
IBM ILOG OPL V6.3

IBM ILOGOPLLanguageUser's
Manual

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

COPYRIGHT NOTICE

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgement

The language manuals are based on, and include substantial material from, The OPL
Optimization Programming Language by Pascal Van Hentenryck, © 1999 Massachusetts
Institute of Technology.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

Language User’s Manual...7
Introduction to OPL...9
Language overview..11

Modeling languages..12
Mathematical programming...13
Constraint programming..17
Constraint programming versus mathematical programming..21
Scripting..27

A short tour of OPL...29
Linear programming: a production planning example...31
Integer programming: the knapsack problem..45
Mixed integer-linear programming: a blending problem..51
Constraint programming: an inventory matching problem...57

Modeling tips..63
Efficient models...64
Sparsity...65
About arrays..72
Other modeling tips...74

The application areas..75
Some examples..77

Linear programming: a product mix problem...78
Integer programming: a warehouse location problem...80

Applications of linear and integer programming...83

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

Linear programming..85
Integer programming...103
Mixed integer-linear programming...117
Piecewise linear programming..121

Applications of constraint programming...131
What is constraint programming?...132
The vellino example (column generation)...133
The car sequencing example..141
The time tabling example..149
Modeling and solving a simple problem: house building...161

Quadratic programming..167
Tutorial: Using CPLEX logical constraints..169

What are logical constraints?..170
Description of the problem..171
Representing the data...173
Using logical constraints...179

IBM ILOG Script for OPL...181
Introduction to scripting..183

What is IBM ILOG Script?...184
Preprocessing and postprocessing...185
A few tips...195
Common pitfalls..197

Tutorial: Flow control and multiple searches...199
The production planning problem..200
Procedure summary..201
Detailed steps...203
Doing more with mulprod_main..213
Basic flow control script...218

Tutorial: Flow control and column generation...221
What is model decomposition?...222
The cutting stock problem...223
Procedure summary..224
Detailed steps...225
Doing more with cutstock_main..234

Tutorial: Changing default behaviors in flow control...235
What you are going to do..236
Setting an initial solution for the CPLEX engine..237
Setting preferences on the search for conflicts and relaxations..243

Searching for relaxation and conflicts...248
Using IBM ILOG Script in constraint programming...249

Setting CP parameters..250
Defining search phases...253
Accessing solutions in postprocessing..262

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L4

Advanced features..263
Tutorial: External functions...265

Context of external functions...267
Using an external knapsack algorithm..271
Using data from other sources..283
Debugging custom Java code using Eclipse...287

Performance and memory usage...293
Performance tips..294
Memory usage..297

If your system runs out of memory..298
Building data structures differently..299
Terminating data objects...300
Changing engine parameters..301
Using oplrun..302
Changing to a 64-bit platform..303
Using 4GT tuning..304
Scaling down the size of the model...305

Index..307

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 5

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L6

Language User’s Manual

Describes how to use OPL, the IBM® ILOG® Optimization Programming Language. The
language is documented in two manuals (the Language User’s Manual and the Language
Reference Manual), both partly based on Pascal Van Hentenryck’s book,
The OPL Optimization Programming Language, published by The MIT Press, 1999,
Cambridge, Massachusetts. This Language User’s Manual is composed mostly of tutorials
for both OPL and IBM ILOG Script for OPL.

In this section

Introduction to OPL
Introduces modeling languages in general, then gives a short tour of the OPL modeling
language, discusses some modeling issues, and finally illustrates optimization modeling with
two examples.

The application areas
Describes applications of linear and integer programming, constraint programming, quadratic
programming, and CPLEX® logical constraints.

IBM ILOG Script for OPL
After an introduction to scripting, provides tutorials for flow control and multiple searches,
flow control and column generation, and for changing default behaviors in flow control.

Advanced features
A tutorial on external functions.

Performance and memory usage
Recommends practices that are known to improve the modeling and the solving time of your
models and/or their ability to find good solutions.

© Copyright IBM Corp. 1987, 2009 7

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L8

Introduction to OPL

Introduces modeling languages in general, then gives a short tour of the OPL modeling
language, discusses some modeling issues, and finally illustrates optimization modeling with
two examples.

In this section

Language overview
Explains why modeling languages were created, presents and compares math programming
and constraint programming, and provides a brief introduction to scripting with references
for more information.

A short tour of OPL
Give readers a preliminary understanding of the language and shows how OPL supports
linear programming (production planning problem), integer programming (knapsack
problem), mixed integer-linear programming (a blending problem), and constraint
programming (inventory matching problem). See also Quadratic programming and Getting
Started with Scheduling in IBM ILOG OPL.

Modeling tips
Describes a few recommended practices to help you write more efficient models.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 9

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L10

Language overview

Explains why modeling languages were created, presents and compares math programming
and constraint programming, and provides a brief introduction to scripting with references
for more information.

In this section

Modeling languages
Provides a general introduction to modeling languages.

Mathematical programming
Defines linear programming, integer programming, and nonlinear programming.

Constraint programming
Explains what leads to the development of constraint programming and briefly presents
OPL CP Optimizer.

Constraint programming versus mathematical programming
Explains why it makes sense to compare CP and MP, and provides details on the salient
features of each approach.

Scripting
Defines scripting languages in general and IBM® ILOG Script in particular.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 11

Modeling languages

Modeling languages were motivated by the desire to simplify the solving of mathematical
programming problems. The fundamental insight underlying traditional modeling languages
is the recognition that many mathematical programming problems can be expressed in a
computer language whose syntax is close to the standard presentation of these problems in
textbooks and scientific papers. These languages typically provide a number of data types
such as arrays and sets, as well as computer-language equivalents to traditional algebraic
notations.

For instance, in AMPL, an expression such as

can be written as

sum {i in 1..n} a[i] * x[i]

In addition, some of these languages provide a clean separation between the model and the
instance data.

Finally, they are sometimes extended by a command language that makes it possible to solve
sequences of related models and to make modifications to the models and solve the modified
models. Traditional modeling languages have many benefits that make them appealing for
stating and solving mathematical programming problems. Perhaps their most significant
contribution is to provide a language that directly supports the natural statement of these
problems. This language abstracts away the implementation details of the underlying solver
and users are then relieved of mundane, low-level, considerations and can focus on the
modeling of their applications. Also important is the clear separation between the model
and the instance data, which ensures that the same model can be applied to many instances
without inducing additional work. Note that, in these languages, the solver is a black box
that can only be accessed through a set of well-defined parameters.

Traditional modeling languages are particularly strong in mathematical programming
applications, e.g., linear and integer programming. This is not surprising since this is the
area from where they emerged. In addition, these problems are naturally expressed using
traditional algebraic notations and effective solvers are available to solve the resulting
models.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L12

Mathematical programming

Defines linear programming, integer programming, and nonlinear programming.

In this section

Linear programming
Defines linear programming.

Integer programming
Defines integer programming.

Nonlinear programming
Defines nonlinear programming.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 13

Linear programming

Linear programming is an important tool for combinatorial search problems, not only because
it solves efficiently a large class of important problems, but also because it is the basic block
of some fundamental techniques in this area.

A linear program consists of minimizing a linear objective function subject to a set of linear
constraints over real variables constrained to be nonnegative or, in symbols,

Note first that considering only equations, nonnegative variables, and minimization is not
restrictive. An inequality t ≥ 0 can be recast as an equation t - s = 0 by adding a new
variable, an arbitrary variable can be expressed as the difference of two nonnegative
variables, and maximization can be expressed by negating the objective function. In addition,
decision problems (i.e., finding if a set of constraints is satisfiable) can be recast by adding
a variable per constraint and minimizing their sum. The problem is satisfiable if and only if
the optimum is zero. Note also that linear programs can be solved in polynomial time and
robust solvers are now available that solve large scale linear programs. The success of linear
programming led many researchers to investigate some of its generalizations.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L14

Integer programming

Integer programming is a natural extension of linear programming where variables are
required to take integer values.

Unfortunately, these integrality constraints make the problem NP-complete. Integer
programming has been investigated extensively in the past decades and good solvers are
now available for various classes of integer programs. However, many integer programs
remain challenging from a computational standpoint.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 15

Nonlinear programming

Nonlinear programming is another generalization of linear programming that amounts to
minimizing a nonlinear function subject to nonlinear constraints.

In other words:

minimize g(x1,...,xn)
subject to f1(x1,...,xn) ≥ 0
....

fm (x1,...,xn) ≥ 0

where g, f 1 ,..., fm are real functions of n variables. Nonlinear programs are generally
very challenging from a computational standpoint; local methods are often used to solve
them, sacrificing optimality for speed of execution. Note also that integer programs can be
recast as nonlinear programs.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L16

Constraint programming

Explains what leads to the development of constraint programming and briefly presents
OPL CP Optimizer.

In this section

Why constraint programming?
Describes the evolution of constraint programming.

OPL CP Optimizer in a nutshell
Provides the basics of using constraint programming in an OPL model.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 17

Why constraint programming?

Constraint programming is a native satisfiability technology that takes its roots in computer
science—logic programming, graph theory, and the artificial intelligence efforts of the 1980s.
Recent progress in the development of tunable and robust black-box search for constraint
programming engines have turned this technology into a powerful and easy-to-use
optimization technology.

Constraint programming has proven very efficient for solving scheduling problems. Getting
Started with Scheduling in IBM ILOG OPL

is an introductory tutorial on the use of constraint programming-based scheduling in OPL.
The “Language Reference Manual” provides more information.

Constraint programming is also an efficient approach to solving and optimizing problems
that are too irregular for mathematical optimization. This includes time tabling problems,
sequencing problems, and allocation or rostering problems.

The reasons for these irregularities that make the problem difficult to solve for mathematical
optimization can be:

♦ Constraints that are nonlinear in nature

♦ A non convex solution space that contains many locally optimal solutions

♦ Multiple disjunctions, which result in poor information returned by a linear relaxation of
the problem

Read Constraint programming versus mathematical programming for a detailed comparison.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L18

OPL CP Optimizer in a nutshell

A CP model must be declared as such. It uses only discrete decision variables for which you
must define a domain. The product of all domain sizes makes up the search space. CP models
are further characterized by specific constraints and expressions, and parameterizable
propagation, and search.

If you already have experience of constraint programming with OPL 3.x, read also Data
preprocessing in Migration from OPL 3.x (CP projects).

Here are the basics of using constraint programming in an OPLmodel. Read the CP Optimizer
documentation for details.

1. Declaration: A CP model must start with the statement

using CP;

Otherwise, it will be considered an MP model solved by the CPLEX® engine.

2. Decision variables: Use only discrete variables as decision variables.

3. Decision expressions: It is possible to constrain floating point expressions, or to use
them as an objective term. It is also possible to declare floating-point expressions with
the dexpr keyword, as in the floatexpr.mod code sample.

4. Domain definition: From OPL 5.2 onwards, you must define domains for your decision
variables. CP does not work well with undefined domains.

5. Search space: The search space is the product of all domain sizes, measured by its log.
The search space is a measure of how difficult a problem is for the CP Optimizer engine.
It is also a limit for the trial version. See the Licensing Scheme document.

6. Constraints and expressions: Specific arithmetic, logical, temporal, and specialized
constraints and expressions are supported by the CP Optimizer engine for CP
combinatorial and scheduling models. See Constraints available in constraint
programming in the Language Reference Manual.

7. Parameters: You can set various parameters for propagation control, log control, search
control, and so on. See Constraint programming options in Parameters and settings in
OPL.

8. Propagation: Constraints in CP model are propagated at execution time by the CP
solving engine. Constraint propagation is the process of communicating the domain
reduction of a decision variable to all of the constraints that are stated over this variable.
This process can result in more domain reductions. These domain reductions, in turn,
are communicated to the appropriate constraints. This process continues until no more
variable domains can be reduced or when a domain becomes empty. In the latter case,
an empty domain means that the model has no solution.

9. Search: To find a solution, the CP Optimizer search functionality implicitly generates
combinations of values for decision variables by means of constructive strategies. these
strategies are executed and guided towards optimal solutions in order to converge
rapidly. The CP Optimizer search uses a variety of guides and uses the most appropriated
one depending on the model structure and on constraint propagation. The powerful
default search gives satisfactory results in most cases but in specific cases, you can
fine-tune search strategies.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 19

10. Search phases: The engine parameters modify the search behavior in a global way.
The impact of the parameter is the same on all parts of the model. Sometimes, a useful
knowledge of some part of the model can be used to modify how the search should be
performed on a limited part of the model. In that case, search modifiers can be used to
apply some kind of local search settings on this limited part. They are applied by
specifying which modifiers are to be used on which variables at each phase. You can
specify as many phases as you want.

See Using IBM ILOG Script in constraint programming.

See also

Scheduling with IBM ILOG OPL
Scheduling
Constraints

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L20

Constraint programming versus
mathematical programming

Explains why it makes sense to compare CP and MP, and provides details on the salient
features of each approach.

In this section

Why a comparison?
Summarizes the differences between CP and MP.

Benefits of constraint programming
Technology that solves time tabling problems and sequencing problems. It can also be an
alternative to mathematical programming for allocation problems that have a slow
convergence.

Differences with mathematical programming
Describes what is required by constraint programming, in contrast with math programming.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 21

Why a comparison?

CPworks with the same concepts as mathematical programming: decision variables, objective
function, and constraints. However, there are some differences between CP models and MP
models.

In short:

♦ CP models have only discrete decision variables (integer or Boolean) while MP models
support both discrete and continuous decision variables.

♦ CP models natively support logical constraints as well as a full range of arithmetic
expressions including modulo, integer division, or the element expression which indexes
an array of values by a decision variable. In contrast, MP models support only linear
constraints, linearized logical constraints, or quadratic convex constraints.

♦ CP models have no limitation on the arithmetic constraints that can be set on decision
variables, while an MP engine is specific to a class of problems whose solution space
satisfies certain mathematical properties.

See http://www.ilog.com/products/cplex/product/algorithms.cfm for a list of problems
supported by IBM® ILOG® CPLEX® .

♦ Each optimization engine uses different techniques and algorithms to find feasible solutions
and optimize them.

Constraint programming vs. mathematical programming
CPMPFeature

NoYesRelaxation

NoYesGAP measure

YesYesOptimality proof

Discrete problemsQuadratic problems are limited to PSD
(Positive Semi Definite) problems and Second
Order Cone Programming (SOCP) problems

Modeling limitations

YesNoSpecialized constraints

YesYesLogical constraints

Graph theory and algorithmicAlgebraTheoretical grounds

YesYesModeler support

YesYesModel and run

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L22

http://www.ilog.com/products/cplex/product/algorithms.cfm

Benefits of constraint programming

Constraint programming is a suitable technology to solve time tabling problems and
sequencing problems. It can also be an alternative to mathematical programming for
allocation problems that have a slow convergence.

Constraint programming has native support for:

♦ Nonlinear costs or constraints

♦ Logical constraints and statements

♦ Constraints on and between interval variables

♦ Compatibility or incompatibility constraints

♦ More useful features

Nonlinear costs or constraints
For example, a quadratic assignment problem can be modeled in CP as follows:

A quadratic assignment problem (CP)
using CP;

int nbPerm = ...;
range r = 1..nbPerm;
int dist[r][r] = ...;
int flow[r][r] =...;

execute {
cp.param.timeLimit=30;

}

dvar int perm[1..nbPerm] in r;

dexpr int cost[i in r][j in r] = dist[i][j]*flow[perm[i]][perm[j]];

minimize sum(i in r, j in r) cost[i][j];
subject to {

allDifferent(perm);

};

Logical constraints and statements
For example, forall statements such as the following one are efficiently taken into account
by constraint programming:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 23

A forall statement in CP
forall(s in 1..nbSlabs)
colorCt: sum (c in 1..nbColors) (or(o in 1..nbOrders : colors[o] == c)

(where[o] == s)) <= 2;

Constraints on and between interval variables
CP scheduling can express several types of constraint on and between interval variables:

♦ to limit the possible positions of an interval variable (forbidden start/end values or extent
values),

♦ to specify precedence relations between two interval variables,

♦ to relate the position of an interval variable with one of a set of interval variables
(spanning, synchronization, alternative).

Compatibility or incompatibility constraints
For instance, the following is a concise model of the knight problem:

The knight problem

More useful features
When it comes to computing operational plans or schedules that must be executable, you
cannot always use the linear form to simplifying costs or constraints. Fortunately, constraint
programming can accurately model these problems.

Constraint programming can also be used as a fast generator of feasible solutions. This can
be extremely useful in combination with other models and engines, for instance to implement
column generation for a complex optimization model.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L24

Differences with mathematical programming

In contrast with math programming, constraint programming requires:

♦ Explicit modeling for max, min, abs

♦ More memory usage per decision variable

and supports:

♦ Only discrete decision variables

♦ No gap measure

Explicit modeling for max, min, abs
Since constraint programming does not have linear relaxation to optimize a relaxed problem
after each decision on integer variables, the MP way of modeling constraints such as max,
min, cannot be used directly for CP. For instance, the following MP linearization would put
the maximum value of x[i] in m.

minimize m + …;
subject to {

forall(i in 1..10) m >= x[i];
….

}

In CP, it is safer and more efficient to write:

minimize …;
subject to {
m == max(i in 1..10) x[i];
…
}

More memory usage per decision variable
For an MP engine, a decision variable is stored as one more column in a matrix. For a CP
engine, it may require muchmore memory, because the CP engine stores domain information
in the variable. Therefore, a CP engine scales apparently less than an MP engine, in term
of the number of variables and of constraints. However, since the set of constraints of a CP
engine enables often a more compact formulation of a problem, there is no direct connection
between this property and the size of problems that either engine can address.

Only discrete decision variables
IBM ILOG CP Optimizer engine handles only discrete decision variables. You can use
continuous expressions to define costs or intermediate expressions, but these continuous
expressions must be computed only from discrete decision variables.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 25

No gap measure
Because the CP Optimizer engine addresses problems that are potentially non convex or
too irregular for mathematical optimization, it cannot compute valuable relaxed solutions
of a problem, and does not have gap information between the best found solution and a
theoretical bound that an MP engine can provide for a linear problem.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L26

Scripting

Modeling languages are sometimes extended by a command language that makes it possible
to interact with models, to solve several instances of the same model, or to solve sequences
of models. IBM® ILOG® Script is a scripting language for OPL supporting these
functionalities..

In other words, while OPL is the language to express optimization, IBM ILOG Script for OPL
is the language for the non-modeling aspects (flow control, preprocessing, postprocessing).

The main novelty in IBM ILOG Script is to consider models as first-class objects, providing
a clear separation of concerns betweenmodels and scripting, and making the overall system
compositional. As a consequence, models can be developed, tested, and maintained
independently of the scripts using them.

For more information, see:

♦ IBM ILOG Script for OPL in this Language User's Manual.

♦ IBM ILOG Script for OPL in the Language Reference Manual

♦ The Reference Manual for IBM ILOG Script extensions for OPL

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 27

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L28

A short tour of OPL

Give readers a preliminary understanding of the language and shows how OPL supports
linear programming (production planning problem), integer programming (knapsack
problem), mixed integer-linear programming (a blending problem), and constraint
programming (inventory matching problem). See also Quadratic programming and Getting
Started with Scheduling in IBM ILOG OPL.

In this section

Linear programming: a production planning example
Explains how OPL expresses LP problems, describes the production planning problem,
presents the elements of a production model, shows how results can be displayed, and how
to change a parameter value.

Integer programming: the knapsack problem
Explains what integer programming is and describes the knapsack problem.

Mixed integer-linear programming: a blending problem
Presents OPL and MILP and describes a blending problem.

Constraint programming: an inventory matching problem
Gives a short tour of constraint programming support in IBM® ILOG® OPL via an inventory
problem and its model elements. Does not contain an overview of more basic modeling
features such as arrays, data, aggregation, tuples, etc. For such information, see Linear
programming: a production planning example in this manual. For tutorials that introduce
scheduling problems in OPL, see Getting Started with Scheduling in IBM ILOG OPL.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 29

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L30

Linear programming: a production planning
example

Explains how OPL expresses LP problems, describes the production planning problem,
presents the elements of a production model, shows how results can be displayed, and how
to change a parameter value.

In this section

How OPL expresses an LP problem
Describes a typical optimization problem.

The production planning problem
Describes a linear programming problem.

Elements of the production model
Describes the details of this linear programming model.

Displaying results
Describes how to display results by writing an execute IBM® ILOG Script block.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 31

How OPL expresses an LP problem

An optimization problem is typically specified by an objective function and a set of constraints
over some decision variables. A solution to the problem is an assignment of values to the
variables that satisfies the constraints and optimizes the value of the objective function. The
purpose of an OPL statement is thus to express these two components for the application
at hand.

In OPL 4.0 and later, the keyword dvar is used to note decision variables in the OPL
modeling language while the keyword var is used for IBM® ILOG Script variables.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L32

The production planning problem

Consider a Belgian company Volsay, which specializes in producing ammoniac gas (NH3)
and ammonium chloride (NH4Cl). Volsay has at its disposal 50 units of nitrogen (N), 180 units
of hydrogen (H), and 40 units of chlorine (Cl). The company makes a profit of 40 Euros for
each sale of an ammoniac gas unit and 50 Euros for each sale of an ammonium chloride
unit. Volsay would like a production plan maximizing its profits given its available stocks.

The OPL statement shown in A simple production problem (volsay.mod) formalizes this
problem.

A simple production problem (volsay.mod)
dvar float+ Gas;
dvar float+ Chloride;

maximize
40 * Gas + 50 * Chloride;

subject to {
ctMaxTotal:
Gas + Chloride <= 50;

ctMaxTotal2:
3 * Gas + 4 * Chloride <= 180;

ctMaxChloride:
Chloride <= 40;

}

This statement declares two real decision variables, gas and chloride, representing the
production of ammoniac gas and ammonium chloride. These variables are of type float.
The objective function

maximize
40 * Gas + 50 * Chloride;

states that the profit must be maximized. The constraints ensure that the production plan
does not exceed the available stocks of nitrogen, hydrogen, and chlorine, respectively. The
constraint gas + chloride <= 50 represents the capacity constraint for nitrogen, since
each unit of ammoniac gas and of ammonium chloride uses one unit of nitrogen. The next
two constraints, for hydrogen and chlorine respectively, are similar in nature. As mentioned
at the beginning of this section, a solution to an optimization problem is typically an
assignment of values to the variables that satisfies the constraints and optimizes the objective
function.

Note that in A simple production problem (volsay.mod), the constraints are identified with
so-called “labels”. It is recommended to label constraints in a model. See Constraints in the
Language Reference Manual for details.

A solution to volsay.mod
For the Volsay production-planning problem, OPL returns the optimal solution

Final Solution with objective 2300.0000:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 33

gas = 20.0000;
chloride = 30.0000;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L34

Elements of the production model

The volsay model shown in A simple production problem (volsay.mod) is a linear
programming model. Linear programming is the class of problems that can be expressed
as the optimization of a linear objective function subject to a set of linear constraints (i.e.,
linear equations and inequalities) over real numbers. Linear programming models can be
solved for large numbers of variables and constraints and are, from a computational
standpoint, the simplest applications considered in this manual.

This section examines:

♦ Arrays

♦ Data declarations

♦ Aggregate operators and quantifiers

♦ Isolating the data

♦ Data initialization

♦ Tuples

♦ Displaying results

♦ Setting CPLEX parameters

♦ Integer programming: the knapsack problem

♦ Mixed integer-linear programming: a blending problem

For more information
Applications of linear and integer programming studies the application of OPL to linear
programming, integer programming, mixed-integer linear programming, and piecewise-linear
programming.

Arrays
The above statement is very specific to the application at hand. In general, it is desirable to
write generic models that can be extended, modified easily, and applied in different contexts.
The next sections describe a number of OPL concepts to simplify the process of creating
such models. A first step towards more genericity is the use of arrays, which makes it easier,
for instance, to accommodate new products in the future.

The Volsay production planning model can be rewritten using arrays as:

The volsay production model with arrays
{string} Products = {"gas","chloride"};
dvar float production[Products];
maximize

40 * production["gas"] + 50 * production["chloride"];
subject to {

production["gas"] + production["chloride"] <= 50;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 35

3 * production["gas"] + 4 * production["chloride"] <= 180;
production["chloride"] <= 40;

}

This new statement illustrates several features of the language. First, the instruction

{string} Products = {"gas","chloride"};

declares a set of strings Products that represents the set of products of the company. The
declaration

dvar float production[Products];

declares an array of two decision variables, production["gas"] and production
["chloride"], to represent the optimal production of ammoniac gas and ammonium chloride.
These decision variables are used in the rest of the statement, which remains essentially
the same as in A simple production problem (volsay.mod). As will become clear subsequently,
one of the novel features of OPL is the generality of its arrays: OPL arrays can have an
arbitrary number of dimensions and their index sets can be arbitrary finite sets, possibly
involving complex data structures.

Data declarations
A second fundamental step towards more genericity in the model amounts to representing
the problem data explicitly. In addition to the products, the problem data obviously consists
of the components (nitrogen, hydrogen, and chloride), the demand of each product for each
component, the profit of each product, and the stock available for each component.Declaring
and initializing data (gas.dat) declares and initializes these data:

Declaring and initializing data (gas.dat)
Products = { "gas" "chloride" };
Components = { "nitrogen" "hydrogen" "chlorine" };

Demand = [[1 3 0] [1 4 1]];
Profit = [30 40];
Stock = [50 180 40];

The data element Components is a set of strings that defines the chemical components
necessary for the products, demand is a two-dimensional array whose element demand[p]
[c] represents the demand of product p for component c, and profit and stock are two
arrays representing the profit of each product and the stock available for each component.
The rest of the statement can be obtained easily by replacing the numbers by the relevant
data items. For instance, the objective function is simply written as

maximize
sum(p in Products)
Profit[p] * Production[p];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L36

Aggregate operators and quantifiers
It should be clear, however, that the statement above contains much redundancy. All
constraints, and all arithmetic terms in these constraints and in the objective function, are
similar: they differ only in their indices.

OPL has two features to factorize these commonalities, aggregate operators and quantifiers,
as shown in A simple production model (gas1.mod).

A simple production model (gas1.mod).
{string} Products = { "gas", "chloride" };
{string} Components = { "nitrogen", "hydrogen", "chlorine" };

float Demand[Products][Components] = [[1, 3, 0], [1, 4, 1]];
float Profit[Products] = [30, 40];
float Stock[Components] = [50, 180, 40];

dvar float+ Production[Products];

maximize
sum(p in Products)
Profit[p] * Production[p];

subject to {
forall(c in Components)
ct:
sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}

The objective function

maximize
sum(p in Products)
Profit[p] * Production[p];

illustrates the use of the aggregate operator sum to take the summation of the individual
profits. A variety of aggregate operators are available in OPL, including sum, prod, min, and
max.

The instruction

subject to {
forall(c in Components)
ct:
sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}

shows how the universal quantifier forall can be used to state closely related constraints.
It generates one constraint for each chemical component, each constraint stating that the
total demand for the component cannot exceed its available stock. OPL supports rich
parameter specifications in aggregate operators and quantifiers (see Expressions in the
Language Reference Manual).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 37

Isolating the data
Another fundamental step in making models reusable is to separate the model and the
instance data. OPL supports this clean separation through the notion of projects.

A project is the association of a model file, one or more data files (optional), and one or more
settings files (optional), associated in run configurations. A minimal project has one run
configuration containing only one model. Model files use the file name extension.mod while
data files use the file name extension.dat. The model declares the data but does not initialize
it. The data files contain the initialization instructions for each declared data item. See
Understanding OPL projects in Quick Start.

Here we do not describe the details of IBM® ILOG® OPL, but generally describe
applications by giving the model and the instance data separately.

For instance, The production model (gas.mod) and Instance data for the production model
(gas.dat) together make up a project for the Volsay production-planning problem. The model
part is essentially the same as the one presented earlier in Linear programming: a production
planning example, except that it declares the data but does not initialize it.

The production model (gas.mod)
{string} Products = ...;
{string} Components = ...;

float Demand[Products][Components] = ...;
float Profit[Products] = ...;
float Stock[Components] = ...;
dvar float+ Production[Products];

maximize
sum(p in Products)
Profit[p] * Production[p];

subject to {
forall(c in Components)
ct:
sum(p in Products)
Demand[p][c] * Production[p] <= Stock[c];

}

A declaration of the form

float profit[Products] = ...;

declares the array profit and specifies that its initialization is given in a data file. The data
file simply associates an initialization with each non-initialized piece of data.

Instance data for the production model (gas.dat)
Products = { "gas" "chloride" };
Components = { "nitrogen" "hydrogen" "chlorine" };

Demand = [[1 3 0] [1 4 1]];
Profit = [30 40];
Stock = [50 180 40];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L38

Data initialization
OPL offers a variety of ways of initializing data. One particularly useful feature is the
possibility of associating indices with values to avoid various kinds of errors. Instance data
with indices for the production model (gasn.dat) illustrates this feature on the instance
data for the Volsay production model.

Instance data with indices for the production model (gasn.dat)
Products = { "gas", "chloride" };
Components = { "nitrogen", "hydrogen", "chlorine" };

Profit = #["gas":30, "chloride":40]#;
Stock = #["nitrogen":50, "hydrogen":180, "chlorine":40]#;
Demand = #[

"gas": #["nitrogen":1 "hydrogen":3 "chlorine":0]#,
"chloride": #["nitrogen":1 "hydrogen":4 "chlorine":1]#

]#;

The initialization

profit = #["gas":30 "chloride":40]#;

describes the initialization of array profit by associating the value 30 with index gas and
the value 40 with index chloride. (Of course, the order of the pairs has no importance in
these initializations.) When using index:value pairs, the delimiters #[and]#must be used
instead of [and]. Note also that, in data files, the items can be initialized in any order and
the commas can be omitted freely.

Tuples
OPL offers a variety of data structures in addition to arrays and sets of strings. Tuples, a
fundamental tool for structuring the application data, offer an alternative to the traditional
approach of representing data in parallel arrays. To see the use of tuples in OPL, consider
the following production-planning model. To meet the demands of its customers, a company
manufactures its products in its own factories (inside production) or buys them from other
companies (outside production).

Inside production is subject to some resource constraints: each product consumes a certain
amount of each resource. In contrast, outside production is theoretically unlimited. The
problem is to determine how much of each product should be produced inside and outside
the company while minimizing the overall production cost, meeting the demand, and satisfying
the resource constraints. A production-planning problem (production.mod) below depicts
an OPL model for this problem that uses only the concepts introduced so far, and Data for
the production-planning problem (production.dat) presents the data for a specific instance.

A production-planning problem (production.mod)
{string} Products = ...;
{string} Resources = ...;

float Consumption[Products][Resources] = ...;
float Capacity[Resources] = ...;
float Demand[Products] = ...;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 39

float InsideCost[Products] = ...;
float OutsideCost[Products] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

minimize
sum(p in Products)
(InsideCost[p] * Inside[p] + OutsideCost[p] * Outside[p]);

subject to {
forall(r in Resources)
ctCapacity:
sum(p in Products)
Consumption[p][r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Demand[p];

}

An instance of the problem must specify the products, the resources, the capacity of the
resources, the demand for each product, the consumption of resources by the different
products, and the inside and outside costs of each product. These various data items are
specified in the standard way in Data for the production-planning problem (production.
dat) below. The model contains two arrays of variables: Element inside[p] (respectively
outside[p]) represents the inside (respectively outside) production of product p. The
objective function specifies that the production cost must be minimized.

Data for the production-planning problem (production.dat)
Products = { "kluski", "capellini", "fettucine" };
Resources = { "flour", "eggs" };

Consumption = [[0.5, 0.2], [0.4, 0.4], [0.3, 0.6]];
Capacity = [20, 40];
Demand = [100, 200, 300];
InsideCost = [0.6, 0.8, 0.3];
OutsideCost = [0.8, 0.9, 0.4];

The production cost is simply the sum of the individual production costs, which are obtained
by multiplying the inside and outside productions of the given product by their respective
costs. Finally, the model has two types of constraints. The first set of constraints expresses
the capacity constraints, the second set states the demand constraints. The model is once
again a linear programming problem.

A solution to production.mod
For the instance data given in Data for the production-planning problem (production.dat),
OPL outputs the following solution:

Final Solution with objective 372.0000:
inside = [40.0000 0.0000 0.0000];
outside = [60.0000 200.0000 300.0000];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L40

Although the model is simple, it is inconvenient in separating the data associated with each
product in different arrays: for instance, array demand stores the demand for the products,
while array insideCost stores their inside costs. This technique, sometimes called
parallel arrays, may be error-prone and less readable for more complicated models.
Tuples provide a simple way to cluster related data and impose more structure on a model.
This is illustrated in The production-planning problem revisited (product.mod) and Data for
the production-planning problem (production.dat) below, which exhibit an alternative
model for the production-planning problem.

The production-planning problem revisited (product.mod)
{string} Products = ...;
{string} Resources = ...;
tuple productData {

float demand;
float insideCost;
float outsideCost;
float consumption[Resources];

}
productData Product[Products] = ...;
float Capacity[Resources] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

execute CPX_PARAM {
cplex.preind = 0;
cplex.simdisplay = 2;

}

minimize
sum(p in Products)
(Product[p].insideCost * Inside[p] +
Product[p].outsideCost * Outside[p]);

subject to {
forall(r in Resources)
ctInside:
sum(p in Products)
Product[p].consumption[r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Product[p].demand;

}

Data for the revised production-planning problem (product.dat)
Products = { "kluski", "capellini", "fettucine" };
Resources = { "flour", "eggs" };
Product = #[

kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,
capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettucine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;
Capacity = [20, 40];

The instruction

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 41

tuple productData {
float demand;
float insideCost;
float outsideCost;
float consumption[Resources];

}

declares a tuple type with four fields. The first three fields, of type float, are used to
represent the demand and costs of a product; the last field is an array representing the
resource consumptions of the product. These fields are intended to hold all the data related
to a given product.

The instruction

ProductData product[Products] = ...;

declares an array of these tuples, one for each product. The initialization

Product = #[
kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,
capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettucine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;

fromData for the revised production-planning problem (product.dat) specifies these various
data items: tuples are initialized by giving values for each of their fields. It is of course
possible to use a named initialization for the tuple, as shown in Named data for the revised
production-planning problem (productn.dat), in which case the initialization is enclosed
with #< and >#. Tuple fields can be obtained by suffixing the tuple with a dot and the field
name. For instance, in the objective function

minimize
sum(p in Products)
(Product[p].insideCost * Inside[p] +
Product[p].outsideCost * Outside[p]);

the expression product[p].insideCost represents the field insideCost of the tuple product
[p].

Similarly, in the constraint

forall(r in Resources)
sum(p in Products) product[p].consumption[r] * inside[p] <= capacity[r];

the expression product[p].consumption represents the field consumption of tuple product
[p]. This field is an array that can be subscripted in the traditional way.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L42

Displaying results

The statements presented so far did not specify what elements of the solution should be
displayed. OPL, and the Windows OPL IDE in particular, offers a way to display the results
of an application. An interesting feature of OPL is the ability to display tuples of expressions.

To display results using an execute block:

1. Add the following IBM® ILOG Script execute block to the product.mod file (see The
production-planning problem revisited (product.mod))

tuple R { float x; float y; };
{R} Result = { <Inside[p],Outside[p]> | p in Products };
execute { writeln("Result=",Result); }

You see the following output:

Optimal solution found with objective: 372
result= {<40.0000 60.0000> <0.0000 200.0000> <0.0000 300.0000>}

If you are working in the Windows IDE, your user-defined solution displays
in the Console tab, not in the Solutions tab.

Note:

2. Run the product model with the productn.dat data file shown in Named data for the
revised production-planning problem (productn.dat).

You can visualize the inside and outside productions of a product simultaneously.

Final Solution with objective 372.0000:
inside = [40.0000 0.0000 0.0000];
outside = [60.0000 200.0000 300.0000];

Named data for the revised production-planning problem (productn.dat)
Products = { "kluski", "capellini", "fettucine" };
Resources = { "flour", "eggs" };

Product = #[
kluski :

#< demand:100
insideCost:0.6
outsideCost:0.8
consumption:[0.5 0.2]

>#,
capellini :

#< demand:200
insideCost:0.8
outsideCost:0.9

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 43

consumption:[0.4 0.4]
>#,

fettucine :
#< demand:300

insideCost:0.3
outsideCost:0.4
consumption:[0.3 0.6]

>#
]#;

Capacity = [20, 40];

3. Add the following IBM ILOG Script postprocessing lines to the product.mod file

execute {
for(p in Products)
writeln("inside[",p,"].reducedCost = ", inside[p].reducedCost);

}

You can see both the inside production of a product and its reduced cost.

Optimal solution found with objective: 372
inside[kluski].reducedCost = 0
inside[capellini].reducedCost = 0.06000000000000005
inside[fettucine].reducedCost = 0.02000000000000002

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L44

Integer programming: the knapsack problem

Explains what integer programming is and describes the knapsack problem.

In this section

What is integer programming?
Defines linear programming.

A typical integer program: the knapsack problem
Presents the model and data files.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 45

What is integer programming?

Integer programming expresses the optimization of a linear function subject to a set of linear
constraints over integer variables.

The statements presented in Linear programming: a production planning example are all
linear programmingmodels. However, linear programs with very large numbers of variables
and constraints can be solved efficiently. Unfortunately, this is no longer true when the
variables are required to take integer values. Integer programming is the class of problems
that can be expressed as the optimization of a linear function subject to a set of linear
constraints over integer variables. It is in fact NP-hard. More important, perhaps, is the fact
that the integer programs that can be solved to provable optimality in reasonable time are
much smaller in size than their linear programming counterparts. There are exceptions, of
course, and this documentation describes several important classes of integer programs
that can be solved efficiently, but users of OPL should be warned that discrete problems
are in general much harder to solve than linear programs.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L46

A typical integer program: the knapsack problem

A typical example of integer programs is the knapsack problem, which can be intuitively
understood as follows. We have a knapsack with a fixed capacity (an integer) and a number
of items. Each item has an associated weight (an integer) and an associated value (another
integer). The problem consists of filling the knapsack without exceeding its capacity, while
maximizing the overall value of its contents. A multi-knapsack problem is similar to the
knapsack problem, except that there are multiple features for the object (e.g., weight and
volume) and multiple capacity constraints. A multi-knapsack model (knapsack.mod) depicts
a model for the multi-knapsack problem, while Data for the multi-knapsack problem
(knapsack.dat) describes an instance of the problem.

A multi-knapsack model (knapsack.mod)
int NbItems = ...;
int NbResources = ...;
range Items = 1..NbItems;
range Resources = 1..NbResources;
int Capacity[Resources] = ...;
int Value[Items] = ...;
int Use[Resources][Items] = ...;
int MaxValue = max(r in Resources) Capacity[r];

dvar int Take[Items] in 0..MaxValue;

maximize
sum(i in Items) Value[i] * Take[i];

subject to {
forall(r in Resources)
ct:
sum(i in Items)
Use[r][i] * Take[i] <= Capacity[r];

}

This model has several novel features. It represents items and resources not by string sets
but rather by integers. In other words, the items (respectively the resources) are represented
by successive integers starting at 1. The instructions

int NbItems = ...;
int NbResources = ...;
range Items = 1..NbItems;
range Resources = 1..NbResources;

declare the number of items and the number of resources, as well as two ranges, Items and
Resources, to represent the set of items and the set of resources.

The next three instructions

int Capacity[Resources] = ...;
int Value[Items] = ...;
int Use[Resources][Items] = ...;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 47

are similar to the data declarations presented in Data declarations and the subsequent
sections. The array capacity represents the capacity of the resources, the array value the
value of each item, and use[r][i] the use of resource r by item i.

The next instruction

int MaxValue = max(r in Resources) Capacity[r];

is more interesting. It declares an integer maxValue whose value is given by an expression.
OPL and IBM ILOG Script have many features for computing and preprocessing data, since
this is fundamental in simplifying and improving the efficiency of many models.

The instruction

dvar int Take[Items] in 0..MaxValue;

declares the problem variables: take[Items] represents the number of times item i is
selected in the solution. The variable is of type integer and is restricted to range in 0..
maxValue.

The rest of the statement is rather standard and should raise no difficulty. Data for the
multi-knapsack problem (knapsack.dat) describes an instance of the problem.

Data for the multi-knapsack problem (knapsack.dat)
NbResources = 7;
NbItems = 12;
Capacity = [18209, 7692, 1333, 924, 26638, 61188, 13360];
Value = [96, 76, 56, 11, 86, 10, 66, 86, 83, 12, 9, 81];
Use = [

[19, 1, 10, 1, 1, 14, 152, 11, 1, 1, 1, 1],
[0, 4, 53, 0, 0, 80, 0, 4, 5, 0, 0, 0],
[4, 660, 3, 0, 30, 0, 3, 0, 4, 90, 0, 0],
[7, 0, 18, 6, 770, 330, 7, 0, 0, 6, 0, 0],
[0, 20, 0, 4, 52, 3, 0, 0, 0, 5, 4, 0],
[0, 0, 40, 70, 4, 63, 0, 0, 60, 0, 4, 0],
[0, 32, 0, 0, 0, 5, 0, 3, 0, 660, 0, 9]];

A solution to knapsack.mod
For the instance of the problem specified in Data for the multi-knapsack problem
(knapsack.dat), here are the final solution and the solutions that satisfy all the constraints
but are not the best with respect to the objective function:

Feasible solution with objective 261890.0000:
take = [0 0 0 154 0 0 0 912 333 0 6505 1180];

Feasible solution with objective 261922.0000:
take = [0 0 0 153 0 0 0 912 333 0 6499 1180];

Final solution with objective 261922.0000:
take = [0 0 0 154 0 0 0 913 333 0 6499 1180];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L48

Although integer programs are, in general, substantially harder to solve than linear programs,
they have also been the topic of intensive investigation. OPL recognizes when a statement
is an integer programming model and uses CPLEX algorithms to solve it.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 49

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L50

Mixed integer-linear programming: a
blending problem

Presents OPL and MILP and describes a blending problem.

In this section

OPL and MILP
Discusses how OPL solves mixed integer-linear programs.

The blending problem
Describes the problem and presents the model.

Elements of the blending model
Presents the data file, decision variables and constraints.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 51

OPL and MILP

Mixed integer-linear programs include both integer and real variables.

OPL can also solve models that include both integer and real variables, generally known as
mixed integer-linear programs (MILP). OPL approaches them in essentially the same way
as integer programs. A branch-and-bound algorithm can exploit the linear relaxation except,
of course, that branching takes place only on integer variables.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L52

The blending problem

The following blending problem is taken from W. Winston’s book (see the Bibliography).
Consider the following application involving mixing some metals into an alloy. The metal
may come from several sources: in pure form or from raw materials, scraps from previous
mixes, or ingots. The alloy must contain a certain amount of the various metals, as expressed
by a production constraint specifying lower and upper bounds for the quantity of each metal
in the alloy. Each source also has a cost and the problem consists of blending the sources
into the alloy while minimizing the cost and satisfying the production constraints. Similar
problems arise in other domains, e.g., the oil, paint, and the food processing industries. A
blending problem: part I (blending.mod) and A blending problem: part II (blending.mod)
show the two parts of the model for the blending problem.

A blending problem: part I (blending.mod)
int NbMetals = ...;
int NbRaw = ...;
int NbScrap = ...;
int NbIngo = ...;

range Metals = 1..NbMetals;
range Raws = 1..NbRaw;
range Scraps = 1..NbScrap;
range Ingos = 1..NbIngo;

float CostMetal[Metals] = ...;
float CostRaw[Raws] = ...;
float CostScrap[Scraps] = ...;
float CostIngo[Ingos] = ...;
float Low[Metals] = ...;
float Up[Metals] = ...;
float PercRaw[Metals][Raws] = ...;
float PercScrap[Metals][Scraps] = ...;
float PercIngo[Metals][Ingos] = ...;

int Alloy = ...;

A blending problem: part II (blending.mod)
dvar float+ p[Metals];
dvar float+ r[Raws];
dvar float+ s[Scraps];
dvar int+ i[Ingos];
dvar float m[j in Metals] in Low[j] * Alloy .. Up[j] * Alloy;

minimize
sum(j in Metals) CostMetal[j] * p[j] +
sum(j in Raws) CostRaw[j] * r[j] +
sum(j in Scraps) CostScrap[j] * s[j] +
sum(j in Ingos) CostIngo[j] * i[j];

subject to {
forall(j in Metals)
ct1:
m[j] ==

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 53

p[j] +
sum(k in Raws) PercRaw[j][k] * r[k] +
sum(k in Scraps) PercScrap[j][k] * s[k] +
sum(k in Ingos) PercIngo[j][k] * i[k];

ct2:
sum(j in Metals) m[j] == Alloy;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L54

Elements of the blending model

Problem data
The model is described in terms of a number of constants specifying the various types of
metals, raw materials, scrap, and ingots. In the instance data shown in Instance data for
the blending problem (blending.dat), there are three metals, two raw materials, two kinds
of scrap, and one kind of ingot. The model also defines ranges for each of the components.
It then defines the cost of the various components in costMetal, costRaw, costScrap,
costIngo. In the instance data, for example, the second raw material has a cost of 5. The
data items low and up specify the production constraints and give lower and upper bounds
on the quantity of each sort of metal in the alloy. For example, in the instance data, between
30% and 40% of the alloy must be the secondmetal. The next data items, percRaw, percScrap,
and percIngo, specify the percentage of each metal in the sources. In Instance data for the
blending problem (blending.dat), the second type of scrap contains 1% of the first metal,
none of the second metal, and 70% of the third metal. Finally, the data alloy specifies the
amount of alloy to be produced.

Instance data for the blending problem (blending.dat)
NbMetals = 3;
NbRaw = 2;
NbScrap = 2;
NbIngo = 1;

CostMetal = [22, 10, 13];
CostRaw = [6, 5];
CostScrap = [7, 8];
CostIngo = [9];
Low = [0.05, 0.30, 0.60];
Up = [0.10, 0.40, 0.80];
PercRaw = [[0.20, 0.01], [0.05, 0], [0.05, 0.30]];
PercScrap = [[0 , 0.01], [0.60, 0], [0.40, 0.70]];
PercIngo = [[0.10], [0.45], [0.45]];
Alloy = 71;

Decision variables
The decision variables specify how much of each source is used in the alloy: the array p
specifies the quantities of pure metals, array r specifies the quantities of raw materials,
array s specifies the quantities of scrap, array i specifies the number of ingots. All variables
are of type float except number of ingots, which are integers. The problem is thus a mixed
integer-linear program. The instruction

dvar float m[j in Metals] in low[j] * alloy .. up[j] * alloy;

is particularly interesting, since it shows how to specify the range of decision variables in
a generic fashion. More precisely, the range of variables m[j] is given by the expression;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 55

low[j] * alloy .. up[j] * alloy

Note also that the model uses the variables in array m as intermediary variables to represent
the quantity of each metal produced.

Constraints
There are two types of constraints in this problem.

♦ The forall constraint

subject to {
forall(j in Metals)
ct1:
m[j] ==
p[j] +
sum(k in Raws) PercRaw[j][k] * r[k] +
sum(k in Scraps) PercScrap[j][k] * s[k] +
sum(k in Ingos) PercIngo[j][k] * i[k];

ct2:
sum(j in Metals) m[j] == Alloy;

}

makes sure that the right amounts of metal are produced. The amount m[j] of metal j
must be equal to the amount of pure metal p[j] added to the quantity of metal j contained
in the rawmaterials, the scrap, and the ingots. The correct amount of metals are computed
using the percentage of metals contained in the sources.

♦ The sum constraint

sum(j in Metals) m[j] == alloy;

makes sure that the various metals produced give the correct amount of alloy. The
objective function in this model is rather simple. It consists of computing the price of
each source from its unit price (e.g., costMetal) and the amount produced (e.g., p[j]).

A solution to blending.mod
For the instance data given in Instance data for the blending problem (blending.dat), OPL
returns the solution

Final Solution with objective 653.6100:
p = [0.0467 0.0000 0.0000];
r = [0.0000 0.0000];
s = [17.4167 30.3333];
i = [32];
m = [3.5500 24.8500 42.6000];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L56

Constraint programming: an inventory
matching problem

Gives a short tour of constraint programming support in IBM® ILOG® OPL via an inventory
problem and its model elements. Does not contain an overview of more basic modeling
features such as arrays, data, aggregation, tuples, etc. For such information, see Linear
programming: a production planning example in this manual. For tutorials that introduce
scheduling problems in OPL, see Getting Started with Scheduling in IBM ILOG OPL.

In this section

The inventory problem
Describes the problem and gives the path to the files.

Modeling elements of the inventory problem
Examines some modeling aspects specific to constraint programming and discusses the CP
Optimizer.

The search process
How to influence the default search of CP Optimizer.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 57

The inventory problem

The problem is to build steel coils from slabs that are available in a work-in-progress inventory
of semi-finished products. The assumption is that there is no limitation in the number of
slabs that can be requested, but only a finite number of slab sizes is available (sizes 12, 14,
17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 35, 39, 42, 43, 44…). The problem is to
select a number of slabs to build the coil orders, and to satisfy the following constraints:

♦ Each coil order requires a specific process to be built from a slab. This process is encoded
by a color.

♦ A coil order can be built from only one slab.

♦ Several coil orders can be built from the same slab. But a slab can be used to produce at
most two different ‘colors’ of coils.

♦ The sum of the sizes of each coil order built from a slab must not exceed the slab size.

Where to find the files
You will work with the steel mill example, supplied as the steelmill example at the following
location:

<OPL_dir>\examples\opl\steelmill

where <OPL_dir> is your installation directory.

Data for the model steelmill.mod is contained in the file steelmill.dat.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L58

Modeling elements of the inventory problem

This section:

♦ examines some modeling aspects that are specific to constraint programming:

● specialized constraints

● aggregate or /and

♦ focuses on the search for solutions and how the CP Optimizer engine can be tuned to find
better and faster solutions:

● changing constraint programming parameters

● using search phases to describe a more specific search

♦ explains how you can run this model from the OPL IDE and how some specific IDE features
work in the constraint programming context.

The CP Optimizer engine can currently solve any model than can be solved by the CPLEX
engine, provided that all the decision variables are discrete. This means that any modeling
object (constraint or expressions) in OPL can be interpreted by this engine. The reverse is
not true: some of the new global expressions and constraints can be used only in a CP model
to be solved with the CP Optimizer engine.

The solving engine
By default (that is, if nothing different is specified), OPL uses the CPLEX engine to solve an
OPL model. To specify that you want your model to be solved by the CP Optimizer engine,
you must start the model with this statement:

using CP;

The OPL model
You do not need to learn any new syntax to develop a CP model. The organization of an OPL
model for CP does not change. You define and manipulate data and decision variables in
the same way. For example, to define an array of integer decision variables indexed by
integers from 1 to nbOrders and taking values between 1 and nbSlabs, you can write:

dvar int where[1..nbOrders] in 1..nbSlabs;

Modeling constraints and specialized constraints
As for any OPL model, constraints are stated in a constraints {} or subject to {} block.
When the model is solved by the CP Optimizer engine, you can include some specialized
constraints in this set of modeling constraints. For example, in the steel mill example, there
is a packing constraint.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 59

subject to {
packCt: pack(load, where, weight);

This pack constraint is a simple but powerful one-dimensional packing constraint. It constrains
the way coils are associated with slabs with respect to the weights of the coils and the
capacity of the slabs. More precisely, the decision variable where[i] states with which slab
coil i is to be associated. The decision variable load[j] represents the total weight of all
the coils associated with slab j, using the values from the array weights as data. In this
case, the loads are constrained by the maximum value of maxLoad which is used as upper
bound to create the load variables.

The "all" syntax
In the steel mill example, the arrays of values and decision variables used in the specialized
constraint are modeling arrays. They make sense as a whole and have been named in the
model. Sometimes, you will want to apply a specialized constraint to a set of variables that
is not defined as a named array of variables, but that is made of dynamically collected
variables. The all keyword is the syntax that enables you to collect variables dynamically
in an array. This syntax is important for CP models. It is not illustrated in the steel mill
example. See all in the Language Quick Reference for a complete description.

Aggregate and/or
The other constraint of the model illustrates how to use the aggregate or constraint.

forall(s in 1..nbSlabs)
colorCt: sum (c in 1..nbColors) (or(o in 1..nbOrders : colors[o] == c)

(where[o] == s)) <= 2;

You use this constraint just as the usual forall constraint or sum expression. The or
constraint can express a complex combination of constraints in one single statement. As a
result of the expressiveness of the OPL language, the steel mill model uses only two OPL
constraints to represent a very complete and realistic model.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L60

The search process

Constraint programming techniques have been seen for a long time as harder to use than
mathematical programming because it was sometimes necessary to define search procedures
using complex syntaxes and concepts. Now the IBM® ILOG CP Optimizer engine includes
a powerful default search. This means that without giving any particular indication on how
the solution or optimal solution is to be found, some combinations of techniques are used
with default behaviors so that good solutions are quickly found for a wide variety of problems.

However, you can influence the search process by:

♦ Changing CP parameters

♦ Defining search phases

Changing CP parameters
You can change CP Optimizer parameters by means of script statements. See Changing CP
parameters.

Setting limits
Limits are just a particular type of parameters you can change with a certain impact on the
search process. You can set a limit on the number of failures during the search or on the
time spent searching. Here are examples on how to change these parameters :

execute {
cp.param.FailLimit = 500;
cp.param.TimeLimit = 20;

}

Changing the search behavior
You can also change the search behavior by using CP parameters to change the nature of
the search. The CP Optimizer engine includes several different methods to search for
solutions. Some parameters enable you to decide which search method to use exactly. This
is useful in some cases. The default search uses default combinations that are proven to be
the best choice on average. However, better combinations can be found on particular cases.
Here are examples on how to change such parameters:

execute {
cp.param.searchType = "multiPoint";
writeln("Search type is " + cp.param.searchType);
cp.param.DefaultInferenceLevel = "Extended";

}

Defining search phases
Sometimes, the default search may not be capable of finding good enough values in an
appropriate amount of time. By changing parameters, you can modify slightly how these

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 61

default algorithms work. When this is not sufficient, you can also help the engine by providing
some indications on the structure of the search space. The default search algorithm can use
them efficiently to find good solutions. This is referred to as “search phases”.

For example, in the steel mill code sample, the preprocessing part indicates that the engine
must start instantiating the where variables.

execute {
var f = cp.factory;
cp.setSearchPhases(f.searchPhase(where));

}

In each phase, you can use search modifiers to apply specific settings that will be local to
the search phase. To this effect, you specify which ones are used on which variables at each
phase.

The syntax to apply search modifiers in a phase is:

var phase1 = searchPhase(variable_array_from_model,
variable_selector,
value_selector);

You can have as many phases as you want. You tell the CP Optimizer engine the phases to
use with the syntax:

cp.setSearchPhases(phase1, phase2);

SeeUsing IBM ILOG Script in constraint programming andUnderstanding solving statistics
and progress (CP models).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L62

Modeling tips

Describes a few recommended practices to help you write more efficient models.

In this section

Efficient models
In the sense of “running as efficiently as possible”.

Sparsity
Discusses sparsity, tuples of parameters, and filtering in the context of model efficiency.

About arrays
Discusses sparsity, tuples of parameters, and filtering in the context of model efficiency.

Other modeling tips
Collects miscellaneous modeling tips that are already mentioned elsewhere in the
documentation set.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 63

Efficient models

An application can often be described by various models that may exhibit fundamentally
different performances in terms of memory and computing time. This is particularly important
for large-scale models.

In this context, “running as efficiently as possible” applies to the part of the execution that
is related to modeling, NOT to model design itself. In other words, this section does not
explain how to write a better model that finds an optimal solution faster. Refer also to
Performance and memory usage in The Language User's Manual.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L64

Sparsity

Discusses sparsity, tuples of parameters, and filtering in the context of model efficiency.

In this section

Sparsity in the transportation problem
Describes the problem, and presents transp1.mod.

Exploiting sparsity - a first attempt
Presents transp2.mod.

Exploiting sparsity - a better model
Presents transp3.mod.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 65

Sparsity in the transportation problem

Consider the transportation problem in which the shipments of products between each pair
of cities may not exceed a given limit. A simple transportation model (transp1.mod) shows
a simple model for this problem, which implicitly assumes that all cities are connected and
that all products may be shipped between two cities. It is thus not appropriate for large-scale
problems where only a fraction of the cities are connected.

A small data set can easily illustrate the issue. Consider the set of cities

{"Amsterdam","Antwerpen","Bergen","Bonn","Brussels","Cassis","London","Madrid",
"Milan","Paris"}

and the set of products {"Godiva","Leonidas","Neuhaus"}. There are three hundred ways
of shipping a product from one city to another. However, only a small fraction of these may
be explored in the application and A sparse data set for a transportation problem displays
a possible subset.

Using the statement in A simple transportation model (transp1.mod) would induce a
substantial loss in (memory and time) efficiency. The following sections explore how to
exploit this sparsity.

A simple transportation model (transp1.mod)
{string} Cities =...;
{string} Products = ...;
float Capacity = ...;

float Supply[Products][Cities] = ...;
float Demand[Products][Cities] = ...;
assert
forall(p in Products)
sum(o in Cities) Supply[p][o] == sum(d in Cities) Demand[p][d];

float Cost[Products][Cities][Cities] = ...;

dvar float+ Trans[Products][Cities][Cities];

minimize
sum(p in Products , o , d in Cities)
Cost[p][o][d] * Trans[p][o][d];

subject to {
forall(p in Products , o in Cities)
ctSupply:
sum(d in Cities)
Trans[p][o][d] == Supply[p][o];

forall(p in Products , d in Cities)
ctDemand:
sum(o in Cities)
Trans[p][o][d] == Demand[p][d];

forall(o , d in Cities)
ctCapacity:
sum(p in Products)

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L66

Trans[p][o][d] <= Capacity;
}

execute DISPLAY {
writeln("trans = ",Trans);

}

A sparse data set for a transportation problem
<"Godiva","Amsterdam","London"><"Godiva","Brussels","Bonn"><"Godiva","Brussels","Paris">

<"Godiva","Antwerpen","Bergen"><"Godiva","Antwerpen","Madrid"><"Godiva","Amsterdam","Milan">

<"Neuhaus","Amsterdam","Madrid"><"Neuhaus","Brussels","Bergen"><"Neuhaus","Brussels","Milan">

<"Neuhaus","Antwerpen","Bonn"><"Neuhaus","Antwerpen","Paris"><"Neuhaus","Amsterdam","Cassis">

<"Leonidas","Amsterdam","Paris"><"Leonidas","Brussels","Milan"><"Leonidas","Brussels","Bonn">

<"Leonidas","Antwerpen","Bergen"><"Leonidas","Antwerpen","London"><"Leonidas","Amsterdam","Cassis">

The rest of this section explores how to exploit this sparsity.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 67

Exploiting sparsity - a first attempt

A first attempt at exploiting the sparsity available in a large-scale transportation problem
consists of representing the data as a set routes of tuples of type

tuple Route { string p; string o; string d; }

The array cost and trans can then be indexed with this set. A model based on this idea
appears in A sparse transportation model: first attempt (transp2.mod).

A sparse transportation model: first attempt (transp2.mod)
{string} Cities = ...;
{string} Products = ...;
float Capacity = ...;

tuple route {
string p;
string o;
string d;

}
{route} Routes = ...;
tuple supply {
string p;
string o;

}
{supply} Supplies = { <p,o> | <p,o,d> in Routes };
float Supply[Supplies] = ...;
tuple customer {
string p;
string d;

}
{customer} Customers = { <p,d> | <p,o,d> in Routes };
float Demand[Customers] = ...;
float Cost[Routes] = ...;

{string} Orig[p in Products] = { o | <p,o,d> in Routes };
{string} Dest[p in Products] = { d | <p,o,d> in Routes };

assert forall(p in Products)
sum(o in Orig[p])
Supply[<p,o>] == sum(d in Dest[p]) Demand[<p,d>];

dvar float+ Trans[Routes];
constraint ctSupply[Products][Cities];
constraint ctDemand[Products][Cities];

minimize
sum(l in Routes) Cost[l] * Trans[l];

subject to {
forall(p in Products , o in Orig[p])

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L68

ctSupply[p][o]:
sum(d in Dest[p])
Trans[< p,o,d >] == Supply[<p,o>];

forall(p in Products , d in Dest[p])
ctDemand[p][d]:
sum(o in Orig[p])
Trans[< p,o,d >] == Demand[<p,d>];

ctCapacity: forall(o , d in Cities)
sum(<p,o,d> in Routes)
Trans[<p,o,d>] <= Capacity;

}

The data for the supplies and demands are also represented in a sparse way by projecting
the set Routes to obtain their index sets. In addition to that, the model also precomputes,
in a generic way, the cities orig[p] that can ship product p and the cities dest[p] that can
receive product p. Most of the resulting model is elegant and efficient.

Unfortunately, the constraint

ctCapacity: forall(o , d in Cities)
sum(<p,o,d> in Routes)
Trans[<p,o,d>] <= Capacity;

is not particularly efficient because it does not exploit the structure of the application.
Indeed, the forall statement iterates not over actual connections but rather over all pairs
of cities. In addition, the aggregate operator on the second line

sum(<p,o,d> in Routes) trans[<p,o,d>] <= capacity;

cannot exploit the “connection” structure to obtain all products of a connection, since o and
d are separate entities.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 69

Exploiting sparsity - a better model

The application can be modeled more effectively by closely reflecting the structure of the
application. A sparse transportation model: second attempt (transp3.mod) gives a statement
illustrating this principle. The main novelty is the explicit representation of connections and
the fact that a route is now simply the association of a connection and a product. Connections
are also computed automatically from routes. The rest of the model is generally similar but
reflects the new data organization. The most interesting change is the capacity constraint,
which becomes

forall(c in connections)
sum(<c,p> in Routes) trans[<c,p>] <= capacity;

This constraint is much more efficient than in the previous model presented in Exploiting
sparsity - a first attempt. First, it iterates over the routes, not over all pairs of cities. Second,
the aggregate operator sum uses parameter c to index the set Routes, retrieving the relevant
products effectively.

A sparse transportation model: second attempt (transp3.mod)
{string} Cities =...;
{string} Products = ...;
float Capacity = ...;
tuple connection { string o; string d; }
tuple route {
string p;
connection e;

}
{route} Routes = ...;
{connection} Connections = { c | <p,c> in Routes };
tuple supply {
string p;
string o;

}
{supply} Supplies = { <p,c.o> | <p,c> in Routes };
float Supply[Supplies] = ...;
tuple customer {
string p;
string d;

}
{customer} Customers = { <p,c.d> | <p,c> in Routes };
float Demand[Customers] = ...;
float Cost[Routes] = ...;
{string} Orig[p in Products] = { c.o | <p,c> in Routes };
{string} Dest[p in Products] = { c.d | <p,c> in Routes };

{connection} CPs[p in Products] = { c | <p,c> in Routes };
assert forall(p in Products)

sum(o in Orig[p]) Supply[<p,o>] == sum(d in Dest[p]) Demand[<p,d>];

dvar float+ Trans[Routes];

constraint ctSupply[Products][Cities];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L70

constraint ctDemand[Products][Cities];

minimize
sum(l in Routes)
Cost[l] * Trans[l];

subject to {
forall(p in Products , o in Orig[p])
ctSupply[p][o]:
sum(<o,d> in CPs[p])
Trans[< p,<o,d> >] == Supply[<p,o>];

forall(p in Products , d in Dest[p])
ctDemand[p][d]:
sum(<o,d> in CPs[p])
Trans[< p,<o,d> >] == Demand[<p,d>];

forall(c in Connections)
ctCapacity:
sum(<p,c> in Routes)
Trans[<p,c>] <= Capacity;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 71

About arrays

Order of indexers
When you use multidimensional arrays, the order of the dimensions may be significant. For
instance, in the following example:

/*..*/

range r1 = 1..n1;
range r2 = 1..n2;

dvar int+ x[r1][r2];

/*..*/

a1 == sum(i in r1, j in r2) x[i][j];
a2 == sum(j in r2, i in r1) x[i][j];

the calculation of a1 is more efficient because OPL internal caching mechanism recalculates
x[i] only when i changes.

Array initialization
A better-performing array initialization syntax has been introduced in OPL4.1. For example,
the profiler.mod example contains two semantically equivalent initializations:

Two ways of initializing arrays
int Values1[r][r];

execute INIT_Values1 {
for(var i in r)
for(var j in r)
if (i == 2*j)
Values1[i][j] = i+j;

writeln(Values1);
}

int Values2[i in r][j in r] = (i==2*j) ? i+j : 0;

execute INIT_Values2 {
writeln(Values2);

}

Initialization of Values2 is much faster than initialization of Values1, as shown by the profiling
facility described in Profiling the execution of a model in IDE Tutorials.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L72

Generic arrays
It is recommended to use generic arrays, or generic indexed arrays, whenever possible
because they make the model more explicit and readable.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 73

Other modeling tips

Labeling constraints
It is recommended to give labels to constraints but be aware of the performance cost. See
section Cost of Labeling constraints in the Language Reference Manual.

Tuples of parameters
The general expression

p in S

where S is a set of tuples containing n fields, can be replaced by a formal parameter
expression

<p1,...,pn> in S

for more readability. For more information on tuples of parameters, see Formal parameters
in the Language Reference Manual.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L74

The application areas

Describes applications of linear and integer programming, constraint programming, quadratic
programming, and CPLEX® logical constraints.

In this section

Some examples
Demonstrates how OPL is used in linear programming (product mix problem) and integer
programming (warehouse location problem).

Applications of linear and integer programming
Studies the application of OPL to linear programming, integer programming, mixed
integer-linear programming, and piecewise linear programming.

Applications of constraint programming
Defines constraint programming and describes a column generation problem (vellino
example), a production problem (car sequencing example), a time tabling problem (time
tabling example), and an introductory scheduling problem.

Quadratic programming
Defines quadratic programming (QP), including quadratically-constrained programming
(QCP), mixed integer quadratic programming (MIQP), and mixed-integer
quadratically-constrained programming (MIQCP).

Tutorial: Using CPLEX logical constraints
Demonstrates how to use logical constraints in an application.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 75

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L76

Some examples

Demonstrates how OPL is used in linear programming (product mix problem) and integer
programming (warehouse location problem).

In this section

Linear programming: a product mix problem
Describes the problem and presents the model and data files.

Integer programming: a warehouse location problem
Describes the problem and presents the model and data files.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 77

Linear programming: a product mix problem

As a first example, let’s consider a simple mathematical programming (MP) problem to
determine an optimal production mix.

To meet the demands of its customers, a company manufactures its products in its own
factories (inside production) or buys them from other companies (outside production). Inside
production is subject to some resource constraints: each product consumes a certain amount
of each resource. In contrast, outside production is theoretically unlimited. The problem is
to determine how much of each product should be produced inside the company and how
much outside, while minimizing the overall production cost, meeting the demand, and not
exceeding the resource constraints.

The statement of the problem must specify the set of products and the set of resources. For
each product, we need to know the inside and outside production costs, and for each resource
we need to know the available capacity of that resource. Finally, we need to know the
consumption of resources by the different products.

This is a general outline of an optimization problem. The production example illustrates a
specific pasta manufacturing problem. The project contains a model, product.mod, shown
in A pasta manufacturing problem (product.mod) , which states the problem to be solved,
and the data to be used by the model, product.dat, shown in Data for the pasta
manufacturing problem (product.dat) .

A pasta manufacturing problem (product.mod)
{string} Products = ...;
{string} Resources = ...;
tuple productData {

float demand;
float insideCost;
float outsideCost;
float consumption[Resources];

}
productData Product[Products] = ...;
float Capacity[Resources] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

execute CPX_PARAM {
cplex.preind = 0;
cplex.simdisplay = 2;

}

minimize
sum(p in Products)
(Product[p].insideCost * Inside[p] +
Product[p].outsideCost * Outside[p]);

subject to {
forall(r in Resources)
ctInside:
sum(p in Products)
Product[p].consumption[r] * Inside[p] <= Capacity[r];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L78

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Product[p].demand;

}

Data for the pasta manufacturing problem (product.dat)
Products = { "kluski", "capellini", "fettucine" };
Resources = { "flour", "eggs" };
Product = #[

kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,
capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettucine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;
Capacity = [20, 40];

In the model, the instruction

tuple productData {
float demand;
float insideCost;
float outsideCost;
float consumption[Resources];

}

declares a tuple type with four fields. The first three fields, of type float, are used to
represent the demand and costs of a product; the last field is an array representing the
resource consumptions of the product. These fields are intended to hold all the data related
to a given product.

The instruction

ProductData product[Products] = ...;

declares an array of these tuples, one for each product.

The model also contains two arrays of decision variables to represent the inside and outside
production, respectively. There is an objective function to minimize the total production
cost, and there are two types of constraints: a set of constraints to avoid exceeding the
capacity limitation, and another set of constraints to satisfy the demand requirements.

Initialization of the data given in product.dat for one instance of this problem specifies
these various data items: to initialize the tuples, values are given for each of their fields.

Product = #[
kluski : < 100, 0.6, 0.8, [0.5, 0.2] >,
capellini : < 200, 0.8, 0.9, [0.4, 0.4] >,
fettucine : < 300, 0.3, 0.4, [0.3, 0.6] >

]#;

In the data file we use a set of strings called Products to represent the varieties of pasta
and another set of strings called Resources to represent the raw ingredients of flour and
eggs.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 79

Integer programming: a warehouse location problem

Warehouse location is a typical discrete optimization problem. A company is considering a
number of locations for building warehouses to supply a set of stores. Each possible
warehouse has a fixed operating cost and a maximum capacity specifying how many stores
it can support. In addition, each store must be supplied by exactly one warehouse and the
cost to supply a store depends on the warehouse selected. The model consists of choosing
which warehouses to build and which warehouse to assign to each store in order to minimize
the total cost, i.e., the sum of the fixed and supply costs. Consider an example with five
warehouses and ten stores. The fixed costs for the warehouses are all identical and equal
to 30. The instance data for the problem, shown in the table below, reflects the transportation
costs and the capacity constraints defined in the data file warehouse.dat.

Instance data for the warehouse location problem
RomeParisLondonBordeauxBonnWarehouses

31241Capacity

3025112420store1

7483822728store2

7096719774store3

616973552store4

483599646store5

5967292242store6

56597351store7

9643137310store8

4685633593store9

9571556547store10

To represent our warehouse location problem as an integer program, the model,
warehouse.mod, uses a 0-1 Boolean variable for each combination of warehouse and store
to represent whether or not a warehouse supplies a store. In addition, the model associates
a variable with each warehouse to indicate whether the warehouse is selected. Once these
variables are declared, the constraints state that each store must be supplied by a warehouse,
that each store can be supplied by only an open warehouse, and that each warehouse cannot
deliver more stores than its allowed capacity.

Warehouse location, as a discrete optimization problem (warehouse.mod)
int Fixed = ...;
{string} Warehouses = ...;
int NbStores = ...;
range Stores = 0..NbStores-1;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores][Warehouses] = ...;
dvar boolean Open[Warehouses];
dvar boolean Supply[Stores][Warehouses];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L80

minimize
sum(w in Warehouses)
Fixed * Open[w] +

sum(w in Warehouses , s in Stores)
SupplyCost[s][w] * Supply[s][w];

subject to{
forall(s in Stores)
ctEachStoreHasOneWarehouse:
sum(w in Warehouses)
Supply[s][w] == 1;

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:
sum(s in Stores)
Supply[s][w] <= Capacity[w];

}

{int} Storesof[w in Warehouses] = { s | s in Stores : Supply[s][w] == 1 };
execute DISPLAY_RESULTS{
writeln("Open=",Open);
writeln("Storesof=",Storesof);

}

The most delicate aspect of the modeling is expressing that a warehouse can supply a store
only when it is open. These constraints can be expressed by inequalities of the form

supply[w][s] <= open[w];

which ensure that when warehouse w is not open, it cannot supply store s. This follows from
the fact that open[w] == 0 implies supply[w][s] == 0. In fact, these constraints can be
combined with the capacity constraints to obtain

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:
sum(s in Stores)
Supply[s][w] <= Capacity[w];

This formulation implies that a closed warehouse has no capacity.

The statement declares the warehouses and the stores, the fixed cost of the warehouses,
and the supply cost of a store for each warehouse. The problem variables

dvar boolean Supply[Stores][Warehouses];

represent which warehouses supply the stores, i.e., supply[s][w] is 1 if warehouse w supplies
store s, and zero otherwise.

The objective function

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 81

minimize
sum(w in Warehouses)
Fixed * Open[w] +

sum(w in Warehouses , s in Stores)
SupplyCost[s][w] * Supply[s][w];

expresses the goal that the model minimizes the fixed cost of the selected warehouse and
the supply costs of stores.

The constraint

forall(s in Stores)
ctEachStoreHasOneWarehouse:
sum(w in Warehouses)
Supply[s][w] == 1;

states that a store must be supplied by exactly one warehouse.

The constraints

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:
sum(s in Stores)
Supply[s][w] <= Capacity[w];

express the capacity constraints for the warehouses andmake sure that a warehouse supplies
a store only if the warehouse is open.

A solution to warehouse.mod
For the instance data depicted in the table Instance data for the warehouse location problem,
OPL returns the following optimal solution:

Final Solution with objective 383.0000:
open = [1 1 1 0 1];
supply = [[0 0 0 0 1]

[0 1 0 0 0]
[0 0 0 0 1]
[1 0 0 0 0]
[0 0 0 0 1]
[0 1 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 1 0 0 0]
[0 0 1 0 0]];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L82

Applications of linear and
integer programming

Studies the application of OPL to linear programming, integer programming, mixed
integer-linear programming, and piecewise linear programming.

In this section

Linear programming
Defines linear programming and describes a simple production planning problem, a
multiperiod production planning problem, a blending problem, and sensitivity analysis.

Integer programming
Defines integer programming and describes a set covering problem, a warehouse location
problem, a fixed-charge problem, and integer relaxation.

Mixed integer-linear programming
Defines mixed integer-linear programming and describes an upgrade to the
production-planning problem to include a fixed charge for the products.

Piecewise linear programming
Defines piecewise linear programming, describes an inventory problemwith piecewise linear
functions, compares pwl to plain linear programming, and indicates complexity issues.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 83

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L84

Linear programming

Defines linear programming and describes a simple production planning problem, a
multiperiod production planning problem, a blending problem, and sensitivity analysis.

In this section

What is linear programming
Defines linear programming.

A production problem
Uses again the model production.mod.

A multi-period production planning problem
Extends the production planning problem to several production periods.

A blending problem
Presents the problem of calculating different blends of gasoline according to specific quality
criteria.

Exploiting sparsity
Discusses how to exploit the sparsity of large-scale problems, beyond the classical
transportation problem exposed in the transp1.mod sample.

Sensitivity analysis
Explains how to obtain sensitivity information on variables and constraints.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 85

What is linear programming

Linear programming (LP) consists in optimizing a linear function subject to linear constraints
over real variables.

In LP, the model of a problem is expressed through numeric variables combined in linear
constraints and governed by a linear objective function and by bounds on the variables. OPL
can efficiently solve large instances of linear programs.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L86

A production problem

Consider again the production planning problem first presented in the section Tuples. The
model is depicted again in A Production planning problem (production.mod) below and the
instance data in Instance data for the production-planning problem (production.dat) .

A Production planning problem (production.mod)
{string} Products = ...;
{string} Resources = ...;

float Consumption[Products][Resources] = ...;
float Capacity[Resources] = ...;
float Demand[Products] = ...;
float InsideCost[Products] = ...;
float OutsideCost[Products] = ...;

dvar float+ Inside[Products];
dvar float+ Outside[Products];

minimize
sum(p in Products)
(InsideCost[p] * Inside[p] + OutsideCost[p] * Outside[p]);

subject to {
forall(r in Resources)
ctCapacity:
sum(p in Products)
Consumption[p][r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Demand[p];

}

Instance data for the production-planning problem (production.dat)
Products = { "kluski", "capellini", "fettucine" };
Resources = { "flour", "eggs" };

Consumption = [[0.5, 0.2], [0.4, 0.4], [0.3, 0.6]];
Capacity = [20, 40];
Demand = [100, 200, 300];
InsideCost = [0.6, 0.8, 0.3];
OutsideCost = [0.8, 0.9, 0.4];

The model aims at minimizing the production cost for a number of products while satisfying
customer demand. Each product can be produced either inside the company or outside, at
a higher cost. The inside production is constrained by the company's resources, while outside
production is considered unlimited. The model first declares the products and the resources.
The data consists of the description of the products, i.e., the demand, the inside and outside
costs, and the resource consumption, and the capacity of the various resources. The variables
for this problem are the inside and outside production for each product.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 87

A solution to production.mod
For these statements, OPL returns the optimal solution

Final Solution with objective 372.0000:
inside = [40.0000 0.0000 0.0000];
outside = [60.0000 200.0000 300.0000];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L88

A multi-period production planning problem

Large linear-programming problems are often obtained from simpler ones by generalizing
them along one or more dimensions. A typical extension of production-planning problems
is to consider several production periods and to include inventories in the model. This section
presents a multiperiod production planning model that generalizes the model of the previous
section A production problem.

The main generalization is to consider the demand for the products over several periods
and to allow the company to produce more than the demand in a given period. Of course,
there is an inventory cost associated with storing the additional production. A multi-period
production-planning problem (mulprod.mod) depicts the new model and Instance data for
multi-period production-planning problem (mulprod.dat) describes the instance data.

A multi-period production-planning problem (mulprod.mod)
{string} Products = ...;
{string} Resources = ...;
int NbPeriods = ...;
range Periods = 1..NbPeriods;

float Consumption[Resources][Products] = ...;
float Capacity[Resources] = ...;
float Demand[Products][Periods] = ...;
float InsideCost[Products] = ...;
float OutsideCost[Products] = ...;
float Inventory[Products] = ...;
float InvCost[Products] = ...;

dvar float+ Inside[Products][Periods];
dvar float+ Outside[Products][Periods];
dvar float+ Inv[Products][0..NbPeriods];

minimize
sum(p in Products, t in Periods)

(InsideCost[p]*Inside[p][t] +
OutsideCost[p]*Outside[p][t] +
InvCost[p]*Inv[p][t]);

subject to {
forall(r in Resources, t in Periods)
ctCapacity:
sum(p in Products)
Consumption[r][p] * Inside[p][t] <= Capacity[r];

forall(p in Products , t in Periods)
ctDemand:
Inv[p][t-1] + Inside[p][t] + Outside[p][t] == Demand[p][t] + Inv[p][t];

forall(p in Products)
ctInventory:
Inv[p][0] == Inventory[p];

};
tuple plan {

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 89

float inside;
float outside;
float inv;

}
plan Plan[p in Products][t in Periods] = <Inside[p,t],Outside[p,t],Inv[p,t]>;
execute DISPLAY {
writeln("plan=",Plan);

}

Instance data for multi-period production-planning problem (mulprod.dat)
Products = { kluski capellini fettucine };
Resources = { flour eggs };
NbPeriods = 3;

Consumption = [
[0.5, 0.4, 0.3],
[0.2, 0.4, 0.6]

];
Capacity = [20, 40];
Demand = [

[10 100 50]
[20 200 100]
[50 100 100]

];
Inventory = [0 0 0];
InvCost = [0.1 0.2 0.1];
InsideCost = [0.4, 0.6, 0.1];
OutsideCost = [0.8, 0.9, 0.4];

Most of the model generalizes smoothly. For instance, the capacity constraints stated for
all resources and all periods become

forall(r in Resources, t in Periods)
ctCapacity:
sum(p in Products)
Consumption[r][p] * Inside[p][t] <= Capacity[r];

The most novel part of the statement is the constraint linking the demand, the inventory,
and the production:

forall(p in Products , t in Periods)
ctDemand:
Inv[p][t-1] + Inside[p][t] + Outside[p][t] == Demand[p][t] + Inv[p][t];

The constraint states that, for each product p and each period t, the inventory of period t
-1 added to the production of period t is equated to the demand of period t plus the inventory
of period t. Of course, the fact that the variables inv[p][t] are constrained to be nonnegative
is critical to satisfying the demand and to disallow back orders. The objective function is
also generalized to add the inventory costs.

Note also the type declaration

tuple plan {
float inside;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L90

float outside;
float inv;

}

and the display instructions

plan Plan[p in Products][t in Periods] = <Inside[p,t],Outside[p,t],Inv[p,t]>;
execute DISPLAY {
writeln("plan=",Plan);

}

which were added to produce a visually pleasing display.

A solution to mulprod.mod
For example, on the instance data depicted in Piecewise linear functions leading to linear
programs, OPL produces the optimal solution

Optimal solution found with objective: 457
plan=
[[<10.0000 0.0000 0.0000> <0.0000 100.0000 0.0000> <0.0000 50.0000 0.0000>]
[<0.0000 20.0000 0.0000> <0.0000 200.0000 0.0000> <0.0000 100.0000 0.0000>]
[<50.0000 0.0000 0.0000> <66.6667 33.3333 0.0000> <66.6667 33.3333 0.0000>]]

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 91

A blending problem

Blending problems are another typical application of linear programming. Consider the
following problem. An oil company manufactures three types of gasoline: super, regular,
and diesel. Each type of gasoline is produced by blending three types of crude oil: crude1,
crude2, and crude3. Prices for the blending problem depicts the sales price and the purchase
price per barrel of the various products. The gasoline must satisfy some quality criteria with
respect to their lead content and their octane ratings, thus constraining the possible
blendings.

Prices for the blending problem
Purchase PriceSales Price

$45crude1$70super

$35crude2$60regular

$25crude3$50diesel

Octane and lead data for the blending problem describes the relevant instance data.

Octane and lead data for the blending problem
Lead
Contents

Octane
Rating

Lead ContentOctane Rating

0.512crude1less than or equal to 1greater than or equal to 10super

2.06crude2less than or equal to 2greater than or equal to 8regular

3.08crude3less than or equal to 1greater than or equal to 6diesel

The company must also satisfy its customer demand, which is 3,000 barrels a day of super,
2,000 of regular, and 1,000 of diesel. The company can purchase 5,000 barrels of each
type of crude oil per day and can process at most 14,000 barrels a day. In addition, the
company has the option of advertising a gasoline, in which case the demand for this type of
gasoline increases by ten barrels for every dollar spent. Finally, it costs four dollars to
transform a barrel of oil into a barrel of gasoline. The model is depicted in An oil-blending
planning problem (oil.mod) and the instance data is shown in Data for the oil-blending
planning problem (oil.dat) .

An oil-blending planning problem (oil.mod)
{string} Gasolines = ...;
{string} Oils = ...;
tuple gasType {
float demand;
float price;
float octane;
float lead;

}

tuple oilType {
float capacity;
float price;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L92

float octane;
float lead;

}
gasType Gas[Gasolines] = ...;
oilType Oil[Oils] = ...;
float MaxProduction = ...;
float ProdCost = ...;

dvar float+ a[Gasolines];
dvar float+ Blend[Oils][Gasolines];

maximize
sum(g in Gasolines , o in Oils)
(Gas[g].price - Oil[o].price - ProdCost) * Blend[o][g]
- sum(g in Gasolines) a[g];

subject to {
forall(g in Gasolines)
ctDemand:
sum(o in Oils)
Blend[o][g] == Gas[g].demand + 10*a[g];

forall(o in Oils)
ctCapacity:
sum(g in Gasolines)
Blend[o][g] <= Oil[o].capacity;

ctMaxProd:
sum(o in Oils , g in Gasolines)
Blend[o][g] <= MaxProduction;

forall(g in Gasolines)
ctOctane:
sum(o in Oils)
(Oil[o].octane - Gas[g].octane) * Blend[o][g] >= 0;

forall(g in Gasolines)
ctLead:
sum(o in Oils)
(Oil[o].lead - Gas[g].lead) * Blend[o][g] <= 0;

}

execute DISPLAY_REDUCED_COSTS{
for(var g in Gasolines) {
writeln("a[",g,"].reducedCost = ",a[g].reducedCost);

}
}

Data for the oil-blending planning problem (oil.dat)
Gasolines = { "Super", "Regular", "Diesel" };
Oils = { "Crude1", "Crude2", "Crude3" };

Gas = [<3000, 70, 10, 1>,
<2000, 60, 8, 2>,
<1000, 50, 6, 1>];

Oil = [<5000, 45, 12, 0.5>,
<5000, 35, 6, 2>,

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 93

<5000, 25, 8, 3>];

MaxProduction = 14000;
ProdCost = 4;

The model uses two sets of variables. Variable a[Gasolines] represents the amount spent
in advertising gasoline g. Variable blend[Oils][Gasolines] represents the number of
barrels of crude oil o used to produced gasoline g. The demand constraints

forall(g in Gasolines)
ctDemand:
sum(o in Oils)
Blend[o][g] == Gas[g].demand + 10*a[g];

use both types of variables, since sum(o in Oils) blend[o][g] represents the amount of
gasoline g produced daily.

These constraints capture the purchase limitations for each type of oil.

forall(o in Oils)
ctCapacity:
sum(g in Gasolines)
Blend[o][g] <= Oil[o].capacity;

This constraint enforces the capacity limitation on production.

forall(o in Oils)
ctCapacity:
sum(g in Gasolines)
Blend[o][g] <= Oil[o].capacity;

This constraints enforce the quality criteria for the gasoline.

forall(g in Gasolines)
ctOctane:
sum(o in Oils)
(Oil[o].octane - Gas[g].octane) * Blend[o][g] >= 0;

forall(g in Gasolines)
ctLead:
sum(o in Oils)
(Oil[o].lead - Gas[g].lead) * Blend[o][g] <= 0;

The objective function has four parts: the sales price of the gasoline, the purchase cost of
the crude oils, the production costs, and the adverting costs.

maximize
sum(g in Gasolines , o in Oils)
(Gas[g].price - Oil[o].price - ProdCost) * Blend[o][g]
- sum(g in Gasolines) a[g];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L94

A solution to oil.mod
For the instance data given in Data for the oil-blending planning problem (oil.dat) , the
optimal solution to this problem is

Final Solution with objective 287750.0000:
blend = [[2088.8889 2111.1111 800.0000]

[777.7778 4222.2222 0.0000]
[133.3333 3166.6667 200.0000]];

a = [0.0000 750.0000 0.0000];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 95

Exploiting sparsity

A sparse multi-product transportation model (transp3.mod) depicts the model of the
transportation problem, known as a multicommodity flow problem on a bipartite graph.
Instance data are available in this file:

<OPL_dir>\examples\opl\transp\transp3.dat

which is too long to be shown here.

A sparse multi-product transportation model (transp3.mod)
{string} Cities =...;
{string} Products = ...;
float Capacity = ...;
tuple connection { string o; string d; }
tuple route {
string p;
connection e;

}
{route} Routes = ...;
{connection} Connections = { c | <p,c> in Routes };
tuple supply {
string p;
string o;

}
{supply} Supplies = { <p,c.o> | <p,c> in Routes };
float Supply[Supplies] = ...;
tuple customer {
string p;
string d;

}
{customer} Customers = { <p,c.d> | <p,c> in Routes };
float Demand[Customers] = ...;
float Cost[Routes] = ...;
{string} Orig[p in Products] = { c.o | <p,c> in Routes };
{string} Dest[p in Products] = { c.d | <p,c> in Routes };

{connection} CPs[p in Products] = { c | <p,c> in Routes };
assert forall(p in Products)

sum(o in Orig[p]) Supply[<p,o>] == sum(d in Dest[p]) Demand[<p,d>];

dvar float+ Trans[Routes];

constraint ctSupply[Products][Cities];
constraint ctDemand[Products][Cities];

minimize
sum(l in Routes)
Cost[l] * Trans[l];

subject to {
forall(p in Products , o in Orig[p])
ctSupply[p][o]:
sum(<o,d> in CPs[p])
Trans[< p,<o,d> >] == Supply[<p,o>];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L96

forall(p in Products , d in Dest[p])
ctDemand[p][d]:
sum(<o,d> in CPs[p])
Trans[< p,<o,d> >] == Demand[<p,d>];

forall(c in Connections)
ctCapacity:
sum(<p,c> in Routes)
Trans[<p,c>] <= Capacity;

}

This is a classic transportation problem with the addition of a capacity constraint on the
inter-cities connections. Themodel is, of course, not appropriate for large-scale transportation
problems, where only a fraction of the cities are connected and a fraction of the products
are sent along the connections. This section discusses how to exploit the sparsity of
large-scale problems. OPL offers more support than other modeling languages in this respect,
because it can use tuples and arrays indexed by arbitrary finite sets. The methodology for
exploiting sparsity in OPL consists of mirroring, in the model, the structure of the application.
This structure can be inferred from the objective function and the constraints of the
application. For instance, the capacity constraint for the transportation application can be
phrased as

“The products sent along any given connection may not exceed the given capacity.”

This constraint helps identify two main concepts in the application. The first is the connection
between two cities, which can be represented explicitly by a data type

tuple connection { string o; string d; }

to manipulate connections as first-class objects. The second fundamental concept is the
transportation of a product along a connection, called a route in this section. Once again,
this concept can be represented explicitly by a data type

tuple connection { string o; string d; }

to manipulate routes directly. The supply and demand constraints exhibit two other
fundamental concepts: product suppliers (i.e., the association of a product and a city supplying
it) and product consumers (i.e., the association of a product and a city consuming it). The
data types

tuple Supply { string p; string o; };
tuple Customer { string p; string d; };

may be used to represent them.

Once the concepts are identified, an appropriate data representation can be chosen so that
the model can generate constraints efficiently. Of course, the user data is not necessarily
expressed in this representation, but it is usually easy in OPL to transform the user data
into an appropriate representation.

A good representation for this application consists of a set of connections, a set of routes,
the cost of the routes, and the demand and supply information. For example:

{route} Routes = ...;
{connection} Connections = { c | <p,c> in Routes };
tuple supply {

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 97

string p;
string o;

}
{supply} Supplies = { <p,c.o> | <p,c> in Routes };
float Supply[Supplies] = ...;
tuple customer {
string p;
string d;

}
{customer} Customers = { <p,c.d> | <p,c> in Routes };
float Demand[Customers] = ...;
float Cost[Routes] = ...;

Note that the connections, suppliers, and customers are derived automatically from the
routes. It is also useful to derive the following data to simplify the constraint statement:

{string} Orig[p in Products] = { c.o | <p,c> in Routes };
{string} Dest[p in Products] = { c.d | <p,c> in Routes };

{connection} CPs[p in Products] = { c | <p,c> in Routes };

The objective function and the constraints can now be stated naturally. The objective function

“minimize the transportation costs along all routes”

is expressed elegantly as

minimize
sum(l in Routes)
Cost[l] * Trans[l];

The supply constraint, which can be phrased as

“for every product and every city shipping the product, the summation of all transportations
from that city to a city where the product is in demand is equal to the supply of the product
at the supplying city”

is formalized by

forall(p in Products , o in Orig[p])
ctSupply[p][o]:
sum(<o,d> in CP[p])
Trans[< p,<o,d> >] == Supply[<p,o>];

The demand constraints are stated in a similar way. The capacity constraints are stated
elegantly as

forall(c in Connections)
ctCapacity:
sum(<p,c> in Routes)
Trans[<p,c>] <= Capacity;

This statement is efficient, since OPL retrieves the product from the routes in an efficient
way when the connection is known. The complete model is shown in A sparse multi-product
transportation model (transp3.mod).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L98

Assume now that part of the user data is given by a relational table that contains tuples of
the form <o,d,p,c> indicating that a connection between cities o and d transports product
p at cost c. This data can be transformed into the representation used in A sparse
multi-product transportation model (transp3.mod). The routes can be obtained as

{Route} Routes = { < <o,d>,p> | <p,o,d,c> in TableRoutes };

and the costs as

float Cost[Routes] = [<t.p,<t.o,t.d>>:t.cost | t in TableRoutes];

Both preprocessing instructions are linear in the size of the table.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 99

Sensitivity analysis

Finding the optimal solution to a linear programming model is important, but very often you
need to know what happens when data values are changed. You need sensitivity information
such as the reduced cost, or the basis status for variables.

Some types of sensitivity information are made available by IBM® ILOG® OPL.

♦ Basis status

♦ Reduced cost or opportunity cost

♦ Information on constraints

Basis status
You can get the basis status by calling the method getBasisStatus on a IloOplCplexBasis
object. This API is documented in the IBM ILOG Script Extensions Reference Manual. See
also mulprod_main.mod for an example.

Reduced cost or opportunity cost
The reduced cost provides the rate of change in the objective for each nonbasic variable as
it moves from the bound at which it resides. The most common type of variable has a lower
bound of 0 and an infinite upper bound. In this case, the reduced cost indicates the rate of
change in the objective as the variable moves to a nonzero value.

If v is a decision variable, call:

v.reducedCost

See also Displaying results.

Information on constraints
For constraints, the dual variable measures the rate of change in the objective as the right
hand side of the constraint changes. For example, with a capacity constraint, the dual variable
measures the improvement in the objective per unit of additional capacity.

Sensitivity analysis on constraints summarizes what information you can get on a constraint
c.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L100

Sensitivity analysis on constraints
CallTo get

c.dualthe value of the associated dual variable

c.slackthe slack

c.LBthe lower bound

c.UBthe upper bound

This API is documented in the IBM ILOG Script Extensions Reference Manual. You can also
read this information in the Problem Browser of the IDE by clicking on a constraint label
after a run configuration has been executed.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 101

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L102

Integer programming

Defines integer programming and describes a set covering problem, a warehouse location
problem, a fixed-charge problem, and integer relaxation.

In this section

What is integer programming?
Defines integer programming.

Set covering
Describes the problem and presents the model and data files.

Warehouse location
Describes the problem and presents the model and data files.

Fixed-charge problems
Describes the problem and presents the model and data files.

Integer relaxation
Presents a model that shows how to relax integer constraints then undo the relaxation.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 103

What is integer programming?

Integer programming is the class of problems defined as the optimization of a linear function
subject to linear constraints over integer variables.

Integer programs are, in general, much harder to solve than linear programs and the size
of integer programs that can be solved efficiently is much smaller than that of linear
programs. This section reviews a number of typical integer programs.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L104

Set covering

Consider selecting workers to build a house. The construction of a house can be divided into
a number of tasks, each requiring a number of skills (e.g., plumbing or masonry). A worker
may or may not perform a task, depending on skills. In addition, each worker can be hired
for a cost that also depends on his qualifications. The problem consists of selecting a set of
workers to perform all the tasks, while minimizing the cost. This is known as a set-covering
problem. The key idea in modeling a set-covering problem as an integer program is to
associate a 0/1 variable with each worker to represent whether the worker is hired. To make
sure that all the tasks are performed, it is sufficient to choose at least one worker by task.
This constraint can be expressed by a simple linear inequality.

A set-covering model (covering.mod) describes a set-covering model for this problem and
Instance data for the set-covering model (covering.dat) shows some instance data.

A set-covering model (covering.mod)
int NbWorkers = ...;
range Workers = 1..NbWorkers;
{string} Tasks = ...;
{int} Qualified[Tasks] = ...;
assert
forall(t in Tasks , i in Qualified[t]) i in asSet(Workers);

//alternate formulation:
assert
forall(t in Tasks)
card(Qualified[t] inter asSet(Workers))==card(Qualified[t]);

int Cost[Workers] = ...;
dvar boolean Hire[Workers];

minimize
sum(c in Workers) Cost[c] * Hire[c];

subject to {
forall(j in Tasks)
ct:
sum(c in Qualified[j])
Hire[c] >= 1;

}
{int} Crew = { c | c in Workers : Hire[c] == 1 };
execute DISPLAY {
writeln("Crew=",Crew);

}

The first instruction in the model declares a number of workers as an integer, a range for
the workers, and a string type for the tasks. The instruction

{int} Qualified[Tasks] = ...;

declares the workers qualified to perform a given task, Therefore, Qualified[Tasks] is the
set of workers able to perform task t.

The problem variables

dvar boolean Hire[Workers];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 105

indicate whether a worker is hired for the project.

The constraints

forall(j in Tasks)
ct:
sum(c in Qualified[j])
Hire[c] >= 1;

make sure that each task is covered by at least one worker.

Note also the declaration

{int} Crew = { c | c in Workers : Hire[c] == 1 };

which collects all the hired workers in the set crew to produce a more pleasing representation
of the results.

Instance data for the set-covering model (covering.dat) shows data for an instance of this
model.

Instance data for the set-covering model (covering.dat)
NbWorkers = 32;
Tasks = { masonry, carpentry, plumbing, ceiling,

electricity, heating, insulation, roofing,
painting, windows, facade, garden,
garage, driveway, moving };

Qualified = [
{ 1 9 19 22 25 28 31 }
{ 2 12 15 19 21 23 27 29 30 31 32 }
{ 3 10 19 24 26 30 32 }
{ 4 21 25 28 32 }
{ 5 11 16 22 23 27 31 }
{ 6 20 24 26 30 32 }
{ 7 12 17 25 30 31 }
{ 8 17 20 22 23 }
{ 9 13 14 26 29 30 31 }
{ 10 21 25 31 32 }
{ 14 15 18 23 24 27 30 32 }
{ 18 19 22 24 26 29 31 }
{ 11 20 25 28 30 32 }
{ 16 19 23 31 }
{ 9 18 26 28 31 32 }

];
Cost = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 7 8 9];

A solution to covering.mod
For the instance data given in Instance data for the set-covering model (covering.dat),
OPL returns the solution

Optimal solution found with objective: 14
crew= {23 25 26}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L106

Warehouse location

Warehouse location is another typical integer-programming problem. Suppose a company
that is considering a number of locations for building warehouses to supply its existing
stores. Each possible warehouse has a fixed maintenance cost and a maximum capacity
specifying how many stores it can support. In addition, each store can be supplied by only
one warehouse and the supply cost to the store differs according to the warehouse selected.
The application consists of choosing which warehouses to build and which of them should
supply the various stores in order to minimize the total cost, i.e., the sum of the fixed and
supply costs. The instance used in this section considers five warehouses and 10 stores. The
fixed costs for the warehouses are all identical and equal to 30. Instance data for the
warehouse-location problem depicts the transportation costs and the capacity constraints.

Instance data for the warehouse-location problem
RomeParisLondonBordeauxBonn

31241capacity

3025112420store1

7483822728store2

7096719774store3

616973552store4

483599646store5

5967292242store6

56597351store7

9643137310store8

4685633593store9

9571556547store10

The key idea in representing a warehouse-location problem as an integer program consists
of using a 0-1 variable for each (warehouse, store) pair to represent whether a warehouse
supplies a store. In addition, the model also associates a variable with each warehouse to
indicate whether the warehouse is selected. Once these variables are declared, the constraints
state that each store must be supplied by a warehouse, that each store can be supplied by
only an open warehouse, and that each warehouse cannot deliver more stores than its
allowed capacity. The most delicate aspect of the modeling is expressing that a warehouse
can supply a store only when it is open. These constraints can be expressed by inequalities
of the form

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:
sum(s in Stores)
Supply[s][w] <= Capacity[w];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 107

which ensures that when warehouse w is not open, it does not supply store s. This follows
from the fact that open[w] == 0 implies supply[w][s] == 0.

As an alternative, you can write:

forall(c in Connections)
ctCapacity:
sum(<p,c> in Routes)
Trans[<p,c>] <= Capacity;

This formulation implies that a closed warehouse has no capacity.

A warehouse-location model (warehouse.mod) describes an integer program for the
warehouse-location problem, and Data for the warehouse-location model (warehouse.dat)
depicts some instance data.

A warehouse-location model (warehouse.mod)
int Fixed = ...;
{string} Warehouses = ...;
int NbStores = ...;
range Stores = 0..NbStores-1;
int Capacity[Warehouses] = ...;
int SupplyCost[Stores][Warehouses] = ...;
dvar boolean Open[Warehouses];
dvar boolean Supply[Stores][Warehouses];

minimize
sum(w in Warehouses)
Fixed * Open[w] +

sum(w in Warehouses , s in Stores)
SupplyCost[s][w] * Supply[s][w];

subject to{
forall(s in Stores)
ctEachStoreHasOneWarehouse:
sum(w in Warehouses)
Supply[s][w] == 1;

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:
sum(s in Stores)
Supply[s][w] <= Capacity[w];

}

{int} Storesof[w in Warehouses] = { s | s in Stores : Supply[s][w] == 1 };
execute DISPLAY_RESULTS{
writeln("Open=",Open);
writeln("Storesof=",Storesof);

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L108

Data for the warehouse-location model (warehouse.dat)
Fixed = 30;
Warehouses = {Bonn,Bordeaux,London,Paris,Rome};
NbStores = 10;
Capacity = [1,4,2,1,3];
SupplyCost = [

[20, 24, 11, 25, 30],
[28, 27, 82, 83, 74],
[74, 97, 71, 96, 70],
[2, 55, 73, 69, 61],
[46, 96, 59, 83, 4],
[42, 22, 29, 67, 59],
[1, 5, 73, 59, 56],
[10, 73, 13, 43, 96],
[93, 35, 63, 85, 46],
[47, 65, 55, 71, 95]];

The statement declares the warehouses and the stores, the fixed cost of the warehouses,
and the supply cost of a store for each warehouse. The problem variables

dvar boolean Open[Warehouses];
dvar boolean Supply[Stores][Warehouses];

represent which warehouses supply the stores, i.e., supply[s][w] is 1 if warehouse w supplies
store s and zero otherwise.

The objective function

minimize
sum(w in Warehouses)
Fixed * Open[w] +

sum(w in Warehouses , s in Stores)
SupplyCost[s][w] * Supply[s][w];

expresses the goal that the model minimizes the fixed cost of the selected warehouses and
the supply costs of the stores.

The constraint

forall(s in Stores)
ctEachStoreHasOneWarehouse:
sum(w in Warehouses)
Supply[s][w] == 1;

states that a store must be supplied by exactly one warehouse.

The constraint

forall(w in Warehouses, s in Stores)
ctUseOpenWarehouses:
Supply[s][w] <= Open[w];

forall(w in Warehouses)
ctMaxUseOfWarehouse:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 109

sum(s in Stores)
Supply[s][w] <= Capacity[w];

expresses the capacity constraints for the warehouses and makes sure that a warehouse
supplies a store only if the warehouse is open.

A solution to warehouse.mod
For the instance data shown in Data for the warehouse-location model (warehouse.dat),
OPL returns the optimal solution

Optimal solution found with objective: 383
open= [1 1 1 0 1]
storesof= [{3} {1 5 6 8} {7 9} {} {0 2 4}]

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L110

Fixed-charge problems

Fixed-charge problems are another classic application of integer programs (see Applications
and Algorithms by W. Winston in the Bibliography). They resemble some of the production
problems seen previously but differ in two respects: the production is an integer value (e.g.,
a factory must produce bikes or toys), and the factories need to rent (or acquire) some tools
to produce some of the products. Consider the following problem. A company manufactures
shirts, shorts, and pants. Each product requires a number of hours of labor and a certain
amount of cloth, and the company has a limited capacity of both. In addition, all of these
products can be manufactured only by renting an appropriate machine. The profit on the
products (excluding the cost of renting the equipment) are also known. The company would
like to maximize its profit.

A fixed-charge model (fixed.mod) shows a model for fixed charge problems, while Data for
the fixed-charge model (fixed.dat) gives some instance data.

A fixed-charge model (fixed.mod)
{string} Machines = ...;
{string} Products = ...;
{string} Resources = ...;

int Capacity[Resources] = ...;
int MaxProduction = max(r in Resources) Capacity[r];
int RentingCost[Machines] = ...;
tuple productType {

int profit;
{string} machines;
int use[Resources];

}
productType Product[Products] = ...;

dvar boolean Rent[Machines];
dvar int Produce[Products] in 0..MaxProduction;

constraint ctMaxProd[Products][Machines];

maximize
sum(p in Products)
Product[p].profit * Produce[p] -

sum(m in Machines)
RentingCost[m] * Rent[m];

subject to {
forall(r in Resources)
ctCapacity:
sum(p in Products)
Product[p].use[r] * Produce[p] <= Capacity[r];

forall(p in Products , m in Product[p].machines)
ctMaxProd[p][m]:
Produce[p] <= MaxProduction * Rent[m];

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 111

Data for the fixed-charge model (fixed.dat)
Machines = { shirtM shortM pantM };
Products = { shirt shorts pants };
Resources = { labor cloth };
Capacity = [150 160];
RentingCost = [200 150 100];
Product = [

<6 {shirtM} [3 4] >
<4 {shortM} [2 3] >
<7 {pantM} [6 4] >

];

The integer program for this model uses two sets of variables: production variables and
rental variables. A production variable produce[p] describes the production of product p;
a rental variable rent[m] is a 0-1 variable representing whether machine m is rented. Most
of the constraints are similar to traditional production problems and pose few difficulties.
The most delicate aspect of the modeling is expressing that a product can be produced only
if its equipment is rented.

It is not possible to use the same idea as in the warehouse-location problem: e.g., a constraint

produce[p] <= rent[m]

is not correct, since produce[p] is not a Boolean variable in this model. Onemight be tempted
to write

produce[p] <= produce[p] * rent[m]

but this constraint is not linear. The solution adopted in the model is to use an integer
representing the maximal production of any product:

int MaxProduction = max(r in Resources) Capacity[r];

and write

produce[p] <= MaxProduction * rent[m]

If machine m is rented, then the constraint is redundant, since MaxProduction is chosen to
be larger than produce[p]. Otherwise, the right-hand side is zero and product p cannot be
manufactured. Note the data representation in this model: the type

tuple productType {
int profit;
{string} machines;
int use[Resources];

}

clusters all data related to a product: its profit, the set of machines it requires, and the way
it uses the resources. Note also the constraint

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L112

forall(p in Products , m in Product[p].machines)
ctMaxProd[p][m]:
Produce[p] <= MaxProduction * Rent[m];

which features a forall statement that quantifies over each product and over each machine
used by the product.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 113

Integer relaxation

OPL allows relaxation of integer constraints on decision variables. With OPL, there is a
simple way to relax all integer decision variables at once and to convert a MIP problem to
an LP problem: just call the method IloOplModel.convertAllIntVars as shown in Relaxing
an integer constraint and undoing relaxation (convert_example.mod).

The inverse operation is also available. To undo integer relaxation, call the method
IloOplModel.unconvertAllIntVars.

Relaxing an integer constraint and undoing relaxation (convert_example.mod)
dvar int x in 0..10;

minimize x;
subject to {
ct :
x >= 1/2;

}

main {
var status = 0;
thisOplModel.generate();
cplex.solve();
writeln("Integer Model");
writeln("OBJECTIVE: ",cplex.getObjValue());
if (cplex.getObjValue() != 1) {
status = -1;

}

thisOplModel.convertAllIntVars();
cplex.solve();
writeln("Relaxed Model");
writeln("OBJECTIVE: ",cplex.getObjValue());
if (cplex.getObjValue() != 0.5) {
status = -1;

}

thisOplModel.unconvertAllIntVars();
cplex.solve();
writeln("Unrelaxed Model");
writeln("OBJECTIVE: ",cplex.getObjValue());
if (cplex.getObjValue() != 1) {
status = -1;

}
status;

}

Both methods are available for flow control scripting, and in the C++, Java™ , and .NET™
Interfaces.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L114

For more information
For details on scripting, see IBM ILOG Script for OPL.

For details on the API, see each Interfaces Reference Manual.

To learn more about what MIP relaxation is and how to use it, see the CPLEX® document
or consult a textbook about linear-programming.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 115

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L116

Mixed integer-linear programming

Defines mixed integer-linear programming and describes an upgrade to the
production-planning problem to include a fixed charge for the products.

In this section

What is mixed integer-linear programming?
Defines mixed integer-linear programming.

Fixed charge in a production planning problem
Presents the model and data files, and a solution to the problem.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 117

What is mixed integer-linear programming?

Mixed integer-linear programs are linear programs in which some variables are required
to take integer values, and arise naturally in many applications.

The integer variables may come from the nature of the products (e.g., a machine may, or
may not, be rented). Mixed integer-linear programs are solved using the same technology
as integer programs (or vice-versa). For instance, a branch-and-bound algorithm can exploit
the linear relaxation and its branching procedure is applied only to integer variables.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L118

Fixed charge in a production planning problem

Consider how to upgrade the production-planning problem presented in Tuples to include
a fixed charge for the products. A fixed-charge production model (prodmilp.mod) describes
the new model and Data for the fixed-charge production model (prodmilp.dat) describes
the instance data.

A fixed-charge production model (prodmilp.mod)
{string} Products = ...;
{string} Resources = ...;
{string} Machines = ...;
float MaxProduction = ...;

tuple typeProductData {
float demand;
float incost;
float outcost;
float use[Resources];
string machine;

}

typeProductData Product[Products] = ...;
float Capacity[Resources] = ...;
float RentCost[Machines] = ...;

dvar boolean Rent[Machines];
dvar float+ Inside[Products];
dvar float+ Outside[Products];

minimize
sum(p in Products)
(Product[p].incost * Inside[p] +
Product[p].outcost * Outside[p]) +

sum(m in Machines)
RentCost[m] * Rent[m];

subject to {
forall(r in Resources)
ctCapacity:
sum(p in Products)
Product[p].use[r] * Inside[p] <= Capacity[r];

forall(p in Products)
ctDemand:
Inside[p] + Outside[p] >= Product[p].demand;

forall(p in Products)
ctMaxProd:
Inside[p] <= MaxProduction * Rent[Product[p].machine];

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 119

Data for the fixed-charge production model (prodmilp.dat)
Products = { "kluski" "capellini" "fettucine" };
Resources = { "flour" "eggs" };
Machines = { m1 m2 m3 };
RentCost = [20 10 5];
MaxProduction = 100000;
Product = #[

kluski : < 100, 0.6, 0.8, [0.5, 0.2] m1 >
capellini : < 200, 0.8, 0.9, [0.4, 0.4] m2 >
fettucine : < 300, 0.3, 0.4, [0.3, 0.6] m3>

]#;
Capacity = [20, 40];

Note that the model now contains two types of variables: 0-1 variables that represent whether
to rent a machine and production variables of type float. The product data is enhanced
with a field describing the required machine, while the new constraints are modeled as in
the fixed-charge problem in A fixed-charge model (fixed.mod).

A solution to prodmilp.mod
For the instance data in Data for the fixed-charge production model (prodmilp.dat) , OPL
returns the optimal solution

Final Solution with objective 378.3333:
inside = [0.0000 0.0000 66.6667];
outside = [100.0000 200.0000 233.3333];
rent = [0 0 1];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L120

Piecewise linear programming

Defines piecewise linear programming, describes an inventory problemwith piecewise linear
functions, compares pwl to plain linear programming, and indicates complexity issues.

In this section

What is piecewise linear programming?
Defines piecewise linear programming.

An inventory application with piecewise linear functions
Describes the problem, with its solution, and presents the model and data files.

Piecewise-linear vs. linear
Enforces a constraint that results in a mixed integer-linear program.

Complexity issues
Discusses when a piecewise linear program corresponds to a mixed integer-linear program.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 121

What is piecewise linear programming?

Piecewise linear programs are in fact syntactic sugar for linear, integer, or mixed
integer-linear programs.

In other words, a piecewise linear program can always be transformed into a mixed integer
linear program and, sometimes, into a linear program. This last case is particularly interesting
from a computational standpoint. Piecewise linear programs are also useful in simplifying
the models for a variety of applications.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L122

An inventory application with piecewise linear functions

This section introduces piecewise linear programs using an inventory application. This
piecewise linear application is adapted from Applications and Algorithms by W. Winston
(see the Bibliography).

The company Sailco must determine how many sailboats to produce over four time periods.
The demand for the four periods is known (40, 60, 75, 25) and, in addition, an inventory of
ten boats is available initially. In each period, Sailco can produce 40 boats at a cost of $400
per boat. Additional boats can be produced at a cost of $450 per boat. The inventory cost
is $20 per boat and per period. A simple inventory model (sailco.mod) describes a linear
program for this application and Data for the simple inventory model (sailco.dat) describes
the instance data.

A simple inventory model (sailco.mod)
int NbPeriods = ...;
range Periods = 1..NbPeriods;

float Demand[Periods] = ...;
float RegularCost = ...;
float ExtraCost = ...;
float Capacity = ...;
float Inventory = ...;
float InventoryCost = ...;

dvar float+ RegulBoat[Periods];
dvar float+ ExtraBoat[Periods];
dvar float+ Inv[0..NbPeriods];

minimize
RegularCost *
(sum(t in Periods) RegulBoat[t]) +
ExtraCost *
(sum(t in Periods) ExtraBoat[t]) +
InventoryCost *
(sum(t in Periods) Inv[t]);

subject to {
ctInit:
Inv[0] == Inventory;

forall(t in Periods)
ctCapacity:
RegulBoat[t] <= Capacity;

forall(t in Periods)
ctBoat:
RegulBoat[t] + ExtraBoat[t] + Inv[t-1] == Inv[t] + Demand[t];

}

Data for the simple inventory model (sailco.dat)
NbPeriods = 4;
Demand = [40, 60, 75, 25];
RegularCost = 400;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 123

ExtraCost = 450;
Capacity = 40;
Inventory = 10;
InventoryCost = 20;

The key idea underlying this model is to use two sets of variables for describing the
production: variables regulBoat[t] represent the number of boats built at the regular price
($400 in the instance data) for period t, while extraBoat[t] represents the number of extra
boats, i.e., boats built at the higher price. The model also contains inventory variables. Most
of the constraints are typical for inventory problems.

In addition, the constraint

forall(t in Periods)
ctCapacity:
RegulBoat[t] <= Capacity;

states that there is a capacity constraint on the regular boats. This constraint could be
expressed directly as a bound but this is not of concern since it will disappear in the next
model. Note also that all the variables will be given integral values for this application,
although they are of type float. This is due to the problem structure, not to chance.

The constraint matrix of this problem is totally unimodular, which guarantees that the
optimum has only integer values for integer data. See for instance Combinatorial
Optimization: Algorithms and Complexity by C.H. Papadimitriou and K. Steiglitz for a
discussion of total unimodularity (see the Bibliography).

A solution to sailco.mod
For the instance data given in Data for the simple inventory model (sailco.dat) , OPL
returns the optimal solution

Final Solution with objective 78450.0000:
regulBoat = [40.0000 40.0000 40.0000 25.0000];
extraBoat = [0.0000 10.0000 35.0000 0.0000];
inv = [10.0000 10.0000 0.0000 0.0000 0.0000];

It is interesting to observe that the model does not preclude producing extra boats
even if the production of regular boats does not reach its full capacity. This is not an

Note:

issue in this model, since the extra boats are more expensive and thus are not produced
in an optimal solution. It would become an issue, of course, if the cost of the extra
boats is less than the regular price (because of, say, economies of scale). This case
is discussed in Piecewise-linear vs. linear.

A piecewise linear model for this application is given in A piecewise linear model for the
simple inventory problem (sailcopw.mod).

A piecewise linear model for the simple inventory problem (sailcopw.mod)
int NbPeriods = ...;
range Periods = 1..NbPeriods;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L124

float Demand[Periods] = ...;
float RegularCost = ...;
float ExtraCost = ...;
float Capacity = ...;
float Inventory = ...;
float InventoryCost = ...;

dvar float+ Boat[Periods];
dvar float+ Inv[0..NbPeriods];

minimize
sum(t in Periods)

piecewise{ RegularCost -> Capacity ; ExtraCost } Boat[t] +
InventoryCost * (sum(t in Periods) Inv[t]);

subject to {
ctInventory:
Inv[0] == Inventory;

forall(t in Periods)
ctDemand:
Boat[t] + Inv[t-1] == Inv[t] + Demand[t];

}

The data description is similar in this model. What differs from the previous model presented
in A simple inventory model (sailco.mod) is the choice of variables, the objective function,
and the constraints. There is only one type of production variable in this model and hence
there is no distinction between “regular”boats and “extra” boats. In this model, boat[t]
represents the total production of boats during period t. Even more interesting is how the
objective function is described: it makes it explicit that the cost of building the boats is in
fact a piecewise linear function of the production

piecewise{ RegularCost -> Capacity ; ExtraCost } Boat[t] +

OPL recognizes that this statement is in fact a linear program, applies a transformation to
obtain the same code as in A simple inventory model (sailco.mod), and returns the same
optimal solution.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 125

Piecewise-linear vs. linear

Note that not all piecewise linear programs are linear programs. Recall theNote and assume
that the cost of extra boats decreases to $350, for instance (because of economies of scale).
The transformation would not be correct, because a linear program would tend to use
“extra”boats before all the “regular” boats have been built. The transformation must enforce
a constraint stipulating that “extra” boats can only be used when all the “regular” boats
have been manufactured. The resulting program is a mixed integer-linear program.

A solution to sailcopwg.mod
For the instance data given in Data for the generalized piecewise-linear model (sailcopwg1.
dat), OPL returns the optimal solution

Final Solution with objective 72200.0000:
boat = [90.0000 -0.0000 100.0000 0.0000];
inv = [10.0000 60.0000 0.0000 25.0000 0.0000];

This solution is interesting since it uses “extra” boats as much as possible while trying to
minimize the use of boats in inventory. As a result, there is no production in the second and
fourth periods. A simple inventory model (sailco.mod) can be generalized further to include
more pieces. A generalized piecewise-linear model for the simple inventory problem
(sailcopwg.mod) depicts such a model.

A generalized piecewise-linear model for the simple inventory problem (sailcopwg.mod)
int NbPeriods = ...;
range Periods = 1..NbPeriods;
int NbPieces = ...;

float Cost[1..NbPieces] = ...;
float Breakpoint[1..NbPieces-1] = ...;
float Demand[Periods] = ...;
float Inventory = ...;
float InventoryCost = ...;

dvar float+ Boat[Periods];
dvar float+ Inv[0..NbPeriods];

minimize
sum(t in Periods)
piecewise(i in 1..NbPieces-1) {
Cost[i] -> Breakpoint[i];
Cost[NbPieces]

} Boat[t] +
InventoryCost * (sum(t in Periods) Inv[t]);

subject to {
ctInit:
Inv[0] == Inventory;

forall(t in Periods)

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L126

ctBoat:
Boat[t] + Inv[t-1] == Inv[t] + Demand[t];

}

The interesting feature is the objective function

minimize
sum(t in Periods)
piecewise(i in 1..NbPieces-1) {
Cost[i] -> Breakpoint[i];
Cost[NbPieces]

} Boat[t] +
InventoryCost * (sum(t in Periods) Inv[t]);

which is now generic in the number of pieces. Data for the generalized piecewise-linear
model (sailcopwg1.dat) describes the same instance data for this model.

Data for the generalized piecewise-linear model (sailcopwg1.dat)
NbPeriods = 4;
Demand = [40, 60, 75, 25];
NbPieces = 2;
Cost = [400, 450];
Breakpoint = [40];
Inventory = 10;
InventoryCost = 20;

Consider now adding a constraint stipulating that the maximum number of boats produced
in each period cannot exceed fifty on the instance data depicted in Another instance data
item for the generalized piecewise-linear model (sailcopwg2.dat).

Another instance data item for the generalized piecewise-linear model (sailcopwg2.dat)
NbPeriods = 4;
Demand = [40, 60, 75, 25];
NbPieces = 3;
Cost = [300, 400, 450];
Breakpoint = [30, 40];
Inventory = 10;
InventoryCost = 20;

This new constraint has a dramatic effect on the model, which is now infeasible. Piecewise
linear functions can be used here to understand where the infeasibility comes from. The key
insight is to replace the capacity constraint by yet another piece in the piecewise linear
function and to associate a huge cost with this new piece. Instance data to deal with
infeasibility (sailcopwg3.dat) depicts the instance data needed to do this:

Instance data to deal with infeasibility (sailcopwg3.dat)
NbPeriods = 4;
Demand = [40, 60, 75, 25];
NbPieces = 4;
Cost = [300, 400, 450, 100000];
Breakpoint = [30, 40, 50];
Inventory = 10;
InventoryCost = 20;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 127

OPL produces the following optimal solution:

Final Solution with objective 1560600.0000:
boat = [50.0000 50.0000 65.0000 25.0000];
inv = [10.0000 20.0000 10.0000 0.0000 0.0000];

which indicates clearly where the bottlenecks (i.e., the third period) are located. The result
may help Sailco to plan ahead and take appropriate measures.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L128

Complexity issues

It is important to understand, of course, when a piecewise linear program corresponds to
a mixed integer-linear program. The diagrams below describe the shapes of functions that
can be used in objective functions to produce linear programs: convex piecewise linear
functions in minimization problems and concave piecewise linear functions in maximization
problems. Of course, summations of such functions, possibly on different variables, are also
appropriate. Similar considerations apply to constraints. A convex piecewise linear function
may appear on the left-hand side of an ≤ inequality and on the right-hand side of an
≥ inequality. A concave piecewise linear function may appear on the right-hand side of an
≤ inequality and on the left-hand side of an ≥ inequality. In other cases, the piecewise linear
program is transformed into a mixed integer-linear program.

Piecewise linear functions leading to linear programs

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 129

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L130

Applications of constraint programming

Defines constraint programming and describes a column generation problem (vellino
example), a production problem (car sequencing example), a time tabling problem (time
tabling example), and an introductory scheduling problem.

In this section

What is constraint programming?
Provides a brief definition of constraint programming.

The vellino example (column generation)
Demonstrates how OPL not only supports constraint programming, but also cooperative
uses of mathematical and constraint programming.

The car sequencing example
Demonstrates how to use the pack constraint and search phases to improve the efficiency
of a sequencing model.

The time tabling example
Shows how to build a school timetable, given a set of room specifications, teacher skills,
and educational requirements.

Modeling and solving a simple problem: house building
Presents a simple problem of scheduling the tasks to build a house in such a manner that
minimizes an objective.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 131

What is constraint programming?

Constraint programming consists of optimizing a function subject to logical, arithmetic, or
functional constraints over discrete variables or interval variables, or finding a feasible
solution to a problem defined by logical, arithmetic, or functional constraints over discrete
variables or interval variables.

See Constraint programming for more information.

For an introduction to scheduling in OPL using constraint programming, see Getting Started
with Scheduling in IBM ILOG OPL.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L132

The vellino example (column generation)

Demonstrates how OPL not only supports constraint programming, but also cooperative
uses of mathematical and constraint programming.

In this section

Description of the problem
Tells you what to do and where to find the files.

The models
Presents the four different model files used in the vellino example.

The results
Shows the trace displayed in the IDE after executing a run configuration.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 133

Description of the problem

What you are going to do
You will solve a configuration problem using a decomposition schema known as column
generation.

You will use:

♦ the CP Optimizer engine to solve the problem of generating new possible configurations,
and

♦ the CPLEX® engine to solve the problem of selecting which is the best combination of
configurations.

This configuration problem involves placing objects of different materials (glass, plastic,
steel, wood, and copper) into bins of various types (red, blue, green), subject to capacity
(each bin type has a maximum) and compatibility constraints. All objects must be placed
into a bin and the total number of bins must be minimized.

Where to find the files
You will work with the vellino example at the following location:

<OPL_dir>\examples\opl\vellino

where <OPL_dir> is your installation directory.

Compatibility constraints
The compatibility constraints are the following:

1. Red bins cannot contain plastic or steel.

2. Blue bins cannot contain wood or plastic.

3. Green bins cannot contain steel or glass.

4. Red bins contain at most one wooden component.

5. Green bins contain at most two wooden components.

6. Wood requires plastic.

7. Glass excludes copper.

8. Copper excludes plastic.

Decomposition and column generation
To solve this problem, the technique used is known as column generation. Basically, the
problem is a linear set covering problem where each decision variable corresponds to a
possible configuration. An auxiliary problem is to generate all the possible configurations.
Constraint programming is used to solve this configuration generation problem, as most of

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L134

the compatibility constraints are logical constraints for which the CP Optimizer engine offers
good support.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 135

The models

In the distributed project, you can see that there are four different model files described in
the following sections:

♦ The model for common definitions: vellinocommon.mod contains the declaration of data
common to all other models.

♦ The generation model: vellinogenBin.mod is the model to generate the possible
configurations for bins. This is a CP model.

♦ The selection model: vellinochooseBin.mod selects a subset of configurations. This is a
CPLEX® model.

♦ The flow control script: vellino.mod is only a flow control script that executes the two
other models in the right order and transfers information from one to the other.

♦ Selection of the bins to use: passing the generated bins to the selection model

The model for common definitions
The model vellinocommon.mod contains definitions that are common to all the models. For
example, the tuple definition:

tuple Bin {
key int id;
string color;
int n[Components];

};

is used to represent configurations that are passed between the different models.

The set of available configurations is given by:

{Bin} Bins = ...;

This model is included in other models that use these definitions as follows:

include "vellinocommon.mod";

The generation model
The generation model vellinogenBin.mod starts with the statement:

using CP;

which means that it is solved by the CP Optimizer engine.

The decision variables are:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L136

dvar int color in RColors;
dvar int n[Components] in 0..maxCapacity;

The decision variable color indicates the color of the generated configuration. Colors are
represented by integer values and each n[c] indicates how many components of type c are
included in the bin configuration. Then, all the compatibility constraints are easily written:

Some are just a direct expression of the problem description. For example, this constraint:

n["wood"] >= 1 => n["plastic"] >= 1;

means that if there is at least one wood component, there needs to be at least one plastic
component.

Others use intermediate structures. For example, this constraint:

sum(c in Components) n[c] <= capacity_int_idx[color];

states that the total number of components must not exceed the capacity, depending on the
color. For this, a preprocessed calculated structure has been created to go from the capacity
indexed by strings to the capacity given by color indexes.

int capacity_int_idx[RColors] = [ord(Colors,c) : capacity[c] | c in Colors];

The selection model
The selection model vellinochooseBin.mod is also a very simple CPLEX® model.

A variable is created for each available configuration given as input, by means of the tuple
structure Bin and given in the tuple set Bins:

dvar int produce[Bins] in 0..maxDemand;

The objective is to minimize the number of bins produced.

minimize
sum(b in Bins) produce[b];

The only constraint is to cover the demand in terms of number of components:

subject to {
forall(c in Components)
demandCt: sum(b in Bins) b.n[c] * produce[b] == demand[c];

};

The flow control script
The flow control script defined in vellino.mod links the other models with each other.

It works as follows:

1. It solves the generation model as many times as necessary to find all the possible
solutions. This is easily done because the CP Optimizer engine can iterate on the feasible
solutions.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 137

2. For each solution, a new Bin is created and added to the current list.

3. The selection model is created and it uses the set of Bins just generated as input data.

Generation of all the configurations
Generating all the possible configurations consists in:

1. creating an instance of the vellinogenBin.mod model using the common data

2. using the following methods of theIloCP class to iterate on the feasible solutions:

♦ startNewSearch

♦ next

♦ endSearch

At each solution, a new tuple is added to Bins from the current solution. You need to call
the methodpostProcess on the generation model to be able to use postprocessing elements.

var genBin = new IloOplRunConfiguration("vellinogenBin.mod");
genBin.oplModel.addDataSource(data);
genBin.oplModel.generate();
genBin.cp.startNewSearch();
while (genBin.cp.next()) {
genBin.oplModel.postProcess();
data.Bins.add(genBin.oplModel.newId,

genBin.oplModel.colorStringValue,
genBin.oplModel.n.solutionValue);

}
genBin.cp.endSearch();
genBin.end();

Selection of the bins to use
As the generated bin configurations have been added to the Bins data element, you can
pass this data element object to the selection model.

var chooseBin = new IloOplRunConfiguration("vellinochooseBin.mod");
chooseBin.cplex = cplex;
chooseBin.oplModel.addDataSource(data);
chooseBin.oplModel.generate();
chooseBin.cplex.solve();
chooseBin.oplModel.postProcess();
chooseBin.end();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L138

The results

To solve the full model, you need to execute the Vellino run configuration. You can use the
other two run configurations to test the two submodels individually. Run configurations are
generally used to enable users to test their models by running different models related to
the same problem (or the same model with different data sets), all within a single project.
(See also Understanding OPL projects in From OR to OPL and ODM.)

After you have solved the Vellino run configuration, you see a trace. If you work in the IDE,
the trace is in the Console output window. This trace first shows first what is being
generated:

genbin
Found bin with color : red and containing elements [1 0 0 0 0]
Found bin with color : red and containing elements [2 0 0 0 0]
Found bin with color : red and containing elements [3 0 0 0 0]
Found bin with color : red and containing elements [0 0 0 0 1]
Found bin with color : red and containing elements [0 0 0 0 2]
Found bin with color : red and containing elements [0 0 0 0 3]
Found bin with color : blue and containing elements [0 0 0 0 1]
Found bin with color : blue and containing elements [1 0 0 0 0]
Found bin with color : blue and containing elements [0 0 1 0 0]
Found bin with color : green and containing elements [0 1 0 0 0]
Found bin with color : green and containing elements [0 2 0 0 0]
Found bin with color : green and containing elements [0 3 0 0 0]
Found bin with color : green and containing elements [0 4 0 0 0]
Found bin with color : green and containing elements [0 0 0 0 1]
Found bin with color : green and containing elements [0 0 0 0 2]
Found bin with color : green and containing elements [0 0 0 0 3]
Found bin with color : green and containing elements [0 0 0 0 4]
Found bin with color : green and containing elements [0 1 0 1 0]
Found bin with color : green and containing elements [0 2 0 1 0]
Found bin with color : green and containing elements [0 3 0 1 0]
Found bin with color : green and containing elements [0 1 0 2 0]
Found bin with color : green and containing elements [0 2 0 2 0]

Then, the trace shows the final selection.

choosebin
Chosen :
<1 "red" [1 0 0 0 0]> : 0
<2 "red" [2 0 0 0 0]> : 1
<3 "red" [3 0 0 0 0]> : 0
<4 "red" [0 0 0 0 1]> : 0
<5 "red" [0 0 0 0 2]> : 0
<6 "red" [0 0 0 0 3]> : 0
<7 "blue" [0 0 0 0 1]> : 0
<8 "blue" [1 0 0 0 0]> : 0
<9 "blue" [0 0 1 0 0]> : 3
<10 "green" [0 1 0 0 0]> : 0
<11 "green" [0 2 0 0 0]> : 0

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 139

<12 "green" [0 3 0 0 0]> : 0
<13 "green" [0 4 0 0 0]> : 0
<14 "green" [0 0 0 0 1]> : 0
<15 "green" [0 0 0 0 2]> : 0
<16 "green" [0 0 0 0 3]> : 0
<17 "green" [0 0 0 0 4]> : 1
<18 "green" [0 1 0 1 0]> : 0
<19 "green" [0 2 0 1 0]> : 0
<20 "green" [0 3 0 1 0]> : 0
<21 "green" [0 1 0 2 0]> : 2
<22 "green" [0 2 0 2 0]> : 1

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L140

The car sequencing example

Demonstrates how to use the pack constraint and search phases to improve the efficiency
of a sequencing model.

In this section

What to do and where to find the files
Introduces you to the example.

The car sequencing problem
Describes the problem.

Enhancing the model
Shows how to declare a search phase or use the pack constraint.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 141

What to do and where to find the files

You will enhance the initial model using search phases to ease the sequencing process and
the pack constraint for better propagation.

The car sequencing project (the carseq example) includes the following files:

♦ carseq.mod, the initial model

♦ carseq.dat, the data file.

They can be found in <OPL_dir>\examples\opl\carseq

where <OPL_dir> is your installation directory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L142

The car sequencing problem

Consider the following problem. A car assembly line is set up to build cars on a production
line divided into cells. Five cells that install options on cars require more than one takt time
to perform the operation. Their limitation is defined by a number of cars they can process
in a period of time. There are seven different cars, each requires a different set of options.
The production plan specifies the quantity of each car to build. The objective of the model
is to compute a sequence of cars that the cells can process while minimizing the number of
empty cars to insert to respect the load of the cells.

The initial model includes the following elements:

♦ The demand

♦ The production capacity

♦ The decision variables

♦ The constraints

♦ The data

The demand
In the following code extract:

int nbCars = sum (c in Confs) demand[c];
int nbSlots = ftoi(floor(nbCars * 1.1 + 5)); // 10% slack + 5 slots
int nbBlanks = nbSlots - nbCars;
range Slots = 1..nbSlots;
int option[Options,Confs] = ...;

The demand element represents the number of cars to build for each type.

The nbSlots element is the total number of cars to sequence. This number is multiplied by
ten percent to make sure that it is possible to insert enough null cars to make the problem
feasible.

The option array of Boolean values defines the options required for each car type. See
Instance data for the car sequencing problem (carseq.dat)

The production capacity
In the following code extract, the array defines the number of cars that can be processed
for an option in a period of time:

tuple CapacitatedWindow {
int l;
int u;

};
CapacitatedWindow capacity[Options] = ...;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 143

The decision variables
The first decision variable defines the sequence of cars.

The second decision variable defines the length of the sequence; that is, the last non-null
car.

dvar int slot[Slots] in AllConfs;
dvar int lastSlot in nbCars..nbSlots;

The objective
The objective function of the car sequencing model is to compute a sequence of cars that
the cells can process while minimizing the number of empty cars to insert to respect the
load of the cells.

minimize lastSlot - nbCars;

The constraints
The mode defines four constraints written as forall statements:

♦ to satisfy the demand:

♦ to define the options that are used for each car in the sequence.

♦ to define the length of the sequence

subject to {
// Cardinality of configurations
count(slot, 0) == nbBlanks;
forall (c in Confs)
count(slot, c) == demand[c];

// Capacity of gliding windows
forall(o in Options, s in Slots : s + capacity[o].u - 1 <= nbSlots)
sum(j in s .. s + capacity[o].u - 1) allOptions[o][slot[j]] <= capacity[o]

.l;

// Last slot
forall (s in nbCars + 1 .. nbSlots)
(s > lastSlot) => slot[s] == 0;

};

The data
The data for the car sequencing problem is initialized externally in the data file shown in
Instance data for the car sequencing problem (carseq.dat).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L144

Instance data for the car sequencing problem (carseq.dat)
nbCars = 7;
nbOptions = 5;
demand = [5, 5, 10, 10, 10, 10, 5];

option = [
[1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 0],
[1, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0]

];
capacity = [

<1,2>,
<2,3>,
<1,3>,
<2,5>,
<1,5>

];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 145

Enhancing the model

You can enhance the carseq.mod model in two ways:

♦ Declare a search phase

♦ Use the pack constraint

Search phase
You can declare a search phase that

♦ Branches on the slot variables in sequence

♦ Allocates more complex cars first

The valueEval expression defines the cars that are hard to sequence (for the search phases).
The larger the value, the harder it is to sequence a car. For each car type, the measure is
a combination of how difficult the option requirements are to satisfy, and of the number of
cars to build.

int values[i in 0..nbCars] = i;
int valueEval[i in 0..nbCars] = sum(o in Options) option[o,maxl(i,1)]*

(capacity[o].u div capacity[o].l)*(i!=0)+
(demand[maxl(i, 1)]*nbCars*(i!=0)) div nbSlots + (i >0);

The execute block defines the search phase.

The selectSmallest function decides the type of car in the order of the sequence.

The selectLargest function selects first the cars that are considered hard to sequence.

execute {
var f = cp.factory;

var phase1 = f.searchPhase(slot,
f.selectSmallest(f.varIndex(slot)),
f.selectLargest(f.explicitValueEval(values, valueEval, 0)));

cp.setSearchPhases(phase1);

}

The pack constraint
For more efficiency, you can also enhance the car sequencing model by modeling the
demandCt constraint as the specialized constraint pack, which expresses the same constraint
but propagates better.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L146

demandCt: pack(demandV, slot, one);

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 147

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L148

The time tabling example

Shows how to build a school timetable, given a set of room specifications, teacher skills,
and educational requirements.

In this section

What to do and where to find the files
Introduces you to the example.

The data model
Explains how the data is organized.

Decision variables
Presents the decision variables used in the example.

Writing the core constraints
How to write constraints that model the interactions between the various components of
the problem.

Adding side constraints
How to add a set of constraints to control the search.

Minimizing the makespans
With a constraint, or a surrogate constraint.

Customizing the search
By writing an execute block.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 149

Postprocessing the solution
Using postprocessing statements and scripting capabilities.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L150

What to do and where to find the files

In this tutorial, you work on the following:

♦ The data model

♦ Decision variables

♦ Core constraints

♦ Side constraints

♦ Minimizing the makespans

♦ Customizing the search

♦ Postprocessing the solution

You will work with thetimetabling example, supplied at the following location:

<OPL_dir>\examples\opl\timetabling

where <OPL_dir> is your installation directory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 151

The data model

The data model specifies basically:

♦ The set of educational requirements named RequirementSet, modeled by a set of tuples:

tuple Requirement {
string Class; // a set of pupils
string discipline; // what will be taught
int Duration; // course duration
int repetition; // how many time the course is repeated

};

♦ A set of teacher skills TeacherDisciplineSet, modeled as a set of <teacher, discipline>
pairs.

♦ A set of dedicated rooms DedicatedRoomSet, modeled as a set of <room, discipline>
pairs.

♦ A set of available rooms Room, modeled as a set of strings.

For each educational requirement, the model specifies a course repetition parameter. The
actual entities to be scheduled are instances of courses that fulfill the requirements. They
are described with the following tuple:

tuple Instance {
string Class;
string discipline;
int Duration;
int repetition;
int id;
int requirementId;

};

where the id and requirement parameters indicate the sequential number of the course
specified by the requirement of index requirementId. All these instances are generated by
means of the following OPL construct:

{Instance} InstanceSet = {
<c,d,t,r,i,z> | <c,d,t,r> in RequirementSet

, z in ord(RequirementSet,<c,d,t,r>) .. ord
(RequirementSet,<c,d,t,r>)

, i in 1..r
};

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L152

Decision variables

The instance set is used to index the decision variable arrays used for the search, as follows:
the start date of each course, the room in which the course is held, the teacher in charge
of the course.

dvar int Start[InstanceSet] in Time; // the course starting point
dvar int room[InstanceSet] in RoomId; // the room in which the
course is held
dvar int teacher[InstanceSet] in TeacherId; // the teacher in charge
of the course

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 153

Writing the core constraints

To produce a valid time table using constraint programming, you must write constraints
that model the interactions between the various components of the model: course time
intervals, teachers, classes and rooms.

To write the core constraints:

1. Define the time interval corresponding to each course.

forall(r in InstanceSet)
End[r] == r.Duration + Start[r];

2. Ensure that each resource is not used more that once at any moment: they are unary
resources.

One way to do so consists in defining an array of variables that model the demand at
any moment, like this:

dvar demand[t in Time] in 0..1;
...
demand[t in Time] = sum(i in Instance) (t >= start[i] && t < end[i]);

However, it makes sense to create less variables: what we need is the points in time
when the courses start and, therefore, need the resources; or, in other words, the
demand on resources when each activity (course) starts. This is why, in the distributed
time-tabling example, the choice was made to not model each possible point of time
with a variable. Each course start time is considered as a point in time at which the
resource usage uniqueness must be preserved.

3. Ensure that a teacher works with one class only at a time.

When he is teaching, there is no other teaching demand for him at the same time.

forall(r in InstanceSet, x in Teacher) {
if(r.discipline in PossibleTeacherDiscipline[x])
(sum(o in InstanceSet

: r.discipline in PossibleTeacherDiscipline
[x])

(Start[o] >= Start[r])
*(Start[o] < End[r])
*(teacher[o] == ord(Teacher,x))) < 2;

}

4. Ensure that a room is occupied by one class only, with similar constraints.

forall(r in InstanceSet, x in Room) {
if(PossibleRoom[r.discipline,x] == 1)
(sum(o in InstanceSet : 1 == PossibleRoom[o.discipline,x])
(Start[o] >= Start[r])
*(Start[o] < End[r])
*(room[o] == ord(Room,x))) < 2;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L154

5. Possibly, constrain the classes on the same pattern, so that they do not follow two
courses simultaneously.

forall(r in InstanceSet, x in Class) {
if(r.Class == x)
(sum(o in InstanceSet : o.Class == x)
(1 == (Start[o] >= Start[r])*(Start[o] < End[r]))) < 2;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 155

Adding side constraints

In order to produce a more realistic schedule, you can add a set of constraints that constrain
the search to follow room preferences and teacher skills, and to produce more practical
time tables.

To add side constraints:

1. Make sure that the chosen room handles the discipline taught.

forall(r in InstanceSet)
room[r] in PossibleRoomIds[r.discipline];

where PossibleRoomIds is a table of integer sets defined as:

and PossibleRoom is a bi-dimensional table of Boolean values specifying which room
can support which discipline.

int PossibleRoom[d in Discipline, x in Room] =
<x,d> in DedicatedRoomSet
|| 0 == card({<z,k> | z in Room, k in Discipline

: (<x,k> in DedicatedRoomSet)
|| (<z,d> in DedicatedRoomSet)});

2. Ensure that a given teacher has the required skills to teach a course.

forall(r in InstanceSet)
teacher[r] in PossibleTeacherIds[r.discipline];

where PossibleTeacherIds is defined as:

and maps discipline names to the set of the indices for teachers who are capable of
teaching this discipline, and PossibleTeacherDiscipline is defined as:

{string} PossibleTeacherDiscipline[x in Teacher] = {d | <x,d> in
TeacherDisciplineSet };

and maps each teacher to the set of disciplines he can teach.

3. Ensure that, for a given class and a given discipline, the teacher remains the same.

where the additional classTeacher array is modeled as:

dvar int classTeacher[Class,Discipline] in TeacherId; // teacher working
once per time point

4. Ensure that, if a course spans more than one unit of time, it does not cross half-day
boundaries.

forall(i in InstanceSet : i.Duration > 1)
(Start[i] div HalfDayDuration) == ((End[i]-1) div HalfDayDuration);

Because the model contains only classes that fit half days, it is not necessary to write
a similar “same day” constraint.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L156

To also avoid having one discipline taught immediately after another, the data file
contains a set of <discipline,discipline > tuples named NeedBreak.

NeedBreak = {
<"Maths","Physics">,
<"Biology","Physics">,
<"Economy","Biology">,
<"Geography","Economy">,
<"History", "Geography">

};

5. Using this set, state exclusion constraints.

6. Along the same line, make sure the same discipline is not taught more than once a
day.

7. State that a discipline (such as Sport) is preferably taught in the morning.

forall(d in MorningDiscipline, i in InstanceSet
: i.discipline == d)

(Start[i] % DayDuration) < HalfDayDuration;

8. You can also add a symmetry-breaking constraint which ensures that course numbers,
for a given requirement, appear in chronological order.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 157

Minimizing the makespans

In the distributed school time-tabling example, the makespan of the solution can beminimized
so that everybody can leave the school early at the end of the week.

To minimize the makespan:

1. Add the following constraint:

makespan == max(r in InstanceSet) End[r];

where the variable makespan is declared with:

dvar int makespan in Time; // ending date of
last course

and the Time range corresponds to the time table period (that is, a week):

int HalfDayDuration = DayDuration div 2;
int MaxTime = DayDuration*NumberOfDaysPerPeriod;
range Time = 0..MaxTime-1;

2. Optionally, to help proving optimality, add a surrogate constraint.

makespan >= max(c in Class) sum(r in InstanceSet : r.Class == c) r.
Duration;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L158

Customizing the search

Before writing constraints, you can customize the CP Optimizer search strategy by writing
an execute block. In this time tabling problem, this is done by selecting variables by
increasing the domain size, and by selecting random values. The method consisting in
selecting random values helps the search process to distribute the courses homogeneously
over the scheduling period.

var f = cp.factory;
var selectVar = f.selectSmallest(f.domainSize());
var selectValue = f.selectRandomValue();
var assignRoom = f.searchPhase(room, selectVar, selectValue);
var assignTeacher = f.searchPhase(teacher, selectVar, selectValue);
var assignStart = f.searchPhase(Start, selectVar, selectValue);
cp.setSearchPhases(assignTeacher, assignStart, assignRoom);

Note that the phases are assigned in a specific order:

1. Teachers, because there are only a few to choose from.

2. Start times, because once teachers are determined, there is only a limited number of
possible start times for courses.

3. Rooms.

To specify search method and time limits, you can either use a scripting block, like this:

var p = cp.param;
p.logPeriod = 10000;
p.searchType = "DepthFirst";
p.timeLimit = 600;

or edit the Constraint Programming/Search Control page in the project settings file
(timetabling.ops) from the OPL IDE. See Setting programming options in IDE Reference.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 159

Postprocessing the solution

To present the solution, the model uses OPL postprocessing statements and scripting
capabilities.

To specify postprocessing:

1. Define the Course tuple which is used to aggregate information from the room, teacher
and start decision variable arrays.

2. Write the postprocessing script which iterates over the solution-derived course set to
pretty-print, for each class, what will be the courses, the dedicated teacher, and the
assigned room.

execute POST_PROCESS {
timetable;
for(var c in Class) {
writeln("Class ", c);
var day = 0;
for(var t = 0; t < makespan; t++) {
if(t % DayDuration == 0) {
day++;
writeln("Day ", day);

}
if(t % DayDuration == HalfDayDuration)
writeln("Lunch break");

var activity = 0;
for(var x in timetable[t][c]) {
activity++;
writeln((t % DayDuration)+1, "\t",

x.room, "\t",
x.discipline, "\t",
x.id, "/",
x.repetition, "\t",
x.teacher);

}
if(activity == 0)
writeln((t % DayDuration)+1, "\tFree time");

}
}

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L160

Modeling and solving a simple problem: house building

In this section, you will learn how to:

♦ use the dvar interval;

♦ use the constraint endBeforeStart;

♦ use the expressions startOf and endOf.

You will learn how to model and solve a simple problem, a problem of scheduling the tasks
involved in building a house in such a manner that minimizes an objective. Here the objective
is the cost associated with performing specific tasks before a preferred earliest start date
or after a preferred latest end date. Some tasks must necessarily take place before other
tasks, and each task has a given duration. To find a solution to this problem using IBM®
ILOG® OPL, you will use the three-stage method: describe, model, and solve.

Describe
The problem consists of assigning start dates to tasks in such a way that the resulting
schedule satisfies precedence constraints and minimizes a criterion. The criterion for this
problem is to minimize the earliness costs associated with starting certain tasks earlier than
a given date and tardiness costs associated with completing certain tasks later than a given
date.

For each task in the house building project, the following table shows the duration (measured
in days) of the task along with the tasks that must finish before the task can start.

House construction tasks
Preceding tasksDurationTask

35masonry

masonry15carpentry

masonry40plumbing

masonry15ceiling

carpentry5roofing

ceiling10painting

roofing5windows

roofing, plumbing10facade

roofing, plumbing5garden

windows, facade, garden, painting5moving

The other information for the problem includes the earliness and tardiness costs associated
with some tasks.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 161

House construction task earliness costs
Cost per day for starting earlyPreferred earliest start dateTask

200.025masonry

300.075carpentry

100.075ceiling

House construction task tardiness costs
Cost per day for ending latePreferred latest end dateTask

400.0100moving

Solving the problem consists of identifying starting dates for the tasks such that the cost,
determined by the earliness and lateness costs, is minimized.

In OPL, the unit of time represented by an interval variable is not defined. As a result,
the size of the masonry task in this problem could be 35 hours or 35 weeks or 35
months.

Note:

Step 1: Describe the problem
The first step in modeling and solving the problem is to write a natural language description
of the problem, identifying the decision variables and the constraints on these variables.

Write a natural language description of this problem. Answer these questions:

♦ What is the known information in this problem?

♦ What are the decision variables or unknowns in this problem?

♦ What are the constraints on these variables?

♦ What is the objective?

Discussion
What is the known information in this problem?

♦ There are ten house building tasks, each with a given duration. For each task, there is a
list of tasks that must be completed before the task can start. Some tasks also have costs
associated with an early start date or late end date.

What are the decision variables or unknowns in this problem?

♦ The unknowns are the date that each task will start. The cost is determined by the assigned
start dates.

What are the constraints on these variables?

♦ In this case, each constraint specifies that a particular task may not begin until one or
more given tasks have been completed.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L162

What is the objective?

♦ The objective is to minimize the cost incurred through earliness and tardiness costs.

Model
After you have written a description of your problem, you can use IBM ILOG OPL to model
and solve it.

Step 2: Open the example file

♦ Still working with the scheduling_tutorial project, open the sched_time.mod file in
the OPL IDE's editing area.

This file is an OPL model that is only partially completed. You will fill in the blanks in each
step in this lesson. At the end, you will have completed the OPL model. IBM ILOG OPL gives
you the means to represent the unknowns in this problem, the interval in which each task
will occur, as interval variables.

Interval variableNote:

Tasks are represented by the decision variable type interval in IBM ILOG OPL.

An interval has a start, an end, a size and a length. An interval variable allows these
values to be variable in the model.

The length of a present interval variable is equal to the difference between its end time
and its start time. The size is the actual amount of time the task takes to process. By
default, the size is equal to the length, which is the difference between the end and
the start of the interval. In general, the size is a lower bound on the length.

An interval variable may be optional. Whether an interval is present in the solution or
not is represented by a decision variable. If an interval is not present in the solution,
this means that any constraint on this interval acts like the interval is “not there.” Exact
semantics will depend on the specific constraint.

Logical relations can be expressed between the presence statuses of interval variables,
allowing, for instance, to state that whenever the interval variable a is present then the
interval variable b must also be present.

In your model, you first declare the interval variables, one for each task. Each variable
represents the unknown information, the scheduled interval for each activity. After the
model is executed, the values assigned to these interval variables will represent the solution
to the problem.

For example, to create an interval with size 35 in OPL:

dvar interval masonry size 35;

Step 3: Declare the interval variables
Add the following code after the comment //Declare the interval variables:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 163

dvar interval masonry size 35;
dvar interval carpentry size 15;
dvar interval plumbing size 40;
dvar interval ceiling size 15;
dvar interval roofing size 5;
dvar interval painting size 10;
dvar interval windows size 5;
dvar interval facade size 10;
dvar interval garden size 5;
dvar interval moving size 5;

In this example, certain tasks can start only after other tasks have been completed. IBM
ILOG OPL allows you to express constraints involving temporal relationships between pairs
of interval variables using precedence constraints.

Precedence constraintsNote:

Precedence constraints are used to specify when one interval variable must start or
end with respect to the start or end time of another interval. The following types of
precedence constraints are available; if act1 and act2 denote interval variables, both
interval variables are present, and delay is a number or integer expression (0 by
default), then:

♦ endBeforeEnd(a, b, delay) constrains at least the given delay to elapse
between the end of a and the end of b. It imposes the inequality endTime(a) +
delay <= endTime(b).

♦ endBeforeStart(a, b, delay) constrains at least the given delay to elapse
between the end of a and the start of b. It imposes the inequality endTime(a) +
delay <= startTime(b).

♦ endAtEnd(a, b, delay) constrains the given delay to separate the end of a
and the end of ab. It imposes the equality endTime(a) + delay == endTime
(b).

♦ endAtStart(a, b, delay) constrains the given delay to separate the end of
a and the start of b. It imposes the equality endTime(a) + delay == startTime
(b).

♦ startBeforeEnd(a, b, delay) constrains at least the given delay to elapse
between the start of a and the end of b. It imposes the inequality startTime(a)
+ delay <= endTime(b).

♦ startBeforeStart(a, b, delay) constrains at least the given delay to elapse
between the start of act1 and the start of act2. It imposes the inequality
startTime(a) + delay <= startTime(b).

♦ startAtEnd(a, b, delay) constrains the given delay to separate the start of
a and the end of b. It imposes the equality startTime(a) + delay == endTime
(b).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L164

♦ startAtStart(a, b, delay) constrains the given delay to separate the start
of a and the start of b. It imposes the equality startTime(a) + delay ==
startTime(b).

If either interval a or b is not present in the solution, the constraint is automatically
satisfied, and it is as if the constraint was never imposed.

Step 4: Add the precedence constraints
Add the following code after the comment //Add the precedence constraints:

endBeforeStart(masonry, carpentry);
endBeforeStart(masonry, plumbing);
endBeforeStart(masonry, ceiling);
endBeforeStart(carpentry, roofing);
endBeforeStart(ceiling, painting);
endBeforeStart(roofing, windows);
endBeforeStart(roofing, facade);
endBeforeStart(plumbing, facade);
endBeforeStart(roofing, garden);
endBeforeStart(plumbing, garden);
endBeforeStart(windows, moving);
endBeforeStart(facade, moving);
endBeforeStart(garden, moving);
endBeforeStart(painting, moving);

To model the cost for starting a task earlier than the preferred starting date, you use the
expression startOf that represents the start time of an interval variable as an integer
expression.

For each task that has an earliest preferred start date, you determine howmany days before
the preferred date it is scheduled to start using the expression startOf; this expression can
be negative if the task starts after the preferred date. By taking the maximum of this value
and 0 using maxl, you determine how many days early the task is scheduled to start.
Weighting this value with the cost per day of starting early, you determine the cost associated
with the task.

The cost for ending a task later than the preferred date is modeled in a similar manner using
the expression endOf. The earliness and lateness costs can be summed to determine the
total cost.

Step 5: Add the objective
Add the following code after the comment //Add the objective:

minimize 400 * maxl(endOf(moving) - 100, 0) +
200 * maxl(25 - startOf(masonry), 0) +
300 * maxl(75 - startOf(carpentry), 0) +
100 * maxl(75 - startOf(ceiling), 0);

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 165

Solve
Solving a problem consists of finding a value for each decision variable so that all constraints
are satisfied. You may not always know beforehand whether there is a solution that satisfies
all the constraints of the problem. In some cases, there may be no solution. In other cases,
there may be many solutions to a problem.

Step 6: Execute and display the solution
After a solution has been found, you can use the start and end properties of the interval
variables to access the assigned intervals. The code for displaying the solution has been
provided for you:

execute {
writeln(“Masonry : “ + masonry.start + “..” + masonry.end);
writeln(“Carpentry: “ + carpentry.start + “..” + carpentry.end);
writeln(“Plumbing : “ + plumbing.start + “..” + plumbing.end);
writeln(“Ceiling : “ + ceiling.start + “..” + ceiling.end);
writeln(“Roofing : “ + roofing.start + “..” + roofing.end);
writeln(“Painting : “ + painting.start + “..” + painting.end);
writeln(“Windows : “ + windows.start + “..” + windows.end);
writeln(“Facade : “ + facade.start + “..” + facade.end);
writeln(“Garden : “ + garden.start + “..” + garden.end);
writeln(“Moving : “ + moving.start + “..” + moving.end);

}

Step 7: Run the model
Run the model. You should get the following results:

OBJECTIVE: 5000
Masonry : 20..55
Carpentry: 75..90
Plumbing : 55..95
Ceiling : 75..90
Roofing : 90..95
Painting : 90..100
Windows : 95..100
Facade : 95..105
Garden : 95..100
Moving : 105..110

As you can see, the overall cost is 5000 and moving will be completed by day 110.

You can also view the complete program online in the <OPL_dir>/examples/opl/sched_time/
sched_time.mod file.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L166

Quadratic programming

OPL supports quadratic programming (QP), including quadratically-constrained programming
(QCP), mixed integer quadratic programming (MIQP), and mixed-integer
quadratically-constrained programming (MIQCP).

Conventionally, a quadratic program is formulated this way:

Minimize 1/2 xTQx + cTx

subject to Ax ~ b

with these bounds l b≤ x ≤ ub

where the relation ~ may be any combination of equal to, less than or equal to, greater than
or equal to, or range constraints. As in other problem formulations, l indicates lower and u
upper bounds. Q is a matrix of objective function coefficients. That is, the elements Q jj are
the coefficients of the quadratic terms xj^ 2, and the elements Q ij and Q ji are summed
to make the coefficient of the term x i x j.

Here is an example of quadratic objective problem:

A quadratic objective problem (qpex1.mod)
dvar float x[0..2] in 0..40;

maximize
x[0] + 2 * x[1] + 3 * x[2]
- 0.5 *
(33*x[0]^2 + 22*x[1]^2 + 11*x[2]^2
- 12*x[0]*x[1] - 23*x[1]*x[2]);

subject to {
ct1: - x[0] + x[1] + x[2] <= 20;
ct2: x[0] - 3 * x[1] + x[2] <= 30;

}

Here is an example of quadratic constraint problem.

A quadratic constraint problem (qcpex1.mod)
dvar float x[0..2] in 0..40;

maximize
x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33 * x[0]^2 + 22 * x[1]^2 + 11 * x[2]^2

- 12 * x[0] * x[1] - 23 *x [1] * x[2]);

subject to {
ct1: - x[0] + x[1] + x[2] <= 20;
ct2: x[0] - 3 * x[1] + x[2] <= 30;
ct3: x[0]^2 + x[1]^2 + x[2]^2 <= 1.0;

}

Quadratic programming is described in detail in the IBM ILOG CPLEX User’s Manual.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 167

Refer to the sections:

♦ Solving Problems with a Quadratic Objective (QP)

♦ Solving Problems with Quadratic Constraints (QCP)

♦ Solving Mixed Integer Programming Problems (MIP)

for information on MIQP and MIQCP.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L168

Tutorial: Using CPLEX logical constraints

Demonstrates how to use logical constraints in an application.

In this section

What are logical constraints?
Defines CPLEX logical constraints.

Description of the problem
Includes what to do and where to find the files.

Representing the data
Describes the elements that are necessary to represent the problem accurately.

Using logical constraints
Describes how logical constraints are automatically transformed in OPL as based on the
CPLEX solving engine.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 169

What are logical constraints?

CPLEX® logical constraints are a particular kind of discrete or numerical constraint that
transforms parts of your problem automatically for you.

See Logical constraints for CPLEX in the Constraints section of the Language Reference
Manual for more conceptual information. This tutorial explains how to use logical constraints
based on a blending problem.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L170

Description of the problem

The problem is to plan the blending of five kinds of oil, organized in two categories (two
kinds of vegetable oils and three kinds of non vegetable oils) into batches of blended products
over six months.

Some of the oil is already available in storage. There is an initial stock of oil of 500 tons of
each raw type when planning begins. An equal stock should exist in storage at the end of
the plan. Up to 1000 tons of each type of raw oil can be stored each month for later use.
The price for storage of raw oils is 5 monetary units per ton. Refined oil cannot be stored.
The blended product cannot be stored either.

The rest of the oil (that is, any not available in storage) must be bought in quantities to meet
the blending requirements. The price of each kind of oil varies over the six-month period.
The two categories of oil cannot be refined on the same production line.

There is a limit on howmuch oil of each category (vegetable or non vegetable) can be refined
in a given month:

♦ Not more than 200 tons of vegetable oil can be refined per month.

♦ Not more than 250 tons of non vegetable oil can be refined per month.

There are constraints on the blending of oils:

♦ The product cannot blend more than three oils.

♦ When a given type of oil is blended into the product, at least 20 tons of that type must
be used.

♦ If either vegetable oil 1 (v1) or vegetable oil 2 (v2) is blended in the product, then non
vegetable oil 3 (o3) must also be blended in that product.

The final product (refined and blended) sells for a known price: 150 monetary units per ton.

The aim of the six-month plan is to minimize production and storage costs while maximizing
profit.

What you are going to do
The example used is a standard industrial problem of food manufacturing as formulated by
H.P. Williams (food manufacturing 2 inModel Building in Mathematical Programming). The
aim of the problem is to blend a number of oils cost effectively in monthly batches. In this
form of the problem, the number of ingredients in a blend must be limited, and extra
conditions are added to govern which oils can be blended.

Where to find the files
The food manufacturing example is supplied as the foodmanufact example at the following
location:

<OPL_dir>\examples\opl\foodmanufact

where <OPL_dir> is your installation directory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 171

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L172

Representing the data

Describes the elements that are necessary to represent the problem accurately.

In this section

What is known?
Describes how known facts are represented in the data file.

What is unknown?
Describes how the decision variables can be represented.

What are the constraints?
Describes how to represent the various constraints in the problem.

What is the objective?
Describes how to represent the profit on a monthly basis.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 173

What is known?

In this particular example, the planning period is six months, and there are five kinds of oil
to be blended. Those details are expressed as constants, like this:

{string} Products = ...;

int NbMonths = ...;
range Months = 1..NbMonths;

represented in the foodmanufact.dat data file as:

Products = { "v1", "v2", "o1", "o2", "o3" };

NbMonths = 6;

The varying price of the five kinds of oil over the six-month planning period is expressed
like this:

float Cost[Months][Products] = ...;

represented in the foodmanufact.dat data file as the following numeric matrix:

Cost = [[110.0, 120.0, 130.0, 110.0, 115.0],
[130.0, 130.0, 110.0, 90.0, 115.0],
[110.0, 140.0, 130.0, 100.0, 95.0],
[120.0, 110.0, 120.0, 120.0, 125.0],
[100.0, 120.0, 150.0, 110.0, 105.0],
[90.0, 100.0, 140.0, 80.0, 135.0]];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L174

What is unknown?

The variables of the problem can be represented in arrays:

♦ How much blended, refined oil to produce per month?

♦ How much raw oil to use per month?

♦ How much raw oil to buy per month?

♦ How much raw oil to store per month?

like this:

dvar float+ Produce[Months];
dvar float+ Use[Months][Products];
dvar float+ Buy[Months][Products];
dvar float Store[Months][Products] in 0..1000;

Notice that how much to use and buy is initially unknown, and thus has an infinite upper
bound, whereas the amount of oil that can be stored is limited, as you know fromDescription
of the problem. Consequently, one of the constraints is expressed here as the upper bound
of 1000 on the amount of oil by type that can be stored per month.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 175

What are the constraints?

As you know from Description of the problem, there are a variety of constraints in this
problem.

For each type of oil, there must be 500 tons in storage at the end of the plan. That idea can
be expressed like this:

forall(p in Products)
ctStore:
Store[NbMonths][p] == 500;

The constraints on production in each month can all be expressed as statements in a forall
statement:

♦ Not more than 200 tons of vegetable oil can be refined.

ctUse1:
Use[m]["v1"] + Use[m]["v2"] <= 200;

♦ Not more than 250 tons of non-vegetable oil can be refined.

ctUse2:
Use[m]["o1"] + Use[m]["o2"] + Use[m]["o3"] <= 250;

♦ A blend cannot use more than three oils; or equivalently, of the five oils, two cannot be
used in a given blend.

ctUse7:
(Use[m]["v1"] == 0) + (Use[m]["v2"] == 0) + (Use[m]["o1"] == 0) +

(Use[m]["o2"] == 0) + (Use[m]["o3"] == 0) >= 2;

♦ Blends composed of vegetable oil 1 (v1) or vegetable oil 2 (v2) must also include non
vegetable oil 3 (o3).

ctUse9:
(Use[m]["v1"] >= 20) || (Use[m]["v2"] >= 20) => Use[m]["o3"] >= 20;

♦ The constraint that if an oil is used at all in a blend, at least 20 tons of it must be used is
expressed like this:

ctUse8:
(Use[m][p] == 0) || (Use[m][p] >= 20);

♦ The fact that a limited amount of raw oil can be stored for later use is expressed like this:

forall(p in Products) {
ctUse6:
if (m == 1) {
500 + Buy[m][p] == Use[m][p] + Store[m][p];

}
else {

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L176

Store[m-1][p] + Buy[m][p] == Use[m][p] + Store[m][p];
}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 177

What is the objective?

On a monthly basis, the profit can be represented as the sale price per ton (150) multiplied
by the amount produced minus the cost of production and storage, like this:

maximize
sum(m in Months)
(150 * Produce[m]
- sum(p in Products)
Cost[m][p] * Buy[m][p]

- 5 * sum(p in Products)
Store[m][p]);

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L178

Using logical constraints

You have already seen how to represent the logical constraints of this problem in What are
the constraints?. However, they deserve a second glance because they illustrate an important
point about logical constraints and automatic transformation in OPL as based on the CPLEX®
solving engine.

forall(m in Months) {
// Using some constraints as boolean expressions to state that at least

// 2 of the given 5 constraints must be true.
ctUse7:
(Use[m]["v1"] == 0) + (Use[m]["v2"] == 0) + (Use[m]["o1"] == 0) +

(Use[m]["o2"] == 0) + (Use[m]["o3"] == 0) >= 2;

// Using the "or" operator, set each Use variable to be
// zero or greather than 20.
forall(p in Products)
ctUse8:
(Use[m][p] == 0) || (Use[m][p] >= 20);

// Using "or" and "implication" operator, set that if one of 2 given
products

// is used more than 20 then a third one must be used more than 20 too.

ctUse9:
(Use[m]["v1"] >= 20) || (Use[m]["v2"] >= 20) => Use[m]["o3"] >= 20;

Consider, for example, the constraint that the blended product cannot use more than three
oils in a batch. Given that constraint, many programmers might naturally write the following
statement (or something similar):

(use[i][v1] != 0)
+ (use[i][v2] != 0)
+ (use[i][o1] != 0)
+ (use[i][o2] != 0)
+ (use[i][o3] != 0)
<= 3;

That statement expresses the same constraint without changing the set of solutions to the
problem. However, the formulations are different and can lead to different running times
and different amounts of memory used for the search tree. In other words, given a logical
English expression, there may be more than one logical constraint for expressing it, and the
different logical constraints may perform differently in terms of computing time and memory.

Logical constraints for CPLEX in the section Constraints of the Language Reference Manual
introduces overloaded logical operators that you can use to combine linear, or piecewise
linear constraints in OPL. In this example, notice the logical operators ==, >=, || that appear
in these logical constraints.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 179

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L180

IBM ILOG Script for OPL

After an introduction to scripting, provides tutorials for flow control and multiple searches,
flow control and column generation, and for changing default behaviors in flow control.

In this section

Introduction to scripting
Defines IBM® ILOG® Script as a scripting language and describes the situations in which
it is used: preprocessing, postprocessing, and flow control. Also provides programming tips
and warns you of pitfalls to avoid.

Tutorial: Flow control and multiple searches
Shows how to use IBM® ILOG® Script flow control statements to solve a production
planning model iteratively, modifying the data after each iteration.

Tutorial: Flow control and column generation
Shows how to use flow control and multiple searches to create more complex flow control
scripts that involve several model definitions.

Tutorial: Changing default behaviors in flow control
Describes how to achieve finer control on the execution of a CPLEX® model by using flow
control scripts to change the default behavior.

Searching for relaxation and conflicts
Explains how to write scripting statements to search for relaxation and conflicts in a model.

Using IBM ILOG Script in constraint programming
Explains how to use IBM® ILOG® Script statements to set parameters that control
propagation and search and to define search phases.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 181

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L182

Introduction to scripting

Defines IBM® ILOG® Script as a scripting language and describes the situations in which
it is used: preprocessing, postprocessing, and flow control. Also provides programming tips
and warns you of pitfalls to avoid.

In this section

What is IBM ILOG Script?
Describes the scripting language for combining OPL models and interacting with them.

Preprocessing and postprocessing
Use preprocessing instructions to prepare your data for modeling (transp4.mod example)
and postprocessing instructions to manipulate solutions (warehouse.mod example).

A few tips
Comments on various characteristics of IBM® ILOG® Script for OPL of which you should
be aware when writing script statements.

Common pitfalls
Lists syntax errors you should avoid when writing IBM® ILOG® Script statements in OPL
models.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 183

What is IBM ILOG Script?

IBM® ILOG® Script is an implementation of JavaScript™ .

The OPL language described so far covers the requirements for modeling in optimization,
that is, expressing constraints on decision variables. However, an optimization application
might also need functionality for manipulating data. This “non-modeling” expressiveness of
the OPL language is called scripting, and is available as IBM ILOG Script, a scripting language
for combining OPL models and interacting with them. IBM ILOG Script an implementation
of the ECMA-262 standard (also known as ECMAScript or JavaScript).

You can use OPL functions, except and and or, within IBM ILOG Script blocks by specifying
the OPL namespace:

(Opl.xxx())

IBM ILOG Script for OPL manipulates script variables which are denoted by
means of the keyword var and are different from OPL modeling decision
variables, denoted by means of the keyword dvar.

Important:

Scripting is used in three different situations, as described in the following sections:

♦ Preprocessing and postprocessing to prepare data and work on solutions

♦ Flow control to orchestrate model, model data, and solving

♦ A few tips: additional information on how the language interpreter works and on data
declaration

♦ Common pitfalls: common errors you should avoid when writing script statements in your
OPL models

See also the Reference Manual of IBM ILOG Script Extensions for OPL for an overview and
a detailed description of the IBM ILOG Script API.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L184

Preprocessing and postprocessing

Use preprocessing instructions to prepare your data for modeling (transp4.mod example)
and postprocessing instructions to manipulate solutions (warehouse.mod example).

In this section

General syntax
Discusses execute blocks.

Initializing arrays
The recommended method is to use a generic indexed array.

Changing option values
Use execute blocks to change CPLEX parameters, CP parameters, and OPL settings.

Flow control
Flow control scripting enables you to control how models are instantiated and solved.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 185

General syntax

A block of statements for preprocessing or postprocessing is marked by the keyword execute:

execute {
writeln("Hello World.");

}

Execute blocks can be named:

execute HELLO {
writeln("Hello World.");

}

No two execute blocks can have the same name within the same model.Warning:

Any execute block placed before the objective or constraints declaration is part of
preprocessing; other blocks are part of postprocessing.

The scripting context within an execute block corresponds to the model declarations. You
can think of the statements within an execute block being embedded in an IBM® ILOG®
Script block named with.

with (thisOPLModel) {
writeln("Hello World.");

}

where thisOPLModel is the instance of IloOplModel representing the current OPL model.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L186

Initializing arrays

In most cases, the recommended method for indexing a set of data within an array is to use
a generic indexed array, as shown in Initializing data within a generic indexed array
(transp4.mod).

Initializing data within a generic indexed array (transp4.mod)

float Cost[Routes] = [<t.p,<t.o,t.d>>:t.cost | t in TableRoutes];

Alternatively, you can use IBM ILOG Script and write an execute block, as shown in
Initializing data within an execute block.

Initializing data within an execute block
float Cost[Routes];
execute INITIALIZE {
for(var t in TableRoutes) {

Cost[Routes.get(t.p,Connections.get(t.o,t.d))] = t.cost;
}

}

The get method throws an exception on non-existing tuples to allow you to use the result
directly and continue processing instead of checking for non-null values.

You don't need to initialize your array elements to zero as OPL does that for you by
default.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 187

Changing option values

You can also use execute blocks to change CPLEX® parameters, CP parameters, and OPL
settings within an OPL model.

The code examples are available at the following location:

<OPL_dir>\examples\opl

where <OPL_dir> is your installation directory.

Changing CPLEX parameters
Any CPLEX® parameter can be set from a script statement in an execute block. In case of
conflict, if a different value has been set from the IDE for the same parameter, the value set
in the script statement takes precedence.

Changing CPLEX parameters via scripting (product.mod) shows how to switch off CPLEX
presolve and enable simplex logging in the product.mod model.

Changing CPLEX parameters via scripting (product.mod)
execute CPX_PARAM {
cplex.preind = 0;
cplex.simdisplay = 2;

}

In Preprocessing script statement setting a parameter (transp4.mod), the script named
PARAMS sets a time limit on each call to the optimizer:

Preprocessing script statement setting a parameter (transp4.mod)
You can find the product.mod and transp4.modmodels at the following location respectively:

<OPL_dir>\examples\opl\production

<OPL_dir>\examples\opl\transp

where <OPL_dir> is your installation directory.

CPLEX solution status
This table lists the status values for solutions to LP, QP, or MIP problems. The status value
is returned by IloCplex.status or IloCplex.getCplexStatus.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L188

Solution statusCode
number

Optimal solution is available.1

Problem has an unbounded ray.2

Problem has been proven infeasible.3

Problem has been proven either infeasible or unbounded.4

Optimal solution is available, but with infeasibilities after unscaling.5

Solution is available, but not proved optimal, due to numeric difficulties during optimization.6

Stopped due to limit on number of iterations.10

Stopped due to a time limit.11

Stopped due to an objective limit.12

Stopped due to a request from the user.13

This status occurs only with the parameter feasoptmode set to 0 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is minimal.

14

This status occurs only with the parameter feasoptmode set to 1 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is optimal.

15

This status occurs only with the parameter feasoptmode set to 2 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is minimal.

16

This status occurs only with the parameter feasoptmode set to 3 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is optimal.

17

This status occurs only with the parameter feasoptmode set to 4 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is minimal.

18

This status occurs only with the parameter feasoptmode set to 5 on a continuous problem.
A relaxation was successfully found and a feasible solution for the problem. (if relaxed
according to that relaxation) was installed. The relaxation is optimal.

19

Model has an unbounded optimal face.20

Stopped due to a limit on the primal objective.21

Stopped due to a limit on the dual objective.22

The problem under consideration was found to be feasible after phase 1 of FeasOpt. A
feasible solution is available.

23

The problem appears to be feasible; no conflict is available.30

The conflict refiner found a minimal conflict.31

The conflict refiner concluded contradictory feasibility for the same set of constraints due
to numeric problems. A conflict is available, but it is not minimal.

32

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 189

Solution statusCode
number

33 The conflict refiner terminated because of a time limit. A conflict is available, but it is not
minimal.

The conflict refiner terminated because of an iteration limit. A conflict is available, but it is
not minimal.

34

The conflict refiner terminated because of a node limit. A conflict is available, but it is not
minimal.

35

The conflict refiner terminated because of an objective limit. A conflict is available, but it
is not minimal.

36

The conflict refiner terminated because of a memory limit. A conflict is available, but it is
not minimal.

37

The conflict refiner terminated because a user terminated the application. A conflict is
available, but it is not minimal.

38

Optimal integer solution has been found.101

Optimal solution with the tolerance defined by epgap or epagap has been found.102

Solution is integer infeasible103

The limit on mixed integer solutions has been reached.104

Node limit has been exceeded but integer solution exists.105

Node limit has been reached; no integer solution.106

Time limit exceeded, but integer solution exists.107

Time limit exceeded; no integer solution.108

Terminated because of an error, but integer solution exists.109

Terminated because of an error; no integer solution.110

Limit on tree memory has been reached, but an integer solution exists.111

Limit on tree memory has been reached; no integer solution.112

Stopped, but an integer solution exists.113

Stopped; no integer solution.114

Problem is optimal with unscaled infeasibilities.115

Out of memory, no tree available, integer solution exists.116

Out of memory, no tree available, no integer solution.117

Problem has an unbounded ray.118

Problem has been proved either infeasible or unbounded.119

This status occurs only with the parameter feasoptmode set to 0 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is minimal.

120

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L190

Solution statusCode
number

121 This status occurs only with the parameter feasoptmode set to 1 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is optimal.

This status occurs only with the parameter feasoptmode set to 2 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is minimal.

122

This status occurs only with the parameter feasoptmode set to 3 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is optimal.

123

This status occurs only with the parameter feasoptmode set to 4 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is minimal.

124

This status occurs only with the parameter feasoptmode set to 5 on a mixed integer
problem. A relaxation was successfully found and a feasible solution for the problem (if
relaxed according to that relaxation) was installed. The relaxation is optimal.

125

This status occurs only after a call to feasOpt, when the algorithm terminates prematurely,
for example after reaching a limit.

126

This status means that a relaxed solution is available and can be queried.

The problem under consideration was found to be feasible after phase 1 of FeasOpt. A
feasible solution is available. This status is also used in the status field of solution and
mipstart files for solutions from the solution pool.

127

This status occurs only after a call to the method populate on a MIP problem. The limit
on mixed integer solutions generated by populate, as specified by the parameter
populatelim, has been reached.

128

This status occurs only after a call to the method populate on a MIP problem. Populate
has completed the enumeration of all solutions it could enumerate.

129

This status occurs only after a call to the method populate on a MIP problem. Populate
has completed the enumeration of all solutions it could enumerate whose objective value
fit the tolerance specified by the parameters solnpoolagap and solnpoolgap.

130

For more information
See the description of class IloCplex in the ReferenceManual of IBM ILOG Script Extensions
for OPL. You can also find the complete reference documentation of CPLEX® parameters
in the CPLEX documentation (Parameters of IBM ILOG CPLEX/Parameter Table).

Changing CP parameters
You can set any constraint programming parameter from a script statement in an execute
block. In case of conflict, if a different value has been set from the IDE for the same
parameter, the value set in the script statement takes precedence.

Changing CP parameters via scripting (timetabling.mod) extends the logPeriod parameter
to 10000, sets the search type to DepthFirst and the time limit to 600.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 191

The timetabling example is available at the following location:

<OPL_dir>\examples\opl\timetabling

where <OPL_dir> is your installation directory.

Changing CP parameters via scripting (timetabling.mod)
var p = cp.param;
p.logPeriod = 10000;
p.searchType = "DepthFirst";
p.timeLimit = 600;

For more information
See the description of class IloCP in the Reference Manual of IBM ILOG Script Extensions
for OPL. You can also find the complete reference documentation of CP parameters in the
CP Optimizer documentation.

In the steel mill example, the solution is found very quickly. However, if you want to illustrate
the engine log, you can decrease the periodicity (that is, the number of branches between
which a line of log is printed). To do so, write:

execute {
cp.param.LogPeriod = 50;

}

The general syntax to change engine parameters is:

execute {
cp.param.param_name = param_value

}

Changing OPL settings
You can set certain OPL settings from a script statement in an execute block. Not all OPL
parameters can be set by scripting: you can change only the parameters that are listed as
properties of IloOplSettings in the Reference Manual of IBM ILOG Script Extensions for
OPL. In case of conflict, if a different value has been set from the IDE for the same parameter,
the value set in the script statement takes precedence. For an example, see Executing
preprocessing scripts in Using IBM ILOG Script for OPL.

For more information
See also the description of class IloOplSettings in the Reference Manual of IBM ILOG
Script Extensions for OPL.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L192

Flow control

Flow control scripting enables you to control how models are instantiated and solved. You
can use it in addition to pre- and postprocessing. More specifically, it enables you to use
several models with different data, to run multiple “solve” on a model, and to modify the
model data between one solve and the next. It is particularly useful when you want to solve
a model with modified data several times, or if you want to use different models to solve
your problem (model decomposition).

Examples

Mathematical programming (CPLEX engine)
A main block in an MP model:

model.generate();
if (cplex.solve()) {
var obj=cplex.getObjValue();
opl.postProcess();
}

Constraint programming (CP Optimizer engine)
Two different main blocks in a CP model:

model.generate();
if (cp.solve()) {
var obj=cp.getObjValue()
model.postProcess();
}

Or, to find all solutions:

model.generate();
cp.startNewSearch();
while (cp.next()) {
model.postProcess();
}

For more information
The design of the OPL extensions to IBM ILOG Script available for flow control is close to
that of OPL Interfaces in C++. See Working with OPL interfaces in the Interfaces User’s
Manual for details.

The IBM ILOG Script API available for solving is very limited compared to IloCplex and
IloCP in C++,. NET, or Java™ . See the Reference Manual of IBM ILOG Script Extensions
for OPL for a complete list of available properties and methods.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 193

In Tutorial: Flow control andmultiple searches, you will work from the mulprod_main example
to learn how to solve several times the same model with modified data.

In Tutorial: Flow control and column generation, you will work from the cutstock example
to learn how to solve two different models one after the other by using the output from the
first one as data to the second one.

See OPL language options in IDE Reference for performance aspects.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L194

A few tips

The OPL interpreter

The OPL interpreter performs the following tasks:

♦ declarations: types, names for data and decision variables

♦ instantiation

♦ data sources: data given in files or other sources

♦ preprocessing: scripting blocks

♦ modeling: objective and constraints

♦ postprocessing

Script variables
Script variables declared in one execute block are not visible in other execute blocks.

Processing order
After the declarations, all the data sources are processed. Preprocessing is done before
modeling. Postprocessing is available after a solution is found. However, some postprocessing
instructions are not triggered unless the postProcess method is explicitly called on the
model object.

When the “Force element usage” option is turned off (the default value), all the declared
elements are instantiated “on demand”, that is, when they are first used and the

Note:

interpreter issues warnings for unused elements. When you turn this option on, all
elements are used and no warning message is issued.

Data initialization
If you declare the data of your project internally in the model file (as opposed to externally
in a data file), you cannot access it later by means of a script statement such as:

myData.myArray_inMod[1] = 2;

Otherwise, OPL throws an error message because data elements only hold external data
elements declared using the =... (ellipsis) syntax and read from a .dat file or other
data source.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 195

Control on the solve operation
The solve operation is performed by the flow control in a main block, via the oplrun command,
or in the IDE.

A specific API is provided to enable advanced users to control these tasks. Please refer to
the oplrunsample.cpp example. This file is at the following location:

<OPL_dir>\examples\opl_interfaces\cpp\src

where <OPL_dir> is your installation directory.

Ending objects
In preprocessing, postprocessing, or flow control context, you can end the OPL elements
you don’t need to reduce overall memory consumption.

Debugging
To improve the response time of your script blocks, OPL provides the Profiler as a debugging
tool. See Profiling the execution of a model for more information on how to identify the
blocks that are good candidates for improvement.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L196

Common pitfalls

No range syntax
The range syntax you can use in OPLmodeling statements does not exist for script statements.
However, that syntax is valid for JavaScript™ (ECMAScript) parsing in some cases.

For example, this statement:

for(var i in 1..n)

iterates an empty loop. The expression “1..n ” is interpreted as the named property n for
the number object 1. As that property does not exist, it evaluates to undefined. Iterating
the undefined value is an empty loop.

No tuple syntax
The tuple syntax in OPL modeling statements does not exist for script statements. Use the
find() or the get()methods to get control of tuple objects. For example, instead of writing:

A[<a,b>]

which results in a parsing error, write

A[S.get(a,b)]

where S is the indexer for A.

IBM ILOG Script variables
All variables you declare using the var keyword in a scripting block are undefined in the
block until they are declared. For example:

int a=2;

execute
{

writeln(a);
var a=2;
writeln(a);

}

gives out

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 197

undefined
2

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L198

Tutorial: Flow control and multiple searches

Shows how to use IBM® ILOG® Script flow control statements to solve a production
planning model iteratively, modifying the data after each iteration.

In this section

The production planning problem
Describes the problem and tells you where to find the files.

Procedure summary
Explains how to solve a model iteratively.

Detailed steps
Provides more detail on each step of the procedure summary.

Doing more with mulprod_main
Shows further work with the mulprod_main example, such as passing information to another
model, writing an output file, modifying the CPLEX® matrix incrementally.

Basic flow control script
Presents two templates to help you write flow control scripts.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 199

The production planning problem

What you are going to do
In this tutorial, you are going to work with the production problem presented in Amulti-period
production planning problem. This models extends the basic production-planning problem
presented in A production problem by considering the demand for the products over several
periods and allowing the company to produce more than the demand in a given period. Of
course, there is an inventory cost associated with storing the additional production.

Where to find the files
You will work on a multiperiod production example, supplied as the mulprod example at the
following location:

<OPL_dir>\examples\opl\mulprod

where <OPL_dir> is your installation directory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L200

Procedure summary

More precisely, let us assume that you want to solve the original model, then increase the
capacity for the flour ingredient, then solve again. You want to do this as many times as
possible. Doing so, you will obtain the optimal value for this problem for each possible value
of flour capacity. When the flour capacity is too high and no solution is found, you will stop
the experience.

To solve a model iteratively:

1. Define a “main” block to indicate that you want do flow control scripting to manipulate
different models and/or searches.

2. Load the necessary structures: the model definition, the initial model data, and the
IloOplModel instance that creates the link between them.

3. Generate the optimization model from the initial data.

4. Solve the current optimization model with the current data:

♦ if there is no solution, then quit

♦ if there is a solution, print the objective value

5. Get the data elements from an IloOplModel instance.

6. Modify some of the data elements: modify the data element for the flour capacity.

7. Create a newOPLmodel with themodified data: use themodel definition andmodified
data elements and create a new IloOplModel instance to link them.

8. Complete model: generate the new current optimization model.

You can see the complete model in mulprod_main.mod. It iterates on the last items as long
as a solution is found.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 201

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L202

Detailed steps

Provides more detail on each step of the procedure summary.

In this section

Defining a “main” block
To operate flow control, you need to add a main block to your model.

Loading the necessary structures
Lists the structures needed to manipulate models and data.

Generating the optimization model
Presents the generate() function.

Solving the current optimization model
Presents the solve() function.

Getting the data elements from an IloOplModel instance
Defines data elements and explains how to access them.

Modifying data from “main” scripting
Data elements can be modified and then used as a data source for another model.

Creating a new OPL model with the modified data
Explains how to generate a new model with the modified data.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 203

Defining a “main” block

Flow control means solving several models in sequence and, possibly, modifying data or
passing results from one model to the data of another model. To operate flow control, you
need to add a main block to your .mod file using this syntax:

main {
...
}

When a .mod file contains a main block, the IDE (or the oplrun command) starts the execution
of the model by running the main block first.

Note that the two optimization models can use the same model definition (that is, the same
.mod file) as is the case in this example.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L204

Loading the necessary structures

The structures you will use to manipulate models and data are listed in the table below.

Scripting: structures to manipulate models and data
RoleName

Links to the.mod file representation of the modelIloOplModelDefinition

Links to a .dat file representation of the dataIloOplDataSource

An instance of the CPLEX algorithmIloCplex

A structure linking one model definition to (possibly) one or several data sourcesIloOplModel

See the Reference Manual of IBM ILOG Script Extensions for OPL for more information on
these classes.

When a main block is executed, a variable called thisOplModel representing the IloOplModel
instance is available by default. This variable links to the model definition that contains the
main block currently executed and to the associated .dat files (if they exist) to run the model.
The model definition uses IloOplModelSource instance that is initialized with the model
name. There is also a variable called cplexwhich corresponds to an already created instance
of the CPLEX® algorithm.

If you want to run another model and/or use other data, you may create your own
IloOplModel instance, like this:

var src = new IloOplModelSource("cutstock_sub.mod");
var def = new IloOplModelDefinition(src);
var opl2 = new IloOplModel(def,cplex);

To create a new data source using a different .dat file, you can write:

var data = new IloOplDataSource("mulprod.dat")

Then, to link the IloOplModel instance to a new data source, write:

opl2.addDataSource(data);

In the mulprod_main example, you don't need to create all these structures since you want
to use the already defined thisOplModel instance which corresponds to the model included
in the mulprod_main.mod file.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 205

Generating the optimization model

When your IloOplModel instance is created, you can generate the optimization model and
feed it to your CPLEX® algorithm by calling the generate() function. In the mulprod_main
example, it is called on the thisOplModel instance:

thisOplModel.generate();

After this call, the CPLEX instance is ready to solve.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L206

Solving the current optimization model

To solve the current optimization model, just call the solve() function on the IloCplex
instance. This function returns true or false depending on whether a solution has been found.
If a solution is found, you can ask for the objective value as follows:

if (cplex.solve()) {
curr = cplex.getObjValue();
writeln();
writeln("OBJECTIVE: ",curr);
ofile.writeln("Objective with capFlour = ", capFlour, " is ", curr);

}
else {
writeln("No solution!");
break;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 207

Getting the data elements from an IloOplModel instance

What are data elements?
You cannot directly change the data in a “data source”. A data source represents what is in
a .dat file and the only way to change it would be to modify the .dat file. However, you can
ask for another editable view of the data. This other view is referred to as the “data elements”
of the OPL model. These data elements can be modified and then used as a data source for
another model.

Using data elements
In the mulprod_main example, you want to get the data from the current model at each
successful iteration, modify it, and use it to solve another optimization model.

1. To get the elements of the IloOplModel instance, write:

var data = produce.dataElements;

2. To reuse the same model definition, write:

var def = produce.modelDefinition;

All the scalar elements that are in the .dat file (string, int, float) are copied
whereas complex data such as arrays, sets, and tuples are shared. In other words,
scalar data elements are passed by value while nonscalar data is passed by reference.

Note:

Data elements and data publishers
When calling the method dataElements on an IloOplModel instance, you obtain a container
of all the data elements of this model. This container does not include the data source
publishers: if the IloOplModel instance has been created by means of a data source that
contained publishers, these publishers will not be included in the data elements structure.
For example, if you have created an IloOplModel instance with a .dat file containing a
publisher like:

result to DBUpdate (db,"INSERT INTO writeOPL(id) VALUES (?)");

and you want to use the same publisher on another IloOplModel instance, you must use a
specific .dat file containing only the publishers and add it to the new IloOplModel, as shown
in Reusing data source publishers.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L208

Reusing data source publishers
main {

var Source = new IloOplModelSource("writeDB.mod");
var Def = new IloOplModelDefinition(Source);
var Cplex = new IloCplex();
var Data = new IloOplDataSource("writeDBfromScript.dat");

var Opl = new IloOplModel(Def,Cplex);
Opl.addDataSource(Data);
Cplex.solve();
var DataElts = Opl.dataElements;

var Opl2 = new IloOplModel(Def,Cplex);
Opl2.addDataSource(DataElts);
var Data2 = new IloOplDataSource("publisherData.dat");
Opl2.addDataSource(Data2);
DataElts.lb = 5;
Opl2.generate();
if (Cplex.solve()) {

Opl2.postProcess();
}
else
writeln("no solution");

}

writeFromScript.dat :
lb=2;
DBConnection db("access","testDB.mdb");
result to DBUpdate (db,"INSERT INTO writeOPL(id) VALUES (?)");

publisherData.dat would be:
DBConnection db("access","testDB.mdb");
result to DBUpdate (db,"INSERT INTO writeOPL(id) VALUES (?)");

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 209

Modifying data from “main” scripting

You can access and modify data in the data elements obtained from the current OPL model,
as follows:

data.capacity["flour"] = capFlour;

Then, the value of the variable capacity["flour"] is modified in the structure of the data
elements.

Note, however, the following:

1. Scalar data, whether in the .mod file or the .dat file, cannot be modified via scripting.

2. You can use data elements to add new elements, but only for scalar types.

3. Only external data can be modified by script. If, in the .mod file, you have, for example:

int arr[1..3] = [1,2,3];

you cannot modify the array arr. You need to declare it as:

int arr[1..3] = ...;

and initialize it externally.

So you would need to create a .dat file that contains the data to update, except for
scalar data. The scalars that need to be updated would not be initialized in the .mod, or
in a .dat, but in a new instance of OplDataElements that you can then add as a data
source:

float maxOfx = ...;
.
.
main {
.
.
var data = new IloOplDataSource("basicmodel.dat");
var opl = new IloOplModel(def,cplex);
var data2 = new IloOplDataElements();
data2.maxOfx=11;
opl.addDataSource(data);
opl.addDataSource(data2);
opl.generate();

.

.
}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L210

Creating a new OPL model with the modified data

You can now:

1. Reuse the model definition and use the modified data elements to create a new OPL
model.

produce = new IloOplModel(def,cplex);
produce.addDataSource(data);

2. Generate the optimization model as before:

produce.generate();

The cplex instance is filled with the new optimization model which corresponds to the same
model definition but uses the modified data elements.

The cplex instance that was also used for the original model does not contain the
original optimization model anymore.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 211

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L212

Doing more with mulprod_main

Shows further work with the mulprod_main example, such as passing information to another
model, writing an output file, modifying the CPLEX® matrix incrementally.

In this section

Passing information to another model
Using a basis you can pass information from one optimizationmodel to another and accelerate
the search.

Writing an output file
How to use script statements to write an output file.

Modifying the CPLEX matrix incrementally
How to change the bounds of a CPLEX constraint or variable. How to change the coefficient
of a variable.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 213

Passing information to another model

The distributed example also uses an instance of IloOplCplexBasis to pass the basis from
one optimization model to another. Using a basis, you can pass information from one
optimization model to another and accelerate the search.

To pass information to another model:

1. Create a basis structure.

var basis = new IloOplCplexBasis();

2. Load the structure with the basis contained in a cplex instance.

basis.getBasis(cplex)

3. Fill another instance with the basis.

basis.setBasis(cplex)

The basis structure is currently limited to pass basis information between two
optimization models that have the same structure (same number of variables and
rows), as this is the case for the mulprod_main example.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L214

Writing an output file

The distributed example mulprod_main also illustrates how to use script statements to write
an output file. To do so, you use the IloOplOutputFile class.

Opening a file
To open a file:

1. Write the following code:

var ofile = new IloOplOutputFile("mulprod_main.txt");

2. Then you can write statements such as:

ofile.writeln("Objective with capFlour = ", capFlour, " is ", curr)
;

Closing the file
To close the file:

♦ Write the following code:

ofile.close();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 215

Modifying the CPLEX matrix incrementally

In this tutorial, you have learned how to solve a sequence of modified OPLmodels by changing
data in OPL. This is a useful technique, however you need to generate the CPLEX® model
again after each modification. Sometimes, when the number of iterations is high and
generating the new iteration takes a long time compared to solving it, you may prefer to
have a direct interaction with the generated optimization model and be able to work
incrementally on the result of the previous iteration. You can do so by taking advantage of
the API of IBM® ILOG® Script extensions for OPL.

The mulprod production planning example illustrates how to change the bounds of a CPLEX
constraint.

You can also:

♦ change the bounds of a variable

♦ change the coefficient of a variable in a CPLEX constraint or in the CPLEX objective

Changing bounds

Of a CPLEX constraint
To change the bound of a constraint, you can directly change the LB and UB properties on
the IloConstraint class.

It is important to understand what happens when these methods are used: the optimization
model is directly modified but the OPLmodel is not. Therefore, the solution given by CPLEX®
corresponds to the modified optimization model, but not to the original OPL model any more.
On the other hand, the advantage is that the CPLEX matrix is directly modified (not rebuilt
from scratch) and any new search can take advantage of the previous ones.

You can see in the mulprod_change_main.mod file how the example can be modified to
change the optimization model directly. In particular, the important line is the one that
changes the bound of a constraint:

Changing the bound of a CPLEX constraint
for(var t in thisOplModel.Periods)
thisOplModel.ctCapacity["flour"][t].UB = capFlour;

}

Of a variable
To change the bound of a variable, you can directly change the lower-bound (LB) and
upper-bound (UB) properties on the IloNumVar class. This does not change the bound of the
variable in the OPL model but only in the CPLEX matrix. This change is taken into account
incrementally by the CPLEX engine.

Changing the coefficient of a variable
You can use the method IloConstraint.setCoef to change the coefficient of a variable in
the invoking constraint and the method IloObjective.setCoef to change the coefficient
of a variable in the invoking objective. The coefficient is changed only in the CPLEX®

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L216

matrix and in the Concert extracted model. The OPL model is not affected. On the other
hand, the change is taken into account incrementally by the CPLEX engine.

The method IloCplex.setCoef is available for all CPLEX linear constraints. It
changes the engine representation directly without going through Concert.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 217

Basic flow control script

To help you write flow control scripts, here are two templates you can start from.

Flow control script template calling a project calls a project file while Flow control script
template calling a model and data calls model and data files.

Flow control script template calling a project
main {

var proj = new IloOplProject("../../../../../opl/mulprod");

var rc=proj.makeRunConfiguration();

rc.oplModel.generate();

if (rc.cplex.solve()) {

writeln("OBJ = " + rc.cplex.getObjValue());

}

else {

writeln("No solution");

}

rc.end();

proj.end();

}

Flow control script template calling a model and data
main {

var source = new IloOplModelSource("../../../../../opl/mulprod/mulprod.mod");

var cplex = new IloCplex();

var def = new IloOplModelDefinition(source);

var opl = new IloOplModel(def,cplex);

var data = new IloOplDataSource("../../../../../opl/mulprod/mulprod.dat");

opl.addDataSource(data);

opl.generate();

if (cplex.solve()) {

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L218

writeln("OBJ = " + cplex.getObjValue());

}

else {

writeln("No solution");

}

opl.end();

data.end();

def.end();

cplex.end();

source.end();

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 219

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L220

Tutorial: Flow control and
column generation

Shows how to use flow control and multiple searches to create more complex flow control
scripts that involve several model definitions.

In this section

What is model decomposition?
Defines decomposition for complex models.

The cutting stock problem
Describes the example and tells you where to find the files.

Procedure summary
Explains how to work with a master model and a submodel

Detailed steps
Goes into more detail on each step of the procedure summary.

Doing more with cutstock_main
Shows further work with the cutstock_main example, such as integer solution or executing
postprocessing.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 221

What is model decomposition?

Some models are too complex to solve, either because they are just too big or because they
are too long to search. In this case, model decomposition consists in breaking down the
model into several smaller models and defining a sequence to solve those smaller models
so as to lead to a solution that is also a solution to the big original model.

Column generation techniques use a decomposition into two models called the master model
and the submodel. Column generation techniques are the most famous among the model
decomposition techniques. The process to solve a cutting stock problem includes one initial
step to prepare the submodel, then a series of iterative steps.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L222

The cutting stock problem

What you are going to do
In this tutorial, you are going to solve the cutting stock problem described in Cutting stock
problems in the Samples manual. Here is a summary:

The problem consists of cutting big wooden boards into small shelves to meet customer
demands while minimizing the number of boards used. A given instance specifies the length
of the boards, the length of the shelves, and the demand for each shelf type. These variables
are expressed as integers, it is therefore an integer programming problem.

In the context of column generation, the two models lend themselves to interpretation:

♦ The submodel consists of finding possible new patterns (i.e. ways of cutting the items).

♦ The master model consists of deciding how many of each of the already existing patterns
have to be cut.

The whole process involves solving the master and the subproblem iteratively. At each
iteration, a new cutting pattern is added, then the master problem is solved again from this
new pattern. As there is more freedom in the way the boards are cut, a better solution may
be found. The submodel uses a reduced-cost objective so that only the patterns that could
improve the total cost are generated.

Although this reduced-cost objective is explained by the simplex theory, it is not
necessary to fully understand this theory to follow how the cutting stock example works.

Note:

Where to find the files
You will work with the files listed in Files for the cutting stock example to solve a column
generation problem. You can find them at the following location:

<OPL_dir>\examples\opl\cutstock

where <OPL_dir> is your installation directory.

Files for the cutting stock example
The model definition for the master model; it also contains the flow control
script.

cutstock_main.mod

Similar to cutstock_main.mod but uses IloOplDataElements for the
data of the submodel.

cutstock_main_elements.mod

The initial data for the master modelcutstock.dat

The definition of the submodelcutstock-sub.mod

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 223

Procedure summary

To work through model decomposition:

1. Prepare the submodel.

2. Solve the master model.

3. Update the submodel: prepare the data of the submodel to take into account the result
of the master model, and prepare the new subproblem and regenerate its optimization
model.

4. Solve the submodel.

♦ If no solution with a satisfactory reduced cost is found, the process is finished.

♦ If a new solution exists, the process continues.

5. Update the master model: add the current solution of the submodel to the data of the
master model.

6. Prepare the new master model and regenerating its optimization model and go back
to step 2.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L224

Detailed steps

Goes into more detail on each step of the procedure summary.

In this section

Preparing the submodel
Either by using run configuration and project instances, or by using model and data file
instances.

Solving the master model
Provides the syntax.

Updating the submodel
Provides the syntax.

Solving the submodel
Provides the syntax.

Updating the master model
Provides the syntax.

Preparing the new master model and regenerating its optimization model
Provides the syntax.

Ending objects
Discusses the use of the end method to terminate objects that are no longer necessary.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 225

Preparing the submodel

There are two ways of initializing all that is necessary for the submodel:

♦ Using run configuration and project instances

♦ Using model and data file instances

Using run configuration and project instances
The quickest way of instantiating the model consists in using the class IloOplProject. An
alternative method (not used in the example is presented afterwards, using
IloOplRunConfiguration.

IloOplProject
The class IloOplProject allows you to create an IloOplModel instance. This allows you to
handle settings files (.ops) easily.

These two classes are fully documented in the IBM ILOG Script Reference Manual.

The IloOplDataElements is created from scratch and initialized with data from the master
model using the following code:

var subData = new IloOplDataElements();
subData.RollWidth = masterOpl.RollWidth;
subData.Size = masterOpl.Size;

The array Duals is now declared in the post processing of the master model and we pass it
to the sub model as follows:

subData.Duals = masterOpl.Duals;

IloOplRunConfiguration
Alternatively, the class IloOplRunConfiguration could be used to create an IloOplModel
instance in a straightforward manner by just passing the file names as arguments, as follows:

var subSource = new IloOplModelSource("cutstock-sub.mod");
var subDef = new IloOplModelDefinition(subSource);
var subData = new IloOplDataElements();
var subCplex = new IloCplex();

After the run configuration is created, you can access the IloOplModel instance using the
oplModel property, as follows:

subOpl.generate();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L226

Using model and data file instances
You can also create the IloOplModel instance for the submodel “from scratch”, using a
model source, model definition, and data source (see the list in Files for the cutting stock
example).

var subSource = new IloOplModelSource("cutstock-sub.mod");
var subDef = new IloOplModelDefinition(subSource);
var subCplex = new IloCplex();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 227

Solving the master model

The master model is contained in the following variables:

var masterDef = thisOplModel.modelDefinition;
var masterCplex = cplex;
var masterData = thisOplModel.dataElements;

// Creating the master-model
var masterOpl = new IloOplModel(masterDef, masterCplex);
masterOpl.addDataSource(masterData);

We reuse the thisOplModel variable because the master model corresponds to the definition
contained in the same file as the flow control script. At each iteration, a new IloOplModel
instance is created from the newly modified data elements.

Before you can solve, you need to generate the optimization model by calling:

thisOplModel.generate()

To solve the master model, call:

if (masterCplex.solve()) {
masterOpl.postProcess();
curr = masterCplex.getObjValue();
writeln();
writeln("MASTER OBJECTIVE: ",curr);

} else {
writeln("No solution to master problem!");
masterOpl.end();
break;

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L228

Updating the submodel

You need to update the reduced cost objective by setting the new dual values in the submodel
data.

Here are the steps:

1. Make the changes to the data elements taken from the initial submodel:

var subData = new IloOplDataElements();
subData.RollWidth = masterOpl.RollWidth;
subData.Size = masterOpl.Size;
subData.Duals = masterOpl.Duals;

It is easy to change the data to the new dual values from the variables of the master
model. To do so, you can use the “dual” property of those variables.

for(var i in masterOpl.Items) {
subData.Duals[i] = masterOpl.ctFill[i].dual;

}

2. Create a new submodel with the same definition file and the newly modified data
elements:

subOpl = new IloOplModel(subDef,subCplex);
subOpl.addDataSource(subData);

3. Generate the optimization model:

subOpl.generate();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 229

Solving the submodel

1. Write the writeln statement:

2. Check the objective:

if (subCplex.getObjValue() > -RC_EPS) {
break;

}

If the objective is not favorable, you stop the process. Remember that the objective represents
the reduced cost of the new candidate pattern.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L230

Updating the master model

If a solution has been found in the submodel, then a new pattern can be added to the master
model. That pattern is represented by the values of the Use variable arrays in the submodel.
In the master model, the patterns are represented by the Patterns tuple set. Therefore,
you need to move the solution values of the Use variables from the submodel to a new tuple
in the Patterns tuple set form the master model.

1. Modify the data elements obtained from the current master model.

var masterData = thisOplModel.dataElements;

2. Simply add a new tuple in the Patterns tuple set using the array of values Use from the
submodel.

masterData.Patterns.add(masterData.Patterns.size,1,subOpl.Use.
solutionValue);

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 231

Preparing the new master model and regenerating its optimization
model

Using these modified data elements, create a new master problem and generate its
optimization model.

masterOpl = new IloOplModel(masterDef,masterCplex);
masterOpl.addDataSource(masterData);
masterOpl.generate();

You can see the complete version of this model in the file cutstock_main.mod.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L232

Ending objects

The cutstock_main example also shows how to end the different script elements. Although
memory leaks are not so much of a concern in this small example, it is good practice to use
the end method of the class IloOplModel to systematically terminate objects that are no
longer necessary. See IloOplModel. end in the IBM ILOG Script Reference Manual for
details.

The end and endAll methods are disabled by default in the OPL IDE and can be enabled by
setting mainEndEnabled to true. At the beginning of your script, add:

thisOplModel.settings.mainEndEnabled = true;

We recommend that you use caution in applying this setting. When it is enabled, you must
ensure that memory is properly managed by your script. Faulty memory management, such
as attempting to use an object after it has been deleted, may result in crashes.

The endAll method is deprecated in OPL 6.2 and will not be supported in the next
release.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 233

Doing more with cutstock_main

Integer solution
The model presented in this tutorial only solves the relaxed problem, which is obviously not
realistic. Even if this does not ensure an optimal solution, the usual technique consists in
solving the integer version of the problem when all the new patterns are generated. This is
done in another version of the model: cutstock_int_main.mod.

In that version, the final solution is output as follows:

masterOpl = new IloOplModel(masterDef,masterCplex);
masterOpl.addDataSource(masterData);
masterOpl.generate();

Executing postprocessing
When a model is used from flow control, the postprocessing part is only executed on demand.

In this cutting stock example, the following postprocessing elements are defined:

♦ a structure to keep a pattern along with a float value,

♦ a computed set to be filled with the patterns that are used in the solution and their values,

♦ and a script to print out this set.

Here are the corresponding code lines:

tuple r {
pattern p;
float cut;

};

{r} Result = {<p,Cut[p]> | p in Patterns : Cut[p] > 1e-3};

This postprocessing part is not executed by default. This is useful because there are frequent
situations where you won’t want the postprocessing instructions to be executed. This is the
case here, in the cutting stock example, because of the intermediate iterations.

When you do want to execute postprocessing, call:

masterOpl.postProcess();

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L234

Tutorial: Changing default
behaviors in flow control

Describes how to achieve finer control on the execution of a CPLEX® model by using flow
control scripts to change the default behavior.

In this section

What you are going to do
Includes where to find the files.

Setting an initial solution for the CPLEX engine
Uses the warmstart example and its model warmstart.mod to show how you can use the
IBM® ILOG® Script extension class IloOplCplexVectors to set up an initial solution for
CPLEX on a specific part of the model.

Setting preferences on the search for conflicts and relaxations
Uses the conflictIterator example and its model conflictIterator.mod to explain how
to use the class IloOplConflictIterator to refine a conflict with user-defined preferences
(not available for CP models).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 235

What you are going to do

This tutorial covers:

♦ Setting an initial solution for the CPLEX® engine explains how to use the class
IloOplCplexVectors to pass an initial solution to the CPLEX solving engine before
executing the model.

♦ Setting preferences on the search for conflicts and relaxations explains how to use the
class IloOplConflictIterator to refine a conflict with user-defined preferences.

The search for conflicts and relaxations is not supported in CP models.Important:

Where to find the files
In this tutorial, you will work with the conflictIterator and warmstart examples, which
you can find at the following location:

<OPL_dir>\examples\opl\conflictIterator

<OPL_dir>\examples\opl\warmstart

where <OPL_dir> is your installation directory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L236

Setting an initial solution for the CPLEX
engine

Uses the warmstart example and its model warmstart.mod to show how you can use the
IBM® ILOG® Script extension class IloOplCplexVectors to set up an initial solution for
CPLEX on a specific part of the model.

In this section

The warmstart model
Presents the variables and constraints of warmstart.mod.

Default behavior
Provides the code and the solution.

Setting the initial solution
Shows how to use a value array.

Conclusion
Concludes on setting an initial solution for the CPLEX engine.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 237

The warmstart model

The warmstart.mod model file defines the following variables and constraints.

Variables
range r = 1..10;
dvar int+ x[r];
dvar int+ y[r];

Constraints
minimize
sum(i in r) x[i] + sum(j in r) y[j];

subject to{
ctSum:
sum(i in r) x[i] >= 10;

forall(j in r)
ctEqual:
y[j] == j;

}

This model has a lot of different possible solutions with the same objective. The purpose of
the example is to show that the solution returned by CPLEX® can be influenced by the
initial solution you pass to the solving engine.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L238

Default behavior

The following code from the flow control part of the model (the main block) shows what the
default behavior would be:

// Default behaviour
writeln("Default Behaviour");
var opl1 = new IloOplModel(def, cplex);
opl1.generate();
cplex.solve();
writeln(opl1.printSolution());

The solution is:

Default Behaviour
x = [10 0 0 0 0 0 0 0 0 0];
y = [1 2 3 4 5 6 7 8 9 10];

CPLEX calculates the first variable from the array such as to satisfy the sum constraint.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 239

Setting the initial solution

The class that enables you to pass an initial solution to the CPLEX® MIP algorithm is
IloOplCplexVectors. You can control the part of the model to be set with an initial solution
by attaching a pair of elements made up of a constraint array and a value array. The value
array is defined in the model.

// The following array of values (defined as data) will be used as
// a starting solution to warm-start the CPLEX search.
float values[i in r] = (i==5)? 10 : 0;

The second part of the main block illustrates how to use it.

// Setting initial solution
writeln("Setting initial solution");
var opl2 = new IloOplModel(def, cplex);
opl2.generate();
var vectors = new IloOplCplexVectors();
// We attach the values (defined as data) as starting solution
// for the variables x.
vectors.attach(opl2.x,opl2.values);
vectors.setVectors(cplex);
cplex.solve();
writeln(opl2.printSolution());

The solution is then:

Setting an initial solution
x = [0 0 0 0 10 0 0 0 0 0];
y = [1 2 3 4 5 6 7 8 9 10];

The CPLEX log reports:

MIP start values provide initial solution with objective 65.0000

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L240

Conclusion

By attaching pairs of constraint arrays and value arrays, you can determine both:

♦ to which part of the model an initial solution will be set: use the setVectors method;

♦ from which part of the model the solution will be saved: use the getVectors method.

The mechanism is the same; only the method signature is different. Moreover, you can apply
the same mechanism to the CPLEX® basis using the setBasisStatus and getBasisStatus
methods of the class IloOplCplexBasis..

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 241

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L242

Setting preferences on the search for
conflicts and relaxations

Uses the conflictIterator example and its model conflictIterator.mod to explain how
to use the class IloOplConflictIterator to refine a conflict with user-defined preferences
(not available for CP models).

In this section

The conflictIterator model
Presents the variables and constraints of this infeasible model.

Default behavior
Shows the code from the flow control and the result.

Setting user-defined preferences
How to assign an ordering to members of a conflict.

Conclusion
Concludes on setting preferences on the search for conflicts and relaxations.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 243

The conflictIterator model

This tutorial uses a simple infeasible model which defines the following variables and
constraints.

Variables
range r = 1..10;
dvar int+ x[r] in 1..10;

Constraints
minimize sum(i in r) x[i];
subject to {

ct: sum(i in r) x[i] >= 10;
forall(i in r)
cts: x[i] >= i+5;

}

This model is clearly infeasible. All constraints from cts[6] through cts[10] are infeasible.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L244

Default behavior

The following code lines from the first part of the flow control (the main block) show the
default behavior if you use the IloOplConflictIterator class without setting any
user-defined preferences.

// Default behavior
writeln("Default Behavior");
var opl1 = new IloOplModel(def, cplex);
opl1.generate();
writeln(opl1.printConflict());
opl1.end();

The output is then:

Default Behaviour
cts[6] at 9:0-10:17 E:\opl\conflictIterator.mod
is in conflict.

This result was to be expected since CPLEX® refined the solution to the first constraint in
the declared order.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 245

Setting user-defined preferences

You can assign preferences to members of a conflict. In most cases, there is no advantage
to assigning unique preferences, but if you know something about your model that suggests
assigning an ordering to certain members, you can do so.

Guidelines to your choice:

♦ A preference of -1 means that the member is to be absolutely excluded from the conflict.

♦ A preference of 0 (zero) means that the member is always to be included, and

♦ Preferences of positive value represent an ordering by which the conflict refiner will give
preference to the members. A group with a higher preference is more likely to be included
in the conflict. Preferences can thus help guide the refinement process toward a more
desirable minimal conflict.

To set user-defined preferences:

1. Define an array of preferences in the model, as shown in this code:

// Preferences are stated as data of the opl model.
// prefs[i] will be used to represent the preference of seeing cts[i] in
the conflict.
float prefs[i in r] = i;

The value is smaller for higher values of i and the CPLEX conflict refinement algorithm
gives precedence to lower values.

2. Pass these preferences to the iterator by attaching them to the array of affected
constraints as shown in this code:

// With user-defined preferences
writeln("With user-defined preferences");
var opl2 = new IloOplModel(def, cplex);
opl2.generate();
// We attach prefs (defined as data in the opl model) as preferences

// for constraints cts for the conflict refinement.
opl2.conflictIterator.attach(opl2.cts, opl2.prefs);
writeln(opl2.printConflict());
opl2.end();

The output is then:

With user-defined preferences
cts[10] at 9:0-10:17 E:\opl\conflictIterator.mod
is in conflict.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L246

Conclusion

By attaching pairs of constraint arrays and preference arrays, you can control the way in
which the CPLEX® solving engine refines the conflict returned by the conflict iterator. You
can apply the same mechanism to the CPLEX relaxation algorithm by using the
IloOplRelaxationIterator class.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 247

Searching for relaxation and conflicts

To search for relaxations and conflicts in an infeasible model, you can use the IDE as
explained in Relaxing infeasible models in IDE Tutorials but you can also use the IBM®
ILOG® Script methods printRelaxation and printConflict on the IloOplModel instance.
For example:

dvar int x in 0..10;

subject to
{
ct1: x<=4;
ct2: x>=6;

}

main
{
thisOplModel.generate();
writeln(thisOplModel.printRelaxation());
writeln(thisOplModel.printConflict())

}

gives out

ct1 at 11:7-12
relax [-infinity,4] to [-infinity,6] value is 6

ct1 at 11:7-12
is in conflict.

ct2 at 12:7-12
is in conflict.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L248

Using IBM ILOG Script
in constraint programming

Explains how to use IBM® ILOG® Script statements to set parameters that control
propagation and search and to define search phases.

In this section

Setting CP parameters
How to set a parameter value by adding script statements to the model.

Defining search phases
To define search phases in OPL, you can use only IBM® ILOG® Script statements. This
section explains how.

Accessing solutions in postprocessing
Describes how to access the solution in postprocessing.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 249

Setting CP parameters

The preferred way to set CP parameters is from the IDE settings editor. However, it is
sometimes convenient to set a parameter value by adding script statements to the model.

The IBM® ILOG® Script syntax to change a CP parameter is:

cp.param.paramName = “paramvalue”

For example:

cp.param.DefaultInferenceLevel = “Low”

or (from the model timetabling.mod):

var p = cp.param;
p.logPeriod = 10000;
p.searchType = "DepthFirst";
p.timeLimit = 600;

See Constraint programming options in Parameters and settings in OPL for a detailed
description of each parameter.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L250

IBM ILOG Script CP parameters
Default ValuePossible ValuesParameter

DefaultDefault, Low, Basic, Medium, ExtendedAllDiffInferenceLevel

DefaultDefault, Low, Basic, Medium, ExtendedAllMinDistanceInferenceLevel

2100000000BranchLimit

2100000000ChoicePointLimit

OnOn/OffConstraintAggregation

DefaultDefault, Low, Basic, Medium, ExtendedCountInferenceLevel

BasicLow, Basic, Medium, ExtendedCumulFunctionInferenceLevel

BasicLow, Basic, Medium, ExtendedDefaultInferenceLevel

DefaultDefault, Low, Basic, Medium, ExtendedElementInferenceLevel

2100000000FailLimit

BasicLow, Basic, Medium, ExtendedIntervalSequenceInferenceLevel

1000LogPeriod

NormalQuiet, Terse, Normal, VerboseLogVerbosity

30MultiPointNumberOfSearchPoints

BasicLow, Basic, Medium, ExtendedNoOverlapInferenceLevel

1e-15OptimalityTolerance

BasicLow, Basic, Medium, ExtendedPrecedenceInferenceLevel

QuietQuiet, Terse, Normal, VerbosePropagationLog

0RandomSeed

0RelativeOptimalityTolerance

100RestartFailLimit

1.05RestartGrowthFactor

RestartDepthFirst, Restart, MultiPointSearchType

2100000000SolutionLimit

BasicLow, Basic, Medium, ExtendedStateFunctionInferenceLevel

Infinity (number in seconds)TimeLimit

11 to 4Workers

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 251

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L252

Defining search phases

To define search phases in OPL, you can use only IBM® ILOG® Script statements. This
section explains how.

In this section

What is a search phase?
Introduces the notion of a search phase.

Writing script statements to define search phases
The model steelmill.mod shows this feature.

Multiple search phases
Explain how to pass several search phases to the engine.

Specifying variable and value choosers
A search phase can contain a variable chooser and a value chooser.

Scheduling search phases
Describes the interval variable and sequence variable search phases available for scheduling.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 253

What is a search phase?

In constraint programming, a search phase is a way to guide search types.

One method of tuning the search is to use a search type other than the default search type.
You can do this either from the IDE settings editor or by changing a CP parameter from
IBM® ILOG® Script, as described in Setting CP parameters.

Another way is to guide the search types with search phases. A search phase allows you to
specify the order of the search moves and the order in which the values must be tested.

A search phase defines instantiation strategies to help the embedded CP Optimizer search
algorithm.

A search phase is either mono-criterion or multi-criteria.

A mono-criterion search phase is composed of:

♦ either

● an array of integers to instantiate (or fix), and

● a variable chooser that defines how the next variable to instantiate is chosen, and

● a value chooser that defines how values are chosen when variables are instantiated

var phase1 = f.searchPhase(x,
f.selectLargest(f.varIndex(x)),
f.selectLargest(f.explicitValueEval(values, varEval, 0)));

♦ or

an array of integers to instantiate (or fix)

var phase1 = f.searchPhase (x);

♦ or

● a variable chooser that defines how the next variable to instantiate is chosen, and

● a value chooser that defines how values are chosen when variables are instantiated

var phase1 = f.searchPhase (f.selectLargest(f.varIndex(x)),
f.selectLargest(f.explicitValueEval(values, varEval, 0)));

A multi-criteria search phase can have:

♦ either two different search phases, such as:

var multiPhaseVar = new Array(f.selectSmallest(f.domainSize()), f.
selectRandomVar());
var multiPhaseValue = new Array(f.selectSmallest(f.value()), f.
selectRandomValue());
var phase1 = f.searchPhase(multiPhaseVar, multiPhaseValue);

♦ or several decision variables, such as:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L254

var phase1 = searchPhase(new Array(x[1],x[2]));

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 255

Writing script statements to define search phases

To define a search phase, you write a script statement after the declaration of decision
variables and before the constraint block, as shown below.

Location of the search phase script statement (steelmill.mod)
dvar int where[1..nbOrders] in 1..nbSlabs;
dvar int load[1..nbSlabs] in 0..maxLoad;

execute{
writeln("loss = ", loss);
writeln("maxLoad = ", maxLoad);
writeln("maxCap = ", maxCap);

}
execute {
cp.param.LogPeriod = 50;

}
execute {

var f = cp.factory;
cp.setSearchPhases(f.searchPhase(where));

}
dexpr int totalLoss = sum(s in 1..nbSlabs) loss[load[s]];

minimize totalLoss;
subject to {
packCt: pack(load, where, weight);
forall(s in 1..nbSlabs)
colorCt: sum (c in 1..nbColors) (or(o in 1..nbOrders : colors[o] == c)

(where[o] == s)) <= 2;
}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L256

Multiple search phases

You can pass several search phases to an instance of the CP Optimizer engine. The order
of the search phases in the array is significant. The search engine instantiates the variables
phase by phase, starting with the first one. It is not necessary that the variables in the search
phases cover all the variables of the problem. It can be assumed that a search phase
containing all the problem variables is implicitly added to the search phases. For instance,
in a model that has three arrays of variables x, y and z, the following search phases:

int nbCars=
range Slots =
int values[i in 0..nbCars] = i;
int valueEval[i in 0..nbCars] =

dvar int slot[Slots] in 0..nbCars;

execute {
var f = cp.factory;
cp.setSearchPhases(f.searchPhase(x), f.searchPhase(y));

}

mean that variables x will be instantiated before variables y; then, once x and y are
instantiated, variables z will be instantiated. In some particularly well-designed models,
passing such an order can have a dramatic impact on the solving time.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 257

Specifying variable and value choosers

A search phase can also contain a variable chooser and a value chooser. The example below
shows how such a search phase could be defined for the carseq example. The full code of
the carseq.mod model (which does not contain this search) is available at:

<OPL_dir>\examples\opl\carseq\carseq.mod

where OPL_dir is your installation directory.

Variable and Value Choosers in Search Phases (alternative search for carseq.mod)

execute {
var f = cp.factory;

var phase1 = f.searchPhase(slot,
f.selectSmallest(f.varIndex(slot)),
f.selectLargest(f.explicitValueEval(values, valueEval, 0)));

cp.setSearchPhases(phase1);

}

List of variable choosers
selectSmallest(eval)

selectLargest(eval)

selectRandomVar()

List of variable evaluators
cp.factory.domainSize()

cp.factory.domainMin()

cp.factory.domainMax()

cp.factory.regretOnMin()

cp.factory.regretOnMax()

cp.factory.successRate()

cp.factory.impact()

cp.factory.localImpact()

cp.factory.impactOfLastBranch()

cp.factory.explicitVarEval(dvar int[],int[])

cp.factory.varIndex(dvar int[])

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L258

List of value choosers
selectSmallest(eval)

selectLargest(eval)

selectRandomValue()

List of value evaluators
cp.factory.value()

cp.factory.valueImpact()

cp.factory.valueSuccessRate()

cp.factory.explicitValueEval(int[],int[])

cp.factory.valueIndex(int[])

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 259

Scheduling search phases

Two types of search phases are available for scheduling: Search phases on interval variables
and search phases on sequence variables.

Interval variable search phase
A search phase on interval variables works either on a unique interval variable or on an
array of interval variables. During this phase, CP Optimizer fixes the value of the specified
interval variable(s): Each interval variable will be assigned a presence status and for each
present interval, a start and an end value. This search phase fixes the start and end values
of interval variables in an unidirectional manner, starting to fix first the intervals that will
be assigned a small start or end value.

The syntax:

searchPhase(a);

searchPhase(A);

Where:

dvar interval a;

dvar interval A[];

For instance, this code sample will specify a search that first fixes all interval variables in
array A1 before the ones in array A2:

dvar interval A1[...] ...;
dvar interval A2[...] ...;

execute{
var f = cp.factory;
cp.setSearchPhases(f.searchPhase(A1),
f.searchPhase(A2));

}

Sequence variable search phase
A search phase on sequence variables works on a unique sequence variable or on an array
of sequence variables. During this phase CP Optimizer fixes the value of the specified
sequence variable(s): Each sequence variable will be assigned a totally ordered sequence
of present interval variables. Note that this search phase also fixes the presence statuses
of the intervals involved in the sequence variables. This phase does not fix the start and end
values of interval variables.

It is recommended to use this search phase only if the possible range for start and end values
of all interval variables is limited (for example by some known horizon that limits their
maximal values).

searchPhase(p);

searchPhase(P);

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L260

Where:

dvar sequence p;

dvar sequence P[];

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 261

Accessing solutions in postprocessing

You can access information about intervals, sequences, and instances of cumulFunction or
stateFunction in a solution.

The value of an interval variable a in a solution can be accessed using the following
instructions:

1) a.present returns a boolean describing whether or not interval a is present in the solution.

2) for a present interval, a.start, a.end and a.size respectively return the start, end and size
value of interval a in the solution.

An interval variable a in a solution can be displayed usingwriteln(a). This instruction displays
a vector: < a.present a.start a.end a.size >.

The value of a sequence variable p in a solution can be accessed using the following
instructions:

1) p.first() and p.last() respectively return the interval variable that corresponds to the first
(resp. last) interval of the sequence. In case the sequence is empty the returned value is
null.

2) p.next(a) and p.prev(a) respectively return the interval variable sequenced just after a
(resp. just before a) in the sequence. In case a is the last (resp. first) interval in the sequence,
the returned value is null.

A sequence variable p in a solution can be displayed usingwriteln(p). This instruction displays
the set of present interval variables in the sequence following the total order specified by
the sequence.

In postprocessing, you can also access values of a cumulative function or a state function
in a solution with the following OPL functions:

cumulFunctionValue

stateFunctionValue

segmentValue

numberOfSegments

segmentStart

segmentEnd

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L262

Advanced features

A tutorial on external functions.

In this section

Tutorial: External functions
Exposes the purpose and the context of external functions in OPL, and explains how to use
an external knapsack algorithm, how to use data other sources, and how to debug custom
Java code using Eclipse.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 263

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L264

Tutorial: External functions

Exposes the purpose and the context of external functions in OPL, and explains how to use
an external knapsack algorithm, how to use data other sources, and how to debug custom
Java code using Eclipse.

In this section

Context of external functions
Specifies the purpose of external functions and the environment prerequisites.

Using an external knapsack algorithm
Presents the problem, the code samples, the location of the files, a summary of the procedure,
and the detailed steps.

Using data from other sources
Shows how to use calls to external functions to define two customer-specific ways of feeding
data to an OPLmodel: by using a subclass of IloCustomOplDataSource and by using a script
function from a .dat file.

Debugging custom Java code using Eclipse
Explains how to use the popular Eclipse IDE to debug your code when calling external Java
code from OPL script statements.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 265

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L266

Context of external functions

Specifies the purpose of external functions and the environment prerequisites.

In this section

Limitations of the language
Explains how limitations of OPL lead to developing external functions.

Environment prerequisites
Lists what software you need to use external functions.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 267

Limitations of the language

The purpose of external functions is to provide alternatives to some limitations of OPL as a
language.

Note: 1. For external Java function calls to work on AIX platforms, you must set the LIBPATH
variable to point to the libjava.a and libjvm.a libraries.

2. Calling external functions is not possible if the application is statically linked with
the OPL libraries (like oplrunsample). This is because the Java OPL library uses
the shared library version of OPL (oplxx.dll/.so) which cannot be mixed with the
static version.You can use an external call to Java in the OPL IDE, in oplrun, and
in custom OPL or ODM applications launched from Java.

The Optimization Programming Language (OPL) is a powerful language to write optimization
models. It offers powerful aggregate constructs and slicing filters to describe complex
problems in a compact form. Moreover, because it supports JavaScript, OPL enables you to
manipulate complex data (preprocessing), results (postprocessing), andmodels (flow control).
However, IBM® ILOG® Script is not as powerful, complete, and efficient as a programming
language. As its purpose is to be simple and accessible for nonprogammers, more complex
software engineering parts are not supported and should be kept outside of OPL.

However, OPL offers a way to interact with external code written in other programming
languages. This external functionality can be plugged into OPL in an easy to use and reuse
manner.

This feature allows you to:

♦ write a complex dedicated OR algorithm (such as a shortest path or flow algorithm) to
be used as one step of a decomposed application

♦ connect your OPLmodel or data to other external tools such as tools for statistical analysis,
to modify your input data or report your results

♦ connect your OPL data to other sources or destinations that are currently not supported
as default sources by the language

♦ connect CPLEX® callbacks to your search (not described in this tutorial)

All this is possible by calling external functions from OPL. In OPL 5.1 and later, you can call
functions written in the Java programming language. Note that the Java language itself also
offers ways to interact with other programming languages.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L268

Environment prerequisites

To call Java code, you need to have a Java Runtime Environment installed on your machine.
Once it is installed, the JRE is automatically detected at runtime (see the function
IloOplImportJava for details). OPL supports versions 5.0 and above of IBM JDK or JRE.

On Unix, the LD_LIBRARY_PATHmust also contain the path to the shared libraries of the Java
Virtual Machine. For example, /jre/lib/i386 and /jre/lib/i386/client for Linux.

See also Working Environment.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 269

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L270

Using an external knapsack algorithm

Presents the problem, the code samples, the location of the files, a summary of the procedure,
and the detailed steps.

In this section

The problem
Gives a summary of the cutstock problem used in this tutorial.

The code samples
Presents the code samples used in this tutorial.

Where to find the files
Reminds you of where code sample files are located.

Procedure summary
Lists the main steps of the knapsack algorithm tutorial.

Writing the Java code
Lists the public methods of the Java knapsack algorithm you can use.

Using the Java code from OPL
Explains how to import Java classes and how to call Java from OPL.

Using IBM ILOG Script classes to make clean and reusable code
Explains how to use IBM® ILOG® Script classes to wrap the calls to external functions.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 271

The problem

This tutorial reuses the same problem and data as the cutstock_main example described
in The cutting stock problem. The main problem consists of cutting big wooden boards into
small shelves to meet customer demands while minimizing the number of boards used. The
subproblem consists of finding the best new pattern to cut the roll. This is a simple knapsack
problem. To solve it, you are going to use a dedicated algorithm implemented in Java (instead
of CPLEX®).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L272

The code samples

This tutorial shows how to use external functions and work with a run configuration of the
cutstock example and with the externaldataread example.

You will work with two code samples:

♦ In Using an external knapsack algorithm, the cutstock_ext_main example shows how
to call a knapsack dynamic programming algorithm written in Java from an OPL main
column generation script. This is an extension of the distributed example cutstock_main,
which uses CPLEX® to solve the subproblem consisting of a simple knapsack constraint.
For this type of constraint, some powerful specific algorithms exist that have a polynomial
complexity. The same kind of mechanism could be used to solve shortest-path problems,
flow in graph problems, or any other subproblem in which dedicated efficient algorithms
can be implemented in Java.

♦ In Using data from other sources, the externaldataread example illustrates how to use
calls to external functions to make other sources of data available from OPL.

The example shows:

● how to use instances of the class IloCustomDataSource from the IDE or from oplrun,

● how some part of the data can be read from a file that uses any syntax (if you can read
that file from Java).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 273

Where to find the files

These files are at the following location:

<OPL_dir>\examples\opl_interfaces\java\externaldataread

where <OPL_dir> is your installation directory.

You will also use this file <OPL_dir>\examples\opl_interfaces\java\javaknapsack\src\
javaknapsack\Knapsack.java.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L274

Procedure summary

The tutorial assumes that you can write and compile Java code and that you know how to
work with projects in the IDE. If this is not the case, read Getting Started with the IDE first.

To use the external knapsack algorithm:

1. Write the Java code.

2. Use the Java code from OPL.

3. Use IBM ILOG Script classes to make clean and reusable code.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 275

Writing the Java code

The Java algorithm can be found in

<OPL_dir>\examples\opl_interfaces\java\javaknapsack\src\javaknapsack\
Knapsack.java

Note: 1. It is not the purpose of this tutorial to describe the knapsack algorithm.

2. Be aware that this implementation of the algorithm might not be optimal as the
purpose in this tutorial is to keep it small and simple to read and understand.

The interesting point is that some methods are public and therefore candidates for being
called from OPL.

These methods, written as simple OPL Java code, are:

♦ public Knapsack(): This constructor creates an empty knapsack instance that can be
reused with different data.

♦ public void updateInputs (IloOplElement oplWeights, IloOplElement oplValues):
This method allows you to update data from OPL elements and pass it to the algorithm,
using arrays of weights and values.

♦ public double solve (IloOplElement oplSolution, int size): This method runs
the algorithm and puts back the solution into the given solution array.

You need to compile the Java source code using Run.bat.

For more information on how to use OPL APIs from Java, please refer to the Interfaces User’s
Manual and the Java API OPL Reference Manual.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L276

Using the Java code from OPL

Two IBM® ILOG® Script functions enable you to call Java external functions from OPL
models in IBM ILOG Script statements.

The successive steps are:

1. Importing Java classes

2. Calling Java

Then, learn more about Translation of parameters and results and Creation of the Java
Virtual Machine (JVM).

Importing Java classes
The function

IloOplImportJava(<directory or path to jar file>);

imports the classes into the given directory or JAR file in IBM ILOG Script, so that they can
be called. The path can be either absolute or relative to the directory of the model file.

Calling Java
The function

<Script object or Java object>=IloOplCallJava(<class name> or <Java
object>,<method name>,[<method signature> or ""],[<parameters>,...]);

enables you to call static methods, constructors, and instance methods.

The method signature is only needed when there is an ambiguity (method overloading), that
is when several methods have the same name but different signatures. It is a string with
the JNI signature, something like:

"(Lilog/opl/IloOplModel;ILjava/lang/String;)V"

for a method taking an IloOplModel instance and a String as parameters.

Therefore, you can call:

// static method:
var result=IloOplCallJava("mypackage.MyClass","myStaticMethod","",15);

// create instance:
var myObject=IloOplCallJava("mypackage.MyClass","<init>","","init param");

// call method on instance (two syntaxes are possible):
var mySubObject=IloOplCallJava(myObject,"getSubObject","");
or
var mySubObject=myObject.getSubObject();

The classes are looked for in the JAR files or on the paths specified by the IloOplImportJava
instance (see Importing Java classes above).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 277

Translation of parameters and results
Both the parameters and the results of the call are translated from IBM® ILOG® Script
to Java (and conversely) as needed.

The rules are the following:

♦ Simple data types (numbers, strings, Booleans) are translated back and forth.

● A Java method taking a string can be called with an IBM ILOG Script string.

● A Java method returning a string appears as returning an IBM ILOG Script string.

♦ Arrays are also translated back and forth between Java and IBM ILOG Script arrays.

♦ Some known types that have representations in both IBM ILOG Script and Java are also
translated back and forth, so that:

● A Java method taking an IloOplModel object can be called with an IBM ILOG Script
model such as thisOplModel.

● A Java method returning a custom Java data source appears as returning an IBM
ILOG Script data source, which enables you to add it to the model using regular script
statements.

♦ Unknown Java types (created by Java code) are represented as special JavaRef objects
in IBM ILOG Script so that you can call any methods on them and pass them as parameters
in subsequent calls.

● A Java method returning a Java object of class MyClass appears as returning a special
JavaRef object from IBM ILOG Script.

● You can call methods on that JavaRef object (syntax: myObject.myMethod()), or pass
it as a parameter to other Java calls (which will see a normal Java object of class
MyClass).

Creation of the Java Virtual Machine (JVM)
When the calls are executed:

♦ Either there is a JVM running: this is the case for ODM applications, the IDE in OPL/ODM
mode, custom Java applications. Then, the call is performed within the current JVM.

♦ Or there is no JVM running: this is the case for the IDE in pure OPL mode and for oplrun.
Then, a new JVM is created.

The JVM is initialized at the first call. To create the JVM, the runtime process must find both
the Java home and the OPL home to access the OPL .jar file. If ODM is installed, the process
must also find the ODM home to access the ODM .jar files, so that the ODM scripting works.
These environment variables are detected automatically. See the Java API ReferenceManual
for details.

If a new JVM is created, it receives the value of the environment variable ODMS_JAVA_ARGS
as parameter, if this variable is defined. This variable is also already taken into account if
the JVM is started by the IDE (IDE in OPL-ODM mode) or in an ODM application (ODM

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L278

Player). This enables you to customize the way in which the JVM is created, for example by
adding more virtual memory, customizing the default classpath, and so on.

Deploying OPL models with external Java function calls on Linux
When deploying OPL models that make external Java function on Linux platforms, the
following information might be useful:

1. The environment variable JAVA_HOME need to be defined. OPL will load a JVM from
JAVA_HOME for the external Java function calls. When the models are solved by a Java
Application, the JVM for the Java application and the JVM for the external Java functions
calls must be the same version.

2. A JVM might have multiple modes, such as client, server, etc. When the models are
solved by a Java Application, the JVM for the Java application and the JVM for the external
Java functions calls must also be in the samemode. The default mode of JVMOPL chooses
to load for external Java function calls will be printed to standard output when a model
with external Java function calls is solved by oplrun (OPL 5.x) or oplrunjava (OPL 6.x).

3. If you want to use a different mode of JVM other than the default mode, you will need
to use the environment variable ODMS_JVM_LIBRARY_OVERRIDE to override the default
selection. The value of ODMS_JVM_LIBRARY_OVERRIDE should be the relative path of
libjvm.so from the JRE root path. For example, defining ODMS_JVM_LIBRARY_OVERRIDE
as /lib/i386/server/libjvm.so will cause OPL to load a 32-bit server JVM.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 279

Using IBM ILOG Script classes to make clean and reusable code

As shown in this knapsack example, you can wrap the calls to external functions into
user-defined IBM® ILOG® Script classes and methods. Then, it is easy to reuse this
algorithm in different OPL models. Although this is standard JavaScript code, the example
includes a few useful comments. The IBM ILOG Script wrapping functions are all located
in a reusable javaknapsack.mod file.

To wrap the calls to external functions:

1. Use a function to declare the new algorithm class.

function Knapsack() {
IloOplImportJava("../../java/javaknapsack/classes");

this.object = IloOplCallJava("javaknapsack.Knapsack","<init>","");

this.updateInputs = __Knapsack_updateInputs;
this.solve = __Knapsack_solve;

};

The content of the function is what the constructor will execute. Part of it is to register
methods. Here is an example of implementing a method:

function __Knapsack_updateInputs(weights,values) {
this.object.updateInputs(weights,values);
// The call above is a shortcut as there is no risk of ambiguity.
// In the general case, if several methods have the same name, you can
use:
//IloOplCallJava(this.object,"updateInputs", "(Lilog.opl.

IloOplElement;Lilog.opl.IloOplElement;)V", weights, values);
};

Then, these new IBM ILOG Script class and methods are used in the modified cutstock
algorithm, the model of which is the cutstock_ext_main.mod file.

2. Include the javaknapsack.mod file so that the IBM ILOG Script definition can be used.

include "javaknapsack.mod";

3. Create the knapsack algorithm.

// Create a subproblem instance:
var knapsack = new Knapsack();

4. Write instructions so that at each iteration, the data is updated, the algorithm called,
and the solution retrieved.

knapsack.updateInputs(masterOpl.Size, masterOpl.Duals);
var solutionValue = knapsack.solve(masterOpl.NewPattern, masterOpl.

RollWidth);

5. Run the example.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L280

The rest of the model is the same as the cutstock model that uses a CPLEX® algorithm to
solve the submodel. See The cutting stock problem.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 281

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L282

Using data from other sources

Shows how to use calls to external functions to define two customer-specific ways of feeding
data to an OPLmodel: by using a subclass of IloCustomOplDataSource and by using a script
function from a .dat file.

In this section

Subclassing IloCustomOplDataSource
Indicates what provided code sample to start from to subclass this class.

Using IBM ILOG Script in data files
Discusses the use of script statements in data files as a way to load data.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 283

Subclassing IloCustomOplDataSource

The associated code sample is the externaldataread example.

The Java subclass of IloCustomOplDataSource is implemented at the following location:

<OPL_dir>\examples\opl_interfaces\java\externaldataread\src\externaldataread\
ExternalDataRead.java

This code sample contains standard Java OPL code, like the Warehouse.java example
documented inWorking with OPL interfaces of the Interfaces User’s Manual. The difference
in this example is that you will use the custom data source directly from the OPL model by
attaching it from the script statement to an instance of IloOplModel. To do so, you will reuse
the two functions described in Calling Java to call Java functions, as shown in the following
code extract:

IloOplImportJava("./classes");

// Create a new model using this model definition and cplex.
var opl = new IloOplModel(thisOplModel.modelDefinition,cplex);
opl.addDataSource(new IloOplDataSource("externaldataread.dat"));

// Create the custom data source.
var customDataSource = IloOplCallJava("externaldataread.ExternalDataRead",

"<init>", "(Lilog.opl.IloOplModel;)V", opl);

// Pass it to the model (notice that you can do this from a script because
the custom data source
// was converted to a script data source upon return of the Java call).
opl.addDataSource(customDataSource);

Now the custom data source is attached to the OPL model. When the model is generated,
using the generate method, the data will be filled from that custom data source. In this
example, you can see this effect in the way element a is given a value. This element is defined
as:

int a = ...;

and filled from the custom data source by means of the customRead method:

public void customRead()
{

IloOplDataHandler handler = getDataHandler();
handler.startElement("a");
handler.addIntItem(1);
handler.endElement();

}

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L284

Using IBM ILOG Script in data files

Another custom way to load data is to use script statements in data files.

It is possible to declare some script functions in a .dat file using a prepare{} block. If you
do so, at each initialization of an element, you can invoke one of these functions using the
invoke keyword.

In the function, two properties are be defined:

♦ name: the name of the element being initialized.

♦ element: the element being initialized.

You can then use these constructs along with some Java external functions to do some custom
reading of data. The example used in this tutorial reads in a file called externaldatasource.
txt that uses a format where all the elements of a sets are separated with commas (','). For
this case, a simple parser has been written (SimpleTextReader.java). It has mainly two
public methods:

public SimpleTextReader (String fileName, String token)

public void fillOplElement(IloOplElement element) throws IOException

The parser is used as follows:

prepare {
function read(element, name) {

var customDataSource =
IloOplCallJava("externaldatasource.SimpleTextReader",

"<init>", "(Ljava.lang.String;Ljava.lang.String;)V",
"C:/ILOG/OPL/examples/opl/externaldatasource.txt", ",");

customDataSource.fillOplElement(element);
return true;

}
}

strings = {"val1"} invoke read;

Results
Running the example, you can see that:

♦ the OPL element a takes the value 1

♦ the string set strings contains not only val1 as defined in the .dat file, but also two
more values added from the text file.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 285

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L286

Debugging custom Java code using Eclipse

Explains how to use the popular Eclipse IDE to debug your code when calling external Java
code from OPL script statements.

In this section

Procedure summary
Indicates the main steps of the debugging procedure.

Creating an Eclipse project
The steps to create the Eclipse project.

Creating a run configuration
The steps to create a run configuration.

Starting the OPL IDE
The steps to start the OPL IDE.

Setting breakpoints and debugging
The steps to set breakpoints and debug.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 287

Procedure summary

To debug custom Java code using Eclipse:

1. Create an Eclipse project: You create an Eclipse project for your custom code.

2. Create a run configuration: You create an Eclipse Remote Debug run configuration
for this project.

3. Start the OPL IDE with Java in debug mode.

4. Set breakpoints and debug.

You set breakpoints, run the Eclipse Debug run configuration, then run your model
as many times as necessary.

You can easily follow similar instructions in other IDEs. Read the documentation of your
favorite IDE about remote debugging.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L288

Creating an Eclipse project

To create the Eclipse project:

1. ChooseNew Project>Java Project to open the Eclipse wizard for Java project creation.

2. Give it the directory name where your Java source code is stored.

If the project uses OPL Java APIs, it must reference the file oplall.jar from
<OPL_HOME>/lib to be able to compile.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 289

Creating a run configuration

To create the run configuration:

1. Choose Run>Debug to open the wizard for run configuration creation.

2. Add a new Run Configuration under Remote Java Application.

Give it the same name as your project and keep the default settings (socket attach,
localhost, port 8000).

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L290

Starting the OPL IDE

You start the IDE with Java in debug mode. You can also use the command line executable
like this:

oplrun.exe -p
C:\\ILOG\\OPL<version_number\\examples\\java\\javaknapsack\\cutstock\\
cutstock_ext_main.mod
C:\\ILOG\\OPL<version_number\\examples\\java\\javaknapsack\\cutstock\\cutstock.
dat

To start the OPL IDE:

1. Define the environment variable.

ODMS_JAVA_ARGS to '-Xdebug -
Xrunjdwp:transport=dt_socket,server=y,address=8000'

This specifies that the Java Virtual Machine launched by OPL will be in debug mode
and will listen for debugger connections on port 8000 of the current machine.

2. Start the IDE (or oplrun) as usual.

The IDE does not appear on the screen until a debugger connection is received.

Upon invocation of the Java code, the IDE is suspended:

♦ either immediately on startup if you have ODM installed: in this case the OPL IDE
is started right from the start with Java support.

♦ or when you actually run your project with Java code if you don't have ODM installed:
in this case, the JVM is created only when IloOplImportJava or IloOplCallJava
are first invoked (see the Reference Manual for details)

If you have used the oplrun command, you see a message such as:

<<< setup
Listening for transport dt_socket at address: 8000

For details, see http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/
com.ibm.java.doc.igaa/_1vg000156f385c9-11b26a8be3f-7fff_1001.html.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 291

http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000156f385c9-11b26a8be3f-7fff_1001.html
http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000156f385c9-11b26a8be3f-7fff_1001.html

Setting breakpoints and debugging

At this stage, you run a model in OPL IDE, and if any breakpoints are set in the associated
Java project in Eclipse, the Java debugger stops at those lines in the code and you can then
debug in Eclipse.

To set breakpoints and debug:

1. Set breakpoints as appropriate in the Eclipse project.

2. Connect to the IDE by running the Eclipse Debug run configuration you created in
Creating a run configuration. The IDE connects to the JVM created and appears.

3. Run your model in OPL IDE.

The Java Debugger remains connected to the OPL IDE until it is closed, so that you
can run your project several times.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L292

Performance and memory usage

Recommends practices that are known to improve the modeling and the solving time of your
models and/or their ability to find good solutions.

In this section

Performance tips
Contains a checklist of modeling best practices.

Memory usage
Explains how OPL uses and allocates memory, and suggests actions to improve memory
usage, mostly for data structures, object termination, engine parameters, and oplrun.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 293

Performance tips

Here is a check list for quick reference:

♦ Use the profiler to detect execute blocks that run for a long time during the preprocessing
phase. See Profiling the execution of a model in IDE Tutorials.

♦ If you observe that the execution of a model is slow because the main scripting block
loads many engine instances or submodels, you can improve this by turning off the OPL
Language option Update charts and statistics in main. See OPL language options in
IDE Reference.

♦ In pre- or postprocessing script statements, do not initialize array elements to zero, OPL
does that for you. See the note in Initializing arrays in the Language User’s Manual.

♦ To initialize arrays, prefer generic index arrays rather than an execute INITIALIZE block.
See As generic indexed arrays in the Language Reference Manual.

♦ Avoid dummy formal parameters for tuple components. See Formal parameters in the
Language Reference Manual.

♦ Cache results for find() lookup.

♦ Calculate iteration sets for conditional blocks.

♦ Declare local script variables using the keyword var. See Declaration of script variables
in the Language Reference Manual.

♦ In CP models with customized search strategies, consider the order of search phases.
See Multiple search phases in the Language User’s Manual.

♦ Constraint labels may have a significant performance and memory cost. See Constraint
labels in the Language Reference Manual.

♦ To improve the performance of a model from the IDE, use the Tune Model button. See
Using the performance tuning tool in IDE Tutorials.

♦ Using sorted versus ordered sets affects the memory consumption and the speed of
execution but the effect is different depending on what operations are carried out on the
sets. It is therefore not possible to give general recommendations on when to use sorted
sets rather than ordered sets.

♦ Using slicing rather than if statements usually saves time and memory. For example, in
the following code lines

int n=1000;

dvar int x[1..n][1..n];

subject to
{

ct1:forall(i in 1..n,j in 1..n:i==4 && j==5) x[i][j]==5;
ct2:forall(i in 1..n,j in 1..n) if (i==4) if (j==5) x[i][j]==5;

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L294

}

the ct1 constraint is 60 times faster and lighter in memory than ct2.

To write efficient models, see also Modeling tips in the Language User’s Manual.

To control memory consumption. See Memory usage.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 295

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L296

Memory usage

Explains how OPL uses and allocates memory, and suggests actions to improve memory
usage, mostly for data structures, object termination, engine parameters, and oplrun.

In this section

If your system runs out of memory
Indicates the various parts of IBM® ILOG® OPL that use memory.

Building data structures differently
Explains how to tune the way data structures inside a model are built.

Terminating data objects
Explains how to use the method end to free memory in IBM® ILOG® Script and interfaces.

Changing engine parameters
Explains how to change engine parameters to modify the way the engine solves a model.

Using oplrun
Explains how to reduce overhead by using oplrun in command line mode.

Changing to a 64-bit platform
If your model requires more than 2GB of memory.

Using 4GT tuning
To raise the addressable space from 2GB to 3GB.

Scaling down the size of the model
For the model to be solved more easily.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 297

If your system runs out of memory

In IBM® ILOG® OPL, memory is used by several different modules:

♦ by the OPL IDE or the oplrun executable

♦ by the objects that each model declares

♦ by the optimization engine during the actual optimization process of an individual model

♦ if you are using OPL Interfaces, by the application that invokes the OPL objects

If you are running out of memory, it is important to determine which parts are using up the
most memory. For instance, if memory is exhausted before the underlying instance of the
engine has started, then you should evaluate the memory requirements of the earlier stages.
System memory profilers (such as the Windows Task Manager or the Unix command top)
give a very rough gauge to memory use but more accurate figures are provided by the OPL
IDE Profiler (see Profiling the execution of a model in IDE Tutorials).

There are several ways to avoid hitting the “out of memory” message. Basically, you need
to lower the amount of memory used by the model (by reformulation, parameters, or smaller
size), or raise the amount of memory available on the system (by tuning or changing
architectures).

You can change the amount of memory allocated to the OPL IDE in the file
<OPL_dir>\oplide\oplide.ini. See the topic OPL IDE memory allocation for a
description.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L298

Building data structures differently

A way of using less memory is to tune the way the data structures inside a model are built.

For instance, creating many intermediate arrays and sets that are not directly used in the
model will increase memory. In addition, it is important to take advantage of proper modeling
techniques; building a large, sparse, multi-dimensional array generally uses more memory
than an equivalent set of tuples. Other treatments of sparsity and generic arrays are covered
in greater detail in Modeling tips of the Language User’s Manual. In addition, IDE users
can also use the Profiler tab of the Output window to identify constructs that use large
amounts of memory; an example is given in Profiling the execution of a model of IDE Tutorials.

See also the white paper “Efficient Modeling in ILOG OPL-CPLEX Development System”
available from the IBM ILOG web site for IBM ILOG OPL
at:http://www.ilog.com/products/oplstudio/whitepapers/index.cfm.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 299

http://www.ilog.com/products/oplstudio/whitepapers/index.cfm

Terminating data objects

Use the method end to free memory in IBM® ILOG® Script and interfaces.

A complex model maymanage separate submodels, data sources, run configurations, solvers,
additional variables to move data between models, and so on. Accordingly, it is a good
practice to systemically terminate these additional data objects when they are no longer
needed. IBM ILOG Script for OPL provides the end method for the class IloObject, which
is inherited by all other IBM ILOG Script classes. Similarly, the OPL Interfaces APIs have
the end method for the class IloExtractable, which is also inherited by nearly all OPL
Interfaces classes.

By using the method end to free objects, you greatly improve management of the total
memory in use.

For more information and examples, please see the documentation for the classes IloObject
or IloExtractable, and section Ending objects in the Language User’s Manual.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L300

Changing engine parameters

You can also change the way the engine solves models by changing engine parameters.

In some rare situations, you may want to instruct the engine to use less memory. To do so,
set the MemoryEmphasis parameter to true. In the IDE, this parameter is in theMathematical
Programming/Emphasis page of the project settings panel.

The Memory Emphasis parameter in the IDE

Changing this parameter value can help in tight memory situations. However, be aware
that it may significantly increase the runtime requirements.

Note:

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 301

Using oplrun

If you are using the OPL IDE, consider working with oplrun.

The IDE is very rich and full-featured, but does impose a small, non-trivial overhead in terms
of memory usage. If you need only a small amount in memory savings, and do not require
the specific IDE features, consider switching to the command-line oplrun executable. It has
somewhat lower memory requirements; the savings may help in some limited cases.

See oplrun Command Line Interface.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L302

Changing to a 64-bit platform

If you are using 32-bit OPL, consider moving to a 64-bit architecture.

A 32-bit application typically has a maximum addressable space of 2GB or 4GB. In practice,
this provides a maximum heap size of around 80-90% of the addressable space. If your OPL
model runs out of heap space, further optimization will terminate, regardless of the total
amount of memory available on the system. If your model requires more than 2GB of memory,
consider moving to a 64-bit architecture, which has a substantially higher limit.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 303

Using 4GT tuning

If you are using 32-bit OPL on Windows, consider using 4GT tuning.

In some Windows servers, it is possible to tweak the underlying kernel and applications to
raise the addressable space from 2GB to 3GB. This requires several tweaks, but can also be
useful in limited situations. This approach is further discussed in an FAQ which you can
read from IBM ILOG web site at. http://www.ilog.com/products/oplstudio.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L304

http://www.ilog.com/products/oplstudio

Scaling down the size of the model

Lastly, if none of these techniques are viable, then it may be that the model is too large to
be solved easily on the target machine. For these remaining situations, you may need to
make the model smaller, in terms of the data and constraints, in order to get it to run under
the available memory.

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 305

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L306

A
abs, OPL keyword

in CP 25
aggregate operators 37
AIX platforms 268
algebraic notation 12
all, OPL keyword 60
arrays

constraint-value pair (IBM® ILOG® Script)
240
index sets 35
initialization (IBM ILOG Script) 187
modeling tips 72

B
bins, in the vellino problem 133
blending problem 51, 92
bounds

changing, in a CPLEX constraint 216
branch-and-bound algorithm 118

C
C++ API

custom linked applications and JVM creation
278

capacities
of resources, in production-planning problem
39

car sequencing example
data 144
enhancing the model 146
model description 143
tutorial 141

carseq production example 142
classes

IloCp 191
IloCplex 188
IloCustomOplDataSource, subclassing 284

IloOplConflictIterator 235, 243, 245
IloOplCplexBasis 214, 237
IloOplCplexVectors 235, 237, 240
IloOplModel 186, 228
IloOplOutputFile 215
IloOplProject 226
IloOplRelaxationIterator 243, 247
IloOplRunConfiguration 226
IloOplSettings 192

code samples
basic flow control script 218
blending.dat 55
blending.mod 53
convert_example.mod 114
covering.dat 105
covering.mod 105
fixed.dat 111
fixed.mod 111
for model decomposition 227
gas.dat 36, 38
gas.mod 38
gas1.mod 37
gasn.dat 39
knapsack.dat 47
knapsack.mod 47
mulprod.dat 89
mulprod.mod 89
oil.dat 92
oil.mod 92
prodmilp.dat 119
prodmilp.mod 119
product.dat 40, 78
product.mod 40, 78
production 188
production.dat 39, 87
production.mod 39, 87
productn.dat 43
reusing data source publishers 208

© Copyright IBM Corp. 1987, 2009 307

I N D E X

Index

sailco.dat 123
sailco.mod 123
sailcopw.mod 124
sailcopwg.mod 126
sailcopwg1.dat 126
sailcopwg2.dat 126
sailcopwg3.dat 126
steelmill 57
transp1.mod 66
transp2.mod 68
transp3.mod 70, 96
transp4.mod 187, 188
volsay.mod 33

using arrays 35
warehouse.dat 107
warehouse.mod 80, 107

coefficient of variable
in CPLEX constraint or objective, changing
using IBM ILOG Script 216

column generation 222
step-by-step process 223
vellino problem 134

compatibility constraints in CP 24
Compile.bat script 276
concave piecewise linear functions 129
conflicts

control by means of IBM® ILOG® Script 243
scripting statements to search for 248

constraint
precedence 163

constraint arrays 240
constraint programming

benefits 23
changing parameters with script statements
61, 191
compatibility/incompatibility constraints 24
defining search phases 61
in a nutshell 19
inventory matching problem 57
logical constraints and statements 23
nonlinear costs and constraints 23
presentation 17
scheduling 19
search phases 253
setting parameters 250
vs. mathematical programming 21
writing modeling constraints and specialized
constraints 59

constraints
dual variable 100
in blending problem 56
in inventory matching problem 59
in production planning 39
in set covering problem 105
in warehouse location problem 80

labeling 74
time tabling example 154, 156
use of the universal quantifier 37

convertAllIntVars method
IloOplModel class 114

convex piecewise linear functions 129
costs

solution with reduced cost 224
costs, reduced

displayed 43
in model decomposition 229, 230
in sensitivity analysis 100

CP Optimizer
customizing search strategy 159
search space 19
setting parameters with script statements
61, 191

CPLEX basis
controlling through IBM® ILOG®Script 237
status 100

CPLEX constraint
changing bounds 216

CPLEX engine
conflict refinement algorithm 246
setting an initial solution 240
warmstart 237

CPLEX matrix
modifying incrementally 216

CPLEX objective
changing coefficient of variable 216

CPLEX parameters
setting with script statements 188

cplex variable 205
CPLEX vectors

controlling through IBM ILOG Script 237
cutting stock problem

description 223
knapsack subproblem 271
step-by-step process 223

D
data

custom data sources 283
declaration 36
from output of a model solution 201
initialization 39
of blending problem 55
separated from model 12, 38

data elements
definition and use 208

data files 38
declaring script functions in 285

data sources
publishers 208

dataElements method
IloOplModel class 208

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L308

decision expressions
in CP 19

decision problems 14
decision variables

collected dynamically 60
discrete only in CP 19, 25
domain in CP 19
for blending problem 55
integer, relaxing 114
memory usage 25
time tabling example 153

declaring
data 36

decomposition
in vellino problem 134

dexpr, OPL keyword
floating point expressions in CP 19

displaying
results 43

E
ECMA-262 standard 184
efficient models 65, 143

order of search phases 257
pitfalls in script statements 197

ellipsis, as syntax for model/data separation 38
end

IloOplModel 233
end property 166
endBeforeStart constraint 163
ending objects 233
endOf

expression 165
environment variables

for calls to external functions 269
environment variables for Java

JAVA_HOME 279
ODMS_JVM_LIBRARY_OVERRIDE 279

execute, IBM ILOG Script block
changing CP parameters 191
changing CPLEX parameters 188
changing OPL parameters 192
customizing CP search strategy 159
defining a search phase in CP 146
scope of variables 195
syntax of pre- and postprocessing 186

execute, IBM® ILOG Script block
to display results 43

external data
and scripting 210

external Java function calls 279

F
feasible solutions

vs. final solution 48
files

.ops 226
blending example 51
carseq example 142
knapsack example 45
mulprod 200
steelmill example 57
timetabling example 151
transportation example 66
vellino example 134
writing to an output file 215

filtering
in tuples of parameters 65

fixed-charge production problem 111
flow control 201

basic script 218
definition 193
thisOplModel variable 228

flow problem, multicommodity 96
forall, statements

in car sequencing example 144
functions

using OPL functions in scripting statements
184

G
gap measure, none in CP 26
generic arrays 73
getBasisStatus method

IloOplCplexBasis class 241
IloOplCplexBasisclass 100

getVectors method
IloOplCplexVectors class 241

I
IBM ILOG Script

flow control 201
introduction 184
relaxations and conflicts 248
variables, declaration 197

IBM® ILOG Script
introduction 27

IBM® ILOG® Script
defining CP search phases 253
external functions 278
in data files 285
purpose 267
setting CP parameters 250
wrapping calls to external functions 280

IloConstraint class
lower and upper bounds 216
setCoef method 216

IloCp class 191
IloCplex

status, getCplexStatus 188
IloCplex class 188

setCoef method 216

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 309

IloCustomOplDataSource class
subclassing 284

IloNumVar class
lower and upper bounds 216

IloObjective class
setCoef method 216

IloOplConflictIterator class 235, 243, 245
IloOplCplexBasis class 214, 237

getBasisStatus method 100, 241
setBasisStatus method 241

IloOplCplexVectors class 235, 237, 240
getVectors method 241
setVectors method 241

IloOplModel class 186, 228
convertAllIntVars method 114
dataElements method 208
end method 233
getting data elements from an instance 208
postProcess method 195
unconvertAllIntVars method 114

IloOplOutputFile class 215
IloOplProject IBM ILOG Script class

creating a model instance 226
IloOplRelaxationIterator class 243, 247
IloOplRunConfiguration IBM ILOG Script class

creating a model instance 226
IloOplSettings class 192
incompatibility constraints

in CP 24
incrementality in scripting 216
index of arrays 35
indexers, order 72
infeasibility 126
initial solution 240
initializing

arrays, modeling tips 72
data 39

integer decision variables
relaxation 114

integer programming 12
cutting stock 223
definition 15, 103
described with an example 45
fixed-charge problem 111
set covering 105
warehouse location 80, 107

integer solutions 234
interval keyword 163
interval variable 163

end 165
length 163
optional 163

interval variable search phase 260
inventory

in production-planning problem 121

matching problem 57
invoke, OPL keyword 285

J
Java

environment prerequisites for external
functions 269
knapsack algorithm 271

translation of parameters and results
to and from IBM® ILOG® Script 278
using the code from OPL 277

Java Virtual Machine
call to external functions 278
ODM Home 278
OPL Home 278

JAVA_HOME
environment variable 279

JAVA_HOME environment variable 278
JavaScript standard 184

K
keywords

invoke 285
prepare 285

knapsack problem
as subproblem of cutting stock problem 271
description 45
feasible vs. final solutions 48

Knapsack, constructor of the Java knapsack
algorithm 276

L
LD_LIBRARY_PATH environment variable 269
linear programming

and sparsity 96
blending problem 92
definition 14, 35, 85
description with example 31
multiperiod production planning 89
piecewise 121
product mix problem 78
production planning problem 87
volsay model 33
vs. piecewise linear 126

linear relaxation 118
logical constraints

in CP 23
in the vellino problem 134
used to express an objective 179

lower and upper bounds
in IloConstraint class 216
in IloNumVar class 216

M
main, IBM ILOG Script block

defining 204
example for CP problem 193

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L310

example for CPLEX problem 193
main, IBM® ILOG® Script block

warmstart example 239, 240, 245
mainEndEnabled setting 233
makespan

time tabling example 158
master model 222, 223
mathematical programming 12

and modeling languages 12
definitions 13
vs. constraint programming 21

max, OPL keyword
in CP 25

memory allocation and management
ending objects 233

memory consumption
decision variables in CP 25

min, OPL keyword
in CP 25

mixed integer linear programming (MILP) 51, 117
model decomposition

column generation 222
step-by-step process 223

model files 38
model/data separation 12, 38

ellipsis 38
modeling

definition 31
modeling languages and mathematical
programming 12
modeling tips

arrays 72
labeling constraints 74
order of indexers 72
order of search phases 257
sparsity 65

modeling/scripting separation 27
models

blending 51, 92
changing settings via scripting 188
cutting stock 223
defining for CP 59
efficiency 65, 143

script statements 197
fixed charges 111
genericity 35, 36, 38
instantiating via scripting 226
inventory 121
knapsack 45
multiperiod production planning 89
passing info from one to another 214
product mix 78
production planning 33, 87

in MILP 117
set covering 105

solving several in sequence 12, 201
transportation 66, 96
vellino 133
warehouse location 80, 107
writing to an output file 215

modifying data from “main” scripting 210
mulprod production example 200
multicommodity flow 96
multiknapsack problem 45
multiperiod production planning problem 89

N
nonlinear constraints

in CP 23
nonlinear programming 16
NP-complete 15

O
objective function

and mathematical programming 13
and order of execute blocks 186
feasible vs. final solution 48

objects
ending 233

ODMROOT environment variable 278
ODMS_JAVA_ARGS environment variable 278
ODMS_JVM_LIBRARY_OVERRIDE

environment variable 279
operator, aggregate 37
OPL settings

setting in script 192
oplModel property 226
OPLROOT environment variable 278
opportunity cost 100
optimization problem

how to specify 32
order

between IDE/scripting values of parameters
188
for processing script blocks 195
of indexers 72
of search phases 257

output file, writing to 215

P
packing constraint 59
parameters

precedence between IDE value and script
value 188

piecewise linear programming 121
complexity issues 129
vs. linear programming 126

planning a production 87, 89
platforms

AIX 268
postProcess method

IloOplModel class 195

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 311

postprocessing
and scripting 185
on demand execution 234
solutions of time tabling project 160

postprocessing solution access 262
prepare, OPL keyword 285
preprocessing 96

and scripting 185
setting parameters 188

prerequisites
for external functions 269

printConflicts
IBM® ILOG® Script method 248

printRelaxation
IBM® ILOG® Script method 248

processing order 195
product mix problem 78
production code sample 188
production planning problem 33, 87

a MILP model 117
and flow control 200
another model 40
multiperiod 89
using arrays 35
using tuples 39

profiler 72
projects

creating model instances through scripting
226
definition 38

properties
oplModel 226

PSD (Positive Semi-Definite) problems 22
publishers of data sources 208

Q
quadratic programming 167
quantifiers 37

R
range of variables 55
ranges

no range syntax in script statements 197
reduced costs

in model decomposition 224, 229, 230
in product.mod/productn.data example 43
in sensitivity analysis 100

relaxations
control by using IBM® ILOG® Script 243
linear 118
of integer decision variables 114
scripting statements to search for 248

results
displaying 43

rostering 18
run configurations

creating model instances through scripting
226

S
scalar data and scripting 210
scheduling

time tabling example 149
scheduling search phases 260
scripting

changing settings within a model 188
column generation 222
common pitfalls 197
creating model instances for run
configurations 226
displaying results 43
flow control 193, 218

and multiple models 201
incrementality 216
language 27, 184
preprocessing/postprocessing 185
tips 195
variables

scope 195
search phase

definition 254
multi-criteria 254

search phases 61, 260
in constraint programming 253
order 257
value choosers and evaluators 259
variable choosers and evaluators 258

search space
size 19

search strategy
constructive strategies 19
customizing in time tabling example 159

sensitivity analysis
basis status 100
information on constraints 100
introduction 100
reduced cost 100

separation
between model and data 12
between modeling and scripting 27

sequence variable search phase 260
sequencing problem, tutorial 141
set covering problem 105

vellino 134
setBasisStatus method

IloOplCplexBasis class 241
setCoef method

IloConstraint class 216
IloCplex class 216
IloObjective class 216

settings files 226
setVectors method

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L312

IloOplCplexVectors class 241
shortest-path algorithm 267
SOCP (SecondOrder Cone Programming) problems
22
solution access in postprocessing 262
solution status values 188
solutions

blending.mod 56
covering.mod 106
displaying 43
knapsack.mod 48
mulprod.mod 91
oil.mod 95
passing an initial solution to CPLEX 240
postprocessing in time tabling example 160
prodmilp.mod 120
production.mod 40, 88
sailco.mod 124
volsay.mod 33
warehouse.mod 82, 110

solve
method of the Java knapsack algorithm 276

solving engine
specifying 59

sparsity 65, 96
specialized constraints

in inventory matching problem 59
start property 166
steelmill production example 57
submodel 222, 223

T
thisOplModel variable 205, 228
time limit 188
time tabling problem

tutorial 149
timetabling production example 151
tips for scripting 195
transportation problem 66

sparsity 96
tuples

as defined in OPL 39
no tuple syntax in script statements 197

tuples of expressions, displaying solutions 43
tuples of parameters

filtering 65
replaced by formal parameter expression 74

tutorials
column generation 222
cutting stock 223
external functions 268
multiple models 201

U
unconvertAllIntVars method

IloOplModel class 114

universal quantifier 37
Unix

environment variables for external functions
calls 269

updateInputs, method of the Java knapsack
algorithm 276
user-defined preferences

on order of constraints, in flow control
scripting 246

V
value arrays 240
value choosers, for CP search phases 259
value evaluators, for CP search phases 259
variable choosers, for CP search phases 258
variable evaluators, for CP search phases 258
variables

changing bounds and coefficients using IBM
ILOG Script 216
declaration 197
scope in scripting 195
thisOplModel 205, 228

vellino problem
decomposition and column generation 134
description 133
the models 136
the results 139

vellino production example 134, 171

W
warehouse location problem 80, 107
with, IBM ILOG Script keyword 186

I B M I L O G O P L L A N G U A G E U S E R ' S M A N U A L 313

	Table of contents
	Language User’s Manual
	Introduction to OPL
	Language overview
	Modeling languages
	Mathematical programming
	Linear programming
	Integer programming
	Nonlinear programming

	Constraint programming
	Why constraint programming?
	OPL CP Optimizer in a nutshell

	Constraint programming versus mathematical programming
	Why a comparison?
	Benefits of constraint programming
	Differences with mathematical programming

	Scripting

	A short tour of OPL
	Linear programming: a production planning example
	How OPL expresses an LP problem
	The production planning problem
	Elements of the production model
	Displaying results

	Integer programming: the knapsack problem
	What is integer programming?
	A typical integer program: the knapsack problem

	Mixed integer-linear programming: a blending problem
	OPL and MILP
	The blending problem
	Elements of the blending model

	Constraint programming: an inventory matching problem
	The inventory problem
	Modeling elements of the inventory problem
	The search process

	Modeling tips
	Efficient models
	Sparsity
	Sparsity in the transportation problem
	Exploiting sparsity - a first attempt
	Exploiting sparsity - a better model

	About arrays
	Other modeling tips

	The application areas
	Some examples
	Linear programming: a product mix problem
	Integer programming: a warehouse location problem

	Applications of linear and integer programming
	Linear programming
	What is linear programming
	A production problem
	A multi-period production planning problem
	A blending problem
	Exploiting sparsity
	Sensitivity analysis

	Integer programming
	What is integer programming?
	Set covering
	Warehouse location
	Fixed-charge problems
	Integer relaxation

	Mixed integer-linear programming
	What is mixed integer-linear programming?
	Fixed charge in a production planning problem

	Piecewise linear programming
	What is piecewise linear programming?
	An inventory application with piecewise linear functions
	Piecewise-linear vs. linear
	Complexity issues

	Applications of constraint programming
	What is constraint programming?
	The vellino example (column generation)
	Description of the problem
	The models
	The results

	The car sequencing example
	What to do and where to find the files
	The car sequencing problem
	Enhancing the model

	The time tabling example
	What to do and where to find the files
	The data model
	Decision variables
	Writing the core constraints
	Adding side constraints
	Minimizing the makespans
	Customizing the search
	Postprocessing the solution

	Modeling and solving a simple problem: house building

	Quadratic programming
	Tutorial: Using CPLEX logical constraints
	What are logical constraints?
	Description of the problem
	Representing the data
	What is known?
	What is unknown?
	What are the constraints?
	What is the objective?

	Using logical constraints

	IBM ILOG Script for OPL
	Introduction to scripting
	What is IBM ILOG Script?
	Preprocessing and postprocessing
	General syntax
	Initializing arrays
	Changing option values
	Flow control

	A few tips
	Common pitfalls

	Tutorial: Flow control and multiple searches
	The production planning problem
	Procedure summary
	Detailed steps
	Defining a “main” block
	Loading the necessary structures
	Generating the optimization model
	Solving the current optimization model
	Getting the data elements from an IloOplModel instance
	Modifying data from “main” scripting
	Creating a new OPL model with the modified data

	Doing more with mulprod_main
	Passing information to another model
	Writing an output file
	Modifying the CPLEX matrix incrementally

	Basic flow control script

	Tutorial: Flow control and column generation
	What is model decomposition?
	The cutting stock problem
	Procedure summary
	Detailed steps
	Preparing the submodel
	Solving the master model
	Updating the submodel
	Solving the submodel
	Updating the master model
	Preparing the new master model and regenerating its optimization model
	Ending objects

	Doing more with cutstock_main

	Tutorial: Changing default behaviors in flow control
	What you are going to do
	Setting an initial solution for the CPLEX engine
	The warmstart model
	Default behavior
	Setting the initial solution
	Conclusion

	Setting preferences on the search for conflicts and relaxations
	The conflictIterator model
	Default behavior
	Setting user-defined preferences
	Conclusion

	Searching for relaxation and conflicts
	Using IBM ILOG Script in constraint programming
	Setting CP parameters
	Defining search phases
	What is a search phase?
	Writing script statements to define search phases
	Multiple search phases
	Specifying variable and value choosers
	Scheduling search phases

	Accessing solutions in postprocessing

	Advanced features
	Tutorial: External functions
	Context of external functions
	Limitations of the language
	Environment prerequisites

	Using an external knapsack algorithm
	The problem
	The code samples
	Where to find the files
	Procedure summary
	Writing the Java code
	Using the Java code from OPL
	Using IBM ILOG Script classes to make clean and reusable code

	Using data from other sources
	Subclassing IloCustomOplDataSource
	Using IBM ILOG Script in data files

	Debugging custom Java code using Eclipse
	Procedure summary
	Creating an Eclipse project
	Creating a run configuration
	Starting the OPL IDE
	Setting breakpoints and debugging

	Performance and memory usage
	Performance tips
	Memory usage
	If your system runs out of memory
	Building data structures differently
	Terminating data objects
	Changing engine parameters
	Using oplrun
	Changing to a 64-bit platform
	Using 4GT tuning
	Scaling down the size of the model

	Index

