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Abstract. Let (MQP ) be a general mixed integer quadratic program
that consists of minimizing a quadratic function subject to linear con-
straints. In this paper, we present a convex reformulation of (MQP ), i.e.
we reformulate (MQP ) into an equivalent program, with a convex ob-
jective function. Such a reformulation can be solved by a standard solver
that uses a branch and bound algorithm.

We prove that our reformulation is the best one within a convex re-
formulation scheme, from the continuous relaxation point of view. This
reformulation, that we call MIQCR (Mixed Integer Quadratic Convex

Reformulation), is based on the solution of an SDP relaxation of (MQP ).
Computational experiences are carried out with instances of (MQP ) in-
cluding one equality constraint or one inequality constraint. The results
show that most of the considered instances with up to 40 variables can
be solved in one hour of CPU time by a standard solver.
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1 Introduction

Consider the following linearly-constrained mixed-integer quadratic program:

(MQP )

8>>>>>>>><>>>>>>>>:

Min h(x)
s.t. Ax = b (1)

Dx ≤ e (2)
0 ≤ xi ≤ ui i ∈ I (3)
0 ≤ xi ≤ ui i ∈ J (4)
xi ∈ N i ∈ I (5)
xi ∈ R i ∈ J (6)

where A ∈ Mm,N (set of m × N matrices), b ∈ Rm, D ∈ Mp,N , e ∈ Rp,
I = {1, . . . , n} is the subset of indices of integer variables, J = {n+ 1, . . . , N} is
the subset of indices of real variables, ui ∈ N (i ∈ I), ui ∈ R (i ∈ J), and

h(x) = xTQx+ cTx =
X

(i,j)∈I2
qijxixj +

X
(i,j)∈I×J

2qijxixj +
X

(i,j)∈J2

qijxixj +
X
i∈I∪J

cixi.
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The quadratic sub-function of real variables,
X

(i,j)∈J2

qijxixj , is assumed to be a

convex function, Q ∈ SN (space of symmetric matrices of order N), and c ∈ RN .
Without loss of generality, we shall suppose the feasible domain of (MQP ) non-
empty.

When the subset of indices I of integer variables is empty, (MQP ) is a
continuous quadratic convex problem which solution is polynomial. On the other
hand, when the subset of indices J of the real variables is empty, (MQP ) is a
general integer quadratic problem which solution is NP-hard [12]. To the best
of our knowledge, very few publications consider solution of (MQP ) in this last
case [19, 20, 25].

Many applications in operations research and industrial engineering involve
discrete variables in their formulation. Some of these applications can be formu-
lated as (MQP ). For instance, (MQP ) is used in [10] for the unit commitment
problem and for the Markowitz mean-variance model, in [11] for the chaotic
mapping of complete multipartite graphs, in [7] for the material cutting, and
in [17] for the capacity planning.

(MQP ) belongs to the class of Mixed Integer Non Linear Programs (MINLP).
These problems are NP-hard [12]. Conventional approaches to solve (MINLP)
include heuristic methods and global optimization techniques. Usually, heuristic
methods consist of reducing as much as possible the non-convexity difficulty.
The second approach consists of applying a Branch and Bound algorithm. The
success of this last approach depends on the branching rules applied, that try to
improve the bound for every sub-problem [1, 8, 21, 26]. The major drawback of
applying one of these two approaches for solving (MQP ) is that they are very
general and thus less appropriate in the specific case of (MQP ) which objective
function is quadratic.

Standard solvers [4, 18] can efficiently solve Mixed Integer Quadratic Pro-
grams (MIQP), but only in the specific case where h(x) is convex. Thus, to solve
(MQP ) by use of a standard solver, we choose to reformulate it into another
program with a convex objective function. By convex reformulation, we mean to
design a program, that is equivalent to (MQP ), and that has a convex objective
function. In concrete terms, that consists of perturbing the Q matrix of h(x) in
order to obtain a positive semi-definite matrix. Further, we will focus on convex
reformulations that lead to tight continuous relaxation bounds.

Binary quadratic programming is a particular case of (MQP ), where J is
empty and upper bounds ui are equal to 1. Our contribution in this work is to
extend the ideas of QCR (Quadratic Convex Reformulation) [2, 3] from the
binary case to the general mixed-integer case. We will see that, by construction,
our approach is also an improvement of QCR even in the binary case. First, it
improves QCR in terms of bound obtained by continuous relaxation, and sec-
ond it allows to solve a larger class of problems, including mixed 0-1 quadratic
programming.



Extending the QCR method to general mixed-integer programs 3

The outline of the paper is the following. In Section 2, we recall the QCR ap-
proach. Then, in the rest of the paper, we present our approach, that we called
MIQCR (Mixed Integer Quadratic Convex Reformulation). In Section 3, we
present our extension of QCR to general integer programming. Then, in Section 4,
we adapt our extension to general mixed-integer programming. In Section 5, we
show how to use the inequality constraints to perturb the objective function of
the reformulated problem. Finally, in Section 6, we evaluate MIQCR from the com-
putational point of view. Our experiments are carried out on instances of (MQP )
including one equality constraint or one inequality constraint. These two differ-
ent problems are called here the Equality Integer Quadratic Problem (EIQP),
and the Inequality Integer Quadratic Problem (IIQP), respectively. Section 7 is
a conclusion.

2 The original QCR (Quadratic Convex Reformulation)

method [3]

In previous works, convex reformulations were introduced for binary quadratic
programming. Indeed, it is easy to convexify a binary quadratic program be-
cause we have x2

i = xi. Hammer and Rubin [15] use this property to add

−λmin(Q)

nX
i=1

(x2
i − xi) to the objective function. This addition amounts to sub-

tracting from the diagonal terms of matrix Q its smallest eigenvalue λmin(Q),
what is sufficient to get a positive semi-definite matrix. In [2], Billionnet and
Elloumi improve the smallest eigenvalue approach. Again using the property
x2
i = xi, they introduce a convexification scheme that modifies each diagonal

term of Q by a different coefficient. Then they search for an optimal convexi-
fication, in the sense that it produces the best bound obtained by continuous
relaxation. They show that the optimal coefficients can be deduced from the
dual solution of an SDP relaxation of the initial problem.

Then, Billionnet, Elloumi and Plateau [3] extend this last approach to the
equality constrained 0-1 quadratic programs in a method that they called QCR.
Let (QP 01) be the following equality constrained 0-1 quadratic program:

(QP 01)


Min f(x)

s.t.

n∑
j=1

arjxj = br r = {1, . . . ,m}

x ∈ {0, 1}n

where
f(x) = xTQx+ cTx.

The idea of QCR is to perturb not only the diagonal terms of Q by a vector
parameter, but also the off-diagonal ones using a matrix parameter. In addi-
tion to x2

i − xi, the authors add to the objective function quadratic functions
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that vanish on the feasible domain. These new functions are obtained by multi-
plying the linear equality constraints by the variables. Thus, from a constraint
nX
j=1

arjxj = br, they build the functions
nX
j=1

arjxjxi − brxi.

In other words, the authors consider the following 0-1 quadratic problem
equivalent to (QP 01) and depending on two parameters ρ and σ:

(QP 01
ρ,σ)

8>>><>>>:
Min fρ,σ(x)

s.t.

nX
j=1

arjxj = br r = {1, . . . ,m}

x ∈ {0, 1}n

where

fρ,σ(x) = f(x) +
n∑
i=1

σi(x2
i − xi) +

m∑
r=1

(
n∑
i=1

ρrixi)(
n∑
j=1

arjxj − br)

It is easy to verify that fρ,σ(x) = f(x) in the domain of x.

Let (SDP 01) be the following semi-definite program:

(SDP 01)

8>>>>>>>>>>>><>>>>>>>>>>>>:

Min f(X,x) =

nX
i=1

nX
j=1

qijXij +

nX
i=1

cixi

s.t.

nX
j=1

arjXij − brxi = 0 i ∈ I, r = {1, . . . ,m} (7)

Xii = xi i ∈ I (8)„
1 x
xT X

«
� 0 (9)

x ∈ Rn X ∈ Sn (10)

The authors search for values of ρ and σ such that both make fρ,σ(x) convex and
maximize the value of the continuous relaxation of (QP 01

ρ,σ). They prove that the
optimal values ρ∗ri of ρri (i ∈ I, r = {1, . . . ,m}) are given by the optimal values
of the dual variables associated with constraints (7), and the optimal values σ∗i
of σi (i ∈ I) are given by the optimal values of the dual variables associated with
constraints (8).

Practically, QCR outperforms the method in [2] for equality constrained pro-
grams because it integrates equality constraints in the convexification process.

Note that it can be deduced from [9] (Proposition 5) that it is equivalent,
from the continuous relaxation point of view, to perturb the objective function
with equality constraints using a matrix parameter ρ or a scalar one α. One can
think that a better bound would be obtained by adding the m × n expressions

ρrixi(

nX
j=1

arjxj − br) with their own multiplier ρri. But, it is easy to see that it is
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equivalent to perturb the objective function by adding α

mX
r=1

(

nX
j=1

arjxj − br)2, i.e.

by considering the function fα,σ(x) = f(x) +

nX
i=1

σi(x
2
i −xi) +α

mX
r=1

(

nX
j=1

arjxj − br)2.

Indeed, if fρ∗,σ∗(x) is the best convex function equivalent to f(x), then fα∗,σ∗(x),
with α∗ = maxr , i{ρ∗ri : r = 1, . . . ,m, i = 1, . . . n}, is also a convex function
that is equal to fρ∗,σ∗(x) on the feasible set of the continuous relaxation of
(QP 01).

In the rest of the paper we propose an extension of QCR to general mixed-
integer quadratic programming.

3 Dealing with general integer variables: the pure integer
case

In the first part of this work, we propose a convex reformulation of a specific
case of (MQP ) where all the variables are integers, i.e. J = ∅. Let (QP ) be a
such program:

(QP )


Min f(x)
s.t. (1)(2)(3)(5)

where f(x) is the following non-convex function:

f(x) = xTQx+ cT

and Q ∈ Sn, c ∈ Rn, A ∈Mm,n, b ∈ Rm, D ∈Mp,n, e ∈ Rp, u ∈ Nn.

As there exists an abundant literature on binary quadratic programming, for
example QCR [2, 3] or [6, 13–16], a natural way to solve (QP ) is to replace each
integer variable by an expression of binary ones. Unfortunately, the straightfor-
ward reformulation of an integer program into a binary one increases drastically
the size of the reformulated problem. Thus, this approach is not efficient for large
problems.

In the integer case, the main difference with binary quadratic programming
is that x2

i is no longer equal to xi. However, we can extend the smallest eigen-

value approach by adding to the objective function −λmin(Q)

nX
i=1

(x2
i − vi) where

vi =

uiX
k=0

k2rik and rik are additional binary variables satisfying
uiX
k=0

rik = 1 and

xi =

uiX
k=0

krik. The obtained program has a convex quadratic function,
nX
i=1

(1 + ui)

new binary variables, and 3n new constraints. This provides us with a first
method for solving (QP ) that we call NC (Naive Convexification).
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In this section, we propose a reformulation scheme of (QP ) into an equivalent
integer quadratic program (QPα,β) depending on a scalar parameter α, and on
a matrix parameter β. We prove that the continuous relaxation of (QPα,β) is
equivalent to another program (Pα,β) having a reduced size. Then, using (Pα,β),
we look for α∗ and β∗, the values of α and β that maximize the optimal value
of (Pα,β). We show that α∗ and β∗ can be deduced from the solution of a semi-
definite relaxation of (QP ).

3.1 A convex reformulation scheme

In our extension of QCR [2, 3] to the general integer case, we introduce new vari-
ables yij , and new linear constraints to enforce the equality yij = xixj . These
new variables will allow each term of matrix Q to be perturbed. In order to
enforce the equality yij = xixj , with a reduced number of additional variables,
we use the binary decomposition of the xi variables rather than the unary de-
composition of NC. In a sense, our approach mixes ideas of linearization and
convexification.

More precisely, given parameters α and β, we build (QPα,β), a problem equiv-
alent to (QP ). (QPα,β) can be viewed as a compact transformation of (QP ) into
a mixed binary quadratic program. We then prove a projection property of the
polyhedron defined in (QPα,β). This projection property will allow us to prove
in Section 3.2 that optimal values of parameters α and β can be deduced from
a semi-definite relaxation of (QP ). An interesting fact is that this semi-definite
relaxation is only built from the initial x variables.

Let us rewrite (QP ) into (QPα,β). The idea is to add to the initial objective
function f(x) the following functions that vanish on the feasible domain of (QP )
under the assumption that yij = xixj :

– α ‖ Ax− b ‖2 where α ∈ R.

– 〈β, xxT − y〉 where β ∈ Sn and 〈V,W 〉 stands for

nX
i=1

nX
j=1

vijwij .

We obtain the following program (QPα,β):

(QPα,β)

8<:
Min fα,β(x, y)
s.t. (1)(2)

x, y, z, t ∈ Pxyzt

where fα,β(x, y) is the following function:

fα,β(x, y) = f(x) + α ‖ Ax− b ‖2 +〈β, xxT − y〉.
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and Pxyzt is the following set:

Pxyzt

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

x, y, z, t :

(3)

xi =

blog(ui)cX
k=0

2ktik i ∈ I (11)

zijk ≤ ujtik (i, k) ∈ E, j ∈ I (12)
zijk ≤ xj (i, k) ∈ E, j ∈ I (13)
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I (14)
zijk ≥ 0 (i, k) ∈ E, j ∈ I (15)

yij =

blog(ui)cX
k=0

2kzijk (i, j) ∈ I2 (16)

tik ∈ {0, 1} (i, k) ∈ E (17)
yij = yji (i, j) ∈ I2 (18)
yij ≥ xiuj + xjui − uiuj (i, j) ∈ I2 (19)
yii ≥ xi i ∈ I (20)

with E = {(i, k) : i = 1, . . . , n, k = 0, . . . blog(ui)c}
Let us prove that (QPα,β) is equivalent to (QP ). First, it is straightforward

that if x satisfies constraints (1) and xixj = yij , then fα,β(x, y) = f(x). Thus,
it is enough to prove that the linear constraints of Pxyzt enforce the equality
between xixj and yij .

To build Pxyzt we use the unique binary decomposition xi =

blog(ui)cX
k=0

2ktik.

Then we deduce the equality xixj =

blog(ui)cX
k=0

2ktikxj = yij , that we linearize by

introducing new variables zijk to replace each quadratic term tikxj . Then we
add the set of inequalities (12)-(15) ensuring that the zijk are equal to the tikxj .
To prove that zijk = tikxj , it is sufficient to consider the two different values of
tik in (12)-(15).

Constraints (18), (19) and (20) are redundant, but they are necessary for
the projection property of Theorem 1. Constraints (18) follow from the equal-
ity xixj = xjxi. We build constraints (19) by multiplying constraints (3) to-
gether: (xi − ui)(xj − uj) ≥ 0, as they were introduced by McCormick [22].
Constraints (20) follow from the inequality x2

i ≥ xi that is satisfied for any
integer xi.

Our reformulated program (QPα,β) has
nX
i=1

(1 + log(ui)) new binary variables,

n(n +

nX
i=1

(1 + log(ui))) real variables, and 3n

nX
i=1

(1 + log(ui)) + 3n2 + 2n new con-

straints.

In this paper, we are interested in the reformulations of (QP ) into (QPα,β)
if fα,β(x, y) is convex. This is always possible. For example, if we denote by
λmin(Q) the smallest eigenvalue of Q, by taking β̄ii = −λmin(Q), β̄ij = 0 for all
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i 6= j, and ᾱ any non-negative real, we build the convex function fᾱ,β̄(x, y).

We now search for the values of α and β that both make fα,β(x, y) convex
and maximize the continuous relaxation value of (QPα,β), that we denote by
(QPα,β):

(QPα,β)

8<:
Min fα,β(x, y)
s.t. (1)(2)

x, y, z, t ∈ P xyzt

where P xyzt is the polyhedron obtained by relaxing the integrality constraints
of Pxyzt, i.e. replacing constraints (17) by:

0 ≤ tik ≤ 1 (17)′

In the following, we prove that (QPα,β) is equivalent to another program
with less variables and constraints.

Theorem 1. The projection of P xyzt on variables x and y is the following poly-
hedron:

Pxy

8>><>>:x, y :

(18)(19)(20)
yij ≥ 0 (i, j) ∈ I2 (21)
yij ≤ ujxi (i, j) ∈ I2 (22)
yij ≤ uixj (i, j) ∈ I2 (23)

Proof.

1. We first prove that for any (x, y) in Pxy, there exists z, t such that (x, y, z, t)
belongs to P xyzt.
Let (x, y) ∈ Pxy, and γij be any non-negative real such that yij = γijxixj .

Let ūi =

blog(ui)cX
k=0

2k. Take tik = xi/ūi and zijk = γijtikxj . Obviously, con-

straints (3), (11), (15), (16), (17’), (18), (19) and (20) are satisfied. We have
now to prove that constraints (12), (13) and (14) are satisfied:
– Constraints (12): if xi = 0, then tik = 0, and zijk = 0. If xi > 0, it is

sufficient to show that γijxj ≤ uj . That follows from (22) and from the
definition of γij .

– Constraints (13): zijk = γijtikxj = γijxjxi/ūi = yij/ūi ≤ xjui/ūi ≤ xj
by constraints (23), and since ui/ūi ≤ 1.

– Constraints (14): zijk = γijtikxj = yij/ūi ≥ (ujxi + uixj − uiuj)/ūi ≥
tikuj + ui/ūi(xj − uj) ≥ tikuj + xj − uj by constraints (19), and since
ui/ūi ≤ 1, and xj − uj ≤ 0.

2. Let us now prove that for any (x, y, z, t) in P xyzt, (x, y) belongs to Pxy.
Obviously, constraints (18), (19), (20) and (21) are satisfied. We have now
to prove that constraints (22) and (23) are satisfied:
– Constraints (22): by constraints (11), (12) and (16), we have

yij =

blog(ui)cX
k=0

2kzijk ≤
blog(ui)cX
k=0

2kujtik = ujxi.
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– Constraints (23): by constraints (18) and (22), we have yij = yji ≤ uixj .

2

Note that constraints (19), (21)-(23) are RLT inequalities [22, 24].
From Theorem 1 and the fact that the objective function of (QPα,β) does not

contain the z and t variables, it follows that the polyhedron P xyzt in (QPα,β)
can be replaced by Pxy. More formally, let (Pα,β) be the following program:

(Pα,β)

8<:
Min fα,β(x, y)
s.t. (1)(2)

x, y ∈ Pxy

Corollary 1. The optimal value of (QPα,β) is equal to the optimal value of
(Pα,β).

3.2 Computing the best convex reformulation

In this section, we show how to compute values of α∗ and β∗ that make fα∗,β∗(x, y)
convex, and that maximize the continuous relaxation value of (QPα∗,β∗). As
shown in Corollary 1, this amounts to solving the following problem (CP ):

(CP ) : max
α∈R,β∈Sn
Qα,β�0

{v(Pα,β)}

where v(Pα,β) is the optimal solution value of (Pα,β) and Qα,β = Q+αATA+β.
We can rewrite (CP ) as follows:

(CP ) : max
α∈R,β∈Sn
Qα,β�0

min
(1)(2)

(x,y)∈Pxy

{fα,β(x, y)}

Theorem 2. Let (SDP ) be the following semi-definite program:

(SDP )

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

Min f(X,x) =

nX
i=1

nX
j=1

qijXij +

nX
i=1

cixi

s.t. (1)(2)
mX
r=1

(

nX
i=1

(

nX
j=1

ariarjXij − 2aribrxi)) = −
mX
r=1

b2r (24)

Xij ≤ ujxi (i, j) ∈ I2 (25)
Xij ≤ uixj (i, j) ∈ I2 (26)
−Xij ≤ −ujxi − uixj + uiuj (i, j) ∈ I2 (27)
−Xij ≤ 0 (i, j) ∈ I2 (28)
−Xii ≤ −xi i ∈ I (29)„

1 x
xT X

«
� 0 (30)

x ∈ Rn X ∈ Sn (31)
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An optimal solution (α∗, β∗) of (CP ) can be deduced from the optimal values
of the dual variables of (SDP ). The optimal coefficient α∗ is the optimal value
of the dual variable associated with constraint (24). The optimal coefficients β∗ij
are computed as β∗ij = β1∗

ij + β2∗
ij − β3∗

ij − β4∗
ij , for i 6= j, and β∗ii = β1∗

ii + β2∗
ii −

β3∗
ii − β4∗

ii − β5∗
ii , where β1∗

ij , β2∗
ij , β3∗

ij , β4∗
ij , and β5∗

ii , are the optimal values of
the dual variables associated with constraints (25), (26), (27), (28), and (29),
respectively.

Proof. We first rewrite fα,β(x, y) as follows:

fα,β(x, y) = 〈Q+ αATA+ β, xxT 〉+ (c− 2αAT b)Tx− αbT b+ 〈β, y〉

1. Prove that v(CP ) ≤ v(SDP ).

Let (ᾱ, β̄) be any feasible solution to (CP ), and (X̄, x̄) be any feasible solu-
tion to (SDP ). The solution (x, y) such that x = x̄ and y = X̄ is obviously
a feasible solution to (Pᾱ,β̄). Now, to prove that v(CP ) ≤ v(SDP ), prove
that fᾱ,β̄(x, y) ≤ f(X̄, x̄), or f(X̄, x̄)−fᾱ,β̄(x, y) ≥ 0, i.e that 〈Q, X̄〉−〈Q+
ᾱATA+ β̄, x̄x̄T 〉+ ᾱ(2(AT b)T x̄− bT b) + 〈β̄, X̄〉 ≥ 0. By constraint (24), we
get 2(AT b)T x̄− bT b = 〈ATA, X̄〉. We have therefore to prove that 〈Q, X̄〉+
ᾱ〈ATA, X̄〉 + 〈β̄, X̄〉 − 〈Q + ᾱATA + β̄, x̄x̄T 〉 ≥ 0, and thus 〈Q + ᾱATA +
β̄, X̄ − x̄x̄T 〉 ≥ 0. This last inequality is true because (ᾱ, β̄) is a feasible
solution to (CP ), and (X̄, x̄) is a feasible solution to (SDP ), and thus both
matrices (Q+ ᾱATA+ β̄) and (X̄ − x̄x̄T ) belong to S+

n .

2. Prove that v(CP ) ≥ v(SDP ) or equivalently v(CP ) ≥ v(DSDP ) where
(DSDP ) is the dual of (SDP ).

The following problem (DSDP ) is the dual of (SDP ):

(DSDP )

8>>>><>>>>:
Max g(α, β, ρ, σ) = αbT b− uTβ3u− ρT b− σT e
s.t. Q+ αATA+ β � 0 (32)

c− 2αAT b− (β1 + β2 − 2β3)Tu+ β5 +AT ρ+DTσ ≥ 0 (33)
β = β1 + β2 − β3 − β4 − diag(β5) (34)
α ∈ R , β ∈ Sn, β

1, β2, β3, β4 ∈ S+
n , β

5 ∈ Rn, ρ ∈ Rm, σ ∈ Rp (35)

where ρ and σ are the dual variables associated to constraints (1) and (2),
respectively. For v ∈ Rn, we denote by M = diag(v) ∈ Sn the matrix where
Mii = vi and Mij = 0 ∀i 6= j.

Let (ᾱ, β̄, ρ̄, σ̄) be a feasible solution to (DSDP ), from constraint (32), we get
Qᾱ,β̄ � 0 and obviously (ᾱ, β̄) is a feasible solution to (CP ), which objective
value is equal to v(Pᾱ,β̄). Let (x̄, ȳ) be any feasible solution to (Pᾱ,β̄), to
prove that v(CP ) ≥ v(DSDP ), we prove that: fᾱ,β̄(x̄, ȳ) ≥ g(ᾱ, β̄, ρ̄, σ̄). We
have:

fᾱ,β̄(x̄, ȳ) = 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b)T x̄+ ᾱbT b− 〈β̄, ȳ〉
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By constraint (34), we get:

fᾱ,β̄(x̄, ȳ) = 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b)T x̄+ ᾱbT b
−〈β̄1 + β̄2 − β̄3 − β̄4 − diag(β̄5), ȳ〉

= 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b)T x̄+ ᾱbT b
−〈β̄1, ȳ〉 − 〈β̄2, ȳ〉+ 〈β̄3, ȳ〉+ 〈β̄4, ȳ〉+ 〈diag(β̄5), ȳ〉

Moreover, by constraints (19), (20), (21), (22) and (23), and since β̄1, β̄2, β̄3, β̄4, β̄5, u
are non-negative, we have:

fᾱ,β̄(x̄, ȳ) ≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b)T x̄+ ᾱbT b− 〈β̄1, x̄uT 〉 − 〈β̄2, x̄uT 〉
+〈β̄3, 2x̄uT − uuT 〉+ 〈diag(β̄5), x̄〉

≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b)T x̄+ ᾱbT b− (β̄1Tu)T x̄− (β̄2Tu)T x̄
+2(β̄3Tu)T x̄− uT β̄3u+ β̄5x̄T

≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ (c− 2ᾱAT b− (β̄1 + β̄2 − 2β̄3)Tu+ β̄5)T x̄
+ᾱbT b− uT β̄3u

By constraints (33), and since x is non-negative, we have :

fᾱ,β̄(x̄, ȳ) ≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉 − (AT ρ̄+DT σ̄)T x̄+ ᾱbT b− uT β̄3u

Moreover, by constraints (1) and (2)

fᾱ,β̄(x̄, ȳ) ≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉 − ρ̄T b− σ̄T e+ ᾱbT b− uT β̄3u
≥ 〈Q+ ᾱATA+ β̄, x̄x̄T 〉+ g(ᾱ, β̄, ρ̄, σ̄)

Finally, by constraint (32) of (DSDP ) we have:

fᾱ,β̄(x̄, ȳ) ≥ g(ᾱ, β̄, ρ̄, σ̄)

3. First, we proved that from any feasible solution to (SDP ) we can design
a feasible solution to (Pᾱ,β̄), where (ᾱ, β̄) is any feasible solution to (CP ),
and such that v(Pᾱ,β̄) ≤ v(SDP ). Hence, that is still true for (α∗c, β∗c) an
optimal solution to (CP ), and thus we have v(CP ) = v(Pα∗c,β∗c) ≤ v(SDP ).
Then, we proved that from any feasible solution (ᾱ, β̄, ρ̄, σ̄) to (DSDP ),
(ᾱ, β̄) is also a feasible solution to (CP ), such that v(CP ) ≥ v(DSDP ).
Hence, this is still true for (α∗d, β∗d) any optimal solution of (DSDP ), and
thus we have v(Pα∗d,β∗d) ≥ v(DSDP ). Moreover, since (α∗d, β∗d) is a feasi-
ble solution to (CP ), and since (CP ) is a maximization problem, we have
v(CP ) ≥ v(Pα∗d,β∗d) ≥ v(DSDP ).
To conclude, since v(SDP ) = v(DSDP ), we deduce that

v(CP ) ≥ v(Pα∗d,β∗d) ≥ v(DSDP ) = v(SDP ) ≥ v(Pα∗c,β∗c) = v(CP ),

and thus an optimal solution of (CP ) is (α∗d, β∗d).

2

Remark 1. From the proof of Theorem 2, it follows that for any feasible solution
to (DSDP ) with an objective value ∆, we can deduce a convex reformulation
whose bound by continuous relaxation is not smaller than ∆
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4 Dealing with continuous variables

In this section, we adapt our approach to general mixed-integer quadratic pro-
gramming, following the same reasoning steps as for the pure integer case of
Section 3.

A convex Reformulation of (MQP)

We now define the following set of couples of indexes P = {(i, j) ∈ I2 ∪ (I ×
J) ∪ (J × I)}, and the following perturbed function:

hα,β(x, y) = h(x) +
X

(i,j)∈P

βij(xixj − yij) + α

mX
r=1

(
X
i∈I∪J

arixi − br)2,

with α ∈ R, and to simplify the writing, we consider β ∈ SN , with βij = 0,
∀(i, j) ∈ J2.

Based on the same ideas as in Section 3, we consider the following problem
that is equivalent to (MQP ):

(MQPα,β)

8<:
Min hα,β(x, y)
s.t. (1)(2)

(x, y) ∈MPxyzt

where MPxyzt is:

MPxyzt

8>>>><>>>>:x, y, z, t :

(3)(4)(11)(17)(20)
(12)− (15) (i, k) ∈ E, j ∈ I ∪ J
(16) (i, j) ∈ I × (I ∪ J)
(18)(19) (i, j) ∈ P
(23) (i, j) ∈ I × J

Note that the main difference with the pure integer case is that we do not
perturb h(x) with βij(xixj−yij) when (i, j) ∈ J2. The assumption that the sub-
function of pure real variables is convex ensures us of the existence of a trivial
convex reformulation of (MQP ). Indeed, it is always possible to choose α and
β in such a way that hα,β(x) is convex. For example, take α any non-negative
real, βij = −qij , (i, j) ∈ (I × J) ∪ (J × I), βij = 0, (i, j) ∈ I2, i 6= j, and
βii = −λmin(QI), i ∈ I where QI is the sub-matrix of Q defined by (qij)(i,j)∈I2 .
Note that this trivial convex reformulation amounts to convexifying the integer
products and to linearizing the mixed integer ones.

Once again, we are interested in the continuous relaxation of (MQPα,β).
Hence, we adapt Theorem 1 to mixed-integer programming.

Theorem 3. Let MP xyzt be the polyhedron obtained by continuous relaxation
of MPxyzt (i.e. constraints (17) are replaced by (17’)). The projection of MP xyzt
on variables x and y is the following polyhedron :

MPxy


x, y :

(4)(20)
(18)(19)(21)(22)(23) (i, j) ∈ P
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Proof. Straightforward from the proof of Theorem 1. 2

Computing the best convexification

As in Section 3, we want to compute the values of α and β that maximize
the optimal continuous relaxation value of (MQPα,β). More formally we want
to solve:

(MCP ) : max
α∈R , β∈SN

βij=0 , ∀(i,j)∈J2

Qα,β�0

min
(1)(2)

(x,y)∈MPxy

{hα,β(x, y)}

Theorem 4. An optimal solution (α∗, β∗) of (MCP ) can be deduced from the
optimal values of the dual variables of the following semi-definite program:

(SDP ′)

8>>>>>>>>>><>>>>>>>>>>:

Min f(X,x) =

NX
i=1

NX
j=1

qijXij +

NX
i=1

cixi

s.t. (1)(2)(4)(29)(30)
mX
r=1

(

NX
i=1

(

NX
j=1

ariarjXij − 2aribrxi)) = −
mX
r=1

b2r (24′)

(25)− (28) (i, j) ∈ P
x ∈ RN X ∈ SN (31′)

The optimal coefficients α∗ and β∗ are deduced in the same way as in Theorem 2.

Proof. Straightforward from the proof of Theorem 2. 2

Example . Let (MQPe) be an instance of (MQP ) with 2 integer variables and
2 continuous variables:

(MQPe)

8>>>>>>>>>><>>>>>>>>>>:

Min f(x) = xT

0BB@
−7 3 −15 −4
3 −14 −7 −13

−15 −7 8 7
−4 −13 7 12

1CCAx+

0BB@
15
10
−7
−4

1CCA
T

x

s.t 5x1 + x2 + 8x3 + 4x4 ≤ 95
0 ≤ xi ≤ 10 i ∈ {1, . . . , 4}
x1, x2 ∈ N
x3, x4 ∈ R

Observe that the sub-matrix
„

8 7
7 12

«
is positive semi-definite.

An optimal solution of (MQPe) is x = (8, 10, 2.03, 7.19) and its value is
−3434.27.

Since there is no equality constraint there is no parameter α. Thus, we per-
turb the Q matrix as follows:0BB@

−7 + β11 3 + β12 −15 + β13 −4 + β14

3 + β12 −14 + β22 −7 + β23 −13 + β24

−15 + β13 −7 + β23 8 7
−4 + β14 −13 + β24 7 12

1CCA
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and the optimal values of the β parameter are: β11 = 12.25, β12 = 0.29, β13 =
8.74, β14 = 0, β22 = 21.17, β23 = 1.84, and β24 = 5.52.

For the reformulated problem, the optimal value of the continuous relaxation
equals −4002.43. The gap is then of 16.5%

5 Dealing with inequality constraints

Considering a quadratic program containing p inequality constraints, it is easy to
replace each inequality constraint by an equality one, by adding p slack variables.
To perform this reformulation we distinguish two cases:

case 1: Consider the pure integer problem (QP ) defined in Section 3, where all
the coefficients of the inequality constraints are integers or rationals. To
perturb the objective function not only with equality constraints, but
also with inequality ones, we reformulate (QP ) into an equality con-
strained program (QP ′) by adding p integer and upper bounded slack
variables. Such a problem can be handled as described in Section 3.

case 2: Consider the mixed-integer problem (MQP ) defined in Section 1. To per-
turb the objective function with inequality constraints, we reformulate it
into a mixed-integer quadratic equality constrained program (MQP ′) by
adding p continuous and upper bounded slack variables. Such a problem
can be handled as described in Section 4.

Example (Continued). We transform (MQPe) into an equivalent mixed-integer
problem with one equality constraint using the method described above in case
2:

(MQP ′e)

8>>>>>>>>>>>><>>>>>>>>>>>>:

Min f(x) = xT

0BB@
−7 3 −15 −4
3 −14 −7 −13

−15 −7 8 7
−4 −13 7 12

1CCAx+

0BB@
15
10
−7
−4

1CCA
T

x

s.t 5x1 + x2 + 8x3 + 4x4 + x5 = 95
0 ≤ xi ≤ 30 i ∈ {1, . . . , 4}
0 ≤ x5 ≤ 95
x1, x2 ∈ N
x3, x4, x5 ∈ R

There is now one equality constraint, and thus in addition to the β parameter,
we have an α parameter. We perturb the Q matrix as follows:

0BBBB@
−7 + β11 + 25α 3 + β12 + 5α −15 + β13 + 40α −4 + β14 + 20α β15 + 5α

3 + β12 + 5α −14 + β22 + α −7 + β23 + 8α −13 + β24 + 4α β25 + α
−15 + β13 + 40α −7 + β23 + 8α 8 + 64α 7 + 32α 8α
−4 + β14 + 20α −13 + β24 + 4α 7 + 32α 12 + 16α 4α

β15 + 5α β25 + α 8α 4α α

1CCCCA
where the optimal value of the α parameter is 344.08, and the optimal values

of the β parameter are: β11 = β13 = β14 = 0, β12 = −5.55, β15 = −13.67,
β22 = 20.56, β23 = 2.10, β24 = 5.12, and β25 = −0.37.
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For the reformulated problem, the optimal value of the continuous relaxation
equals −3434.45. The gap is then of 0.005%.

6 Computational results

In this section, we experiment our approach using the following exact solution
algorithm of mixed-integer non-convex quadratic programs (MQP ) based on the
MIQCR approach:

Algorithm 1 Solution algorithm to (MQP ) based on MIQCR

step 1: If necessary, transform each inequality constraint into an equality one.

step 2: Solve the associate semi-definite program (SDP ′).

step 3: Deduce α∗ and β∗.

step 4: Solve the program (MQPα∗,β∗), by a MIQP solver.
(Its continuous relaxation (MQPα∗,β∗) is a convex program with an optimal
value equal to the optimal value of (SDP ′))

In the rest of the section, we compare MIQCR with the naive convex refor-
mulation NC, concisely described in Section 3. NC is able to solve (MQP ) only
when J is empty, i.e. to solve (QP ). The idea of NC is to subtract the smallest
eigenvalue of the Q matrix from its diagonal terms in order to get a positive
semi-definite matrix. We obtain the following program:

(QP )λmin

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

Min xTQx+ cTx− λmin(Q)

nX
i=1

(x2
i − vi)

s.t. (1)(2)

xi =

uiX
k=0

krik i ∈ I (36)

vi =

uiX
k=0

k2rik i ∈ I (37)

uiX
k=0

rik = 1 i ∈ I (38)

rik ∈ {0, 1} i ∈ I, k ∈ {0, . . . , ui} (39)

(QP )λmin is equivalent to (QP ), since x2
i = vi in any feasible solution to

(QP )λmin .

Our experiments concern two different problems with general integer vari-
ables (i.e. J = ∅): the Equality Integer Quadratic Problem (EIQP ) that consists
of minimizing a quadratic function subject to one linear equality constraint, and
the Inequality Integer Quadratic Problem (IIQP ) that consists of minimizing a
quadratic function subject to one linear inequality constraint.
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(EIQP )

8>>>>><>>>>>:

Min xTQx+ cTx

s.t.

nX
i=1

aixi = b

0 ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

(IIQP )

8>>>>><>>>>>:

Min xTQx+ cTx

s.t.

nX
i=1

dixi ≤ e

0 ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

For both problems, we generate two classes of instances (EIQP1) (resp.
(IIQP1)) and (EIQP2) (resp (IIQP2)). For each class we generate instances
with 20, 30, and 40 variables where the coefficients are randomly generated as
follows:

(EIQP1) and (IIQP1)

– The coefficients of Q and c are integers uniformly distributed in the inter-
val [−100, 100]. More precisely, for any i < j, a number ν is generated in
[−100, 100], and then qij = qji = ν.

– The ai and di coefficients are integers uniformly distributed in the interval
[1, 50].

– b = 15 ∗
nX
i=1

ai and e = 15 ∗
nX
i=1

di .

– ui = 30, i ∈ I.

Note that in these instances the solution, xi = 15 for all i, is feasible.

(EIQP2) and (IIQP2)

– The coefficients of Q and c are randomly generated as for (EIQP1) and
(IIQP1).

– The ai and di coefficients are integers uniformly distributed in the interval
[1, 100].

– b = 20 ∗
nX
i=1

ai and e = 20 ∗
nX
i=1

di .

– ui = 50, i ∈ I.

Note that in these instances the solution, xi = 20 for all i, is feasible.

For each problem and for each n = 20, 30, or 40 we generate 5 instances
obtaining a total of 60 instances.

Our experiments are carried out on a PC with an Intel core 2 duo processor
of 2.8 GHz and 2048 MB of RAM using a Linux operating system. We use the
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modeling language ampl and the solver Cplex version 11 [18] for solving mixed
integer quadratic convex programs, and the solver CSDP [5] for solving semi-
definite programs.

The results are presented in Tables 1-4, where each row corresponds to one
instance.

Legends of the tables:

– name: Problem n nb, where n is the number of variables and nb is the in-
stance number.

– opt : optimal value of the instance. This value is obtained by keeping the
MIQCR solution phase running until the end of the Branch and Bound algo-
rithm even if it takes more than 1 hour.

– For both problems (IIQP ) and (EIQP ), columns NC present the results for
the naive convexification, and columns MIQCR for the MIQCR algorithm. As
there is no inequality constraints in problems (EIQP ), it is straightforward
that in this case, there is no step 1 in the MIQCR algorithm. For problems
(IIQP ), columns MIQCR present the results for the MIQCR algorithm that
uses continuous slack variables to transform the inequality constraint into an
equality one, as explained in Section 5 (case 2). In our experiments we have
chosen to test this more general method. One might get different results by
applying the method devoted to the pure integer case (case 1). For problems
(IIQP ), we also tested the MIQCR algorithm without perturbing the objective
function with inequality constraints, i.e. without step 1. These results are
presented in columns MIQCR’.

– ig (initial gap):
∣∣∣∣opt− lopt

∣∣∣∣∗100 where l is the optimal value of the continuous

relaxation at the root node.
– time: CPU time (in seconds) required by the branch-and-bound algorithm.

The time limit is fixed to 1 hour.
– nodes: number of nodes visited by the branch-and-bound algorithm.

– fg (final gap):
∣∣∣∣opt− bopt

∣∣∣∣ ∗ 100 where b is the value of the best lower bound

after 1 hour of solution time.

Tables 1 and 2 present the results for (EIQP1) and (EIQP2). For all the
instances, we observe that the bound obtained by continuous relaxation in MIQCR
is much better than in NC. Indeed, in (EIQP1) the average initial gap over the 15
instances decreases from 14.44% (for NC) to 0.06% (for MIQCR). In (EIQP2) this
initial gap decreases from 18.65% to 0.08%. Hence, this average gap is divided
by a factor of about 200 and, unsurprisingly, the average number of Branch
and Bound nodes is divided by an important factor (about 3000). Moreover,
the initial gap associated with MIQCR remains stable since it varies in (EIQP1)
from 0% to 0.21% and, in (EIQP2), from 0% to 0.29%. On the contrary, the
initial gap associated with NC varies in (EIQP1) between 7.73% and 21.15%
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and, in (EIQP2), between 11.22% and 24.44%. Except for instances of (EIQP1)
with 20 variables and for the instance EIQP2 20 3, NC does not find the proved
optimal solution within 1 hour of CPU time, while MIQCR solves 14 instances of
(EIQP1) out of 15 and 13 instances of (EIQP2) out of 15. However, NC can be
viewed as a simple heuristic method since the solution provided after one hour of
computation is less than 0.2% from the optimal solution (computed by MIQCR).
To get optimal values of instances EIQP1 40 1, EIQP2 40 2, and EIQP2 40 3,
MIQCR takes 3868s, 5550s and 9476s, respectively. Finally, let us mention the
preprocessing time associated with the solution of the semidefinite programs. In
(EIQP1) it takes 180s, 1200s and 5000s on average, for instances of size 20, 30,
and 40, respectively. In (EIQP2) these average preprocessing times are equal to
70s, 600s, and 3500s, respectively. Observe that, as follows from Remark 1 and
because the SDP solvers often provide dual feasible solutions as they progress,
the solution of semidefinite programs can be stopped after a fixed time. This
possibility is interesting for large instances since SDP solvers generally find a
good solution very quickly.

Tables 3 and 4 present the results for (IIQP1) and (IIQP2). To test the
impact of integrating inequality constraints into the convexification process,
we solve the 30 instances by the two algorithms MIQCR’ and MIQCR described
above. MIQCR’ is MIQCR without step 1, i.e. without transforming the inequality
into equality. Results for these classes of problems reveal a similar trend as for
(EIQP ) in terms of initial gap, nodes, and computational time for both methods
NC and MIQCR’. However, the initial gap obtained by MIQCR’ is less stable than
for (EIQP1) and (EIQP2) ; in (IIQP1) it ranges from 0.05% to 1.55% with
an average of 0.72%, and in (IIQP2) from 0.03% to 17.80% with an average of
4.22%. We can clearly see the improvement of the gap value in the results of the
MIQCR column, since the average gap in (IIQP1) (resp. (IIQP2)) decreases from
0.72% (resp. 4.22%) for MIQCR’ to 0.12% (resp. 0.06%) for MIQCR. Moreover, the
number of nodes in MIQCR is divided by a factor 3 for (IIQP1) and by a factor
10 for (IIQP2), in comparison to MIQCR’. MIQCR is able to solve all the instances
while MIQCR’ solves only 28 instances out of 30. For (IIQP1), the solutions of
the semidefinite programs associated with MIQCR’ require 65s, 750s and 4000s
on average, for instances of size 20, 30, and 40, respectively. In the case of MIQCR
these average computation times are equal to 240s, 1850s and 8000s, respec-
tively. For (IIQP2), the solutions of the semidefinite programs associated with
MIQCR’ require 40s, 300s and 1600s on average, for instances of size 20, 30, and
40, respectively. In the case of MIQCR these average computation times are equal
to 250s, 1850s and 9000s, respectively.

7 Conclusion and future research

In this paper, we introduce a solution approach for general mixed-integer quadratic
programs (MQP ). This approach, that we called MIQCR, is an extension of an
earlier convex reformulation of quadratic programs with 0-1 variables known as
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QCR. MIQCR handles general integer variables, continuous variables under a few
assumptions, and inequalities.

As QCR, MIQCR has two phases: the first phase consists of building a convex
reformulation of (MQP ), and, in the second phase, the reformulated problem is
submitted to a MIQP solver. To build our reformulation, we propose a general
convex reformulation scheme for (MQP ). Then, we focus on the best reformu-
lation within that scheme, from the continuous relaxation bound point of view.
We show that this best reformulation can be obtained from the solution of an
SDP relaxation of (MQP ). Computational experiments on two types of prob-
lems show that MIQCR is able to solve, within one hour of computation, instances
having one constraint and up to 40 integer variables. The good quality of these
results is due to the tightness of the bound at the root of the Branch and Bound
algorithm and to the efficiency of the MIQP solvers.

An interesting additional result is that MIQCR constitutes an improvement of
QCR for quadratic 0-1 programs. First, it improves the bound obtained by contin-
uous relaxation, and second, it handles continuous variables and inequalities. A
second additional result is that MIQCR can be immediately adapted to quadratic
constraints, as it mixes ideas of linearization and that of convexification.

Let us lastly mention the introduction of the naive convexification NC as a
basic method for computational comparison purposes. Our results show that,
finally, NC can be viewed as a simple-to-implement heuristic.

A future research topic may focus on reducing the solution time of MIQCR.
One idea is to take benefit from the polyhedron projection property proved in
Theorem 1 to design a specialized Branch and Bound algorithm.
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Table 1. Solution of (EIQP1)

NC MIQCR

opt ig time (s) nodes fg ig time (s) nodes fg

EIQP1 20 1 -5311070 12.89 146 342802 0 0.09 68 2496 0

EIQP1 20 2 -5098379 10.98 29 81583 0 0.13 5 16 0

EIQP1 20 3 -4554397 10.15 7 19396 0 0.05 7 93 0

EIQP1 20 4 -5614860 11.92 43 117812 0 0 0 0 0

EIQP1 20 5 -4354396 13.70 1419 1992867 0 0.15 18 321 0

EIQP1 30 1 -10210390 13.76 - 7689021 4.94 0.04 21 50 0

EIQP1 30 2 -11243370 13.40 - 7916032 3.65 0 4 0 0

EIQP1 30 3 -9862120 12.23 - 8133101 3.32 0.04 89 713 0

EIQP1 30 4 -10720488 18.23 - 7666601 8.06 0.05 31 56 0

EIQP1 30 5 -10835084 19.97 - 7690110 10.16 0.09 179 1217 0

EIQP1 40 1 -20907112 7.73 - 6459201 1.31 0.04 - 3961 0.01

EIQP1 40 2 -21274411 16.64 - 6037101 10.00 0.04 773 1356 0

EIQP1 40 3 -17033610 17.83 - 6022601 10.84 0 157 0 0

EIQP1 40 4 -18268074 16.02 - 6119381 9.27 0.03 744 3091 0

EIQP1 40 5 -17373411 21.15 - 6064671 14.40 0.21 2337 9526 0
- : Cplex was stopped after 1 hour

Table 2. Solution of (EIQP2)

NC MIQCR

opt ig time (s) nodes fg ig time (s) nodes fg

EIQP2 20 1 -9321876 17.84 - 7751701 1.76 0.14 140 3282 0

EIQP2 20 2 -9013418 23.11 - 8366287 4.73 0 4 14 0

EIQP2 20 3 -15337225 12.53 210 335313 0 0.03 42 926 0

EIQP2 20 4 -11863777 17.75 - 8436182 3.48 0.19 86 1393 0

EIQP2 20 5 -12095004 21.28 - 8896130 6.53 0.08 14 252 0

EIQP2 30 1 -23592535 20.18 - 5832801 11.61 0.29 135 1073 0

EIQP2 30 2 -25924713 15.05 - 5700091 5.98 0.11 431 3345 0

EIQP2 30 3 -21938906 22.81 - 5814721 13.09 0.02 331 2416 0

EIQP2 30 4 -29913305 16.57 - 5754501 7.17 0.05 506 2653 0

EIQP2 30 5 -22422891 24.44 - 5968416 14.73 0.12 343 2482 0

EIQP2 40 1 -42548497 16.52 - 4474098 10.40 0.02 1162 1315 0

EIQP2 40 2 -35957464 24.16 - 4453801 17.04 0.17 - 4236 0.03

EIQP2 40 3 -40116963 17.00 - 4526300 10.50 0.05 - 2496 0.03

EIQP2 40 4 -51306080 11.22 - 4242061 4.98 0 49 3 0

EIQP2 40 5 -38090192 19.31 - 4549921 13.27 0.01 2309 3528 0
- : Cplex was stopped after 1 hour
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Table 3. Solution of (IIQP1)

NC MIQCR’ MIQCR

opt ig time (s) nodes fg ig time (s) nodes fg ig time (s) nodes fg

IIQP1 20 1 -4763626 15.28 - 7414712 0.03 1.07 21 342 0 0.48 15 246 0

IIQP1 20 2 -3693618 8.22 3 8009 0 0.09 10 69 0 0.06 5 28 0

IIQP1 20 3 -3783803 15.10 1557 2560447 0 0.83 11 144 0 0.08 4 20 0

IIQP1 20 4 -5624785 7.42 3 8105 0 0.24 4 17 0 0.02 2 0 0

IIQP1 20 5 -2749979 10.61 11 32780 0 1.09 11 206 0 0.12 6 54 0

IIQP1 30 1 -9104372 4.66 2 3690 0 0.12 32 13 0 0.09 22 22 0

IIQP1 30 2 -8632815 12.41 - 7602932 2.69 0.95 174 1192 0 0.05 75 294 0

IIQP1 30 3 -7738098 11.73 - 7531701 1.53 0.72 179 996 0 0.01 69 26 0

IIQP1 30 4 -6070518 13.53 - 7558301 3.48 1.11 156 867 0 0.27 65 301 0

IIQP1 30 5 -10514171 11.94 - 7861657 2.75 0.05 27 30 0 0.05 23 17 0

IIQP1 40 1 -14186867 11.43 - 6017301 5.10 0.33 798 1259 0 0.06 296 296 0

IIQP1 40 2 -15447872 10.27 - 5456401 3.76 1.55 1015 2886 0 0.03 407 602 0

IIQP1 40 3 -11635872 11.79 - 5670701 5.29 0.87 754 2447 0 0.39 607 1041 0

IIQP1 40 4 -13820601 11.34 - 5757501 4.78 0.81 389 934 0 0.02 341 472 0

IIQP1 40 5 -12820428 11.49 - 5867501 5.43 0.95 799 2810 0 0.13 702 2010 0
- : Cplex was stopped after 1 hour

Table 4. Solution of (IIQP2)

NC MIQCR’ MIQCR

opt ig time (s) nodes fg ig time (s) nodes fg ig time (s) nodes fg

IIQP2 20 1 -11368326 9.62 18 34880 0 0.13 11 100 0 0.02 5 31 0

IIQP2 20 2 -8187686 24.73 - 8116218 7.94 8.54 800 33547 0 0.14 23 264 0

IIQP2 20 3 -8318158 19.69 - 7916261 3.58 4.49 36 286 0 0.02 12 111 0

IIQP2 20 4 -8362534 34.17 - 8178097 16.47 17.80 184 3145 0 0.37 17 189 0

IIQP2 20 5 -11277208 10.07 31 58193 0 0.03 7 0 0 0 3 3 0

IIQP2 30 1 -28283032 12.21 - 5727121 4.67 0.77 176 450 0 0.05 61 238 0

IIQP2 30 2 -24952930 20.73 - 6101801 11.61 2.94 2336 18480 0 0.08 728 3527 0

IIQP2 30 3 -20248934 22.67 - 6125254 12.86 8.52 1268 11495 0 0.04 498 2142 0

IIQP2 30 4 -24404197 15.14 - 5436644 6.48 2.51 474 2493 0 0.03 43 113 0

IIQP2 30 5 -26490741 19.66 - 6073422 10.55 2.68 494 2309 0 0.08 63 379 0

IIQP2 40 1 -45892717 14.43 - 4770061 8.25 0.62 676 787 0 0.01 161 81 0

IIQP2 40 2 -42436784 20.20 - 5285301 13.52 1.22 3132 2610 0 0 130 100 0

IIQP2 40 3 -37091366 24.38 - 5276161 17.49 7.12 - 3259 2.31 0.03 354 642 0

IIQP2 40 4 -41852435 20.86 - 5176123 14.35 3.83 - 4258 0.94 0.04 460 490 0

IIQP2 40 5 -40834676 18.22 - 5178724 11.92 2.16 2774 5283 0 0.01 544 975 0
- : Cplex was stopped after 1 hour


