An efficient Compact Quadratic Convex Reformulation for general integer quadratic programs

Alain Billionnet, Sourour Elloumi

CEDRIC-ENSIIE, 1, square de la résistance, F-91025 Evry cedex, France {alain.billionnet@ensiie.fr, sourour.elloumi@ensiie.fr}

Amélie Lambert

CEDRIC-CNAM, 292 rue saint Martin, F-75141 Paris Cedex 03, France amelie.lambert@cnam.fr

We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in [3] a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation (EQCR) we evaluate that MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON [25] to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.

Key words: Quadratic Programming; Integer Programming; Exact Convex Reformulation; Computational experiments

1 Introduction

Consider the following linearly-constrained integer quadratic program:

$$(QP) \begin{cases} \min_{x} f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j + \sum_{i=1}^{n} c_i x_i \\ s.t. & \sum_{i=1}^{n} a_{ri} x_i = b_r \quad r \in R \quad (1) \\ x_i \le u_i & i \in I \quad (2) \\ x_i \ge 0 & i \in I \quad (3) \\ x_i \in \mathbb{N} & i \in I \quad (4) \end{cases}$$

where $A = (a_{ij}) \in \mathbf{M}_{m,n}$ (set of $m \times n$ integer matrices), $b \in \mathbb{N}^m$, $I = \{i : i = 1, ..., n\}$, $R = \{r : r = 1, ..., m\}$, $u_i \in \mathbb{N} (i \in I)$, $Q = (q_{ij}) \in \mathbf{S}_n$ (space of symmetric matrices of order n), and $c \in \mathbb{R}^n$. We shall suppose the feasible domain of (QP) non-empty. We consider here an equality constrained program. If some inequality constraints must be considered, we suppose that they have been reformulated as equality constraints by adding integer and upper bounded slack variables. This is always possible because all coefficients a_{ri} and b_r are integer, and because variables are nonnegative and upper bounded.

(QP) is a hard optimization problem [14]. It can be viewed as a generalization of Integer Linear Programming where the main additional difficulty is the non-convexity of the objective function (unless matrix Q is positive semi-definite). Many applications in operations research and industrial engineering involve discrete variables in their formulation. Some of these applications can be formulated as (QP). For instance, (QP) is used in [12] for the unit commitment problem and for the Markowitz mean-variance model, in [13] for the chaotic mapping of complete multipartite graphs, in [7] for the material cutting, and in [17] for the capacity planning.

Problems such as (QP) are often solved by branch-and-cut procedures. These algorithms are based on a bound that can be generally computed polynomially. These bounds can, for instance, be a convex approximation of (QP). This is the case in general mixed-integer nonlinear algorithms that are based on global optimization techniques [1, 11, 19, 26, 29]. We briefly recall here the method presented in [26] and implemented through the mixed-integer non-linear solver BARON [25]. This algorithm is a polyhedral branch-and-cut procedure that facilitates the reliable use of nonlinear convex relaxations in global optimization. It exploits convexity in order to generate polyhedral cutting planes and relaxations for multivariate nonconvex problems. The mixed-integer non-linear solver BARON is able to solve an important number of instances from globallib [15] and minlplib [23].

We also recall here the Mixed Integer Quadratic Convex Reformulation (MIQCR) that was introduced in [3]. Here, for convex reformulation, we use the definition of Audet and al. [2], as we build an equivalent problem to (QP) that has a quadratic and convex objective function. This approach solves general mixed-integer quadratic problems and obviously can handle (QP). The idea of MIQCR is to design a problem equivalent to (QP) with a convex objective function. This equivalent problem is computed thanks to the solution of a semidefinite relaxation of (QP). The semi-definite relaxation and the reformulated problem involve an important number of additional variables and constraints. In this paper, we propose a Compact Quadratic Convex Reformulation (CQCR), based on the same ideas as MIQCR, that handles general integer quadratic programs and that leads to a reformulated problem and a semi-definite relaxation with smaller sizes.

From a theoretical point of view, our new approach CQCR uses a reformulated problem which bound obtained by continuous relaxation is weaker than the one of MIQCR. However, from the computational point of view, CQCR is much faster than MIQCR on instances of the class EIQP (Equality Integer Quadratic Problem) [3, 21]. This reduced solution time concerns both the semi-definite relaxation and the reformulated problem. We also compare these two approaches on instances of the Constrained Task Assignment Problem (CTAP), a particular case of (QP) with binary variables.

The outline of the paper is the following. In Section 2, we recall the MIQCR approach applied to (QP). In Section 3, we present our new compact reformulation CQCR. Then, in Section 4, we report our computational evaluation of CQCR. Section 5 is a conclusion.

2 MIQCR applied to (QP)

When applied to (QP), MIQCR consists in reformulating it into the following parameterized problem $(QP_{\alpha,\beta})$ [3, 4]:

$$(QP_{\alpha,\beta}) \begin{cases} \min_{x,y,z,t} & f_{\alpha,\beta}(x,y) \\ s.t. & (1)(2)(3) \\ & & \downarrow^{\log(u_i)\rfloor} \\ x_i = \sum_{k=0}^{k=0} 2^k t_{ik} & i \in I \quad (5) \\ & & z_{ijk} \le u_j t_{ik} & (i,k) \in E, j \in I \quad (6) \\ & & z_{ijk} \ge x_j - u_j(1 - t_{ik}) & (i,k) \in E, j \in I \quad (7) \\ & & z_{ijk} \ge 0 & (i,k) \in E, j \in I \quad (8) \\ & & z_{ijk} \ge 0 & (i,k) \in E, j \in I \quad (9) \\ & & \downarrow^{\log(u_i)\rfloor} \\ y_{ij} = \sum_{k=0}^{k=0} 2^k z_{ijk} & (i,j) \in I^2 \quad (10) \\ & & y_{ij} \ge u_i x_j + u_j x_i - u_i u_j \quad (i,j) \in I^2 \quad (11) \\ & & y_{ij} = y_{ji} & (i,j) \in I^2, i \le j \quad (13) \\ & & t_{ik} \in \{0,1\} & (i,k) \in E \quad (14) \end{cases}$$

where

$$f_{\alpha,\beta}(x,y) = f(x) + \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij}(x_i x_j - y_{ij}) + \alpha \sum_{r=1}^{m} (\sum_{i=1}^{n} a_{ri} x_i - b_r)^2$$

with $\alpha \in \mathbb{R}, \beta \in \mathbf{S}_n, E = \{(i,k) : i = 1, \dots, n, k = 0, \dots \lfloor log(u_i) \rfloor \}.$

In Constraints (5), we make a binary decomposition of variables x_i by use of 0-1 variables t_{ik} . Hence, any product of variables $x_i x_j$ can be written as $\sum_{k=0}^{\lfloor \log(u_i) \rfloor} 2^k t_{ik} x_j$. We linearize the last expression by use of variables z_{ijk} and Constraints (6)-(9) that enforce the equality $z_{ijk} = t_{ik} x_j$, when t_{ik} is 0 or 1. Variables y_{ij} satisfy $y_{ij} = x_i x_j$ by Constraints (10), and their use allows us to avoid putting variables z_{ijk} and t_{ik} in the objective function. Moreover, Constraints (11)-(13) are valid inequalities that tighten the formulation.

This linearization adds an important number of variables and constraints. More precisely, if we denote by $N = |E| = \sum_{i=1}^{n} (\lfloor log(u_i) \rfloor + 1)$ the number of t variables, $(QP_{\alpha,\beta})$ has O(nN) variables and linear constraints.

Parameters α and β are interesting only when the reformulated function $f_{\alpha,\beta}(x,y)$ is convex. In this case, the continuous relaxation of $(QP_{\alpha,\beta})$ is a convex optimization problem, and general mathematical programming solvers such as Cplex [18] can solve $(QP_{\alpha,\beta})$ through a Branch and Bound based on continuous relaxation. In [3], we state the problem of looking for parameters α and β such that the continuous relaxation bound of $(QP_{\alpha,\beta})$ is maximized. These best parameters can be computed as the dual solution of the following semi-definite relaxation of (QP), (SDP), that has $O(n^2)$ variables and constraints:

$$(SDP) \begin{cases} \min_{X,x} f(X,x) = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} X_{ij} + \sum_{i=1}^{n} c_i x_i \\ s.t. \quad (1) \\ \sum_{r=1}^{m} (\sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ri} a_{rj} X_{ij} - 2a_{ri} b_r x_i)) = -\sum_{r=1}^{m} b_r^2 \\ X_{ij} \leq u_j x_i \\ X_{ij} \leq u_i x_j \\ X_{ij} \geq u_i x_j + u_i x_j - u_i u_j \\ X_{ij} \geq 0 \\ X_{ii} \geq x_i \\ X_{ii} \geq x_i \\ X_{ii} \geq x_i \\ X_{ii} \geq 0 \\ X_{ii} \geq 0$$

In MIQCR, we perturb the Q matrix of f(x) using a scalar parameter α and a matrix parameter β . More precisely, we consider the perturbed matrix $Q_{\alpha,\beta} = Q + \alpha AA^T + \beta$. To get the equivalent function $f_{\alpha,\beta}(x,y)$, we use the additional variables y_{ij} and we subtract the linear terms $\beta_{ij}y_{ij}$ while adding linear constraints enforcing $y_{ij} = x_ix_j$. However, in order to make any matrix positive semi definite, it is sufficient to perturb its diagonal terms. We can thus consider the perturbed matrix $Q_{\alpha,\lambda} = Q + \alpha AA^T + diag(\lambda)$, where $diag(\lambda)$ is a diagonal matrix with the elements of vector λ on the diagonal. We denote by $f_{\alpha,\lambda}(x,y)$ the associated function perturbed by the scalar parameter α and the vector parameter λ .

3 A Compact Quadratic Convex Reformulation (CQCR)

In this section, following the same reasoning steps as in MIQCR, we propose a convex reformulation of (QP) that leads to a reformulated program with a reduced size. The main starting idea is to perturb only the diagonal entries of Q, as described above, and thus to linearize only the squared variables x_i^2 . For given parameters α and λ , let $(CQP_{\alpha,\lambda})$ be the following program:

$$\begin{cases} \min_{x,v,z,t} & f_{\alpha,\lambda}(x,v) = f(x) + \alpha \sum_{r=1}^{m} (\sum_{i=1}^{n} a_{ri}x_{i} - b_{r})^{2} + \sum_{i=1}^{n} \lambda_{i}(x_{i}^{2} - v_{i}) \\ s.t. & (1)(2)(3) \\ & x_{i} = \sum_{k=0}^{\lfloor \log(u_{i}) \rfloor} 2^{k} t_{ik} & i \in I \\ & z_{ik} \leq u_{i}t_{ik} & (i,k) \in E \end{cases}$$
(24)

$$(CQP_{\alpha,\lambda}) \begin{cases} z_{ik} \le x_i & (i,k) \in E \\ z_{ik} \ge x_i - u_i(1 - t_{ik}) & (i,k) \in E \\ z_{ik} > 0 & (i,k) \in E \end{cases}$$
(25)
(26)
(27)

$$z_{ik} \ge 0 \qquad (i,k) \in E \qquad (27)$$
$$v_i = \sum_{k=0}^{\lfloor \log(u_i) \rfloor} 2^k z_{ik} \qquad i \in I \qquad (28)$$

$$\begin{array}{ll}
v_i \ge 2u_i x_i - u_i^2 & i \in I \\
v_i \ge x_i & i \in I
\end{array} \tag{29}$$

$$t_{ik} \in \{0, 1\}$$
 $t \in I$ (30)
 $(i, k) \in E$ (31)

Constraints (23) are identical to Constraints (5) of $(QP_{\alpha,\beta})$: they make a binary decomposition of x_i through the 0-1 variables t_{ik} . Then, $x_i^2 = \sum_{k=0}^{\lfloor log(u_i) \rfloor} 2^k t_{ik} x_i$ can be written $\lfloor log(u_i) \rfloor$

as $\sum_{k=0}^{N-1} 2^k z_{ik}$ using variables z_{ik} and Constraints (24)-(27) to get the equality $z_{ik} = t_{ik}x_i$. Finally, Constraints (28) ensure $v_i = x_i^2$. Constraint (29)-(30) strengthen the formulation. Hence, problem $(CQP_{\alpha,\lambda})$ is equivalent to (QP).

The advantage of this reformulation lies in the size of $(CQP_{\alpha,\lambda})$ that is of O(N) variables and constraints, and is then about *n* times smaller than that of $(QP_{\alpha,\beta})$.

As in MIQCR, we are interested in the optimal convex reformulation within the new reformulation scheme, i.e. we look for parameters α and λ such that $f_{\alpha,\lambda}(x,v)$ is convex and the bound obtained by continuous relaxation of $(CQP_{\alpha,\lambda})$ is as large as possible. The following theorem provides a computation method for optimal parameters α^* and λ^* .

Theorem 1 Let (SDP') be the following program:

$$(SDP') \begin{cases} \min_{X,x} f(X,x) = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} X_{ij} + \sum_{i=1}^{n} c_i x_i \\ s.t. \quad (1) \\ (15)(20)(21)(22) \\ X_{ii} \leq u_i x_i \quad i \in I \quad (32) \\ X_{ii} \geq 2u_i x_i - u_i^2 \quad i \in I \quad (33) \\ X_{ii} \geq 0 \quad i \in I \quad (34) \end{cases}$$

An optimal solution (α^*, λ^*) can be deduced from the optimal values of the dual variables of (SDP'). The optimal parameter α^* is the optimal value of the dual variable associated with Constraint (15). The optimal parameters λ^* are computed as $\lambda^* = \lambda^{1*} - \lambda^{2*} - \lambda^{3*} - \lambda^{4*}$, where λ^{1*} , λ^{2*} , λ^{3*} , and λ^{4*} are the optimal values of the dual variables associated with Constraints (32), (33), (34), and (20), respectively.

A proof can be deduced from [3] or [21]. We give here a sketch of the proof. Sketch of proof.

1. Recall that we are searching for an optimal convex reformulation within our scheme. We are thus interested in the optimal value of $(\overline{CQP}_{\alpha,\lambda})$, where $(\overline{CQP}_{\alpha,\lambda})$ is the continuous relaxation of $(CQP_{\alpha,\lambda})$ (i.e. relaxation of Constraints (31))

We then prove that the following program $(P_{\alpha,\lambda})$ is equivalent to $(\overline{CQP}_{\alpha,\lambda})$:

$$(P_{\alpha,\lambda}) \begin{cases} \min_{x,v} & f_{\alpha,\lambda}(x,v) \\ s.c. & (1) \\ & (29)(30) \\ & v_i \ge 0 & i \in I \quad (35) \\ & v_i \le u_i x_i & i \in I \quad (36) \\ & x \in \mathbb{R}^n, v \in \mathbb{R}^n \quad (37) \end{cases}$$

 $(P_{\alpha,\lambda})$ is much smaller than $(\overline{CQP}_{\alpha,\lambda})$ since it does not contain the z and t variables, but it however has the same optimal value as $(\overline{CQP}_{\alpha,\lambda})$.

We are now searching for the optimal parameters α^* and λ^* that both make $f_{\alpha^*,\lambda^*}(x,v)$ convex, and maximize the optimal value of $(\overline{CQP}_{\alpha,\lambda})$. This problem amounts to solve the following problem:

$$(CP): \max_{\substack{\alpha \in \mathbb{R}, \quad \lambda \in \mathbb{R}^n \\ Q_{\alpha,\lambda} \succeq 0}} \{v(P_{\alpha,\lambda})\}$$

where $v(P_{\alpha,\lambda})$ is the optimal solution value of $(P_{\alpha,\lambda})$ and $Q_{\alpha,\lambda}$ is the Hessian matrix of $f_{\alpha,\lambda}(x,v)$.

- 2. We then prove that v(CP) = v(SDP')
 - (a) We prove that $v(CP) \leq v(SDP')$. More precisely, for any feasible solution (α, λ) to (CP), we show that $v(P_{\alpha,\lambda}) \leq v(SDP')$. For this, from a feasible solution

 (\bar{X}, \bar{x}) of (SDP'), we deduce a feasible solution (x, v) to $(P_{\alpha,\lambda})$, that satisfies $f_{\alpha,\lambda}(x, v) \leq f(\bar{X}, \bar{x})$.

(b) We prove that $v(CP) \ge v(SDP')$, or equivalently that $v(CP) \ge v(DSDP')$, where (DSDP') is the dual of (SDP'). For this, from any feasible solution to (DSDP'), we build a feasible solution to (CP), with a larger objective function value.

Problems (SDP) and (SDP') that allow to compute optimal parameter values for MIQCR and CQCR, respectively, are two different semi-definite relaxations of (QP). They differ from each other by their number of constraints. Observe that Constraints (32)-(34) of (SDP')represent the particular case j = i in Constraints (16)-(19) of (SDP). Hence, (SDP') is a weaker semi-definite relaxation than (SDP), but it has O(n) constraints while (SDP) has $O(n^2)$ constraints without counting the Constraints (1) and (21).

As in MIQCR, where the optimal value of the continuous relaxation of (QP_{α^*,β^*}) equals the optimal value of (SDP), the optimal value of the continuous relaxation of $(CQP_{\alpha^*,\lambda^*})$ is here equal to the optimal value of (SDP').

The binary variables case:

In this case $u_i = 1$ and Constraints (20),(32)-(34) amount to:

1	$X_{ii} \ge x_i$	(20')
	$X_{ii} \le x_i$	(32')
Ì	$X_{ii} \ge 2x_i - 1$	(33')
	$X_{ii} \ge 0$	(34')
	(00)	2) . 1

Constraints (20') and (32') imply $X_{ii} = x_i$. Consequently, Constraints (33') and (34') become $0 \leq X_{ii} \leq 1$ that are redundant with the combination of Constraint $X_{ii} = x_i$ and (21). Thus, Constraints (20),(32)-(34) can be replaced by $X_{ii} = x_i$. Similarly, in the reformulated problem $(CQP_{\alpha,\lambda})$, Constraints (23)-(31) amount to $x_i = v_i = z_{i0} = t_{i0}$ and $t_{i0} \in \{0, 1\}$. All this is in coherence with the identity $x_i^2 = x_i$ for binary variables. We claim that CQCR is equivalent to QCR [5] for equality constrained binary quadratic programming, that is a method specially designed for this class of problem. However, CQCR constitutes an improvement of QCR, in terms of continuous relaxation bound, for inequality constrained binary quadratic programming. Indeed, using integer slack variables, it allows to transform each inequality into an equality and to consider these new equality constraints in the convexification process.

As a conclusion of this section, we present the exact solution algorithm for general integer non-convex quadratic programs (QP) based on CQCR and described in Algorithm 1.

Algorithm 1 Solution algorithm to (QP) based on CQCR							
step 1: Solve (SDP') .							
step 2: Deduce α^* and λ^* .							
step 3: Solve $(CQP_{\alpha^*,\lambda^*})$ with a standard mixed-integer quadratic solver							

As already mentioned above, CQCR has the same main steps as MIQCR. It is based on the solution of a semi-definite relaxation followed by the solution of a reformulated problem. On the one hand, CQCR relies on a weaker semi-definite relaxation than MIQCR. On the other hand, both the semi-definite problem (SDP'), and the reformulated problem $(CQP_{\alpha^*,\lambda^*})$ are about *n* times smaller in CQCR than in MIQCR.

In the following section, we present experiments that give a measurement of the global efficiency of CQCR compared to MIQCR and to the general mixed-integer non-linear solver BARON.

4 Computational results

In this section, we perform our experiments on instances of general integer quadratic programs with one equality constraint. Then, we consider the particular class of binary quadratic programs on instances of the Constrained Task Assignment Problem.

Experimental environment:

Our experiments were carried out on a PC with an Intel core *i*7 processor of 1.73 GHz and 6 GB of RAM using a Linux operating system for CQCR and MIQCR, and a Windows operating system for BARON. We used the solver CSDP [6] for the semi-definite programs. We used the solver Cplex version 12 [18] for solving the reformulated problems of CQCR and MIQCR, and for the solver BARON.

4.1 Experiments on the Equality Integer Quadratic Problem (EIQP)

Instances description:

Our experiments concern the Equality Integer Quadratic Problem (EIQP) that consists of minimizing a quadratic function subject to one linear equality constraint:

$$(EIQP) \begin{cases} \min_{x} x^{T}Qx + c^{T}x \\ s.t. \sum_{i=1}^{n} a_{i}x_{i} = b \\ 0 \leq x_{i} \leq u_{i} \quad i \in I \\ x_{i} \in \mathbb{N} \quad i \in I \end{cases}$$

We generate three classes of instances $(EIQP_1)$, $(EIQP_2)$ and $(EIQP_3)$. These instances are available online [8].

Instances from class $(EIQP_1)$ and $(EIQP_2)$ were already used in [3, 21], and instances of class $(EIQP_3)$ were already used in [21]. These instances are randomly generated as follows:

$(EIQP_1)$:

- The coefficients of Q and c are integers uniformly distributed in the interval [-100, 100]. More precisely, for any $i \leq j$, a number ν is generated in [-100, 100], and then we set $q_{ij} = q_{ji} = \nu$. Q is hence a full dense symmetric matrix with integer coefficient in [-100, 100].
- The a_i coefficients are integers uniformly distributed in the interval [1, 50].

•
$$b = 15 * \sum_{i=1}^{n} a_i$$

• $u_i = 30, i \in I$.

$(EIQP_2)$:

- The coefficients of Q and c are randomly generated as for $(EIQP_1)$.
- The a_i coefficients are integers uniformly distributed in the interval [1, 100].

•
$$b = 20 * \sum_{i=1}^{n} a_i$$

• $u_i = 50, i \in I$.

$(EIQP_3)$:

- The coefficients of Q and c are randomly generated as for $(EIQP_1)$.
- The a_i and b are randomly generated as for $(EIQP_2)$.
- $u_i = 70, i \in I$.

For classes $(EIQP_1)$, $(EIQP_2)$, and $(EIQP_3)$, and for each n = 20, 30, or 40, we generate 5 instances obtaining a total of 45 instances. Each of these instances has at least one solution since $x_i = b/\sum_{i=1}^n a_i$ for all *i* is feasible.

Experimental results:

For these instances, we first compare the solution time of the whole process of methods CQCR and MIQCR with the solution time of the general mixed-integer non-linear solver BARON. Then, we compare CQCR and MIQCR on several criterias : the initial gap, the SDP solution time, the solution time after convex reformulation, and the number of nodes visited for each approach.

The results are presented in Tables 1 and 2.

Legends of Table 1:

- Name: $EIQP_{k-n-i}$, for $k = \{1, 2, 3\}$, where k is the class of the instance, n is the number of variables, and i the number of the instance.
- Opt: The optimal solution value of the instance.
- BARON, MIQCR, or CQCR: CPU time (in seconds) required by all the process for CQCR and MIQCR, i.e. solution time of the semi-definite relaxation + solution time of the reformulated problem, and CPU time (in seconds) required by BARON for solving the instance. If the optimum is not found within 2 hours of CPU time, we present the final gap of BARON (g%), where $g = \frac{\text{upperbound} \text{lowerbound}}{\text{upperbound}} * 100$.

Legends of Table 2:

- Name: $EIQP_{k-n-i}$, for $k = \{1, 2, 3\}$, where k is the class of the instance, n is the number of variables, and i the number of the instance.
- *ig* (*initial gap*): $\left|\frac{Opt-l}{Opt}\right|$ *100 where *l* is the optimal value of the continuous relaxation at the root node.
- *T CSDP*: CPU time (in seconds) required by CSDP for solving the semidefinite relaxation.
- *T Cplex*: CPU time (in seconds) required by Cplex for solving the convex integer quadratic program after convex reformulation.
- Nodes: Number of nodes visited during the Branch and Cut algorithm

Table 1 focuses on the comparison of solution times. We observe that both MIQCR and CQCR are able to solve all the instances of this class of problems in less that 2 hours of CPU time, whereas BARON solves only 27 of the 45 instances considered. It is then clear that for these classes of general integer quadratic instances MIQCR and CQCR are better suited than BARON. Moreover, the total solution time is smaller for CQCR in comparison to MIQCR. The average total solution time is divided for $(EIQP_1)$ (resp. $(EIQP_2)$ and $(EIQP_3)$) by a factor 320 (resp. 339 and 81) with CQCR in comparison to MIQCR.

An additional comparison between approaches MIQCR and CQCR is presented in Table 2. As mentioned in Section 3, CQCR leads to a reformulated problem with a weaker continuous relaxation bound than MIQCR. For class $(EIQP_1)$ (resp. $(EIQP_2)$ and $(EIQP_3)$) the average gap of MIQCR is 18 (resp. 95 and 33) times smaller than that of CQCR.

However, the computation time of the solution of the SDP relaxation by the CSDP solver is significantly smaller for CQCR. Indeed, for $(EIQP_1)$ (resp. $(EIQP_2)$ and $(EIQP_3)$) the average *CSDP* solution time is divided by a factor 763 (resp. 1245 and 1101) in comparison to MIQCR.

If we focus on the computation time after convex reformulation, that is to say the solution time of the integer quadratic convex problem by the solver Cplex, the results reveal a similar trend than for the SDP solution time. Indeed, the average *Cplex* solution time over all the instances is divided for $(EIQP_1)$ (resp. $(EIQP_2)$ and $(EIQP_3)$) by a factor 131 (resp. 124 and 19) for CQCR in comparison to MIQCR.

Table 1: Solution times or final gaps after 2 hours for the 45 instances of class (EIQP) with BARON, <code>MIQCR</code> and <code>CQCR</code>

Name	Opt	BARON	MIQCR	CQCR
$EIQP_1_20_1$	-5311070	5.07	55.56	1.25
$EIQP_1_20_2$	-5098379	2.78	40.37	1.28
$EIQP_1_20_3$	-4554397	14.19	56.23	1.27
$EIQP_1_20_4$	-5614860	1.23	35.30	0.26
$EIQP_{1}_{20}_{5}$	-4354396	12.41	49.82	1.28
Average		7.14	47.46	1.07
<i>EIQP</i> ₁ _30_1	-10210390	1026.93	444.86	1.66
$EIQP_1_30_2$	-11243370	46.91	321.71	1.75
$EIQP_1_30_3$	-9862120	527.87	589.59	2.70
$EIQP_{1}_{-30}_{-4}$	-10720488	2552.91	382.59	1.65
$EIQP_1_{30_5}$	-10835084	1965.84	494.92	2.69
Average		1224.09	446.74	2.09
$EIQP_{1}_{40.1}$	-20907112	98.34	4730.20	2.37
$EIQP_1_40_2$	-21274411	(3.49 %)	2243.17	3.23
$EIQP_{1}_{40}_{3}$	-17033610	(11.56%)	1861.70	2.26
$EIQP_{1}_{40}_{40}_{40}$	-18268074	(5.23%)	2718.84	6.23
$EIQP_{1}_{40.5}$	-17373411	(30.54%)	2751.04	6.28
Average	-11010411	98.34 (1)	2 751.04 2860.99	4.07
		. ,	1	
$EIQP_2_20_1$	-9321876	153.00	183.08	1.25
$EIQP_2_20_2$	-9013418	107.03	57.07	0.24
<i>EIQP</i> ₂ _20_3	-15337225	2.70	55.13	1.25
$EIQP_2_20_4$	-11863777	19.86	109.12	2.26
$EIQP_2_20_5$	-12095004	22.70	51.69	1.26
Average		61.06	91.22	1.25
$EIQP_2_30_1$	-23592535	3550.27	642.13	3.66
$EIQP_2_30_2$	-25924713	216.01	867.61	2.69
$EIQP_2_30_3$	-21938906	7188.62	910.34	2.63
$EIQP_{2}_{-}30_{-}4$	-29913305	193.46	827.72	3.65
$EIQP_{2}_{-}30_{-}5$	-22422891	(10.80 %)	668.45	3.65
Average		2787.09(4)	783.25	3.26
$EIQP_{2}_{40}_{1}$	-42548497	(23.86 %)	2600.88	7.29
$EIQP_{2}_{40}_{2}$	-35957464	(33.91 %)	7529.19	8.30
$EIQP_2_40_3$	-40116963	(27.40 %)	3142.81	9.33
$EIQP_2_40_4$	-51306080	186.50	5599.46	2.35
$EIQP_2_40_5$	-38090192	(31.90 %)	5432.43	7.28
Average		186.50 (1)	4860.95	6.91
<i>EIQP</i> ₃₋₂₀₋₁	-13226046	61.04	158.70	0.27
$EIQP_{3-20-2}$	-16400092	74.26	40.53	0.27
$EIQP_{3}_{2}_{2}_{0}_{3}$	-10400092 -13372984	74.20 78.05	40.33 73.88	1.27
$EIQP_{3}_{2}_{2}_{0}_{3}$	-13372984 -9904855	1610.04	137.40	3.25
$EIQP_{3}_{2}_{2}_{0}_{4}$ $EIQP_{3}_{2}_{0}_{5}$	-9904855 -10903367	183.35	52.23	1.27
Average	-10303307	401.35	92.55	1.27
	-24412436			
$EIQP_3_30_1$		1003.52	366.65	4.62
$EIQP_3_30_2$	-25640775	(26.99%)	669.68	8.62
$EIQP_3_30_3$	-23342586	(17.38%)	505.95	4.65
$EIQP_3_30_4$	-29843855	(11.50%)	914.40	3.65
<i>EIQP</i> ₃ _30_5	-26911633	(17.55 %)	1083.74	12.65
Average		1003.52(1)	708.08	6.84
<i>EIQP</i> ₃₋₄₀₋₁	-50352748	(39.58 %)	2691.66	10.27
$EIQP_3_40_2$	-46862608	(62.49%)	2676.46	10.29
$EIQP_3_40_3$	-51680153	(57.19 %)	2584.19	7.33
$EIQP_3_40_4$	-49068049	(58.06 %)	4002.21	159.29
$EIQP_3_40_5$	-36454613	(127.24 %)	6428.02	88.23
Average		- (0)	3676.51	55.08
	atomona ant of	5 were solved wit	him the times	1:

(i) : i instances out of 5 were solved within the time limit

		MIQ	CR		CQCR			
Name	ig (%)	T CSDP	T C plex	Nodes	ig (%)	T CSDP	T Cplex	Nodes
$EIQP_1_20_1$	0.09	35.56	20.00	2657	1.24	0.25	1.00	4647
$EIQP_1_20_2$	0.13	30.37	10.00	368	0.24	0.28	1.00	918
$EIQP_1_20_3$	0.06	33.23	23.00	1	1.38	0.27	1.00	1111
$EIQP_{1}_{2}_{0}_{4}$	0	33.30	2.00	0	0.21	0.26	0	56
$EIQP_{1}_{20_{5}}$	0.15	35.82	14.00	165	2.30	0.28	1.00	1057
Average	0.09	33.66	13.80	638	1.07	0.27	0.80	1557
$EIQP_{1}_{30}_{1}$	0.04	352.86	92.00	51	1.36	0.66	1.00	1416
$EIQP_{1}_{30}_{2}$	0.00	312.71	9.00	0	0.49	0.75	1.00	50
$EIQP_1_30_3$	0.04	426.59	163.00	1125	1.55	0.70	2.00	2901
$EIQP_1_30_4$	0.05	359.59	23.00	61	1.10	0.65	1.00	929
$EIQP_1_30_5$	0.09	342.92	152.00	612	1.09	0.69	2.00	3076
Average	0.05	358.94	87.80	370	1.12	0.69	1.40	1674
$EIQP_1_40_1$	0.04	1904.20	2826.00	1377	0.50	1.37	1.00	2095
$EIQP_1_40_2$	0.04	1861.17	382.00	1253	1.54	1.23	2.00	2650
$EIQP_{1}_{-40_{-3}}$	0	1832.70	29.00	0	1.34	1.26	1.00	812
$EIQP_1_40_4$	0.04	2277.84	441.00	3750	1.70	1.23	5.00	8658
$EIQP_1_40_5$	0.21	2056.04	695.00	3481	2.19	1.28	5.00	11894
Average	0.07	1986.39	874.60	1972	1.46	1.27	2.80	5222
<i>EIQP</i> ₂ _20_1	0.14	41.08	142.00	4027	3.10	0.25	1.00	4359
$EIQP_{2}_{-2}0_{-2}$	0.00	51.07	6.00	8	3.89	0.24	0	498
$EIQP_{2}_{-20_{-3}}$	0.03	33.13	22.00	559	1.35	0.25	1.00	1454
$EIQP_{2}_{-20_{-4}}$	0.19	57.12	52.00	2502	2.67	0.26	2.00	4473
$EIQP_{2}_{-20_{-5}}$	0.08	43.69	8.00	48	2.96	0.26	1.00	1277
Average	0.09	45.22	46.00	1429	2.79	0.25	1.00	2412
$EIQP_2_30_1$	0.25	507.13	135.00	1089	3.06	0.66	3.00	6111
$EIQP_{2}_{-30_{-2}}$	0.11	312.61	555.00	2144	0.65	0.69	2.00	4904
$EIQP_2_30_3$	0.01	357.34	553.00	1190	2.32	0.63	2.00	8452
$EIQP_{2}_{-30}_{-4}$	0.05	335.72	492.00	4140	0.78	0.65	3.00	6002
$EIQP_{2}_{-30}_{-5}$	0.10	462.45	206.00	1560	3.20	0.65	3.00	6419
Average	0.10	395.05	388.20	2025	2.00	0.66	2.60	6378
$EIQP_2_40_1$	0.02	2125.88	475.00	986	1.18	1.29	6.00	9086
$EIQP_{2}_{-40_{-2}}$	0.05	4838.19	2691.00	6568	1.20	1.30	7.00	13363
$EIQP_{2}_{-40}_{-3}$	0.05	2086.81	1056.00	5730	1.17	1.33	8.00	13346
$EIQP_2_40_4$	0.00	5377.46	222.00	0	0.55	1.35	1.00	86
$EIQP_2_40_5$	0.04	4932.43	500.00	2695	2.53	1.28	6.00	10845
Average	0.03	3872.15	988.80	3196	1.33	1.31	5.60	9345
<i>EIQP</i> ₃ _20_1	0	158.70	0	8	2.94	0.27	0	1488
$EIQP_{3}_{-20_{-2}}$	0.03	36.53	4.00	8	4.31	0.27	0	1714
$EIQP_3_20_3$	0.16	43.88	30.00	522	5.01	0.27	1.00	2995
$EIQP_3_20_4$	1.60	75.40	62.00	4412	11.27	0.25	3.00	7323
$EIQP_{3}_{-20_{-5}}$	0.07	47.23	5.00	51	7.49	0.27	1.00	1922
Average	0.37	72.35	20.20	1000	6.20	0.27	1.00	3088
$EIQP_3_30_1$	0.02	350.65	16.00	11	6.85	0.62	4.00	7516
$EIQP_{3}_{-3}0_{-2}$	0.23	410.68	259.00	5304	7.47	0.62	8.00	19398
$EIQP_3_30_3$	0.05	394.95	111.00	3829	3.60	0.65	4.00	7581
$EIQP_{3}_{-3}0_{-4}$	0.04	845.40	69.00	936	3.06	0.65	3.00	4982
$EIQP_3_30_5$	0.31	926.74	157.00	4297	6.77	0.65	12.00	29532
Average	0.13	585.68	122.40	2875	5.55	0.64	6.20	13802
$EIQP_3_40_1$	0.01	2276.66	415.00	79	2.09	1.27	9.00	12784
$EIQP_3_40_2$	0	2311.46	365.00	950	2.75	1.29	9.00	11036
$EIQP_{3}_{40}_{3}$	0.04	1910.19	674.00	2191	2.30	1.33	6.00	6012
$EIQP_{3}_{40}_{4}$	0.03	2322.21	1680.00	6604	6.08	1.29	158.00	245712
$EIQP_3_40_5$	0.48	4753.02	1675.00	15584	7.98	1.23	87.00	121551
Average	0.11	2714.71	961.80	5082	1.28	4.24	53.80	79419
B								

Table 2: Comparison of MIQCR and CQCR on the 45 instances of class (EIQP)

Hence, although MIQCR provides a much better bound, CQCR is more effective as it solves faster all the 45 considered instances.

4.2 Experiments on the Constrained Task Assignment Problem (CTAP)

Description of the problem:

The Constrained Task Assignment Problem (CTAP) consists in finding an assignment of tasks (facilities) to processors (locations) such that the memory constraints are satisfied, and such that the total execution and communication cost is minimized. Problem CTAP is a special case of the Generalized Quadratic Assignment Problem (GQAP). This problem describes a broad class of binary programming problems, where M pair-wise related entities must be assigned to N destinations constrained by the destinations' ability to accommodate them. The GQAP has numerous applications, including facility design, scheduling and network design.

Several authors proposed algorithms specialized for solving the GQAP, as in [16, 22]. The exact algorithm of Hahn and al. [16] is an algorithm based on a Reformulation Linearization Technique [27] dual ascent procedure. The heuristic of Mateus and al. [22] is based on the meta-heuristic GRASP [10], with path-relinking [20, 24].

We now describe more formally problem CTAP:

- A set of n tasks
- A set of m processors
- The execution cost e_{ik} of task i on processor k
- The communication cost c_{ij} between tasks *i* and *j* if they are assigned to different processors
- The memory requirement s_i of task i
- The total available memory n_k of processor k. The sum of memory requirements of the tasks assigned to processor k must not exceed n_k .

A natural mathematical formulation of CTAP can be considered by taking the variable vector $x = (x_{ik}), i = 1, ..., n, k = 1, ..., m$ where x_{ik} is equal to 1 if task *i* is allocated to processor *k* and is equal to 0 otherwise.

Table 3: Four configurations of the CTAP instances

	Config A	Config B	Config C	Config D
int_e	[0,100]	[0,10]	[0,100]	[0,0]
int_c	[0,100]	[0,100]	[0, 10]	[0,100]

Let $c_0 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij}$. The CTAP can be formulated by the following binary quadratic program [9]:

$$(CTAP) \begin{cases} \min_{x} f(x) = c_{0} + \sum_{i=1}^{n} \sum_{k=i}^{m} e_{ik} x_{ik} - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{m} c_{ij} x_{ik} x_{jk} \\ s.t. \sum_{\substack{k=1\\n}}^{m} x_{ik} = 1 & i = 1, \dots, n \quad (38) \\ \sum_{\substack{k=1\\n}}^{n} s_{i} x_{ik} \le n_{k} & k = 1, \dots, m \quad (39) \\ x \in \{0, 1\}^{n \times m} & i \in I \quad (40) \end{cases}$$

Instances description:

We used the instances that were produced in [9] and are available online [28]. In these instances, 4 configurations are considered. For each configuration, two classes of instances are randomly generated: a class with a complete communication graph, called *tassc*, and a second class where the density of the communication graph is 50%, called *tass*. This gives a total of 8 types of instances. For each type, 5 instances of size 10 tasks and 3 processors, 5 instances of size 20 tasks and 5 processors, and 5 instances of size 24 tasks and 8 processors are generated. We obtain a total of 120 instances. Note that several instances of size 24 tasks and 8 processors are not feasible, this is why we report here the results of the 24 feasible instances over the 40 initially generated.

Table 3 describes the 4 configurations. The execution costs e_{ik} are integers generated in the interval int_e , and the communication costs c_{ij} are integers generated in the interval int_c . For all the configurations, the sizes of the tasks s_i are integers generated in the interval [1, 10], and the capacities of the processors n_k are integers in the interval [S/m, 2 * S/m]where $S = \sum_{i=1}^{n} s_i$ is the sum of all the task sizes. In this way, we are sure that the problem (CTAP) has at least one fractional solution \bar{x} where $\forall (i,k), \bar{x}_{ik} = \frac{1}{m}$. The inequality constraints (39) are reformulated as equalities by use of slack variables e_k that are integers in the interval $[0, n_k]$.

Experimental results

Here we compare MIQCR with our new approach CQCR.

Legends of Table 4:

- *Name*: pnmgi, where p is the problem name, n the number of tasks, m the number of processors, g the kind of generation as explained above, and i the instance letter.
- Opt: The optimal solution value of the instance.
- MIQCR or CQCR: CPU time (in seconds) required by all the process, i.e. solution time of the semi-definite relaxation + solution time of the reformulated problem.

Legends of Tables 5-7:

- *Name*: pnmgi, where p is the problem name, n the number of tasks, m the number of processors, g the kind of generation as explained above, and i the instance letter.
- *Opt*: The optimal solution value of the instance.
- Sol: The best solution value found within the time limit.
- *T CSDP*: CPU time (in seconds) required by CSDP for solving the semidefinite relaxation. More precisely, the solution time for solving (*SDP*) in MIQCR, and the solution time for solving (*SDP'*) in CQCR.
- ig (initial gap): $\left|\frac{Opt-l}{Opt}\right|$ *100 where, in MIQCR, *l* is the optimal value of the continuous relaxation of (QP_{α^*,β^*}) , and, in CQCR, *l* is the optimal value of the continuous relaxation of $(CQP_{\alpha^*,\lambda^*})$.
- *T Cplex*: CPU time (in seconds) required for solving the convex reformulations of (QP). More precisely, the solution time of Cplex for solving (QP_{α^*,β^*}) in MIQCR, and the solution time for solving $(CQP_{\alpha^*,\lambda^*})$ in CQCR. The time limit is fixed to 2 hours in

both cases. If the optimum is not found within 2 hours of CPU time, we report the final gap of CQCR (g%), where $g = \left|\frac{Opt - lb}{Opt}\right| * 100$, where lb is the best bound found after 2 hours of CPU time, and Opt is the optimal solution value of the instance [28].

• *Nodes*: number of nodes visited during each Branch and Bound procedure (MIQCR or CQCR).

Only CQCR is able to handle instances of size larger than 10 tasks and 3 processors. This is why for classes of problems *tass* and *tassc* 2005 and 2408, we do not present the results of MIQCR. In these cases MIQCR is limited by the huge size of its semidefinite relaxation that cannot be handled by CSDP.

The comparison between the solution time of MIQCR and CQCR is presented in Table 4 for classes of problems *tass* and *tassc* of size 10 tasks and 3 processors. We observe that CQCR is much faster than MIQCR. Indeed, the average solution time of CQCR is divided by a factor of 1891 (resp. by a factor 6579) for class (tass)1003 (resp. (tassc)1003) in comparison to MIQCR.

An additional comparison between MIQCR and CQCR for classes of problems (*tass*) and (*tassc*) 1003 is presented in Tables 5. First, as expected, we observe that MIQCR gives a better continuous relaxation bound than CQCR. Indeed, the average gap over all the instances is multiplied by a factor of about 4 for CQCR in comparison to MIQCR. We observe that the semidefinite relaxation of CQCR is much faster to solve than the MIQCR one. The average semidefinite solution time over all the instances is improved for CQCR by a factor of about 6574 in comparison to MIQCR. We now focus on the computation time after convex reformulation, that is to say the solution time to solve the quadratic and convex reformulated program of MIQCR and CQCR by Cplex. The average solution time of CQCR is improved by a factor of about 76 in comparison to MIQCR.

Results of classes *tass* and *tassc* of size 20 tasks and 5 processors and of size 24 tasks and 8 processors are presented in Tables 6 and 7, respectively. First, we observe that CQCR is able to solve all the instances of size 20 tasks and 5 processors in less than 2 hours of CPU time, and 6 instances over the 24 instances of size 24 tasks and 8 processors. In [16], Hahn and al. make experiences on instances *tass*2005Aa, *tassc*2005De, *tass*2408Aa and *tass*2408Ca. In their paper, with a specialized approach to solve GQAP, they solved *tass*2005Aa in 128 s. (92.55 s. with CQCR), *tassc*2005De in 14390 s. (887.63 s. with CQCR), *tass*2408Aa in 719862 s. (about 200 hours) (we obtain a final gap of 0.09% in 7200 s. for CQCR). For the instance

	Opt	MIQCR	CQCR
tass1003Aa	731	476.71	0.10
tass1003Ab	713	469.89	0.06
tass1003Ac	645	391.19	0.06
tass1003Ad	688	422.69	1.06
tass1003Ad tass1003Ae	715	422.03 398.31	0.06
Average	110	431.76	0.00
tass1003Ba	306	452.10	0.21
tass1003Ba tass1003Bb	$500 \\ 528$	402.51	0.00
tass1003Bc tass1003Bc	326	356.38	1.05
tass1003Bd	364	391.12	0.06
tass1003Bd tass1003Be	$304 \\ 324$	428.81	0.00
Average	524	406.18	0.00
tass1003Ca	346	376.80	0.20
tass1003Ca tass1003Cb	424	370.80	0.00
tass1003Cb tass1003Cc	$\frac{424}{347}$	377.58 235.18	1.05
tass1003Cd	347 434	255.18 386.67	0.05
tass1003Cd tass1003Ce	$\frac{434}{285}$	380.07 258.56	0.05
	200	326.96	0.00
Average tass1003Da	219	326.96 466.29	0.26
tass1003Da tass1003Db	402	400.29 392.82	0.06
tass1003Db tass1003Dc	$\frac{402}{297}$	416.33	0.05
tass1003Dd	297 445	410.55 438.40	$0.05 \\ 0.05$
tass1003Dd tass1003De	$\frac{445}{358}$	$438.40 \\ 405.80$	$0.05 \\ 0.05$
Average	- 350	405.80 423.93	0.05
tassc1003Aa	1616	399.98	0.06
tassc1003Aa tassc1003Ab	1390	399.98 385.31	0.06
tassc1003Ab tassc1003Ac	$1390 \\ 1730$	418.38	0.07
tassc1003Ad	1289	418.38 438.16	0.06
tassc1003Ad tassc1003Ae	$1289 \\ 1048$	438.10 439.55	$0.03 \\ 0.07$
	1048	439.55 416.27	0.07
Average tassc1003Ba	1299	410.27 425.97	0.06
tassc1003Bb	1299 865	425.97 401.06	0.07
tassc1003Bb tassc1003Bc	$\frac{865}{1154}$	401.06 444.86	0.06
tassc1003Bc tassc1003Bd	1154 834	444.86 408.11	0.06
tassc1003Bd tassc1003Be	834 812	408.11 406.86	0.06
	012		0.00
Average tassc1003Ca	455	417.37 424.39	0.06
tassc1003Cb	467	328.23	0.05
tassc1003Cc tassc1003Cd	$475 \\ 472$	$344.60 \\ 233.40$	$0.05 \\ 0.06$
tassc1003Cd tassc1003Ce	$\frac{472}{350}$	$233.40 \\ 249.19$	0.06
	590	249.19 315.96	0.06
Average	049		
tassc1003Da	843 870	436.75	0.06
tassc1003Db	879	400.76	0.06
tassc1003Dc	1230	439.47	0.06
tassc1003Dd	956	453.50	0.06
tassc1003De	848	416.21 429.34	0.06 0.06
Average		429.34	0.06

Table 4: Solution times of the 40 instances of classes tass and tassc 1003 with MIQCR and CQCR

		MIQCR			CQCR				
	opt	ig (%)	T CSDP	T Cplex	Nodes	ig (%)	T CSDP	T Cplex	Nodes
tass1003Aa	731	8.17	474.71	2.00	70	22.45	0.10	0	339
tass1003Ab	713	1.99	468.89	1.00	10	14.75	0.06	0	143
tass1003Ac	645	8.36	389.19	2.00	80	22.52	0.06	0	409
tass1003Ad	688	0.22	421.69	1.00	7	16.77	0.06	1.00	191
tass1003Ae	715	5.44	397.31	1.00	135	20.61	0.06	0	379
Average		4.84	430.36	1.40	60	19.42	0.07	0.20	292
tass1003Ba	306	10.27	450.10	2.00	40	35.68	0.06	0	242
tass1003Bb	528	8.80	399.51	3.00	172	31.11	0.06	0	372
tass1003Bc	326	0	354.38	2.00	113	31.50	0.05	1.00	656
tass1003Bd	364	9.84	388.12	3.00	120	37.31	0.06	0	143
tass1003Be	324	0	427.81	1.00	39	41.06	0.06	0	155
Average		5.78	403.98	2.20	97	35.33	0.06	0.20	314
tass1003Ca	346	0.01	375.80	1.00	0	4.08	0.06	0	25
tass1003Cb	424	1.96	376.58	1.00	0	3.60	0.05	0	0
tass1003Cc	347	0	235.18	0	0	0.85	0.05	1.00	1
tass1003Cd	434	3.72	385.67	1.00	13	4.56	0.05	0	7
tass1003Ce	285	0	258.56	0	0	2.62	0.06	0	18
Average		1.14	326.36	0.60	3	3.14	0.06	0.20	10
tass1003Da	219	0	464.29	2.00	19	45.88	0.06	0	38
tass1003Db	402	Ő	389.82	3.00	385	27.95	0.05	0	977
tass1003Dc	297	14.95	414.33	2.00	250	34.88	0.05	0	512
tass1003Dd	445	5.33	436.40	2.00	142	32.79	0.05	0	234
tass1003De	358	12.54	403.80	2.00	121	37.43	0.05	Ő	582
Average		6.56	421.73	2.20	183	35.79	0.05	0	469
tassc1003Aa	1616	7.62	397.98	2.00	224	15.50	0.06	0	321
tassc1003Ab	1390	0	385.31	0	0	13.95	0.00	0	223
tassc1003Ac	1730	0.80	417.38	1.00	15	7.33	0.06	Ő	74
tassc1003Ad	1289	3.90	437.16	1.00	49	12.35	0.05	Ő	183
tassc1003Ae	1048	2.51	438.55	1.00	21	12.28	0.07	0	133
Average	1040	2.97	415.27	1.00	62	12.20	0.01	0	187
tassc1003Ba	1299	1.73	423.97	2.00	80	15.50	0.07	0	172
tassc1003Bb	865	0	399.06	2.00	199	33.61	0.06	0	600
tassc1003Bc	1154	11.84	441.86	3.00	276	23.47	0.06	0	351
tassc1003Bd	834	13.39	406.11	2.00	206	37.61	0.06	0	496
tassc1003Be	812	16.48	404.86	2.00	88	32.04	0.06	0	219
Average	012	8.69	415.17	2.20	170	28.44	0.06	0	368
tassc1003Ca	455	1.78	423.39	1.00	23	4.32	0.06	0	30
tassc1003Cb	$453 \\ 467$	1.78	$\frac{423.39}{327.23}$	1.00	23 3	$\frac{4.32}{3.54}$	0.00	0	30 19
tassc1003Cc	407 475	0.64	327.23 344.60	0	1	3.34	0.05	0	8
tassc1003Cd	472	0.04	233.40	0	0	1.24	0.05	0	1
tassc1003Ce	350	0	233.40 249.19	0	0	5.53	0.06	0	12
Average	000	0.75	315.56	0.40	5	3.60	0.00	0	14
tassc1003Da	843	0.73	435.75	1.00	16 16	18.84	0.00	0	119
tassc1003Da tassc1003Db	843 879	4.93	435.75 398.76	2.00	20	10.84 21.50	0.06	0	248
tassc1003Db tassc1003Dc	1230	4.95	398.70 436.47	2.00	20 305	32.06	0.06	0	$\frac{248}{715}$
tassc1003Dd	956	4.52	450.47 451.50	2.00	43	17.55	0.06	0	122
tassc1003Dd tassc1003De	930 848	4.52 19.85	431.30 414.21	2.00	43 313	35.45	0.06	0	684
Average	040	8.25	414.21	2.00	139	25.08	0.00	0	378
Average		0.40	441.04	2.00	199	40.00	0.00	U	910

Table 5: Comparison of MIQCR and CQCR on the 40 instances of classes tass and tassc 1003

		CQCR				
	Opt	ig (%)	T CSDP	T C plex	Nodes	
tass2005Aa	3059	15.90	0.55	92.00	156137	
tass2005Ab	2954	15.74	0.62	65.00	128105	
tass2005Ac	3012	28.52	0.60	441.00	940313	
tass2005Ad	3174	19.44	0.58	418.00	777018	
tass2005Ae	3054	28.46	0.64	807.00	1613380	
Average		21.61	0.60	364.60	722991	
tass2005Ba	2442	24.96	0.59	2565.00	4098384	
tass2005Bb	2088	26.77	0.67	219.00	387686	
tass2005Bc	1986	45.51	0.67	466.00	987663	
tass2005Bd	2449	35.44	0.67	1273.00	2640252	
tass2005Be	2453	22.84	0.58	106.00	191263	
Average	2100	31.10	0.64	925.80	1661050	
tass2005Ca	783	3.50	0.59	2.00	934	
tass2005Ca tass2005Cb	636	6.96	0.53 0.57	3.00	6962	
tass2005Cb tass2005Cc	772	0.90 4.96	$0.57 \\ 0.58$	$\frac{3.00}{2.00}$	0902 3671	
tass2005Cd	682	$\frac{4.96}{2.56}$	$0.58 \\ 0.58$	2.00	47	
tass2005Ce	082 732	2.50 3.17	0.58 0.56	1.00	$47 \\ 495$	
	132		4.23		495 2422	
Average	0.410	0.58	-	1.60		
tass2005Da	2413	27.89	0.61	2210.00	3727651	
tass2005Db	2316	30.95	0.59	636.00	1085785	
tass2005Dc	1965	45.04	0.61	313.00	624536	
tass2005Dd	2211	38.91	0.62	786.00	1467529	
tass2005De	2302	30.22	0.57	408.00	668291	
Average		0.60	34.60	870.60	1514758	
tassc 2005 Aa	6412	20.39	0.66	641.00	1465539	
tassc2005Ab	6260	10.50	0.58	11.00	22654	
tassc2005Ac	6491	13.30	0.65	14.00	35426	
tassc2005Ad	6267	16.17	0.63	78.00	147410	
tassc2005Ae	6194	12.92	0.64	36.00	76297	
Average		14.65	0.63	156.00	349465	
tassc2005Ba	5420	21.53	0.68	178.00	372343	
tassc2005Bb	5370	20.69	0.61	129.00	242784	
tassc2005Bc	5645	23.06	0.59	7096.00	13911347	
tassc2005Bd	5420	21.64	0.60	257.00	488492	
tassc2005Be	5836	28.63	0.61	539.00	1161577	
Average		23.11	0.62	1639.80	3235309	
tassc2005Ca	1181	7.26	0.58	34.00	52581	
tassc2005Cb	1017	6.85	0.63	1.00	2994	
tassc2005Cc	1197	9.38	0.62	23.00	43629	
tassc2005Cd	1038	4.84	0.58	1.00	1167	
tassc2005Ce	1166	5.58	0.58	5.00	10861	
Average		6.78	0.60	12.80	22246	
tassc2005Da	5139	17.22	0.58	19.00	36744	
tassc2005Db	5519	20.97	0.61	882.00	1534662	
tassc2005Dc	5907	13.31	0.58	289.00	499546	
tassc2005Dd	5494	20.16	0.66	399.00	801283	
tassc2005De	5435	25.48	0.63	887.00	1731446	
Average		19.43	0.61	495.20	920736	
Average		19.43	0.61	495.20	920736	

Table 6: Solution of the 40 instances of classes tass and tassc 2005 with CQCR

		CQCR					
	Opt	Sol	Sol $ig(\%)$ T CSDP T Cplex			Nodes	
tass2408Aa	5643	5648	19.60	1.64	(0.09%)	3495146	
tass 2408 Ab	5339	5339	20.21	1.63	$(0.66\ \%)$	3824791	
tass 2408 Ac	4896	4919	21.95	1.50	(0.47 %)	4231497	
tass 2408 Ae	5416	5416	22.12	1.64	3710	3435829	
Average			20.97	1.60	3710(1)	3435829(1)	
tass2408Ba	4654	4673	21.09	1.70	(0.41 %)	3906481	
tass 2408 Bc	4173	4204	24.06	1.70	$(0.74 \ \%)$	3947823	
tass 2408 Be	4487	4487	25.50	1.68	(0 %)	4196913	
Average			23.55	1.69	- (0)	- (0)	
tass2408Ca	957	957	7.77	1.80	8.00	7938	
$tass 2408 \mathrm{Cc}$	1016	1016	7.20	1.92	2.00	1195	
tass 2408 Ce	960	960	5.64	1.77	17.00	16700	
Average			6.87	1.83	9.00	8611	
tass2408Db	4743	4744	22.95	1.56	(0.02%)	4772083	
tass 2408 Dc	4036	4068	30.41	1.62	(0.79%)	5874322	
tass2408 Dd	4169	4203	23.91	1.62	$(0.82\ \%)$	4157146	
tass2408De	3963	3987	27.36	1.71	$(0.61 \ \%)$	4440719	
Average			26.16	1.63	- (0)	- (0)	
tassc2408Ae	10359	10464	18.26	1.62	(1.01%)	4253030	
Average			18.26	1.62	- (0)	- (0)	
tassc2408Bc	10341	10372	12.53	1.62	(0.30%)	3360046	
tassc2408Bd	10226	10274	11.29	1.62	(0.47%)	3145183	
Average			11.91	1.62	- (0)	- (0)	
tassc2408Cc	1641	1641	4.47	1.62	252.00	174279	
tassc2408Cd	1520	1520	3.75	1.79	3.00	1918	
Average			4.11	1.71	127.5	88098	
tassc2408Da	10557	10562	13.79	1.75	(0.05 %)	3979150	
tassc2408Db	10427	10516	19.10	1.63	$(0.85\ \%)$	4555744	
tassc2408 Dc	9202	9202	18.42	1.58	(0%)	4717833	
tassc2408 Dd	9312	9312	19.08	1.62	(0 %)	4621036	
tassc2408De	9268	9363	18.86	1.70	(1.03 %)	4307644	
Average			17.85	1.66	- (0)	- (0)	

Table 7: Solution of the 24 instances of classes tass and tassc 2408 with CQCR

(i) : i instances out of 5 were solved within the time limit

tass 2408Ca, they spend 6.6 s. to obtain a solution value 1028 at 7.4% of the optimum, while we solve the instance in 9.8 s. with CQCR.

5 Conclusion

In this paper we have presented an efficient Compact Quadratic Convex Reformulation to solve general integer quadratic programs. This convex reformulation, called CQCR, consists in designing a new quadratic problem that is equivalent to the initial problem and that has a convex objective function. This reformulation is computed thanks to a semi-definite relaxation of the initial problem. CQCR is inspired of ideas of a more general quadratic convex reformulation, called MIQCR, that handles general mixed-integer quadratic programs. A drawback of MIQCR is the important size of both its semidefinite relaxation and its reformulated program. Our compact reformulation, CQCR, leads to a semidefinite relaxation and a reformulated problem both having much smaller sizes. However, the continuous relaxation value of CQCR is weaker than that of MIQCR. We evaluate CQCR from the computational point of view. We perform our experiences on two classes of instances. The first one concerns general integer programs with one linear equality constraint. We show that CQCR is significantly faster than MIQCR to solve the considered instances. The second class concerns binary quadratic programming, and more precisely the Constrained Task Assignment Problem (CTAP). Our results show that CQCR is a better approach in terms of computational time and is up to solve almost the considered instances in less than 2 hours of CPU time.

References

- Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series, Springer, New York, (2005)
- [2] Audet, C., Hansen, P., Jaumard, B., Savard, G.:Links Between Linear Bilevel and Mixed
 0-1 Programming Problems. *Journal of Optimization Theory and Applications*. 93(2):
 273-300, (1997)
- [3] Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case of general mixed integer program. *Mathematical Programming*. Available online DOI: 10.1007/s10107-010-0381-7 (2010)

- [4] Billionnet, A., Elloumi, S., Lambert, A.: Linear Reformulations of Integer Quadratic Programs. MCO 2008, september 8-10, 43-51 (2008)
- [5] Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: the QCR method. *Discrete Applied Mathematics.* 157(6) : 1185-1197 (2009)
- [6] Borchers, B.: CSDP, A C Library for Semidefinite Programming. Optimization Methods and Software. 11(1), 613-623 (1999)
- [7] Cui, Y.: Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl.Math. Model. 29, 1040-1053 (2005)
- [8] EIQP : http://cedric.cnam.fr/~lambe_a1/siqp/Library/index.php
- [9] Elloumi, S. Contribution à la résolution des programmes non linéaires en variables 0-1, application aux problèmes de placement de tâches dans les systèmes distribués. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers, (1991)
- [10] Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67-71 (1989)
- [11] Floudas, C.A.: Deterministic Global Optimization. Kluwer Academic Publishing, Dordrecht, The Netherlands, (2000)
- [12] Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programing. 106, 225-236 (2006)
- [13] Fu, H.L., Shiue, L., Cheng, X., Du, D.Z., Kim, J.M.: Quadratic Integer Programming with Application in the Chaotic Mappings of Complete Multipartite Graphs. J. Optim. Theory Appl. 110 (3), 545-556 (2001)
- [14] Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-Completness. W.H. Freeman, San Francisco, CA, 1979
- [15] globallib: http://www.gamsworld.org/global/globallib/globalstat.htm
- [16] Hahn, P., Kim, B.J., Guignard, M. Smith, J., Zhu, Y.R.: An algorithm for the generalized quadratic assignment problem. *Computational Optimization and Applications*. 40 (3), 351-372, (2008). Available online DOI:10.1007/s10589-007-9093-1.

- [17] Hua, Z.S., Banerjee, P.: Aggregate line capacity design for PWB assembly systems. Int.
 J.Prod. Res. 38(11), 2417-2441 (2000)
- [18] IBM-ILOG, IBM ILOG CPLEX 12.1 Reference Manual. IBM ILOG CPLEX, (2010)
- [19] Liberti, L., Maculan, N.: Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications. Springer, New York, (2006)
- [20] Laguna, M., Mart, R.: GRASP and path relinking for 2-layer straight line crossing minimization. *INFORMS J. Comput.* **11**, 44-52 (1999)
- [21] Lambert, A. Résolution de programmes quadratiques en nombres entiers. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers. (ref. CEDRIC 1838) (2009)
- [22] Mateus, G.R., Resende, M.G.C., Silva, R.M.A.: GRASP with path-relinking for the generalized quadratic assignment problem. *Journal of heuristics*. (2010). Available online DOI: 10.1007/s10732-010-9144-0.
- [23] minlplib: http://www.gamsworld.org/minlp/minlplib.htm
- [24] Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: Recent advances and applications. Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, 29-63. Springer-Verlag, Berlin (2005)
- [25] Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global Optimization of Mixed-Integer Nonlinear Programs, User's Manual. (2010) Available at http://www.gams. com/dd/docs/solvers/baron.pdf
- [26] Sahinidis, N.V., Tawarmalani, M.:A polyhedral branch-and-cut approach to global optimization.Mathematical Programming. 103(2),225-249, (2005).
- [27] Sherali, H.D., Adams, W.P.: A tight linearization and an algorithm for zero-one quadratic programming problems. Management Science. 32(10), 1274-90 (1986)
- [28] TAPLib : http://cedric.cnam.fr/oc/TAP/TAP.html
- [29] Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Academic Publishing, Dordrecht, The Netherlands, (2002)