.0 27 23 0.7 25 23 1.3 38
040-050-1 29 1.1 29 25 0.7 25 25 1.3 38
040-050-2 43 1.6 43 35 1.2 43 25 1.5 42
040-050-3 25 1.0 25 17 0.6 21 11 0.6 17
040-060-1 279 11 279 219 7 251 209 11 373
040-060-2 21 0.9 21 13 0.6 19 9 0.5 15
040-060-3 7 0.4 7 5 0.2 5 5 0.4 8
040-070-1 7 0.3 7 5 0.2 5 5 0.3 7
040-070-2 7 0.3 7 7 0.2 7 5 0.4 8
040-070-3 9 0.4 9 5 0.2 5 5 0.4 8
040-080-1 5 0.2 5 5 0.2 5 5 0.3 7
040-080-2 5 0.3 5 7 0.3 9 5 0.4 8
040-080-3 13 0.5 13 15 0.5 15 11 0.7 18
040-090-1 9 0.4 9 5 0.2 5 5 0.3 7
040-090-2 9 0.4 9 9 0.3 9 9 0.5 13
040-090-3 7 0.3 7 5 0.2 5 5 0.3 7
040-100-1 13 0.6 13 7 0.2 7 7 0.4 13
040-100-2 21 1.8 21 17 0.5 17 17 1.0 27
040-100-3 221 18 221 207 6.3 245 177 10 323

value of the solution (x0, Y 0) computed before the while loop of CQA (Algorithm 1).
Simply computing this (x0, Y 0) requires a first call to the QCQP solver. CQBB-1 can
call the QCQP solver up to 3 additional times because it performs at most 3 iterations
of the while loop. CQBB-2 always performs exactly one iteration, leading to 2 calls to
the QCQP solver (one before the while and one after). However, sometimes the while
loop may skipped completely, either because λmax(x0x0

> − Y 0) ≤ δ, or because the
lower bound associated to (x0, Y 0) is good enough to prune the node. As such, we do
not systematically have 2 QCQP solver calls per iteration in the case of CQBB-2.

20

Table 2: The main results of the two considered CQA variants against the original
MIQCR on medium-size instances
instance MIQCR CQBB-1 CQBB-2

Nodes CPU #calls Nodes CPU #calls Nodes CPU #calls
050-030-1 13 0.8 13 9 0.5 11 7 0.8 12
050-030-2 19 1.1 19 17 0.9 19 15 1.4 24
050-030-3 31 1.6 31 27 1.4 35 13 1.2 20
050-040-1 9 0.7 9 9 0.6 12 5 0.6 8
050-040-2 43 2.5 43 31 1.3 31 25 2.1 40
050-040-3 7 0.5 7 7 0.4 7 5 0.6 8
050-050-1 5207 381 5207 4549 218 5088 4447 455 8286
050-050-2 65 3.7 65 67 3.2 77 53 4.5 88
050-050-3 155 8 155 121 7 180 63 5.8 114
060-020-1 13 1.2 13 5 0.5 5 5 0.8 7
060-020-2 11 1.0 11 5 0.5 5 5 0.8 7
060-020-3 61 4.7 61 33 2.1 33 33 4.2 54
070-025-1 77 8 77 41 3.7 41 33 6.5 57
070-025-2 199 22 199 129 11 133 109 21 209
070-025-3 225 25 225 145 15 168 105 17 174
070-050-1 183 21 183 159 17 184 145 26 255
070-050-2 29 3.6 29 25 3.0 31 23 4.7 40
070-050-3 9 1.4 9 11 1.6 15 7 1.7 11
070-075-1 65 7 65 59 6.1 63 55 11 108
070-075-2 1735 203 1735 1435 161 1750 1401 263 2592
070-075-3 819 96 819 729 86 990 585 113 1148
080-025-1 391 61 391 227 41 412 23 8 53
080-025-2 559 88 559 433 62 487 405 114 796
080-025-3 161 25 161 95 12 99 77 19 131
080-050-1 21543 3532 21543 17953 2631 21255 12597 (0.38%) –
080-050-2 65 10 65 77 15 137 21 6.8 43
080-050-3 327 56 327 293 48 361 279 87 578
080-075-1 113 18 113 101 16 127 103 30 214
080-075-2 333 52 333 309 51 390 301 82 579
080-075-3 1149 183 1149 1049 168 1301 1075 294 2115
090-025-1 3243 668 3243 2141 418 2552 2149 728 3985
090-025-2 2683 561 2683 1703 350 2038 1567 516 2780
090-025-3 623 126 623 405 77 472 391 124 684
090-050-1 1707 387 1707 1413 321 1783 1419 550 2885
090-050-2 21 5.3 21 19 4.2 22 15 7.0 27
090-050-3 493 113 493 389 88 495 393 154 806
090-075-1 6037 1209 6037 5919 1347 7746 6387 2510 13509
090-075-2 5947 1234 5947 5451 1206 6831 5371 2005 10611
090-075-3 1353 282 1353 1251 298 1677 1231 487 2605

21

Table 3: The main results of the two considered CQA variants against the original
MIQCR on the largest instances
instance MIQCR CQBB-1 CQBB-2

Nodes CPU #calls Nodes CPU #calls Nodes CPU #calls
100-025-1 665 182 665 505 121 518 429 209 776
100-025-2 315 85 315 261 65 292 191 85 323
100-025-3 269 75 269 191 45 195 199 90 343
100-050-1 12720 (1.67%) – 13380 (1.66%) – 7221 (1.98%) –
100-050-2 12546 (0.76%) – 13034 (0.82%) – 6934 (1.07%) –
100-050-3 811 235 811 755 190 813 663 309 1225
100-075-1 12001 3490 12001 11929 3107 13170 7199 (0.41%) –
100-075-2 9479 2723 9479 9517 2563 10694 7099 (0.34%) –
100-075-3 8867 2511 8867 8829 2268 9575 7437 (0.22%) –
125-025-1 7319 (1.79%) – 7832 (1.72%) – 3824 (2.15%) –
125-025-2 6994 (0.01%) – 5629 2577 6144 3970 (0.06%) –
125-025-3 1733 895 1733 1365 625 1419 1275 1024 2088
125-050-1 7555 (1.59%) – 7662 (1.55%) – 4158 (1.81%) –
125-050-2 7329 (0.90%) – 7344 (0.90%) – 4042 (1.05%) –
125-050-3 7102 (0.84%) – 7324 (0.82%) – 4011 (0.07%) –
125-075-1 4841 2483 4841 4827 2175 5267 4557 (0.03%) –
125-075-2 6943 (2.48%) – 7608 (2.36%) – 4198 (2.94%) –
125-075-3 6856 (1.35%) – 7699 (1.26%) – 4232 (1.44%) –

22

5.2 General comparison with existing solvers
We now compare methods CQBB-1, CQBB-2 and MIQCR [33] to the standard solvers
cplex 22.1.1 [37], Baron 24.3.19 [22], and Gurobi 11.0.3 [25], as well as to
the algorithms QuadProgBB [11] which is a spatial branch-and-bound based on the
satisfaction of KKT optimality conditions, and GloMIQO 2 [24] that mixes several
algorithmic components for solving MIQCPs.

Solvers and algorithms serving as a basis for comparison
These are the settings of the solvers mentioned above:

• For the solvers cplex 22.1.1 [37] and Gurobi 11.0.3 [25], we use the AMPL [41]
interface and the default parameters.

• For the solver Baron 24.3.19 [22], we use the Gams [42] interface and the default
parameters.

• For algorithms QuadProgBB [11] and GloMIQO 2 [24], since we do not have the
licenses of GloMIQO 2 and of matlab necessary for QuadProgBB, we report the results
of the paper [29]. Note that these experiments were carried out on a server with a
very similar configuration to our server, belonging to a similar generation.

To compare the considered methods, we use a performance profile of the CPU
times (see [43] for a complete description). The basic idea is the following: for each
instance i and each solver s, we denote by tis the time for solving instance i by solver
s, and we define the performance ratio as ris = tis

min
s

tis
. Let N be the total number of

instances considered; an overall assessment of the performance of solver s for a given
τ is given by: P (ris ≤ τ) = 1

N ∗ number of instances i such that ris ≤ τ .
Thus, in a performance profile of CPU times, each curve corresponds to a solver,

where each point of a curve gives, for a given factor τ , the percentage of instances
whose CPU time was at most τ times greater than the minimal CPU time reported
by any of all the solvers. In particular, for τ = 1, we have the proportion of instances
for which the considered solver was the fastest method.

We present the performance profiles of the CPU times for all compared algorithms
on the boxqp instances with up to 90 variables in Figure 3, and on the largest instances
(with n ≥ 100) in Figure 4. We observe that our new approach CQBB-1 compares
well with MIQCR and all standard solvers in terms of the number of instances solved
(maximum τ). For the small and medium-sized instances (Figure 3), GloMIQO solves
69 instances, Baron solves 73 instances, Cplex solves 78 instances, Gurobi and CQBB-2
solve 80 instances, and QuadProgBB, MIQCR and CQBB-1 solve 81 instances out of 81
(within the time limit of 1 hour). However, note that the performance profile starts for
τ = 1 with a smaller value P (ris ≤ τ) for CQBB-1 than for the commercial solvers. This
is because the smallest instances are solved more rapidly by Gurobi, Cplex, GloMIQO,
or Baron.

However, the focus of our algorithm is on the largest and denser instances, and,
with regards to them, Figure 4 shows that the (dark orange) curve of CQBB-1 is above
all other curves except over the segment τ < 30 where it is only dominated by Gurobi.

23

Fig. 3: Performance profile of the total CPU time for the boxqp instances with n = 20 to
90 within a time limit of 1 hour.

On the long run (τ ≥ 30), the winner is CQBB-1 followed by Gurobi and MIQCR.
Considering the maximum time limit of 1 hour, CQBB-1 solves 10 instances, MIQCR and
Gurobi 9 instances, QuadProgBB and Cplex 6 instances, CQBB-2 5 instances, Baron 3
instances, and GloMIQO 2 instances.

We also noticed that the average final gap of CQBB-1 over the larger instances
unsolved within the time limit is roughly 1.4%, while it is around 10% for Gurobi and
32% for Cplex. This can be explained by the tightness of the SDP convexification
computed at the root node by CQBB-1.

6 Conclusions
We have presented a generic approach to solve box-constrained quadratic programs
to global optimality. The main idea is to combine the strength of quadratic con-
vex relaxations with the cutting-planes logic. Indeed, instead of considering a unique
convex quadric to underestimate the objective function, we propose a family of
convexifications indexed by an arbitrary number of quadrics.

We have proposed the idea to add these cutting-quadrics one by one, in a cutting-
planes fashion. The quadric generated at each iteration is actually a quadratic cut that
separates the current optimal solution, acting similarly to a hyper-plane in a cutting-
planes method. We proved that this iterative algorithm converges to the optimal value
of a tight semidefinite relaxation of (QBP).

This iterative algorithm was integrated into a spatial branch-and-bound method;
the lower bound of each branch-and-bound node is determined using the new multi-
quadric convexification. By generating quadrics specifically-tailored for each node,

24

Fig. 4: Performance profile of the total CPU time for the boxqp instances with n ≥ 100
within a time limit of 1 hour

we almost systematically reduced the total number of nodes compared to existing
methods that convexify using a unique quadric. The main computational bottleneck
comes from the convex QCQP solver that has to be called after adding each new
quadric; we managed to accelerate this step by using artificial tentative boxes over
the decision variables (that are lifted only if necessary). Numerical results suggest it is
more practical to use relatively few quadrics per node (p ≤ 3); the resulting methods
compete well not only with existing solvers based on other convexifications, but also
with other solvers that use completely different techniques.

References
[1] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to global optimization.

Kluwer, Dordrecht (2000)

[2] Glowinski, R.: Numerical methods for nonlinear variational problems. Springer-
Verlag, Berlin, New York (1984)

[3] W. Glunt, M.R. T.L. Hayden: Molecular conformations from distance matrices.
J. Comput. Chem. 14, 114–120 (1993)

[4] E.G. Birgin, J.M.M. I. Chambouleyron: Estimation of the optical constants and
the thickness of thin films using unconstrained optimization. J. Comput. Phys.
151, 862–880 (1999)

[5] Jain, P., Kar, P.: Non-convex optimization for machine learning. Foundations and
Trends® in Machine Learning 10(3-4), 142–363 (2017) https://doi.org/10.1561/

25

https://doi.org/10.1561/2200000058
https://doi.org/10.1561/2200000058
https://doi.org/10.1561/2200000058

2200000058

[6] Wen, F., Chu, L., Liu, P., Qiu, R.C.: A survey on nonconvex regularization-
based sparse and low-rank recovery in signal processing, statistics, and machine
learning. IEEE Access 6, 69883–69906 (2018) https://doi.org/10.1109/ACCESS.
2018.2880454

[7] An, L.T.H., Tao, P.D.: A branch and bound method via d.c. optimization
algorithms and ellipsoidal technique for box constrained nonconvex quadratic
problems. Journal of Global Optimization 13(2), 171–206 (1998) https://doi.org/
10.1023/A:1008240227198

[8] Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex
quadratic programs with semidefinite-based finite branch-and-bound. Comput
Optim Appl 43, 181–195 (2009)

[9] Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Mathematical Programming 102(3),
259–275 (2005)

[10] Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic
programming problems with box constraints via integer programming methods.
Mathematical Programming Computation 10(3), 333–382 (2018)

[11] Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems
via completely positive programming. Mathematical Programming Computation
4(1), 33–52 (2012)

[12] Bliek, C., Bonami, P., Lodi, A.: Solving Mixed-Integer Quadratic Programming
problems with IBM-CPLEX: a progress report. In: Proceedings of the Twenty-
Sixth RAMP Symposium, Hosei University, Tokyo, October 16-17 (2014)

[13] Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting
planes for mixed-integer quadratically constrained quadratic programs and their
incorporation into GloMIQO 2. Optimization Methods and Software 30(1),
215–249 (2015)

[14] Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical programming
99(3), 563–591 (2004)

[15] Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-
dimensional quadratic forms. Mathematical Programming 124(1), 33–43 (2010)
https://doi.org/10.1007/s10107-010-0355-9

[16] Burer, S., Letchford, A.N.: On nonconvex quadratic programming with box con-
straints. SIAM Journal on Optimization 20(2), 1073–1089 (2009) https://doi.

26

https://doi.org/10.1561/2200000058
https://doi.org/10.1561/2200000058
https://doi.org/10.1561/2200000058
https://doi.org/10.1109/ACCESS.2018.2880454
https://doi.org/10.1109/ACCESS.2018.2880454
https://doi.org/10.1023/A:1008240227198
https://doi.org/10.1023/A:1008240227198
https://doi.org/10.1007/s10107-010-0355-9
https://doi.org/10.1137/080729529
https://doi.org/10.1137/080729529
https://doi.org/10.1137/080729529

org/10.1137/080729529

[17] Dong, H., Linderoth, J.: On valid inequalities for quadratic programming with
continuous variables and binary indicators. In: Goemans, M., Correa, J. (eds.)
Integer Programming and Combinatorial Optimization, pp. 169–180. Springer,
Berlin, Heidelberg (2013)

[18] McCormick, G.P.: Computability of global solutions to factorable non-convex
programs: Part i - convex underestimating problems. Mathematical Programming
10(1), 147–175 (1976)

[19] Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving
Discrete and Continuous Nonconvex Problems vol. 31. Springer, ??? (2013)

[20] Yajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic program-
ming problems with box constraints. Journal of Global Optimization 13(2),
151–170 (1998)

[21] Lambert, A.: Using general triangle inequalities within quadratic convex refor-
mulation method. Optimization Methods and Software 38(3), 626–653 (2023)
https://doi.org/10.1080/10556788.2022.2157002

[22] Sahinidis, N.V., Tawarmalani, M.: Baron 9.0.4: Global optimization of mixed-
integer nonlinear programs. User’s Manual (2010)

[23] Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-
constrained quadratic programs (MIQCQP) through piecewise-linear and edge-
concave relaxations. Math. Program. B 136(1), 155–182 (2012). http://www.
optimization-online.org/DB_HTML/2011/11/3240.html

[24] Misener, R., Floudas, C.A.: GloMIQO: Global mixed-integer quadratic opti-
mizer. Journal of Global Optimization 57(1), 3–50 (2013) https://doi.org/10.
1007/s10898-012-9874-7

[25] Gurobi Optimization: version 11.0.3 (2024). https://www.gurobi.com/

[26] Anstreicher, K.M.: Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic pro-
gramming. Journal of Global Optimization 43(2), 471–484 (2009) https://doi.
org/10.1007/s10898-008-9372-0

[27] Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex
quadratic programming via semidefinite relaxations. Mathematical Programming
113(2), 259–282 (2008) https://doi.org/10.1007/s10107-006-0080-6

[28] Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic
programs with box constraints. Mathematical Programming 102(3), 531–557

27

https://doi.org/10.1137/080729529
https://doi.org/10.1137/080729529
https://doi.org/10.1137/080729529
https://doi.org/10.1080/10556788.2022.2157002
http://www.optimization-online.org/DB_HTML/2011/11/3240.html
http://www.optimization-online.org/DB_HTML/2011/11/3240.html
https://doi.org/10.1007/s10898-012-9874-7
https://doi.org/10.1007/s10898-012-9874-7
https://www.gurobi.com/
https://doi.org/10.1007/s10898-008-9372-0
https://doi.org/10.1007/s10898-008-9372-0
https://doi.org/10.1007/s10107-006-0080-6

(2005)

[29] Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed inte-
ger quadratically constrained programs: projected formulations. Mathematical
Programming 130, 359–413 (2011)

[30] Gorge, A., Lisser, A., Zorgati, R.: Generating cutting planes for the semidefinite
relaxation of quadratic programs. Computers & Operations Research 55, 65–75
(2015) https://doi.org/10.1016/j.cor.2014.09.008

[31] Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case
of general mixed integer program. Mathematical Programming 131(1), 381–401
(2012)

[32] Billionnet, A., Elloumi, S., Lambert, A.: Exact quadratic convex reformulations
of mixed-integer quadratically constrained problems. Mathematical Programming
158(1), 235–266 (2016) https://doi.org/10.1007/s10107-015-0921-2

[33] Elloumi, S., Lambert, A.: Global solution of non-convex quadratically constrained
quadratic programs. Optimization Methods and Software 34(1), 98–114 (2019)
https://doi.org/10.1080/10556788.2017.1350675

[34] Porumbel, D.: Demystifying the characterization of SDP matrices in mathemati-
cal programming. arXiv prepint nr. 2210.13072 (2022)

[35] Higham, N.J., Strabic, N., Sego, V.: Restoring definiteness via shrinking, with
an application to correlation matrices with a fixed block. siam REVIEW 58(2),
245–263 (2016)

[36] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.:
Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

[37] IBM: Cplex version 22.1.1 (2022). https://www.ibm.com/

[38] ApS, M.: The MOSEK Optimization Toolbox for MATLAB Manual. Version 9.2.
(2019). http://docs.mosek.com/9.0/toolbox/index.html

[39] Helmberg, C.: Conic Bundle V0.3.10. (2011). http://www-user.tu-chemnitz.de/
helmberg/ConicBundle/

[40] Billionnet, A., Elloumi, S., Lambert, A., Wiegele, A.: Using a Conic Bun-
dle method to accelerate both phases of a Quadratic Convex Reformulation.
INFORMS Journal on Computing 29(2), 318–331 (2017) https://doi.org/10.
1287/ijoc.2016.0731

[41] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming, p. 351. The Scientific Press (now an imprint of Boyd &
Fraser Publishing Co.), Danvers, MA, USA (1993)

28

https://doi.org/10.1016/j.cor.2014.09.008
https://doi.org/10.1007/s10107-015-0921-2
https://doi.org/10.1080/10556788.2017.1350675
https://www.ibm.com/
http://docs.mosek.com/9.0/toolbox/index.html
http://www-user.tu-chemnitz.de/helmberg/ConicBundle/
http://www-user.tu-chemnitz.de/helmberg/ConicBundle/
https://doi.org/10.1287/ijoc.2016.0731
https://doi.org/10.1287/ijoc.2016.0731

[42] GAMS Development Corporation. Fairfax, U. VA: General Algebraic Modeling
System (GAMS) Release 36.1.0. (2021). https://www.gams.com/download/

[43] Dolan, D., Moré, J.: Benchmarking optimization software with performance
profiles. Mathematical Programming 91, 201–213 (1986)

Data Availability Statement
There is no original new data introduced in this work. The instances we use are well
known for many years to the experts in the field. We do cite [8,9] in the beginning
of the numerical results (Section 5) for the interested reader to find the source.

Compliance with Ethical Standards
• There is no (financial or non-financial) conflict of interest with any third party
• The research involved no other human or animal participants; the question of their
involvement does not apply

• No founding received
• All authors consent to submitting the paper

29

https://www.gams.com/download/

Response to the reviews of paper JOGO-D-24-00042
Dear editors and reviewers,

Thank you all for taking the time to work on our paper. We have revised it and did
our best to reply to all remarks. All new text insertions are marked either in green (a
few words added) or in blue (at least a complete new phrase).

Amélie Lambert and Daniel Porumbel

Reviewer 1

>Reviewer #1: The paper presents an approach to solving
>box-constrained quadratic programs to global optimality by
>strengthening the convexification of the program through
>the iterative addition of convex quadratic cuts. The
>authors integrate this approach into a spatial
>branch-and-bound algorithm and present numerical results
>showing that, in some cases, the algorithm outperforms
>well-known solvers. The paper is well-written and contains
>the necessary theoretical details.
Thank you for taking the time to read our paper and provide this summary.

> 1. The paper would benefit from adding an example and
> illustration of the proposed algorithm, similar to
> reference [25].
We added an example as requested (Section 3.1, page 13). This shows that the convex-
ification becomes more tighter as we add more quadratic cuts. Thanks to this, we even
find the optimal solution at the root node of the branch-and-bound in this example.

> 2. The discussion on page 12 could be expanded to explore
> strategies for selecting K0 more effectively.
We added a paragraph (in blue, page 12) just before the heading of Section 3.1 to
discuss other ideas of initial SDP matrices to populate K0. As indicated there, the
effectiveness of any SDP matrix choice can be evaluated only on an instance by
instance basis, by trying and testing it.

> 3. Discussing potential applications or providing a case
> study where this method could be particularly effective
> would add practical value to the paper.
We added a sentence (in blue, page 2, the second paragraph of the introduction)
listing many applications of box-constrained quadratic programming, also insisting
that BQP is often used as a sub-problem of more complex problems. The method
we propose is a generic one, which has precisely the strength of solving problems of
this class independently of their underlying structures. The proposed techniques are
quite costly, and are necessarily more effective on the most difficult instances to solve.

In particular, instances where the number of quadratic terms is limited are usually
solved very efficiently using a standard linearization; in such case, our method will be
slower. On the other hand, our approach based on quadratic cuts is most efficient for
the densest instances with an indefinite Q.

>There are typos that should be fixed:
>P.16: Open Suze Linux -> Suse
>p.16 :experiences -> experiments
>P. 19: "Baron 74 solves instances"
>Section 4.1.2 typo in transpose symbol
Done. Several notations of the form xkxk

> have been corrected, with the correctly
placed transpose symbol.

Reviewer 2

> Reviewer #2: The manuscript proposes a novel approach to
> Quadratic Box-constrained Programming (QBP) by introducing
> cutting planes logic to tighten the bounds. The authors
> present an iterative algorithm named the "Cutting-Quadrics
> Algorithm (CQA)," wherein cuts are introduced to a
> quadratic convex relaxation of the QBP. The paper also
> provides a proof of convergence for the proposed
> algorithm. It’s not an unsolved or unknown problem - the
> problem has been studied extensively.
Thank you for taking the time for writing this review of our work.

> This paper uses Gurobi version 9.11. There is significant
> speed-up since then. Additionally, Cplex 20.1, (22 is
> available) was released in December 2020. This is a point
> to be questioned.
As suggested, we have solved the considered instances with the latest versions of the
Gurobi (11.0.3) and Cplex (22.1) solvers in order to compare their computation
times with those of our new algorithm (Section 5.2).

> I think the parameters and solution strategies in the
> computational results section are a bit confusingly
> explained.
We agree that in the initial submission, we were mixing remarks characterising our
algorithms with comments on external solvers or on the instances. The first page of
Section 5 was reorganized by separating these remarks under separated mini-headings.
Moreover, to simplify the reading, we fixed the time limit to 1 hours for all instances.

> The BB + Cutting proposed by this study doesn’t seem to be
> suggested for the first time in the literature. Now,
> here’s a statement made by Gorge (2015): ’’Semidefinite

> Programming is well-known for providing relaxations of
> quadratic programs. In practice, only few real-world
> applications of this approach have been reported. This can
> be explained by the fact that the standard semidefinite
> relaxation must generally be tightened with cuts, which
> increases the substantial computational cost of the
> semidefinite program. Then, the challenge is to come up
> with the most effective cuts.’’ Can you elaborate on that?
We introduced references [29] and [30], and a paragraph (in blue, page 4) just before
the heading of Section 1.1.2 to better describe the context of our work, with regards
to the interesting point of finding the most effective cuts (while limiting their number
not to explode the program size).

> Although it is mentioned later in the manuscript, it would
> benefit the reader if it were clarified earlier that in
> Algorithm 1, $\overline{P}_{\mathcal{K}_{k+1}}$ is
> resolved from scratch. It would also be helpful to note
> that techniques to enhance solver performance are
> introduced in subsequent sections.
As suggested, we introduced (in blue, page 9) a fourth paragraph in Section 3 to
discuss in advance the idea of solving from scratch each new program (PKk+1

).

> I would have expected a comparison with other existing
> algorithms rather than just the original algorithm +
> extension. Not showing it in the computation while
> discussing it in the literature seems a bit off to me.
We added in Section 5 a comparison in terms of computation time with two existing
algorithms from the literature: QuadProgBB [11], which is a spatial branch-and-bound
based on the satisfaction of KKT optimality conditions, and GloMIQO 2 [24], which
is a spatial branch-and-bound based on quadratic relaxations, also called α-BB.

There are some minor grammatical errors.
"rue saint-Martin" should be "rue Saint-Martin"
Page 1, key words, "piecewise-uadratic" should be "piecewise-quadratic.
Page 2, paragraph 1, "carthesian" should be "cartesian".
Page 5, paragraph 1, after "As mentioned previously" there should be a comma.
Corrected, thanks.

	Introduction and literature review
	Main relaxations from the literature
	myblueLinear and semidefinite relaxations
	myblueConvex quadratic relaxations

	Our contributions

	A family of convex piecewise-quadratic relaxations
	An algorithm for computing a tight quadratic convex relaxation
	A running example of CQA

	The spatial branch-and-bound to optimally solve (QBP)
	The dynamics of the branch-and-bound tree construction
	How many iterations per node
	The branching decision

	 Using boxes to speed-up the QCQP solver that iteratively optimizes the programs (PKk)
	Boxes in relation to father and ancestor nodes
	 Boxes acting on the iterations of CQA

	A heuristic for computing upper bounds

	Numerical results
	Comparing CQBB-1 and CQBB-2 with the starting point MIQCR
	General comparison with existing solvers

	Conclusions

