Proof engineering

Olivier Pons!?

1 INRIA Sophia Antipolis
2 1IE, CNAM
pons@cnam. fr

Abstract. The main purpose of this article is to present a panorama
of tools for formal proof analysis and management. The proposed tools
are based upon several notions of dependency. Our principal objective is
to facilitate the development and the maintenance of theories in proofs
assistants in order to improve the productivity of such systems’ users.

Today, programming environments, control version system, debugging and
software engineering tools allowing analysis and programs management are usu-
ally and intensively used in programming. It is unanimously recognized that
they improve programmers comfort and productivity. On the other side, proof
assistants such as Coq[INR96], HOL[GM93], PVS[SOR93],Nuprl[CAB*86] or
Lego[LEG] are increasingly used and deserve similar tools to facilitate their use.
Although still marginal at the moment, the use of graphical proof interfaces
makes it possible to increase the productivity of users and allow to work on
proof which without interface would be difficult to achieve. An example of such
proof is the one of Buchberger’s algorithm that was carried out by Laurent Théry
[Thé97] in the CtCoq[BBC96] environment!.

The main objective of this paper is to propose a framework to analyze and
manage formal proofs produced by proof assistants. The construction of proof
using those systems is a task relatively close to programming activity. Thus,
problems encountered during the development of large proof are similar to those
occurring in the development of large programs. Therefore we naturally took as
a starting point the ideas and solutions developed for program analysis.

A practical use of the proposed tools should be based on a “well-designed”
user interface. A partial implementation of these tools was carried out for the
Coq system in the CtCoq environment.

In the first section of this document, we quickly present the framework of our
work. We focus on the characteristics of proof system and graphical user inter-
face that are relevant for our work. We will consider goal directed systems and
show several ways to represent a proof in such systems. In the second section, we
introduce the concept of dependences between the various parts of a proof. We
describe various tools to understand and manage a given proof. The main func-
tionalities we propose are an assistance in the proof understanding (visualizing

! CtCoq is a user interface for Coq based on the system Centaur[BCD™88]developed
at INRIA Sophia-Antipolis to develop generic programming environments

and navigating the proof structure), an undo mechanism, some tools to contract
and expand a proof, others to “lemmify” and factorize it. In this section, we also
discuss problems related to the presence of existential variables.

Finally, the third section introduces the concept of dependence between ob-
jects of a formal theory and quickly presents some tools to manage and maintain
a theory. The principal functionalities are: dependency graph visualization, the-
ory slicing, code motion and theory reorganization, assistance in the propagation
of modifications. We also discuss subjacent problems related to the different ways
to compute the dependences and the context sensitivity of some tactics.

Our conclusion assess the experiment and draw up the line of a discussion
on the first users reactions and therefore on the future improvements and per-
spectives.

1 Context

1.1 Proof representation

We consider systems in which the proof construction is goal directed. In such
systems the user starts by giving the goal he wants to prove and then transforms
it by means of tactics. Those tactics are basic rules of logical foundation, derived
rules or automatic decisions procedures. Applying a tactic on a goal produces a
list of sub-goals or returns an error message (one says that it fails). When the sub-
goals list is empty, the goal is proven. If the list is not empty, in order to complete
the proof, the user has to prove all the sub-goals by recursive application of
tactics. At each step, the goals condition the applicable rules.

Proof tree: Thus the proof has naturally a tree structure. This representation
is traditional in formalisms like sequents calculus or natural deduction in which
it is called a derivation tree. In the context of proof assistant we call it a proof
tree.

Proof script: On the other hand, generally, the only view that the user has of
his proof is the list of the tactics he had written. This list is called a proof script.
When a tactic application has generated several sub-goals the user can generally
choose which one he wants to solve first. Thus, the proof script characterizes
the way in which the proof is built. If this choice is not possible, the script
just corresponds to a depth first left-right traversal of the proof tree, the two
representations (script and tree) are then completely isomorph. Else, there are
several scripts corresponding to the same proof tree. Depending on the system,
there are several ways of indicating which sub-goal one wants to attack. We will
retain the mechanism used by Coq which consists in ordering the remaining open
sub-goals by a left-right traversal of the proof tree and to precede in the script
each tactic by the index of the goal to which it is applied (the default index is

1).

Canonical representation: It is also possible to obtain a canonical representation
of the proof by considering a proof in which tactics associated with each node are
basic rules of subjacent logic. In systems based on a type theory like Coq, Lego
or Nuprl, one can also represent the canonical proof by a A-term. The canonical
tree is simply the typing derivation of this term. According to the Curry-Howard
isomorphism a statement is then a type and a proof is a term of this type.

Tactic operators: It is generally possible to combine tactics to get a new tactics.
For such purpose, one uses tactic operators also called tacticals.

One can mainly finds, although this list is not exhaustive, the operators Then,
ThenL, Try and orelse?.

Example 1. Let us consider the goal below that states the left associativity of
addition. 3 :

Lemma plus_assoc_| : (n,m,p:nat)((plus n (plus m p))=(plus (plus n m) p)).

We can prove it with one of the two scripts below which correspond to the
same proof tree :

Intros n m p. Intros n m p.
Elim n. Elim n.
(* base case*) (* we mix the the nodes *)
Simpl. 2:Intros.
Apply refl_equal. 1:Simpl.
(* Induction*) 2:Simpl.
Intros. 2:Rewrite -> H.
Simpl. 1:Apply refl_equal.
Rewrite -> H. 1:Apply refl_equal.
Apply refl_equal.

It is also possible to build a more compact script using tacticals. (Trivially the
proof tree corresponding to the script below has only one node).

Intros;Elim n;[Simpl—Intros;Simpl;Rewrite-> H];Apply refl_equal.

2 Then T T1 T2 T3...Tn : first apply T , then T1 to each sub-goal produces by T
then T2 on all sub-goals produced by the application of T1 etc. In Coq and in this
paper this sequential composition operator is represented in infix notation by a “;”.
ThenL T Ti...Tn : first apply T .If T does not produce N sub-goals there is a
failure, else this operator applies in parallel each Ti to the corresponding sub-goal.
The composition operator ThenL can be expressed by using Then and another
operator which one will note Parallel. One will sometimes use the Coq notation
T;[T1]... |Tn].
Try T :Try to apply T . If the application of T fails, this leaves the goal unchanged
but does not produce an error.
T1 QOrelse T2 : Try to apply T1 and if this fails, apply T2. If the application of
T2 also fails, this produces an error.

3 it must be read : Vn,m,p:nat. n+ (m+p)=(Mn+m)+p

Nevertheless, all those proof scripts correspond to the same canonical repre-
sentation. We give this A-term as follows:

proof:
[n,m,p:nat]
(nat_ind [n0:nat](plus n0 (plus m p))=(plus (plus n0 m) p)
(refl_equal nat (plus m p))
[n0:nat]
[H:(plus n0 (plus m p))=(plus (plus n0 m) p)]
(eq-ind_r nat (plus (plus n0 m) p)
[n1:nat](S n1)=(S (plus (plus n0 m) p))
(refl_equal nat (S (plus (plus n0 m) p))) (plus n0 (plus m p)) H)

n)

where the notation [z : nat]Y stands for Az : nat.Y’
and where nat_ind is the recursion theorem on integer :

nat_ind: (P:(nat-> Prop)) (P O)-> ((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

1.2 User interface

Currently, most of the users of proof systems such as Coq, Lego, or HOL, still
work without genuine interface: they write their scripts with an editor and ” copy-
past” into the proof assistant top level.

Bertot, Théry and Kahn [TBK92] showed that the technology developed
around the Centaur system to define programming environments could be used
to provide graphical interfaces for interactive proof systems. Doing so, they came
up new ideas such as ”proof by selection” [BKT94], or the ”drag-and-drop” mech-
anism [Ber97]. After various experiments on the systems HOL, Isabelle and Lego,
this technology was fully implemented for the Coq system giving rise to the Ct-
Coq (now PCoq) environment used for our work.

Some of the ideas developed in the CtCoq system were recently used by
Aspinall, Goguen, Kleymann and Sequeira within a less structured framework.
They used Emacs to give rise to a generic environment called ProofGeneral[AGKS99]
which provides standards interfaces for Coq, Lego and Isabelle.

Other systems such as PVS, HOL or Isabelle also propose specific environ-
ments based on Emacs 4.

We now present some of the key aspects of graphical interfaces which were
used during the development of our tools. For us, the fundamental point is the
script management. The main problem is to keep coherent the contents of the
editor and the state of the proof system: i.e., to ensure that, if in a new proof
session, the user replays the script that has been saved from the editor, he will
get the same state in the proof assistant.

In that purpose, the editor window is generally divided into several parts.
the first part is a “read only” zone and contains the commands which were sent
and accepted by the system. The second part is a zone that can be edited 5. It

4 For a quick panorama of the existing interfaces see [Pon99]
% In fact CtCoq holds also other zones containing for example the commands sent but
not yet accepted by the system.

contains commands which have not yet been sent to the proof assistant. When a
command of the second zone is sent to the system and is accepted, it is transfered
into the first zone, if it fails, the script is not modified and an error message is
emitted in a dialogue window. Thus users have the guarantee that the script
contained in the first zone corresponds exactly to the state of the system.

Another significant aspect is to make it possible to work with several win-
dows, which allows to develop various proofs in parallel. At last, the structured
environment, based on the handling of abstract syntax tree, allows to have a
mechanism of incremental display (based on the language PPML) and facili-
tates the script instrumentation.

2 Proof management

2.1 Dependencies in a proof

The proof tree reveals the logical relations between the sub-goals (and thus
between the tactics which are applied on those sub-goals and between the sub-
proof corresponding to them). Indeed, if, as in example 1, the application of a
tactic produces two sub-goals, they are “a-priori” independent (the validity of
this assumption of independence is discussed in paragraph 2.4) and whatever
the proofs the user provides for each sub-goal, they will make it possible to build
a complete proof of the initial goal.

To model the dependence relation, we associate with each node of the proof
tree its path in the tree. A path is simply a word on NT. We also introduce, on
the paths, a partial order relation <, . This relation is a traditional prefix order
defined by:

e <pca&dccr=nci.c

As for the script, it recalls the history of the proof. It introduces an histori-
cal dependence relation between tactics (thus between the sub-goals on which
they apply). To model this relation, we can consider the script as a function
from positive integers to the set of all the tactics. The inverse function, which
associates to each tactic of the script its position, is called the rank function, we
denote it rg. We also introduce, on the set of all the tactics considered, a total
order <, defined by:
c1 <p 2 & rg(cr) < rg(es)

For the script to be valid, the rank function must check the following properties:

1. rg is bijective
2. ¢=p ¢ = rgle) <rg(c)

As explained before, the mechanisms of script management allows, to be sure
that a saved script is coherent. Moreover, they provide a rudimentary undoing
mechanism which preserves this coherence. We now introduce tools to improve
proof and script comprehension. Then we will show how to optimize the undoing
mechanism. The tools to be presented in the rest of this section, intensively uses
our two notions of dependence even if that does not always explicitly appear in
the intuitive presentation that we are going to develop.

2.2 Script and proof comprehension

Graphic visualization It is important to well understand the structure of the
proof. For that, we will try to provide the user with a new representation of his
proof by graphically visualizing the proof tree.

Effective trees drawing algorithms exist and their implementation presents
little difficulties so that one can easily write a specialized program allowing to
visualize proof trees. This is the approach followed, for example, by the PVS team
using TclTk. Another approach consists in interfacing the environment and/or
the proof system with a specialized software. We have adopted this approach by
interfacing the daVinci[FW94,FW96] visualization system with the Coq systemS.

The advantage of the distributed solution will fully appear in the section 3
where one reuses our interface to visualize the dependencies between objects of
a theory. Those dependences can be modeled by directed acyclic graphs. The
visualization of such graphs and in particular the edges crossings minimization
is a very difficult problem. Therefore, to obtain acceptable results, the recourse
to specialized systems like daVinci, Dotty or Graphlet is essential.

The experiment has shown the weakness of the graphic visualization of proof
trees. Indeed on large proof, the tree grows very quickly in a vertical direction
but also horizontally. The vertical long paths do not give important information
on the structure of the proof. therefore, they can be grouped in one node either
by a graphic artifice during the visualization (it is said that we focus on the
points of choice) either physically by modifications on the script as presented in
paragraph 2.5. But the horizontal growth reflects, as for it the various case and
induction reasoning. Therefore, it is fundamental for the comprehension of the
proof structure. Its alteration by a graphic artifice regrouping the nodes is of no
interest,.

In practice, on large proof, graphic visualization is thus usable only in con-
nection with a partial use of the contraction tools presented at paragraph 2.5.
These tools will make it possible to focus on the key points of the demonstration.

Navigating the script Another way to do (standard in CtCoq) is to instru-
ment the script so as to be able to navigate it respecting the tree structure.

The principle of this navigation, which is, in a practical point of view, usable
only in a graphic interface, is to select a tactic (using a selection mechanism) and
then to apply a navigation command that moves the selection into the desired
direction. On the second script of example 1 page 3 one can select the tactics
1:Simpl with a mere click on the mouse and ask for its father. The result is to
transfer the selection onto the tactics Elim N.

To implement this navigation, just annotate each node by its path in the proof
tree. This information which should be invisible by the user, makes it possible
to compute the path of the parent resulting from the displacement command.
Then, we must be able to associate with this path the tactics corresponding to

8 A description of the prototype and others experiments are given in appendix of
[Pon99]

it in the script. That can be done, either by traversing the script until one finds
the tactics annotated by this path, or by maintaining an hashtable associating to
each path the corresponding tactic in the script. As to each theorem corresponds
anew proof tree, one needs an hashtable by theorem. These hashtables are stored
by mean of a global table. The keys of which are the theorem’s names; its values
being the tables associated with each theorem. Let us note that this additional
information spends memory which should be managed carefully”.

2.3 Undoing

An undoing mechanism is fundamental in any interactive tool: it ensures that
errors can be done at lower cost since it is possible to reconsider a decision
without restarting from the beginning. Nevertheless, we seek to minimize this
cost. To do so, the size of the part of the script to be undone should be reduced.

As suggested by Vitter [Vit84], another key point is the possibility for the user
to reconsider an undo command restoring whole or parts of what was undone. We
call this an ”Undo-Redo” mechanism. Within the framework of proof systems,
undoing consists in removing the state produced by playing the tactics to undo.
These tactics should also be removed from preserved script. In a well designed
interface, the erased tactics should be put aside so as to be replayed if needed.
Therefore an “undo command” can be undone as all other command sent to the
proof system.

Historical undo. In all proof systems that we know, the undoing mechanism
is historical. This is to say that the system manages a stack of states. Each time
that a tactic is played, this generates a new state that is pushed on the stack.
The user has a command allowing him to pop the last state allowing to undo
the most recently played tactic.

The main consequence of this management per stack is that, to remove a
tactic, it is necessary to remove all those which were played afterwards, even if
they apply only to completely independent sub-goals (i.e incomparable for <p).

Another drawback of the stack management is its high memory cost. This
involves that this stack and thus the number of possible undo should be limited.

Logical undo. The mechanism we call logical undo allows to cure the disad-
vantages of the historical undo. The basic idea is to use the logical dependences
from the proof tree. When the user does a logical undo on a given tactic, the
only tactics that should be removed from the script are those that belong to the
sub-tree of which the undo one is the root. Example 2 illustrates the differences
between historical and logical undo.

" The complete implementation is described in [Pon97].

Example 2.

Tnitial script After an historical Undo : After a logical Undo :

Intros n m p. Intros n m p. Intros n m p.
Elim n. Elim n. Elim n.
2:Intros. 2:Intros. 2:Intros.
Simpl. [] undo here . 2:S|mp!_
2:Simpl. Simpl. 2:Rewrite -> H.
2:Rewrite -> H. 2:5impl. [2]:Apply refl_equal.
: 2:Rewrite -> H.
1:Apply refl_equal. 4
'Apply refl_equal 1:Apply refl_equal. 1:Simpl.
] -) 1:Apply refl_equal. 1:Apply refl_equal.

In the historical undo, all the tactics following the tactic to be undone are
removed from the script. They are however preserved in a ”writable zone” so
that they can be replayed after being modified if needed.

In the logical undo, only the tactics depending on the Simpl tactic that
has been selected are removed. The other tactics : Simpl, Rewrite and Apply
refl_equal which tackle independents sub-goals (on another branch of the proof
tree) are not affected.

This example helps to illustrate a first difficulty. In the case of an historical
undo, when removing a tactic, we restored a state which has been previously
reached and which is thus obviously coherent. In the case of a logical undo the
script produced does not always correspond to a state which has already been
reached. Therefore, to maintain the script coherence, we might have to modify
the index of the tactics in the preserved part of the script (in our example, after
the undo, the tactic Apply refl equal applies on the second open sub-goal and
thus its index should become 2).

The same problems arise for the erased part. If one wants to be able to
replay it, it is sometimes necessary to modify the index in order to maintain the
coherence as illustrated in example 3.

Ezample 3.
Script initial After a logical Undo:
Intros n m p. Intros n m p.
Elim n. Elim n.
2:Intros. 2:Intros.
Simpl Simpl.
[2]:Simpl. [undo here Apply refl_equal.
@:Rewrite -> H. o
1:Apply refl_equal. [1]:Simpt.

1 [Apply refl_equal. .‘Rewrite > I
-‘Apply refl_equal.

The logical undo mechanism can be divided into two phases. First of all, a
reorganization of the script, during which some tactics are moved at the end of
the “read only” zone and the indexes are modified to preserve the coherence.

Then, an historical undo is done on the reorganized script obtained in order to
suppress the tactics which have been moved.

To carry out the indexes modifications by traversing the script, path anno-
tations are not sufficient. It is necessary to have additional information on the
number of sub-goals generated by each tactic. We can then compute the list of
the paths of open sub-goals corresponding to each step. The index of the tactic
played at a given step is simply the position of its path in the list of the open
sub-goals of the preceding step.

In addition, we showed in [Pon99] that the information concerning the num-
ber of generated sub-goals is enough to rebuild the structure of the tree starting
from script.

The logical undo that we have just presented works very well in a world in
which the proof tree branches correspond to independent results; this is to say,
in which the way the user proves sub-goal corresponding to a given branch does
not influence the way the sub-goals of the other branches can be proved.

That is not always true in the systems which allow to handle existential
variables. We now study the problems arising from the use of existential variables
and from their interaction with the logical undo mechanism.

2.4 Existential variables

The use of existential variables. A classical use of existential variables is
related to the introduction of existential quantifiers which is necessary to solve
goals of the form Jx.P(z). To introduce the existential quantifier, we must give
a witness of the property P. This is to say that we should know the solution
before solving the problem. The use of existential variables makes it possible
to delay the instantiation of the witness. For example, to solve dz.x + 2 = 5,
without existential variable we instance z by 3 and we prove that 342 = 5. Using
existential variables, we introduce a variable X, and we try to prove X +2 = 5.
After reduction, we obtain X = 3 which allows us to instantiate X.

Example 4. Constraint introduced when sharing existential variables

Lemma pbmeta : (a,b,c,d:nat)a=b-> b=c-> a=d-> a=c.
Intros;EApply trans_equal.

After the application of the theorem trans_equal the statement of which is :
(x,y,2z:A)x=y->y=2z->x=2, we get two sub-goals. It results in the state as shown
below:

Intros;EApply Trans_equal

H:a=b H:a=b
HO : b=c HO : b=c
H1l:a=d H1:a=d
=3 =

We first solve the second one by the following command

2:EExact HO.

This introduces a new constraint ?=b. Then we try to prove the remaining goal
using H1

Try EExact H1.

The tactics EExact H1 fails because the existential variable ? is already con-
strained by ?=b and thus cannot be unified with d. We conclude the proof by
using the assumption H.

EExact H.

Consequences in the use of the logical undo: Let us continue with the
complete script of example 4, and do a logical undo on the tactic corresponding
to the second branch of the proof tree:

Intros;EApply Trans-equal.

2:EExact HO. [] tactic to be undone
Try EExact H1.

EExact H.

The consequences of the application of this tactic are removed from the proof
system (that does not suppress the constraints which have been introduced). On
the interface side, the tactic is simply moved in the ”writable zone”.

Intros;EApply Trans-equal.
Try EExact H1.
EExact H.

EEzxact HO.

The erased part can be replayed to finish the proof. The complete proof
can be saved. However the obtained script is not valid. Indeed, it could not be
replayed in a forthcoming session, because the introduced constraints will not

be the same®.

8 There will be no constraint when Try EExact H1 is applied. Therefore, it will not
fail, and it will solve the first sub-goal introducing the new constraint ?=d. Thus,

Solutions for a logical undo in the presence of existential variables:
We can mainly propose two solutions:

Enforce the instantiations. The idea is to add in the transformed script a com-
mand introducing the constraints initially generated by the erased tactics. Thus,
if the script is replayed, the introduced constraints will remain the same. That
makes it possible to dissociate the undo and the uninstanciation of existential
variables.

Ezample 5.

Intros;EApply Trans-equal.

Instantiate 1 b (* we have forced the instantiation *)
Try EExact H1.

EExact H.

EExact HO.

Add a historical level of dependence. The idea is to add a new dependence
relation between the tactics handling goals which share existential variables. if
a tactic t1 has been played after a tactics #2, if they share existential variables
and if ¢2 introduces a constraint on one of those common variable then ¢1 will
depend on t2. The dependences are no longer represented by a tree but by a
graph.

Example 6. If we consider the script of the preceding example, the tactics of the
last two lines apply to goals containing a variable constrained by the tactics of
the second line. Thus, we introduce a new relation of dependency as shown in
the dependency graph below:

‘ Intros;EApply Trans_equal ‘

o T~

“— ‘Exact HO (* constraint ? *) ‘

Try Exact H1

When a tactic is erased, all other tactics which depend on it (in the new relation)
must be erased too.

Exact H will become obsolete because the goal that it uses to solve will no longer
exists. Moreover, applying EExact HO to solve the second sub-goal will fail because
this command is not compatible with the new constraint

This add-hoc solution presents a compromise between a rough historical undo
and a pure logical undo. Moreover, it is possible to minimize the additional
dependences introduced by the existential variables if we consider the tactics
semantic as discussed in [Pon99].

Problems related to the constraints introduced by the existential appear in
any tool handling proof trees. We have proposed add-hoc solutions to adapt the
logical undo mechanism and guarantee its operationality within a framework
with existential variables. Such solutions have not yet been studied for the tools
presented in the next sections.

2.5 Contraction and expansion of proof:

The main object of the contraction operation is to obtain more compact and
comprehensible scripts. It can also be partially used to push back the limits of
the graphical visualization of the proof tree.

The spectrum of the applications of the expansion operation is much broader.
We suggest debugging and errors localization, dead code elimination, script se-
curization (for example, in Coq, by forcing the explicit naming of the assump-
tions in the local context).

2.6 Lemmification and factorization of proof:

The idea of the lemmification is to isolate inside a proof an intermediate result
and to use it to build a new independent lemma, which could be used in other
proof without repeating the demonstration. Example 7 illustrates the lemmifi-
cation in the Coq system.

Ezample 7. We initially proved the theorem comPlus which establishes the com-
mutativity of the addition on natural integer.

Script initial paths sub-goal we want to isolate
Lemma comPlus :
(p.q:nat)(plus p q)=(plus q p).
Induction p.
Simpl. [1!
Induction q. [1:1] (q:nat)g=(plus q O)
Trivial. [111:1]
Intros. [1:1:21
Rewrite H. [1:1;2:1]
Trivial. [1;1;2;1;1]
Intros n H. [2!
Simpl. [2;1]
[2:1;1]

Intro g.

Rewrite (H q). [2;1;2;1]

Elim g. [2;1;2;1;1]

(Simpl; Trivial). [2;1;2;1;1;1] S (plus a M)=(olus g (S n
Intros nO HO. [2;1;1;1;1;2] (5 (plus am)=(plus q (S m)
Simpl. [2;1;2;1;1;2;1]

(Rewrite HO; Trivial). [2;1;1;1;1;2;1;1]

Statements of the right-hand side column correspond to the result which one
wants to isolate. We provide a functionality which, takes the path of the goal to
isolate and the name of the theorem to be generated, then build the complete
statement and its full proof script. Thus, here we can generate the two lemmas
plus n 0 and plus n_Sm respectively associated with the path [1;1] and [
2;1;1;1;1]. Once the lemmas are generated, we can simplify the initial script.

lemmify [1;1] # lemmify [2;1;1;1;1] (*the simplified script *)
"plus_n_O”; "plus_n_Sm™;; Lemma comPlus :
Theorem plus_.n_O: Theorem plus_.n_Sm : (p,g:nat)
(a:nat)g=(plus q O). (n,g:nat) (plus p g)=(plus q p).

Intros . (S (plus g n))=(plus q (S n)). Induction p.

Induction q. Introsnq. Simpl.

Trivial. Elim g. Intros;Apply plus_n_O.
(Simpl; Trivial). Intros n H.

Intros. Simpl.

Rewrite H. Intros n HO. Intro g.

Trivial. Simpl. Rewrite (H q).

Save. (Rewrite HO; Trivial). Intros;Apply plus_n_Sm.
Save. Save.

This example shows the call of this functionality from caml (subjacent to the coq
toplevel). To use it, we have to give a path in the proof tree; such information
is not a priori obvious for the user. This show the interest of a graphic interface
in which a mere click is enough to select the path.

Idea of the implementation. The most intuitive way to do is:

1. Recover the local context associated with the sub-goal we want to isolate.

2. Abstract all the assumptions which it contains to get a new statement.

3. Rebuild the proof of this new statement. To do so, it is enough to reintroduce
in the local context of the proof the assumptions we abstracted (command
Intro of Coq) and then, to recover in the initial script the part which cor-
responds to the proof tree of the sub-goal to be insulate.

Nevertheless this method is far from being optimal. The principal disadvan-
tage of this approach is that the local context often contains many assumptions
which are not necessary to prove the isolated sub-goal. When abstracting them
we obtain a too constrained statement. We can optimize the statement creation

by abstracting only the assumptions that are useful for the proof. This method
which makes it possible to produce more general statements raises two problems.
First of all, it is necessary to determine if an assumption is useful for the proof.
To do so, we analyze the canonical representation of the proof. The intersection
of the set of all free identifiers that occur in this representation with the set of all
the identifiers of the hypothesis local base gives the minimal set of assumptions
to be abstracted.

The second problem is related to the naming and the referencing of the as-
sumptions of the hypothesis base. Indeed, when an assumption is introduced
into the local context, the identifier which is associated to it can be explicitly
provided by the user (for example Intros H1 H2 in Coq) or implicitly by the
system. In the second case the names chosen by the system depend on the local
context. However when we do not abstract all the assumptions, we modify this
context. Thus, if there are other implicit introductions in the script which we
have recovered, the names of assumptions that will be introduced may be mod-
ified. Therefore, the possible references to these assumptions may be erroneous.
To avoid this kind of problem it is necessary to be able to explicitly name all the
introduced assumptions. That could be done a posteriori, by using a securization
tool like the one mentioned in the preceding section.

The lemmification introduces new theorems into the global context. That
modifies the relations of dependences between the objects of the total context.
We are going to study those dependencies.

3 Theory management

In this this section we consider the notion of dependence between the objects
(theorems and definitions) of a theory. Once this concept is defined, we can
associate with any theory a dependency graph. This graph can be used as a
basis to define many tools handling theories.

3.1 Dependence between the objects of a theory:

We say that a theorem A depends on B if its proof uses B or if its statement
refers to this theorem. We could think that to compute which results depend on
a theorem, it is enough to recover the list of the identifiers which appear in its
statement and proof script. Example 8 shows that this is not sufficient. It also
reveals that it is necessary to have recourse to the canonical representation.

Example 8. The left associativity of the list concatenation
Vi,m,n :list. 1@Q(m@n) = (IQm)Qn

The proof script is:

Lemma ass_app : (I,m,n: list)(app | (app m n))=(app (app | M) n.
Proof.

Intros.

Apply sym_equal.

Auto.

Save.

and the canonical representation is:

ass_app =

[l,m,n: lisf]

(sym_equal list (app (app | m) n) (app | (app m n)) (app_ass | m n))
s (bm,n:list)(app | (app m n))=(app (app | m) n)

Thus, by computing the dependences of ass_app on the script we obtain only
list, app and sym_equal whereas on the canonical representation, we get also
app-ass which characterizes the right associativity and which has been intro-
duced by the automatic decision procedure Auto.

By carrying out this computation on all the objects of the environment (dur-
ing their introduction or a posteriori) we can build a dependency graph as the
one of the List theory given below..

Theory slicing. Given a theorem and a theory, what we call theory slicing consists
in cleaning the theory, keeping only the results which are useful to prove the
theorem. This is more or less analogous to program slicing in data flow analysis.
Let us see how it works.

Let T be a theory and ¢ a theorem. We compute the transitive closure of
the dependency sub-graph resulting from ¢. We recover the list of the source
files in which these identifiers appear. Then, we traverse those files to remove all

the objects which are not associated with one of the identifiers of the transitive
closure. To do so, we write using using caml-lex small program which analyzes
the source files and removes all these objects.

Nevertheless we must be careful. In example 8, the information in the script
is inevitably a subset of the information computed in the canonical form of the
proof. In fact, this is not alway true. Indeed, in Coq, for example, the proof
terms are stored in normal form and some identifiers (appearing in the proof
of a sub-goal introduced by a cut) can disappear after the normalization and
nevertheless be necessary to replay the proof script. If the script uses automatic
decision procedures, some identifiers may appear neither in the script nor in the
normalized term but they might be necessary to replay the script. Examples are
given in [Pon99]. We avoid this kind of problems by computing the dependences
before normalization.

Code motion and theory reorganization: For future reuses and the long-term
maintenance of proof is significant, to ensure that theorems of a same field are
really stored in the same area.

But, a situation that frequently leads to results being in a wrong place is
when developing a new theory using another previously developed theory, a
user discovers that he misses a theorem in this last theory. (For example, when
developing the polynomial theory using the list theory, he realizes that he misses
a property of the lists). Most of the time, he then proves the needed result in
the context in which he is working and also save it in the theory he is developing
(in our example the theory of the polynomials). That results in duplicating code
and work because other users will not know that this result was proven since it
is not in its “usual place”. Thus, it is significant to allows the reorganization of
the theory. But placing a theorem in its “usual” spot is not always obvious. It is
first necessary to know that the result to be moved does not use results from the
current theory. To check that, we will use the dependency graph to search which
theorems are necessary to prove the theorem to be moved. Those theorems have
to be moved too.

Help in the propagation of the modifications We understand by modification,
some axiomatic changes to satisfy new specifications; some definition or function
modifications, to optimize the representation; or in the systems such Coq or
Nuprl which propose a program extraction mechanism, some proof modifications
to optimize the extracted code. ..

In [Pon99] we propose an algorithm to help the user to minimize the number
of needed modifications. At each step, it proposes a choice of theorem to be
modified.

Moreover, this incremental method to choose the theorems to be modified,
allows optimizations based on the nature of the dependences. Indeed, in math-
ematic only the sequence of theorems which have been proved is significant but
not the way in which they have been proved (principle of ”proof-irrelevance”).
To to keep with this usual mathematical practice system like Coq allows to
consider the objects of the environment as opaque or transparent. This allows

to define the concepts of opaque and dependences dependence. The notion of
opaque dependences make it possible to stop the propagation of modifications
each time that the proof of a theorem is modified but its statement is not.

Context sensibility Most of our tools produce modifications of the global context
which can modify the behavior of the automatic decision procedure. A weakening
of the global context, as produced by a theory slicing, is a priori of no risk. The
context enrichements which can result from a code motion or from modifications
are more dangerous. Suppose for example that analyzing the dependences, we
know that a theorem T depends on a set of results R. If a theorem 77, not
belonging to R, is modified that should not invalidate the proof of T. However
if the script of proof contains automatic decision procedure, the replay may
fails. Indeed, before the modification the theorem T; could not be used by the
decision procedure (else it would appear it in R). But after the modifications
this procedure can use it to solves some sub-goals, and invalidate the remained
script. A priori, if a decision procedure solve more things, one can suppose that
the script in the new context should be a sub-set of the precedent. In this case,
the tools of section 2 help to find and remove the obsolete tactics.

However if a script uses automatic decision procedure jointly with not mo-
notonous tacticals, such as Orelse?, the set of the sub-goals produced by script
when it is played in the new context is not alway a sub-set of what it was
in the old context. It can even be completely different, preventing any reuse.
A solution is suggested in [PBR98,Pon99], is to avoid this kind of problems.
It consists to artificially reduce the set of the results usable by the automatic
decision procedures and to limit them to the results that where present in the
old context.

4 Conclusion

The starting point of this work is the concept of dependence. The dependences
are basically represented by a tree in the case of proofs, and by a direct acyclic
graph in the case of theories. The main idea is to use them to propose a set
of proof engineering tools. The design of the proposed tools may seem simple
but difficulties appear quickly: existential variables, problems of naming and
referencing the assumptions in the local context, context sensitivity of some
tactics etc.

This research task aims at practical considerations, it is thus fundamental to
study the impact of it on a great number of users. The general impression that
we want to convey is that the proposed tools are practicable and really helping in
the development and maintenance of interactive proof. The tools working on the
proofs are quickly necessary even during the first utilization of a proof assistant.
The beginner will need to be guided during the construction of his proof and
will quickly need to undo and redo some parts of his work. Thus, those tools are
probably more instinctive.

9 examples of problems involved in the use of the Orelse is in [PBR98,Pon99]

On the contrary, the tools working on theories are more designed to expert
users already able to build large developments. Moreover, they definitely require
a larger investment from the user. He may use our functionality to clean and to
reorganize his work even if he has not used our interface to do his development.
Such a skilled user represents a more narrowed population and it is consequently
more difficult to analyze the impact of these tools.

This distinction is found in our results, the tools working on proof were
developed first and have been used, for example, in the mathematical proof
developments or in the compilers proof done by the Lemme team at INRIA
Sophia-Antipolis.

Surprisingly enough, new needs appear through diverted uses of the existing
tools (for example the use of logical undo to reorganize a script). Today, as
regards the more recent tool working on theories, that are not yet implemented
in their totality, we have no feed back. An exception is the visualization tools
which are already used to illustrate mathematical developments.

To allow a real evaluation of the proposed tools, it will be necessary to put
them at the disposal of a broader number of users . To do so, in addition to the
need to develop and integrate our prototypes, it is necessary to study with a
particular care the ergonomic problems.

Another line of reflection is the study of the influence of the script language
characteristics on the development of the proposed tools. The simplicity with
which such tools can be developed may even be used to evaluate the language
itself.

At last, we want to be generic, even if the prototype implementation were
carried out for the Coq system. It seems that most of the proposed tools can be
adapted to other systems. Nevertheless, the influence of the system character-
istics, such as the use of existential variables, the existence of proof term, the
way to refer to local hypothesis, etc. will have to be studied more in details. For
example, an adaptation of the logical undo in a language, such as Isabelle, based
on higher order unification seems an interesting challenge.

References

[AGKS99] David Aspinall, Healfdene Gogue, Thomas Kleymann, and Dilip Sequeira.
Proof General 2.1. LFCS, University of Edinburgh., August 1999.

[BBC*96] Janet Bertot, Yves Bertot, Yann Coscoy, Healfdene Goguen, and Francis
Montagnac. User Guide to the CtCoq Proof Environment. INRIA, Feb
1996.

[BCD"88] Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi,
Gilles Kahn, Bernard Lang, and Valérie Pascual. Centaur: the system. In
Third Symposium on Software Development Environments, 1988. (Also ap-
pears as INRIA Report no. 777).

[Ber97] Yves Bertot. Direct manipulation of algebraic formulae in interactive proof
systems. In Electronic proceedings for the conference UITP’97, Sophia An-
tipolis, September 1997.

[BKT94] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by Pointing. In Inter-
national Symposium on Theoretical Aspects of Computer Science, 1994.

[CABT86] Robert Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-

[FW4]

[FW96]

[GM93]
[INR96]
[LEG]
[PBROS]
[Pon97]
[Pon99]
[SOR93]

[TBK92]

[Thé97]

[Vit84]

mer, R. W. Harber, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panan-
gaden, J. T. Sasaki, and S. F. Smith. Implementing mathematics with the
Nuprl proof development system. Prentice-Hall, 1986.

Michael Frhlich and Mattias Werner. The graph visualization system
daVinci - a user interface for applications. Technical Report 5/94, Depart-
ment of Computer Science; University of Bremen, September 1994.
Michael Frhlich and Mattias Werner. daVinci V2.0 Online Documentation,
1996. http://www.informatik.uni-bremen.de/davinci/doc_V2.0.

Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL : a
theorem proving environment for higher-order logic. Cambridge University
Press, 1993.

INRIA. The Coq Proof Assistant Reference Manual, December 1996. Version
6.1.

The LEGO World Wide Web page. url http://wuw.dcs.ed.ac.uk/home/lego.
Olivier Pons, Yves Bertot, and Laurence Rideau. Notions of dependency in
proof assistants. In Electronic Proceedings of ”User Interfaces for Theorem
Provers 1998 7, Sophia-Antipolis, France, 1998.

Olivier Pons. Undoing and managing a proof. In Electronic Proceedings
of ”User Interfaces for Theorem Provers 1997 ”, Sophia-Antipolis, France,
1997.

Olivier Pons. Conception et réalisation d’outils d’aide au développement de
grosse théories dans les systémes de preuve interactifs. These de Doctorat,
Conservatoire National des Arts et Métiers, 1999.

Natarajan Shankar, Sam Owre, and John M. Rushby. A tutorial on spec-
ification and verification using PVS. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, CA, 1993. (Beta Release).
Laurent Théry, Yves Bertot, and Gilles Kahn. Real Theorem Provers De-
serve Real User-Interfaces. Software Engineering Notes, 17(5), 1992. Pro-
ceedings of the 5th Symposium on Software Development Environments.
Laurent Théry. Proving and computing: a certified version of the Buch-
berger’s algorithm. Technical Report 3275, INRIA, Oct 1997.

Jeffrey Scott Vitter. US&R: a new framework for redoing. IEEE SOFT-
WARE, 1(4):39-52, October 1984.

