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We address the exact solution of general integer quadratic programs with linear constraints.

These programs constitute a particular case of mixed-integer quadratic programs for which

we introduce in [3] a general solution method based on quadratic convex reformulation, that

we called MIQCR. This reformulation consists in designing an equivalent quadratic program

with a convex objective function. The problem reformulated by MIQCR has a relatively impor-

tant size that penalizes its solution time. In this paper, we propose a convex reformulation

less general than MIQCR because it is limited to the general integer case, but that has a signifi-

cantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR).

We evaluate CQCR from the computational point of view. We perform our experiments on

instances of general integer quadratic programs with one equality constraint. We show that

CQCR is much faster than MIQCR and than the general non-linear solver BARON [25] to solve

these instances. Then, we consider the particular class of binary quadratic programs. We

compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These

experiments show that CQCR can solve instances that MIQCR and other existing methods fail

to solve.

Key words: Quadratic Programming; Integer Programming; Exact Convex Reformulation;

Computational experiments

1 Introduction

Consider the following linearly-constrained integer quadratic program:

1



(QP )



min
x

f(x) =
n∑
i=1

n∑
j=1

qijxixj +
n∑
i=1

cixi

s.t.
n∑
i=1

arixi = br r ∈ R (1)

xi ≤ ui i ∈ I (2)
xi ≥ 0 i ∈ I (3)
xi ∈ N i ∈ I (4)

where A = (aij) ∈ Mm,n (set of m × n integer matrices), b ∈ Nm, I = {i : i = 1, . . . , n},
R = {r : r = 1, . . . ,m}, ui ∈ N (i ∈ I), Q = (qij) ∈ Sn (space of symmetric matrices of

order n), and c ∈ Rn. We shall suppose the feasible domain of (QP ) non-empty. We consider

here an equality constrained program. If some inequality constraints must be considered,

we suppose that they have been reformulated as equality constraints by adding integer and

upper bounded slack variables. This is always possible because all coefficients ari and br are

integer, and because variables are nonnegative and upper bounded.

(QP ) is a hard optimization problem [14]. It can be viewed as a generalization of Integer

Linear Programming where the main additional difficulty is the non-convexity of the objective

function (unless matrix Q is positive semi-definite). Many applications in operations research

and industrial engineering involve discrete variables in their formulation. Some of these

applications can be formulated as (QP ). For instance, (QP ) is used in [12] for the unit

commitment problem and for the Markowitz mean-variance model, in [13] for the chaotic

mapping of complete multipartite graphs, in [7] for the material cutting, and in [17] for the

capacity planning.

Problems such as (QP ) are often solved by branch-and-cut procedures. These algorithms

are based on a bound that can be generally computed polynomially. These bounds can, for

instance, be a convex approximation of (QP ). This is the case in general mixed-integer non-

linear algorithms that are based on global optimization techniques [1, 11, 19, 26, 29]. We

briefly recall here the method presented in [26] and implemented through the mixed-integer

non-linear solver BARON [25]. This algorithm is a polyhedral branch-and-cut procedure that

facilitates the reliable use of nonlinear convex relaxations in global optimization. It exploits

convexity in order to generate polyhedral cutting planes and relaxations for multivariate non-

convex problems. The mixed-integer non-linear solver BARON is able to solve an important

number of instances from globallib [15] and minlplib [23].

We also recall here the Mixed Integer Quadratic Convex Reformulation (MIQCR) that

was introduced in [3]. Here, for convex reformulation, we use the definition of Audet and
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al. [2], as we build an equivalent problem to (QP ) that has a quadratic and convex objective

function. This approach solves general mixed-integer quadratic problems and obviously can

handle (QP ). The idea of MIQCR is to design a problem equivalent to (QP ) with a convex

objective function. This equivalent problem is computed thanks to the solution of a semi-

definite relaxation of (QP ). The semi-definite relaxation and the reformulated problem

involve an important number of additional variables and constraints. In this paper, we

propose a Compact Quadratic Convex Reformulation (CQCR), based on the same ideas as

MIQCR, that handles general integer quadratic programs and that leads to a reformulated

problem and a semi-definite relaxation with smaller sizes.

From a theoretical point of view, our new approach CQCR uses a reformulated problem

which bound obtained by continuous relaxation is weaker than the one of MIQCR. However,

from the computational point of view, CQCR is much faster than MIQCR on instances of

the class EIQP (Equality Integer Quadratic Problem) [3, 21]. This reduced solution time

concerns both the semi-definite relaxation and the reformulated problem. We also compare

these two approaches on instances of the Constrained Task Assignment Problem (CTAP), a

particular case of (QP ) with binary variables.

The outline of the paper is the following. In Section 2, we recall the MIQCR approach

applied to (QP). In Section 3, we present our new compact reformulation CQCR. Then, in

Section 4, we report our computational evaluation of CQCR. Section 5 is a conclusion.
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2 MIQCR applied to (QP)

When applied to (QP ), MIQCR consists in reformulating it into the following parameterized

problem (QPα,β) [3, 4]:

(QPα,β)



min
x,y,z,t

fα,β(x, y)

s.t. (1)(2)(3)

xi =

blog(ui)c∑
k=0

2ktik i ∈ I (5)

zijk ≤ ujtik (i, k) ∈ E, j ∈ I (6)
zijk ≤ xj (i, k) ∈ E, j ∈ I (7)
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I (8)
zijk ≥ 0 (i, k) ∈ E, j ∈ I (9)

yij =

blog(ui)c∑
k=0

2kzijk (i, j) ∈ I2 (10)

yij ≥ uixj + ujxi − uiuj (i, j) ∈ I2 (11)
yii ≥ xi i ∈ I (12)
yij = yji (i, j) ∈ I2, i ≤ j (13)
tik ∈ {0, 1} (i, k) ∈ E (14)

where

fα,β(x, y) = f(x) +
n∑
i=1

n∑
j=1

βij(xixj − yij) + α
m∑
r=1

(
n∑
i=1

arixi − br)2

with α ∈ R, β ∈ Sn, E = {(i, k) : i = 1, . . . , n, k = 0, . . . blog(ui)c}.
In Constraints (5), we make a binary decomposition of variables xi by use of 0-1 variables

tik. Hence, any product of variables xixj can be written as

blog(ui)c∑
k=0

2ktikxj. We linearize the

last expression by use of variables zijk and Constraints (6)-(9) that enforce the equality

zijk = tikxj, when tik is 0 or 1. Variables yij satisfy yij = xixj by Constraints (10), and their

use allows us to avoid putting variables zijk and tik in the objective function. Moreover,

Constraints (11)-(13) are valid inequalities that tighten the formulation.

This linearization adds an important number of variables and constraints. More precisely,

if we denote by N = |E| =
n∑
i=1

(blog(ui)c+ 1) the number of t variables, (QPα,β) has O(nN)

variables and linear constraints.

Parameters α and β are interesting only when the reformulated function fα,β(x, y) is

convex. In this case, the continuous relaxation of (QPα,β) is a convex optimization problem,

and general mathematical programming solvers such as Cplex [18] can solve (QPα,β) through
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a Branch and Bound based on continuous relaxation. In [3], we state the problem of looking

for parameters α and β such that the continuous relaxation bound of (QPα,β) is maximized.

These best parameters can be computed as the dual solution of the following semi-definite

relaxation of (QP ), (SDP ), that has O(n2) variables and constraints:

(SDP )



min
X,x

f(X, x) =
n∑
i=1

n∑
j=1

qijXij +
n∑
i=1

cixi

s.t. (1)
m∑
r=1

(
n∑
i=1

(
n∑
j=1

ariarjXij − 2aribrxi)) = −
m∑
r=1

b2r (15)

Xij ≤ ujxi (i, j) ∈ I2 (16)
Xij ≤ uixj (i, j) ∈ I2 (17)
Xij ≥ ujxi + uixj − uiuj (i, j) ∈ I2 (18)
Xij ≥ 0 (i, j) ∈ I2 (19)
Xii ≥ xi i ∈ I (20)(

1 x
xT X

)
� 0 (21)

x ∈ Rn X ∈ Sn (22)

In MIQCR, we perturb the Q matrix of f(x) using a scalar parameter α and a matrix

parameter β. More precisely, we consider the perturbed matrix Qα,β = Q + αAAT + β. To

get the equivalent function fα,β(x, y), we use the additional variables yij and we subtract the

linear terms βijyij while adding linear constraints enforcing yij = xixj. However, in order to

make any matrix positive semi definite, it is sufficient to perturb its diagonal terms. We can

thus consider the perturbed matrix Qα,λ = Q+αAAT +diag(λ), where diag(λ) is a diagonal

matrix with the elements of vector λ on the diagonal. We denote by fα,λ(x, y) the associated

function perturbed by the scalar parameter α and the vector parameter λ.

3 A Compact Quadratic Convex Reformulation (CQCR)

In this section, following the same reasoning steps as in MIQCR, we propose a convex reformu-

lation of (QP ) that leads to a reformulated program with a reduced size. The main starting

idea is to perturb only the diagonal entries of Q, as described above, and thus to linearize

only the squared variables x2i . For given parameters α and λ, let (CQPα,λ) be the following
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program:

(CQPα,λ)



min
x,v,z,t

fα,λ(x, v) = f(x) + α
m∑
r=1

(
n∑
i=1

arixi − br)2 +
n∑
i=1

λi(x
2
i − vi)

s.t. (1)(2)(3)

xi =

blog(ui)c∑
k=0

2ktik i ∈ I (23)

zik ≤ uitik (i, k) ∈ E (24)
zik ≤ xi (i, k) ∈ E (25)
zik ≥ xi − ui(1− tik) (i, k) ∈ E (26)
zik ≥ 0 (i, k) ∈ E (27)

vi =

blog(ui)c∑
k=0

2kzik i ∈ I (28)

vi ≥ 2uixi − u2i i ∈ I (29)
vi ≥ xi i ∈ I (30)
tik ∈ {0, 1} (i, k) ∈ E (31)

Constraints (23) are identical to Constraints (5) of (QPα,β): they make a binary de-

composition of xi through the 0-1 variables tik. Then, x2i =

blog(ui)c∑
k=0

2ktikxi can be written

as

blog(ui)c∑
k=0

2kzik using variables zik and Constraints (24)-(27) to get the equality zik = tikxi.

Finally, Constraints (28) ensure vi = x2i . Constraint (29)-(30) strengthen the formulation.

Hence, problem (CQPα,λ) is equivalent to (QP ).

The advantage of this reformulation lies in the size of (CQPα,λ) that is of O(N) variables

and constraints, and is then about n times smaller than that of (QPα,β).

As in MIQCR, we are interested in the optimal convex reformulation within the new refor-

mulation scheme, i.e. we look for parameters α and λ such that fα,λ(x, v) is convex and the

bound obtained by continuous relaxation of (CQPα,λ) is as large as possible. The following

theorem provides a computation method for optimal parameters α∗ and λ∗.

Theorem 1 Let (SDP ′) be the following program:

(SDP ′)



min
X,x

f(X, x) =
n∑
i=1

n∑
j=1

qijXij +
n∑
i=1

cixi

s.t. (1)
(15)(20)(21)(22)
Xii ≤ uixi i ∈ I (32)
Xii ≥ 2uixi − u2i i ∈ I (33)
Xii ≥ 0 i ∈ I (34)
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An optimal solution (α∗, λ∗) can be deduced from the optimal values of the dual variables

of (SDP ′). The optimal parameter α∗ is the optimal value of the dual variable associated

with Constraint (15). The optimal parameters λ∗ are computed as λ∗ = λ1∗−λ2∗−λ3∗−λ4∗,
where λ1∗, λ2∗, λ3∗, and λ4∗ are the optimal values of the dual variables associated with

Constraints (32), (33), (34), and (20), respectively.

A proof can be deduced from [3] or [21]. We give here a sketch of the proof.

Sketch of proof.

1. Recall that we are searching for an optimal convex reformulation within our scheme.

We are thus interested in the optimal value of (CQPα,λ), where (CQPα,λ) is the con-

tinuous relaxation of (CQPα,λ) (i.e. relaxation of Constraints (31))

We then prove that the following program (Pα,λ) is equivalent to (CQPα,λ):

(Pα,λ)



min
x,v

fα,λ(x, v)

s.c. (1)
(29)(30)
vi ≥ 0 i ∈ I (35)
vi ≤ uixi i ∈ I (36)
x ∈ Rn, v ∈ Rn (37)

(Pα,λ) is much smaller than (CQPα,λ) since it does not contain the z and t variables,

but it however has the same optimal value as (CQPα,λ).

We are now searching for the optimal parameters α∗ and λ∗ that both make fα∗,λ∗(x, v)

convex, and maximize the optimal value of (CQPα,λ). This problem amounts to solve

the following problem:

(CP ) : max
α∈R, λ∈Rn

Qα,λ�0

{v(Pα,λ)}

where v(Pα,λ) is the optimal solution value of (Pα,λ) and Qα,λ is the Hessian matrix of

fα,λ(x, v).

2. We then prove that v(CP ) = v(SDP ′)

(a) We prove that v(CP ) ≤ v(SDP ′). More precisely, for any feasible solution (α, λ)

to (CP ), we show that v(Pα,λ) ≤ v(SDP ′). For this, from a feasible solution
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(X̄, x̄) of (SDP ′), we deduce a feasible solution (x, v) to (Pα,λ), that satisfies

fα,λ(x, v) ≤ f(X̄, x̄).

(b) We prove that v(CP ) ≥ v(SDP ′), or equivalently that v(CP ) ≥ v(DSDP ′),

where (DSDP ′) is the dual of (SDP ′). For this, from any feasible solution to

(DSDP ′), we build a feasible solution to (CP ), with a larger objective function

value.

2

Problems (SDP ) and (SDP ′) that allow to compute optimal parameter values for MIQCR

and CQCR, respectively, are two different semi-definite relaxations of (QP ). They differ from

each other by their number of constraints. Observe that Constraints (32)-(34) of (SDP ′)

represent the particular case j = i in Constraints (16)-(19) of (SDP ). Hence, (SDP ′) is a

weaker semi-definite relaxation than (SDP ), but it has O(n) constraints while (SDP ) has

O(n2) constraints without counting the Constraints (1) and (21).

As in MIQCR, where the optimal value of the continuous relaxation of (QPα∗,β∗) equals

the optimal value of (SDP ), the optimal value of the continuous relaxation of (CQPα∗,λ∗) is

here equal to the optimal value of (SDP ′).

The binary variables case:

In this case ui = 1 and Constraints (20),(32)-(34) amount to:
Xii ≥ xi (20′)
Xii ≤ xi (32′)
Xii ≥ 2xi − 1 (33′)
Xii ≥ 0 (34′)

Constraints (20’) and (32’) imply Xii = xi. Consequently, Constraints (33’) and (34’) be-

come 0 ≤ Xii ≤ 1 that are redundant with the combination of Constraint Xii = xi and (21).

Thus, Constraints (20),(32)-(34) can be replaced by Xii = xi. Similarly, in the reformulated

problem (CQPα,λ), Constraints (23)-(31) amount to xi = vi = zi0 = ti0 and ti0 ∈ {0, 1}. All

this is in coherence with the identity x2i = xi for binary variables. We claim that CQCR is

equivalent to QCR [5] for equality constrained binary quadratic programming, that is a method

specially designed for this class of problem. However, CQCR constitutes an improvement of

QCR, in terms of continuous relaxation bound, for inequality constrained binary quadratic

programming. Indeed, using integer slack variables, it allows to transform each inequality
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into an equality and to consider these new equality constraints in the convexification process.

As a conclusion of this section, we present the exact solution algorithm for general integer

non-convex quadratic programs (QP ) based on CQCR and described in Algorithm 1.

Algorithm 1 Solution algorithm to (QP ) based on CQCR

step 1: Solve (SDP ′).

step 2: Deduce α∗ and λ∗.

step 3: Solve (CQPα∗,λ∗) with a standard mixed-integer quadratic solver.

As already mentioned above, CQCR has the same main steps as MIQCR. It is based on the

solution of a semi-definite relaxation followed by the solution of a reformulated problem. On

the one hand, CQCR relies on a weaker semi-definite relaxation than MIQCR. On the other

hand, both the semi-definite problem (SDP ′), and the reformulated problem (CQPα∗,λ∗) are

about n times smaller in CQCR than in MIQCR.

In the following section, we present experiments that give a measurement of the global

efficiency of CQCR compared to MIQCR and to the general mixed-integer non-linear solver

BARON.

4 Computational results

In this section, we perform our experiments on instances of general integer quadratic pro-

grams with one equality constraint. Then, we consider the particular class of binary quadratic

programs on instances of the Constrained Task Assignment Problem.

Experimental environment:

Our experiments were carried out on a PC with an Intel core i7 processor of 1.73 GHz

and 6 GB of RAM using a Linux operating system for CQCR and MIQCR, and a Windows

operating system for BARON. We used the solver CSDP [6] for the semi-definite programs.

We used the solver Cplex version 12 [18] for solving the reformulated problems of CQCR and

MIQCR, and for the solver BARON.
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4.1 Experiments on the Equality Integer Quadratic Problem (EIQP )

Instances description:

Our experiments concern the Equality Integer Quadratic Problem (EIQP ) that consists

of minimizing a quadratic function subject to one linear equality constraint:

(EIQP )



min
x

xTQx+ cTx

s.t.

n∑
i=1

aixi = b

0 ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

We generate three classes of instances (EIQP1), (EIQP2) and (EIQP3). These instances

are available online [8].

Instances from class (EIQP1) and (EIQP2) were already used in [3, 21], and instances of

class (EIQP3) were already used in [21]. These instances are randomly generated as follows:

(EIQP1):

• The coefficients of Q and c are integers uniformly distributed in the interval [−100, 100].

More precisely, for any i ≤ j, a number ν is generated in [−100, 100], and then we set

qij = qji = ν. Q is hence a full dense symmetric matrix with integer coefficient in

[−100, 100].

• The ai coefficients are integers uniformly distributed in the interval [1, 50].

• b = 15 ∗
n∑
i=1

ai

• ui = 30, i ∈ I.

(EIQP2):

• The coefficients of Q and c are randomly generated as for (EIQP1).

• The ai coefficients are integers uniformly distributed in the interval [1, 100].

• b = 20 ∗
n∑
i=1

ai
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• ui = 50, i ∈ I.

(EIQP3):

• The coefficients of Q and c are randomly generated as for (EIQP1).

• The ai and b are randomly generated as for (EIQP2).

• ui = 70, i ∈ I.

For classes (EIQP1), (EIQP2), and (EIQP3), and for each n = 20, 30, or 40, we gen-

erate 5 instances obtaining a total of 45 instances. Each of these instances has at least one

solution since xi = b/
n∑
i=1

ai for all i is feasible.

Experimental results:

For these instances, we first compare the solution time of the whole process of meth-

ods CQCR and MIQCR with the solution time of the general mixed-integer non-linear solver

BARON. Then, we compare CQCR and MIQCR on several criterias : the initial gap, the SDP

solution time, the solution time after convex reformulation, and the number of nodes visited

for each approach.

The results are presented in Tables 1 and 2.

Legends of Table 1:

• Name: EIQPk n i, for k = {1, 2, 3}, where k is the class of the instance, n is the

number of variables, and i the number of the instance.

• Opt : The optimal solution value of the instance.

• BARON, MIQCR, or CQCR: CPU time (in seconds) required by all the process for CQCR

and MIQCR, i.e. solution time of the semi-definite relaxation + solution time of the

reformulated problem, and CPU time (in seconds) required by BARON for solving the

instance. If the optimum is not found within 2 hours of CPU time, we present the final

gap of BAR0N (g%), where g = upperbound−lowerbound
upperbound

∗ 100.

Legends of Table 2:
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• Name: EIQPk n i, for k = {1, 2, 3}, where k is the class of the instance, n is the

number of variables, and i the number of the instance.

• ig (initial gap):

∣∣∣∣Opt− lOpt

∣∣∣∣∗100 where l is the optimal value of the continuous relaxation

at the root node.

• T CSDP : CPU time (in seconds) required by CSDP for solving the semidefinite relax-

ation.

• T Cplex : CPU time (in seconds) required by Cplex for solving the convex integer

quadratic program after convex reformulation.

• Nodes : Number of nodes visited during the Branch and Cut algorithm

Table 1 focuses on the comparison of solution times. We observe that both MIQCR and

CQCR are able to solve all the instances of this class of problems in less that 2 hours of CPU

time, whereas BARON solves only 27 of the 45 instances considered. It is then clear that for

these classes of general integer quadratic instances MIQCR and CQCR are better suited than

BARON. Moreover, the total solution time is smaller for CQCR in comparison to MIQCR. The

average total solution time is divided for (EIQP1) (resp. (EIQP2) and (EIQP3)) by a factor

320 (resp. 339 and 81) with CQCR in comparison to MIQCR.

An additional comparison between approaches MIQCR and CQCR is presented in Table 2.

As mentioned in Section 3, CQCR leads to a reformulated problem with a weaker continuous

relaxation bound than MIQCR. For class (EIQP1) (resp. (EIQP2) and (EIQP3)) the average

gap of MIQCR is 18 (resp. 95 and 33) times smaller than that of CQCR.

However, the computation time of the solution of the SDP relaxation by the CSDP solver

is significantly smaller for CQCR. Indeed, for (EIQP1) (resp. (EIQP2) and (EIQP3)) the

average CSDP solution time is divided by a factor 763 (resp. 1245 and 1101) in comparison

to MIQCR.

If we focus on the computation time after convex reformulation, that is to say the solution

time of the integer quadratic convex problem by the solver Cplex, the results reveal a similar

trend than for the SDP solution time. Indeed, the average Cplex solution time over all the

instances is divided for (EIQP1) (resp. (EIQP2) and (EIQP3)) by a factor 131 (resp. 124

and 19) for CQCR in comparison to MIQCR.
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Table 1: Solution times or final gaps after 2 hours for the 45 instances of class (EIQP ) with
BARON, MIQCR and CQCR

Name Opt BARON MIQCR CQCR

EIQP1 20 1 -5311070 5.07 55.56 1.25
EIQP1 20 2 -5098379 2.78 40.37 1.28
EIQP1 20 3 -4554397 14.19 56.23 1.27
EIQP1 20 4 -5614860 1.23 35.30 0.26
EIQP1 20 5 -4354396 12.41 49.82 1.28
Average 7.14 47.46 1.07

EIQP1 30 1 -10210390 1026.93 444.86 1.66
EIQP1 30 2 -11243370 46.91 321.71 1.75
EIQP1 30 3 -9862120 527.87 589.59 2.70
EIQP1 30 4 -10720488 2552.91 382.59 1.65
EIQP1 30 5 -10835084 1965.84 494.92 2.69
Average 1224.09 446.74 2.09

EIQP1 40 1 -20907112 98.34 4730.20 2.37
EIQP1 40 2 -21274411 (3.49 %) 2243.17 3.23
EIQP1 40 3 -17033610 (11.56 %) 1861.70 2.26
EIQP1 40 4 -18268074 (5.23 %) 2718.84 6.23
EIQP1 40 5 -17373411 (30.54 %) 2751.04 6.28
Average 98.34 (1) 2860.99 4.07

EIQP2 20 1 -9321876 153.00 183.08 1.25
EIQP2 20 2 -9013418 107.03 57.07 0.24
EIQP2 20 3 -15337225 2.70 55.13 1.25
EIQP2 20 4 -11863777 19.86 109.12 2.26
EIQP2 20 5 -12095004 22.70 51.69 1.26
Average 61.06 91.22 1.25

EIQP2 30 1 -23592535 3550.27 642.13 3.66
EIQP2 30 2 -25924713 216.01 867.61 2.69
EIQP2 30 3 -21938906 7188.62 910.34 2.63
EIQP2 30 4 -29913305 193.46 827.72 3.65
EIQP2 30 5 -22422891 (10.80 %) 668.45 3.65
Average 2787.09 (4) 783.25 3.26

EIQP2 40 1 -42548497 (23.86 %) 2600.88 7.29
EIQP2 40 2 -35957464 (33.91 %) 7529.19 8.30
EIQP2 40 3 -40116963 (27.40 %) 3142.81 9.33
EIQP2 40 4 -51306080 186.50 5599.46 2.35
EIQP2 40 5 -38090192 (31.90 %) 5432.43 7.28
Average 186.50 (1) 4860.95 6.91

EIQP3 20 1 -13226046 61.04 158.70 0.27
EIQP3 20 2 -16400092 74.26 40.53 0.27
EIQP3 20 3 -13372984 78.05 73.88 1.27
EIQP3 20 4 -9904855 1610.04 137.40 3.25
EIQP3 20 5 -10903367 183.35 52.23 1.27
Average 401.35 92.55 1.27

EIQP3 30 1 -24412436 1003.52 366.65 4.62
EIQP3 30 2 -25640775 (26.99 %) 669.68 8.62
EIQP3 30 3 -23342586 (17.38 %) 505.95 4.65
EIQP3 30 4 -29843855 (11.50 %) 914.40 3.65
EIQP3 30 5 -26911633 (17.55 %) 1083.74 12.65
Average 1003.52 (1) 708.08 6.84

EIQP3 40 1 -50352748 (39.58 %) 2691.66 10.27
EIQP3 40 2 -46862608 (62.49 %) 2676.46 10.29
EIQP3 40 3 -51680153 (57.19 %) 2584.19 7.33
EIQP3 40 4 -49068049 (58.06 %) 4002.21 159.29
EIQP3 40 5 -36454613 (127.24 %) 6428.02 88.23
Average - (0) 3676.51 55.08

(i) : i instances out of 5 were solved within the time limit
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Table 2: Comparison of MIQCR and CQCR on the 45 instances of class (EIQP )

MIQCR CQCR
Name ig (%) T CSDP T Cplex Nodes ig (%) T CSDP T Cplex Nodes

EIQP1 20 1 0.09 35.56 20.00 2657 1.24 0.25 1.00 4647
EIQP1 20 2 0.13 30.37 10.00 368 0.24 0.28 1.00 918
EIQP1 20 3 0.06 33.23 23.00 1 1.38 0.27 1.00 1111
EIQP1 20 4 0 33.30 2.00 0 0.21 0.26 0 56
EIQP1 20 5 0.15 35.82 14.00 165 2.30 0.28 1.00 1057
Average 0.09 33.66 13.80 638 1.07 0.27 0.80 1557

EIQP1 30 1 0.04 352.86 92.00 51 1.36 0.66 1.00 1416
EIQP1 30 2 0.00 312.71 9.00 0 0.49 0.75 1.00 50
EIQP1 30 3 0.04 426.59 163.00 1125 1.55 0.70 2.00 2901
EIQP1 30 4 0.05 359.59 23.00 61 1.10 0.65 1.00 929
EIQP1 30 5 0.09 342.92 152.00 612 1.09 0.69 2.00 3076
Average 0.05 358.94 87.80 370 1.12 0.69 1.40 1674

EIQP1 40 1 0.04 1904.20 2826.00 1377 0.50 1.37 1.00 2095
EIQP1 40 2 0.04 1861.17 382.00 1253 1.54 1.23 2.00 2650
EIQP1 40 3 0 1832.70 29.00 0 1.34 1.26 1.00 812
EIQP1 40 4 0.04 2277.84 441.00 3750 1.70 1.23 5.00 8658
EIQP1 40 5 0.21 2056.04 695.00 3481 2.19 1.28 5.00 11894
Average 0.07 1986.39 874.60 1972 1.46 1.27 2.80 5222

EIQP2 20 1 0.14 41.08 142.00 4027 3.10 0.25 1.00 4359
EIQP2 20 2 0.00 51.07 6.00 8 3.89 0.24 0 498
EIQP2 20 3 0.03 33.13 22.00 559 1.35 0.25 1.00 1454
EIQP2 20 4 0.19 57.12 52.00 2502 2.67 0.26 2.00 4473
EIQP2 20 5 0.08 43.69 8.00 48 2.96 0.26 1.00 1277
Average 0.09 45.22 46.00 1429 2.79 0.25 1.00 2412

EIQP2 30 1 0.25 507.13 135.00 1089 3.06 0.66 3.00 6111
EIQP2 30 2 0.11 312.61 555.00 2144 0.65 0.69 2.00 4904
EIQP2 30 3 0.01 357.34 553.00 1190 2.32 0.63 2.00 8452
EIQP2 30 4 0.05 335.72 492.00 4140 0.78 0.65 3.00 6002
EIQP2 30 5 0.10 462.45 206.00 1560 3.20 0.65 3.00 6419
Average 0.10 395.05 388.20 2025 2.00 0.66 2.60 6378

EIQP2 40 1 0.02 2125.88 475.00 986 1.18 1.29 6.00 9086
EIQP2 40 2 0.05 4838.19 2691.00 6568 1.20 1.30 7.00 13363
EIQP2 40 3 0.05 2086.81 1056.00 5730 1.17 1.33 8.00 13346
EIQP2 40 4 0.00 5377.46 222.00 0 0.55 1.35 1.00 86
EIQP2 40 5 0.04 4932.43 500.00 2695 2.53 1.28 6.00 10845
Average 0.03 3872.15 988.80 3196 1.33 1.31 5.60 9345

EIQP3 20 1 0 158.70 0 8 2.94 0.27 0 1488
EIQP3 20 2 0.03 36.53 4.00 8 4.31 0.27 0 1714
EIQP3 20 3 0.16 43.88 30.00 522 5.01 0.27 1.00 2995
EIQP3 20 4 1.60 75.40 62.00 4412 11.27 0.25 3.00 7323
EIQP3 20 5 0.07 47.23 5.00 51 7.49 0.27 1.00 1922
Average 0.37 72.35 20.20 1000 6.20 0.27 1.00 3088

EIQP3 30 1 0.02 350.65 16.00 11 6.85 0.62 4.00 7516
EIQP3 30 2 0.23 410.68 259.00 5304 7.47 0.62 8.00 19398
EIQP3 30 3 0.05 394.95 111.00 3829 3.60 0.65 4.00 7581
EIQP3 30 4 0.04 845.40 69.00 936 3.06 0.65 3.00 4982
EIQP3 30 5 0.31 926.74 157.00 4297 6.77 0.65 12.00 29532
Average 0.13 585.68 122.40 2875 5.55 0.64 6.20 13802

EIQP3 40 1 0.01 2276.66 415.00 79 2.09 1.27 9.00 12784
EIQP3 40 2 0 2311.46 365.00 950 2.75 1.29 9.00 11036
EIQP3 40 3 0.04 1910.19 674.00 2191 2.30 1.33 6.00 6012
EIQP3 40 4 0.03 2322.21 1680.00 6604 6.08 1.29 158.00 245712
EIQP3 40 5 0.48 4753.02 1675.00 15584 7.98 1.23 87.00 121551
Average 0.11 2714.71 961.80 5082 1.28 4.24 53.80 79419

Hence, although MIQCR provides a much better bound, CQCR is more effective as it solves

faster all the 45 considered instances.
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4.2 Experiments on the Constrained Task Assignment Problem
(CTAP)

Description of the problem:

The Constrained Task Assignment Problem (CTAP) consists in finding an assignment

of tasks (facilities) to processors (locations) such that the memory constraints are satisfied,

and such that the total execution and communication cost is minimized. Problem CTAP

is a special case of the Generalized Quadratic Assignment Problem (GQAP). This problem

describes a broad class of binary programming problems, where M pair-wise related entities

must be assigned to N destinations constrained by the destinations’ ability to accommodate

them. The GQAP has numerous applications, including facility design, scheduling and

network design.

Several authors proposed algorithms specialized for solving the GQAP, as in [16, 22]. The

exact algorithm of Hahn and al. [16] is an algorithm based on a Reformulation Linearization

Technique [27] dual ascent procedure. The heuristic of Mateus and al. [22] is based on the

meta-heuristic GRASP [10], with path-relinking [20, 24].

We now describe more formally problem CTAP:

• A set of n tasks

• A set of m processors

• The execution cost eik of task i on processor k

• The communication cost cij between tasks i and j if they are assigned to different

processors

• The memory requirement si of task i

• The total available memory nk of processor k. The sum of memory requirements of

the tasks assigned to processor k must not exceed nk.

A natural mathematical formulation of CTAP can be considered by taking the variable

vector x = (xik), i = 1, . . . , n, k = 1, . . . ,m where xik is equal to 1 if task i is allocated to

processor k and is equal to 0 otherwise.
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Table 3: Four configurations of the CTAP instances

Config A Config B Config C Config D
inte [0,100] [0,10] [0,100] [0,0]
intc [0,100] [0,100] [0,10] [0,100]

Let c0 =
n−1∑
i=1

n∑
j=i+1

cij. The CTAP can be formulated by the following binary quadratic

program [9]:

(CTAP )



min
x

f(x) = c0 +
n∑
i=1

m∑
k=i

eikxik −
n−1∑
i=1

n∑
j=i+1

m∑
k=1

cijxikxjk

s.t.
m∑
k=1

xik = 1 i = 1, . . . , n (38)

n∑
i=1

sixik ≤ nk k = 1, . . . ,m (39)

x ∈ {0, 1}n×m i ∈ I (40)

Instances description:

We used the instances that were produced in [9] and are available online [28]. In these

instances, 4 configurations are considered. For each configuration, two classes of instances

are randomly generated: a class with a complete communication graph, called tassc, and a

second class where the density of the communication graph is 50%, called tass. This gives a

total of 8 types of instances. For each type, 5 instances of size 10 tasks and 3 processors, 5

instances of size 20 tasks and 5 processors, and 5 instances of size 24 tasks and 8 processors

are generated. We obtain a total of 120 instances. Note that several instances of size 24 tasks

and 8 processors are not feasible, this is why we report here the results of the 24 feasible

instances over the 40 initially generated.

Table 3 describes the 4 configurations. The execution costs eik are integers generated

in the interval inte, and the communication costs cij are integers generated in the interval

intc. For all the configurations, the sizes of the tasks si are integers generated in the interval

[1, 10], and the capacities of the processors nk are integers in the interval [S/m, 2 ∗ S/m]

where S =
n∑
i=1

si is the sum of all the task sizes. In this way, we are sure that the problem
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(CTAP ) has at least one fractional solution x̄ where ∀(i, k), x̄ik = 1
m

. The inequality con-

straints (39) are reformulated as equalities by use of slack variables ek that are integers in

the interval [0, nk].

Experimental results

Here we compare MIQCR with our new approach CQCR.

Legends of Table 4:

• Name: pnmgi, where p is the problem name, n the number of tasks, m the number of

processors, g the kind of generation as explained above, and i the instance letter.

• Opt : The optimal solution value of the instance.

• MIQCR or CQCR: CPU time (in seconds) required by all the process, i.e. solution time

of the semi-definite relaxation + solution time of the reformulated problem.

Legends of Tables 5-7:

• Name: pnmgi, where p is the problem name, n the number of tasks, m the number of

processors, g the kind of generation as explained above, and i the instance letter.

• Opt : The optimal solution value of the instance.

• Sol : The best solution value found within the time limit.

• T CSDP : CPU time (in seconds) required by CSDP for solving the semidefinite relax-

ation. More precisely, the solution time for solving (SDP ) in MIQCR, and the solution

time for solving (SDP ′) in CQCR.

• ig (initial gap):

∣∣∣∣Opt− lOpt

∣∣∣∣∗100 where, in MIQCR, l is the optimal value of the continuous

relaxation of (QPα∗,β∗), and, in CQCR, l is the optimal value of the continuous relaxation

of (CQPα∗,λ∗).

• T Cplex : CPU time (in seconds) required for solving the convex reformulations of

(QP ). More precisely, the solution time of Cplex for solving (QPα∗,β∗) in MIQCR, and

the solution time for solving (CQPα∗,λ∗) in CQCR. The time limit is fixed to 2 hours in
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both cases. If the optimum is not found within 2 hours of CPU time, we report the

final gap of CQCR (g%), where g =

∣∣∣∣Opt− lbOpt

∣∣∣∣ ∗ 100, where lb is the best bound found

after 2 hours of CPU time, and Opt is the optimal solution value of the instance [28].

• Nodes : number of nodes visited during each Branch and Bound procedure (MIQCR or

CQCR).

Only CQCR is able to handle instances of size larger than 10 tasks and 3 processors. This

is why for classes of problems tass and tassc 2005 and 2408, we do not present the results

of MIQCR. In these cases MIQCR is limited by the huge size of its semidefinite relaxation that

cannot be handled by CSDP.

The comparison between the solution time of MIQCR and CQCR is presented in Table 4 for

classes of problems tass and tassc of size 10 tasks and 3 processors. We observe that CQCR

is much faster than MIQCR. Indeed, the average solution time of CQCR is divided by a factor

of 1891 (resp. by a factor 6579) for class (tass)1003 (resp. (tassc)1003) in comparison to

MIQCR.

An additional comparison between MIQCR and CQCR for classes of problems (tass) and

(tassc) 1003 is presented in Tables 5. First, as expected, we observe that MIQCR gives a

better continuous relaxation bound than CQCR. Indeed, the average gap over all the instances

is multiplied by a factor of about 4 for CQCR in comparison to MIQCR. We observe that the

semidefinite relaxation of CQCR is much faster to solve than the MIQCR one. The average

semidefinite solution time over all the instances is improved for CQCR by a factor of about 6574

in comparison to MIQCR. We now focus on the computation time after convex reformulation,

that is to say the solution time to solve the quadratic and convex reformulated program of

MIQCR and CQCR by Cplex. The average solution time of CQCR is improved by a factor of

about 76 in comparison to MIQCR.

Results of classes tass and tassc of size 20 tasks and 5 processors and of size 24 tasks and

8 processors are presented in Tables 6 and 7, respectively. First, we observe that CQCR is able

to solve all the instances of size 20 tasks and 5 processors in less than 2 hours of CPU time,

and 6 instances over the 24 instances of size 24 tasks and 8 processors. In [16], Hahn and al.

make experiences on instances tass2005Aa, tassc2005De, tass2408Aa and tass2408Ca. In

their paper, with a specialized approach to solve GQAP, they solved tass2005Aa in 128 s.

(92.55 s. with CQCR), tassc2005De in 14390 s. (887.63 s. with CQCR), tass2408Aa in 719862

s. (about 200 hours) (we obtain a final gap of 0.09% in 7200 s. for CQCR). For the instance
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Table 4: Solution times of the 40 instances of classes tass and tassc 1003 with MIQCR and
CQCR

Opt MIQCR CQCR

tass1003Aa 731 476.71 0.10
tass1003Ab 713 469.89 0.06
tass1003Ac 645 391.19 0.06
tass1003Ad 688 422.69 1.06
tass1003Ae 715 398.31 0.06
Average 431.76 0.27
tass1003Ba 306 452.10 0.06
tass1003Bb 528 402.51 0.06
tass1003Bc 326 356.38 1.05
tass1003Bd 364 391.12 0.06
tass1003Be 324 428.81 0.06
Average 406.18 0.26
tass1003Ca 346 376.80 0.06
tass1003Cb 424 377.58 0.05
tass1003Cc 347 235.18 1.05
tass1003Cd 434 386.67 0.05
tass1003Ce 285 258.56 0.06
Average 326.96 0.26
tass1003Da 219 466.29 0.06
tass1003Db 402 392.82 0.05
tass1003Dc 297 416.33 0.05
tass1003Dd 445 438.40 0.05
tass1003De 358 405.80 0.05
Average 423.93 0.05

tassc1003Aa 1616 399.98 0.06
tassc1003Ab 1390 385.31 0.07
tassc1003Ac 1730 418.38 0.06
tassc1003Ad 1289 438.16 0.05
tassc1003Ae 1048 439.55 0.07
Average 416.27 0.06

tassc1003Ba 1299 425.97 0.07
tassc1003Bb 865 401.06 0.06
tassc1003Bc 1154 444.86 0.06
tassc1003Bd 834 408.11 0.06
tassc1003Be 812 406.86 0.06
Average 417.37 0.06

tassc1003Ca 455 424.39 0.06
tassc1003Cb 467 328.23 0.05
tassc1003Cc 475 344.60 0.05
tassc1003Cd 472 233.40 0.06
tassc1003Ce 350 249.19 0.06
Average 315.96 0.06

tassc1003Da 843 436.75 0.06
tassc1003Db 879 400.76 0.06
tassc1003Dc 1230 439.47 0.06
tassc1003Dd 956 453.50 0.06
tassc1003De 848 416.21 0.06
Average 429.34 0.06
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Table 5: Comparison of MIQCR and CQCR on the 40 instances of classes tass and tassc 1003
MIQCR CQCR

opt ig (%) T CSDP T Cplex Nodes ig (%) T CSDP T Cplex Nodes
tass1003Aa 731 8.17 474.71 2.00 70 22.45 0.10 0 339
tass1003Ab 713 1.99 468.89 1.00 10 14.75 0.06 0 143
tass1003Ac 645 8.36 389.19 2.00 80 22.52 0.06 0 409
tass1003Ad 688 0.22 421.69 1.00 7 16.77 0.06 1.00 191
tass1003Ae 715 5.44 397.31 1.00 135 20.61 0.06 0 379
Average 4.84 430.36 1.40 60 19.42 0.07 0.20 292
tass1003Ba 306 10.27 450.10 2.00 40 35.68 0.06 0 242
tass1003Bb 528 8.80 399.51 3.00 172 31.11 0.06 0 372
tass1003Bc 326 0 354.38 2.00 113 31.50 0.05 1.00 656
tass1003Bd 364 9.84 388.12 3.00 120 37.31 0.06 0 143
tass1003Be 324 0 427.81 1.00 39 41.06 0.06 0 155
Average 5.78 403.98 2.20 97 35.33 0.06 0.20 314
tass1003Ca 346 0.01 375.80 1.00 0 4.08 0.06 0 25
tass1003Cb 424 1.96 376.58 1.00 0 3.60 0.05 0 0
tass1003Cc 347 0 235.18 0 0 0.85 0.05 1.00 1
tass1003Cd 434 3.72 385.67 1.00 13 4.56 0.05 0 7
tass1003Ce 285 0 258.56 0 0 2.62 0.06 0 18
Average 1.14 326.36 0.60 3 3.14 0.06 0.20 10
tass1003Da 219 0 464.29 2.00 19 45.88 0.06 0 38
tass1003Db 402 0 389.82 3.00 385 27.95 0.05 0 977
tass1003Dc 297 14.95 414.33 2.00 250 34.88 0.05 0 512
tass1003Dd 445 5.33 436.40 2.00 142 32.79 0.05 0 234
tass1003De 358 12.54 403.80 2.00 121 37.43 0.05 0 582
Average 6.56 421.73 2.20 183 35.79 0.05 0 469

tassc1003Aa 1616 7.62 397.98 2.00 224 15.50 0.06 0 321
tassc1003Ab 1390 0 385.31 0 0 13.95 0.07 0 223
tassc1003Ac 1730 0.80 417.38 1.00 15 7.33 0.06 0 74
tassc1003Ad 1289 3.90 437.16 1.00 49 12.35 0.05 0 183
tassc1003Ae 1048 2.51 438.55 1.00 21 12.28 0.07 0 133
Average 2.97 415.27 1.00 62 12.28 0.06 0 187

tassc1003Ba 1299 1.73 423.97 2.00 80 15.50 0.07 0 172
tassc1003Bb 865 0 399.06 2.00 199 33.61 0.06 0 600
tassc1003Bc 1154 11.84 441.86 3.00 276 23.47 0.06 0 351
tassc1003Bd 834 13.39 406.11 2.00 206 37.61 0.06 0 496
tassc1003Be 812 16.48 404.86 2.00 88 32.04 0.06 0 219
Average 8.69 415.17 2.20 170 28.44 0.06 0 368

tassc1003Ca 455 1.78 423.39 1.00 23 4.32 0.06 0 30
tassc1003Cb 467 1.32 327.23 1.00 3 3.54 0.05 0 19
tassc1003Cc 475 0.64 344.60 0 1 3.38 0.05 0 8
tassc1003Cd 472 0 233.40 0 0 1.24 0.06 0 1
tassc1003Ce 350 0 249.19 0 0 5.53 0.06 0 12
Average 0.75 315.56 0.40 5 3.60 0.06 0 14

tassc1003Da 843 0.73 435.75 1.00 16 18.84 0.06 0 119
tassc1003Db 879 4.93 398.76 2.00 20 21.50 0.06 0 248
tassc1003Dc 1230 11.24 436.47 3.00 305 32.06 0.06 0 715
tassc1003Dd 956 4.52 451.50 2.00 43 17.55 0.06 0 122
tassc1003De 848 19.85 414.21 2.00 313 35.45 0.06 0 684
Average 8.25 427.34 2.00 139 25.08 0.06 0 378
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Table 6: Solution of the 40 instances of classes tass and tassc 2005 with CQCR
CQCR

Opt ig (%) T CSDP T Cplex Nodes
tass2005Aa 3059 15.90 0.55 92.00 156137
tass2005Ab 2954 15.74 0.62 65.00 128105
tass2005Ac 3012 28.52 0.60 441.00 940313
tass2005Ad 3174 19.44 0.58 418.00 777018
tass2005Ae 3054 28.46 0.64 807.00 1613380
Average 21.61 0.60 364.60 722991
tass2005Ba 2442 24.96 0.59 2565.00 4098384
tass2005Bb 2088 26.77 0.67 219.00 387686
tass2005Bc 1986 45.51 0.67 466.00 987663
tass2005Bd 2449 35.44 0.67 1273.00 2640252
tass2005Be 2453 22.84 0.58 106.00 191263
Average 31.10 0.64 925.80 1661050
tass2005Ca 783 3.50 0.59 2.00 934
tass2005Cb 636 6.96 0.57 3.00 6962
tass2005Cc 772 4.96 0.58 2.00 3671
tass2005Cd 682 2.56 0.58 0 47
tass2005Ce 732 3.17 0.56 1.00 495
Average 0.58 4.23 1.60 2422
tass2005Da 2413 27.89 0.61 2210.00 3727651
tass2005Db 2316 30.95 0.59 636.00 1085785
tass2005Dc 1965 45.04 0.61 313.00 624536
tass2005Dd 2211 38.91 0.62 786.00 1467529
tass2005De 2302 30.22 0.57 408.00 668291
Average 0.60 34.60 870.60 1514758

tassc2005Aa 6412 20.39 0.66 641.00 1465539
tassc2005Ab 6260 10.50 0.58 11.00 22654
tassc2005Ac 6491 13.30 0.65 14.00 35426
tassc2005Ad 6267 16.17 0.63 78.00 147410
tassc2005Ae 6194 12.92 0.64 36.00 76297
Average 14.65 0.63 156.00 349465

tassc2005Ba 5420 21.53 0.68 178.00 372343
tassc2005Bb 5370 20.69 0.61 129.00 242784
tassc2005Bc 5645 23.06 0.59 7096.00 13911347
tassc2005Bd 5420 21.64 0.60 257.00 488492
tassc2005Be 5836 28.63 0.61 539.00 1161577
Average 23.11 0.62 1639.80 3235309

tassc2005Ca 1181 7.26 0.58 34.00 52581
tassc2005Cb 1017 6.85 0.63 1.00 2994
tassc2005Cc 1197 9.38 0.62 23.00 43629
tassc2005Cd 1038 4.84 0.58 1.00 1167
tassc2005Ce 1166 5.58 0.58 5.00 10861
Average 6.78 0.60 12.80 22246

tassc2005Da 5139 17.22 0.58 19.00 36744
tassc2005Db 5519 20.97 0.61 882.00 1534662
tassc2005Dc 5907 13.31 0.58 289.00 499546
tassc2005Dd 5494 20.16 0.66 399.00 801283
tassc2005De 5435 25.48 0.63 887.00 1731446
Average 19.43 0.61 495.20 920736
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Table 7: Solution of the 24 instances of classes tass and tassc 2408 with CQCR
CQCR

Opt Sol ig (%) T CSDP T Cplex Nodes
tass2408Aa 5643 5648 19.60 1.64 (0.09%) 3495146
tass2408Ab 5339 5339 20.21 1.63 (0.66 %) 3824791
tass2408Ac 4896 4919 21.95 1.50 (0.47 %) 4231497
tass2408Ae 5416 5416 22.12 1.64 3710 3435829
Average 20.97 1.60 3710 (1) 3435829 (1)
tass2408Ba 4654 4673 21.09 1.70 (0.41 %) 3906481
tass2408Bc 4173 4204 24.06 1.70 (0.74 %) 3947823
tass2408Be 4487 4487 25.50 1.68 (0 %) 4196913
Average 23.55 1.69 - (0) - (0)
tass2408Ca 957 957 7.77 1.80 8.00 7938
tass2408Cc 1016 1016 7.20 1.92 2.00 1195
tass2408Ce 960 960 5.64 1.77 17.00 16700
Average 6.87 1.83 9.00 8611
tass2408Db 4743 4744 22.95 1.56 ( 0.02%) 4772083
tass2408Dc 4036 4068 30.41 1.62 ( 0.79%) 5874322
tass2408Dd 4169 4203 23.91 1.62 (0.82 %) 4157146
tass2408De 3963 3987 27.36 1.71 (0.61 %) 4440719
Average 26.16 1.63 - (0) - (0)

tassc2408Ae 10359 10464 18.26 1.62 ( 1.01%) 4253030
Average 18.26 1.62 - (0) - (0)

tassc2408Bc 10341 10372 12.53 1.62 ( 0.30%) 3360046
tassc2408Bd 10226 10274 11.29 1.62 ( 0.47%) 3145183
Average 11.91 1.62 - (0) - (0)

tassc2408Cc 1641 1641 4.47 1.62 252.00 174279
tassc2408Cd 1520 1520 3.75 1.79 3.00 1918
Average 4.11 1.71 127.5 88098

tassc2408Da 10557 10562 13.79 1.75 (0.05 %) 3979150
tassc2408Db 10427 10516 19.10 1.63 (0.85 %) 4555744
tassc2408Dc 9202 9202 18.42 1.58 ( 0%) 4717833
tassc2408Dd 9312 9312 19.08 1.62 (0 %) 4621036
tassc2408De 9268 9363 18.86 1.70 (1.03 %) 4307644
Average 17.85 1.66 - (0) - (0)

(i) : i instances out of 5 were solved within the time limit
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tass2408Ca, they spend 6.6 s. to obtain a solution value 1028 at 7.4% of the optimum, while

we solve the instance in 9.8 s. with CQCR.

5 Conclusion

In this paper we have presented an efficient Compact Quadratic Convex Reformulation to

solve general integer quadratic programs. This convex reformulation, called CQCR, consists

in designing a new quadratic problem that is equivalent to the initial problem and that

has a convex objective function. This reformulation is computed thanks to a semi-definite

relaxation of the initial problem. CQCR is inspired of ideas of a more general quadratic con-

vex reformulation, called MIQCR, that handles general mixed-integer quadratic programs. A

drawback of MIQCR is the important size of both its semidefinite relaxation and its reformu-

lated program. Our compact reformulation, CQCR, leads to a semidefinite relaxation and a

reformulated problem both having much smaller sizes. However, the continuous relaxation

value of CQCR is weaker than that of MIQCR. We evaluate CQCR from the computational point

of view. We perform our experiences on two classes of instances. The first one concerns

general integer programs with one linear equality constraint. We show that CQCR is sig-

nificantly faster than MIQCR to solve the considered instances. The second class concerns

binary quadratic programming, and more precisely the Constrained Task Assignment Prob-

lem (CTAP). Our results show that CQCR is a better approach in terms of computational

time and is up to solve almost the considered instances in less than 2 hours of CPU time.
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