## Enrichment of RDF Knowledge Graphs with Contextual Identity Links and Fuzzy Temporal Data

Fayçal Hamdi

Laboratoire CEDRIC, Equipe ISID Conservatoire National des Arts et Métiers, Paris, France

Soutenance d'Habilitation à Diriger des Recherches - 5 novembre 2020

#### Outline

#### 1 Curriculum Vitae

#### 2 Context

#### 3 Enriching KGs

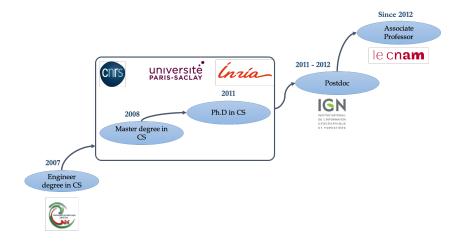
- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

#### Quality of KGs: Completeness and Conciseness Completeness

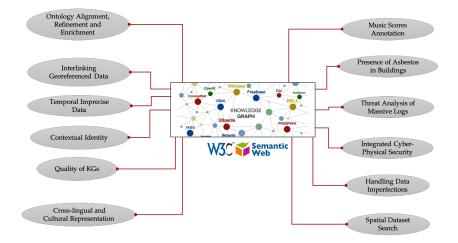
- Completeness
- Conciseness

#### 5 Conclusion

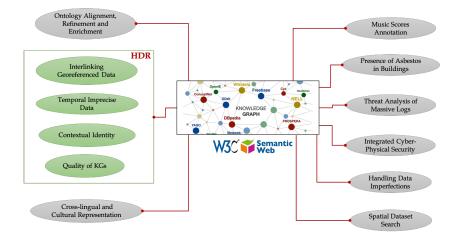
#### Curriculum Vitae



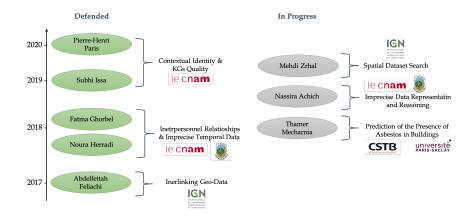
#### Research Statement



#### Research Statement



#### Research Statement Thesis Supervision



#### Outline

#### Curriculum Vitae



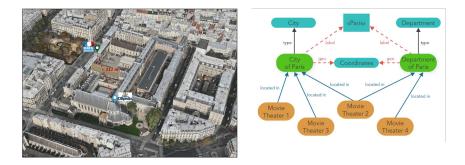
#### 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

# Quality of KGs: Completeness and Conciseness

- Completeness
- Conciseness

#### 5 Conclusion





#### Outline

#### Curriculum Vitae

#### 2 Context

#### 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

#### Quality of KGs: Completeness and Conciseness

- Completeness
- Conciseness

#### 5 Conclusion

#### Curriculum Vitae

### 2 Context

### 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

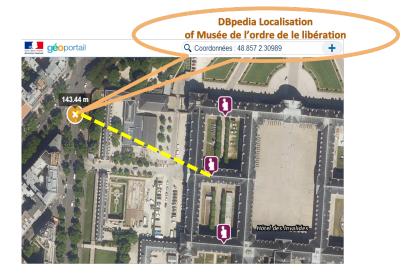
# Quality of KGs: Completeness and Conciseness Completeness

Conciseness

### 5 Conclusion

Heterogeneity of geometries on the Web of data

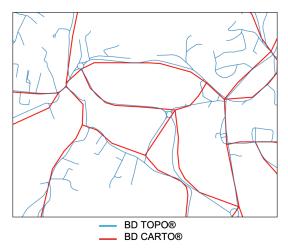
• Difference in planimetric accuracies





Heterogeneity of geometries on the Web of data

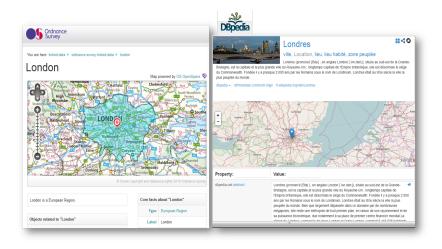
• Difference in geometric resolutions



Domain Links Contextual Links Fuzzy Temporal Data

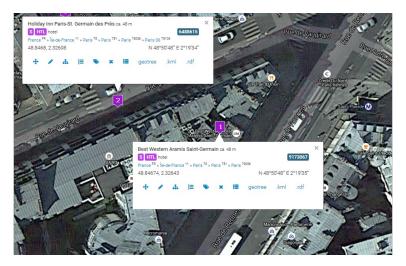
#### Heterogeneity of geometries on the Web of data

• Difference in geometric modeling



#### Heterogeneity of geometries on the Web of data

#### • Internal heterogeneity

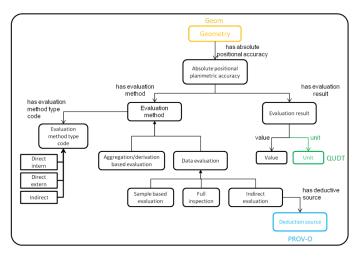


The XY Semantics Ontology

Characteristics that are more likely to affect the setting of a spatial data matching process:

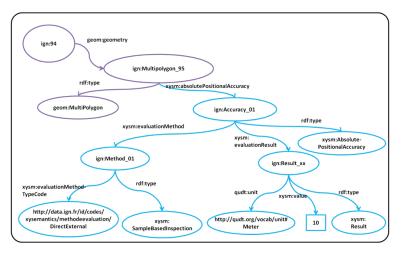
- The absolute positional accuracy of geometries
- The geometry capture rules (geometric modeling)
- The vagueness of the spatial characteristics of the geographic entities represented by the geometries
- The level of detail of the data sources

• An excerpt describing the planimetric accuracy of geometries



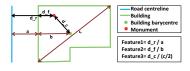


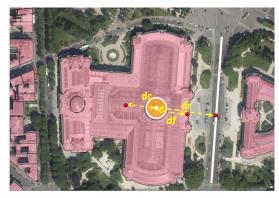
• An excerpt describing the planimetric accuracy of geometries



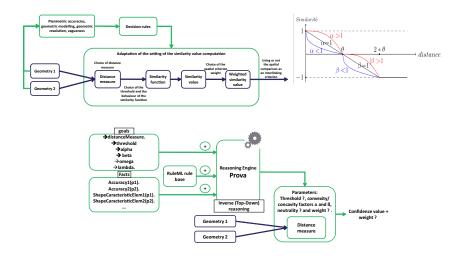
#### Populating the XY Ontology

#### • When geometric metadata are not provided

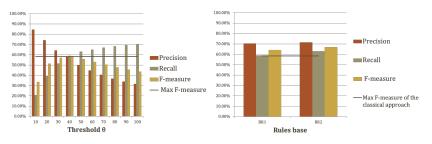




#### Our Adaptive Interconnection Approach



#### Results



**Classical Approach** 

Adaptative Approach

#### Results



Generated Link



Avoided Link

#### Outline

#### Curriculum Vitae

#### 2 Context

#### 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data
- Quality of KGs: Completeness and Conciseness
   Completeness
  - Conciseness

#### 5 Conclusion

owl:sameAs semantics is based on:

Identity of indiscernibles:

 $\forall x, \forall y (\forall p, \forall o, (\langle x, p, o \rangle \text{ and } \langle y, p, o \rangle) \rightarrow x = y)$ 

Indiscernibility of identicals:

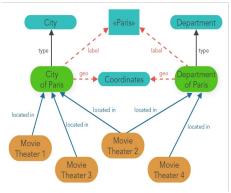
$$\forall x, \forall y (x = y \rightarrow \forall p, \forall o, (\langle x, p, o \rangle \rightarrow \langle y, p, o \rangle))$$

 $\implies$  property-value couples can be propagated from one entity to another identical entity and thus, increase completeness

21 / 87

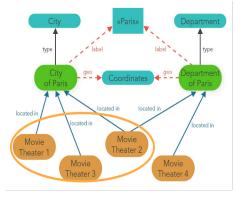
- Both the city and the department of Paris are different in a legal context
- But, they are identical in a geographical context
- What if a user want to retrieve movie theaters in Paris?
  - Only 3 are connected to the city
  - Only 2 are connected to the department
  - GeoNames
- Contextual identity is a possible answer

 $\Longrightarrow$  Contextual identity must allow the propagation of properties in certain cases



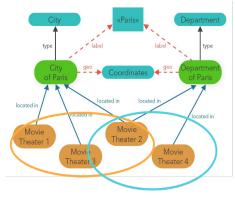
- Both the city and the department of Paris are different in a legal context
- But, they are identical in a geographical context
- What if a user want to retrieve movie theaters in Paris?
  - Only 3 are connected to the city
  - Only 2 are connected to the department
  - GeoNames
- Contextual identity is a possible answer

 $\Longrightarrow$  Contextual identity must allow the propagation of properties in certain cases



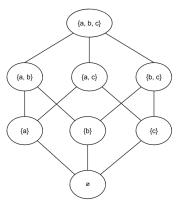
- Both the city and the department of Paris are different in a legal context
- But, they are identical in a geographical context
- What if a user want to retrieve movie theaters in Paris?
  - Only 3 are connected to the city
  - Only 2 are connected to the department
  - GeoNames
- Contextual identity is a possible answer

 $\Longrightarrow$  Contextual identity must allow the propagation of properties in certain cases



#### Related Work

- Identity context = set of properties (indiscernibility set)
  - Entities must share the same value for each property
- Contexts can be represented with a lattice



But there is no clue on what to do with other properties  $\implies$  No propagation

Beek W, Schlobach S, van Harmelen F. A contextualised semantics for owl: sameAs. In European Semantic Web Conference. Springer, Cham, 2016.

#### Related Work

Identity context = indiscernibility set ( $\Pi$ ) + propagation set ( $\Psi$ ) + alignment procedure ( $\approx$ )

$$\begin{aligned} x =_{(\Pi, \Psi, \approx)} y \leftrightarrow \forall (p_1, p_2) \in \Pi^2 \text{ with } p_1 \approx p_2 \\ \text{and } \forall v_1, v_2 \text{ with } v_1 \approx v_2 : \langle x, p_1, v_1 \rangle \leftrightarrow \langle y, p_2, v_2 \rangle \end{aligned}$$

$$\begin{aligned} & x =_{(\Pi,\Psi,\approx)} y \to \forall (p_1,p_2) \in \Psi^2 \text{ with } p_1 \approx p_2 \\ \text{and } \forall v_1,v_2 \text{ with } v_1 \approx v_2 : \langle x, p_1, v_1 \rangle \leftrightarrow \langle y, p_2, v_2 \rangle \end{aligned}$$

#### $\implies$ Users must provide everything

Idrissou, Al Koudous, et al. Is my: sameAs the same as your: sameAs? Lenticular lenses for context-specific identity. In Proceedings of the Knowledge Capture Conference. 2017.

#### How to find a propagation set of properties?

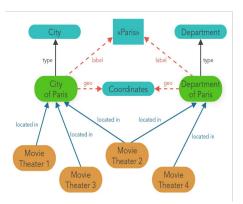
- Identity context based on Idrissou et al.'s definition
- Tobler's first law: "Everything is related to everything else, but near things are more related than distant things."

 $\implies$  Propagable properties could be semantically related to indiscernible properties

- Sentences describing properties could be transformed into numerical vectors
- Vectors representing propagable properties must be close to vectors representing indiscernible properties

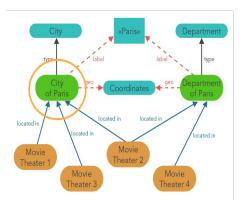
#### Property Propagation

- Sample knowledge graph about Paris and its movie theaters
- We consider the City of Paris as the seed of the identity lattice.



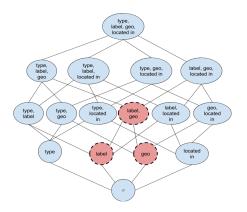
#### Property Propagation

- Sample knowledge graph about Paris and its movie theaters
- We consider the City of Paris as the seed of the identity lattice.



#### Property Propagation

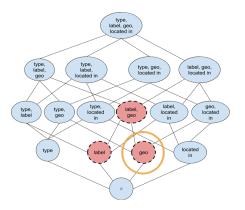
- Simplified identity lattice
- Each node correspond to the an indiscernibility set
- Only red nodes have contextually identical entities



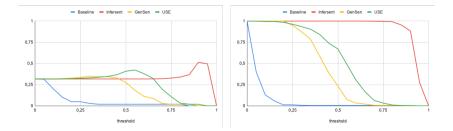
Domain Links Contextual Links Fuzzy Temporal Data

#### Property Propagation

- Candidate properties for propagation = "type", "label" and "located in"
- We compute the embeddings of the descriptions of the four properties
- The vector representing "located in" is close to the vector representing "geo"



 $\Longrightarrow$  "located in" can be propagated for the indiscernibility set geo

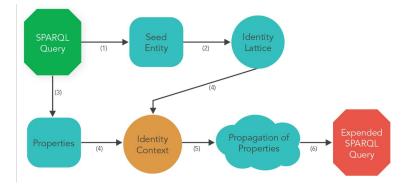


- Gold standard = 100 entities (5 classes)
- $\bullet\,$  Baseline vs Infersent vs GenSen vs USE  $\Longrightarrow$  The winner is Infersent

#### Conclusions:

- Textual descriptions are useful to discover properties that are propagable
- Highly dependent on the encoder

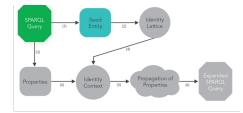
#### Framework for Propagation of Properties



#### Example

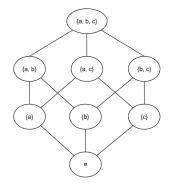
Who are the convicted members of Les Républicains?

SELECT DISTINCT ?politician ?crime WHERE { ?politician :memberOf :TheRepublicans ; :convictedOf ?crime . }



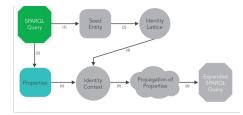
# of results w/o context 2

F. Hamdi (CNAM)







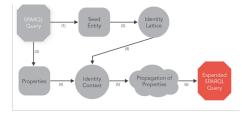


The user must choose the most appropriate identity context among those proposed.

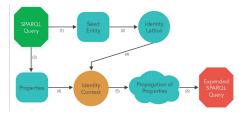
| Seed               | The Republicans     |
|--------------------|---------------------|
|                    | member of,          |
| Ψ                  | political party     |
|                    | country, political, |
| П                  | ideology            |
| Contextually       | UMP, RPR, UDR,      |
| identical entities | UNR                 |







| Seed               | The Republicans      |  |
|--------------------|----------------------|--|
|                    | member of, political |  |
| Ψ                  | party                |  |
|                    | country, political,  |  |
| П                  | ideology             |  |
| Contextually       | UMP, RPR, UDR,       |  |
| identical entities | UNR                  |  |
| # of results w/o   |                      |  |
| context            | 2                    |  |
| # of results w/    |                      |  |
| context            | 13                   |  |



## Outline

## Curriculum Vitae

## 2 Context

## 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

# Quality of KGs: Completeness and Conciseness

- Completeness
- Conciseness

## 5 Conclusion

#### Imprecise time interval

• How to represent and reason about:

Alexandre was married to Nicole around 1981 until the end of the 90s

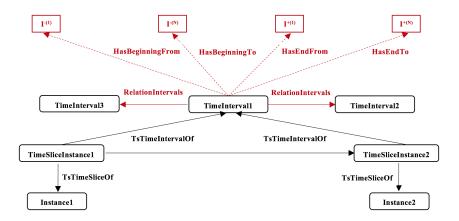


• How to represent and reason about:



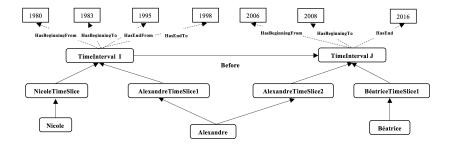
#### Our Approaches

- A Crisp-Based Approach
  - Extend the 4D-fluents model to represent imprecise time intervals and their crisp relationships in OWL 2
  - Reason on imprecise time intervals by extending the Allen's interval algebra in a crisp way
  - Infer interval relations via a set of SWRL rules
- A Fuzzy-Based Approach
  - Extend the 4D-fluents model to represent imprecise time intervals and their relationships in Fuzzy-OWL 2
  - Reason on imprecise time intervals by extending the Allen's interval algebra in a fuzzy gradual personalized way
  - Infer fuzzy interval relations using a set of Mamdani IF-THEN rules



Domain Links Contextual Links Fuzzy Temporal Data

## A Crisp-Based Approach 4D-Fluents Extension



## A Crisp-Based Approach Crisp temporal interval relations

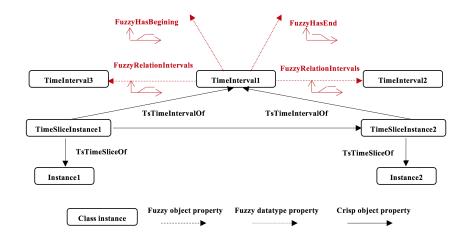
| Relation      | Inverse           | Interpretation                                                                                                                                                                                                              | Relations between interval<br>bounds                                                                                            |
|---------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Before(I,J)   | After(I,J)        | $ \begin{array}{c} \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in J^-: (I^{+(i)} < \\ J^{-(j)}) \end{array} $                                                                                                               | $I^{+(N)} < J^{-(1)}$                                                                                                           |
| Meets(I,J)    | MetBy(I,J)        | $ \begin{array}{l} \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in J^-: (I^{+(i)} = \\ J^{-(j)}) \end{array} $                                                                                                               | $(I^{+(1)} = J^{-(1)}) \wedge (I^{+(N)} = J^{-(N)})$                                                                            |
| Overlaps(I,J) | OverlappedBy(I,J) | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} < J^{-(j)}) \land \\ (J^{-(j)} < I^{+(i)}) \land (I^{+(i)} < J^{+(j)}) \end{array}$ | $\begin{array}{l} (I^{-(N)} < J^{-(1)}) \wedge (J^{-(N)} < \\ I^{+(1)}) \wedge (I^{+(N)} < J^{+(1)}) \end{array}$               |
| Starts(I, J)  | StartedBy(I,J)    | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} = \\ J^{-(j)}) \land (I^{+(i)} < J^{+(j)}) \end{array}$                             | $ \begin{array}{l} (I^{-(1)} = J^{-(1)}) \wedge (I^{-(N)} = \\ J^{-(N)}) \wedge (I^{+(N)} < J^{+(1)}) \end{array} $             |
| During(I,J)   | Contains(I, J)    | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(i)} \in J^+ : (J^{-(j)} < \\ I^{-(i)}) \land (I^{+(i)} < J^{+(i)}) \end{array}$                             | $(J^{-(N)} < I^{-(1)}) \land (I^{+(N)} < J^{+(1)})$                                                                             |
| Ends(I,J)     | EndedBy(I,J)      | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} < \\ J^{-(j)}) \land (I^{+(i)} = J^{+(j)}) \end{array}$                             | $\begin{array}{l} (J^{-(N)} < I^{-(1)}) \wedge (I^{+(1)} = \\ J^{+(1)}) \wedge (I^{+(N)} = J^{+(N)}) \end{array}$               |
| Equal(I,J)    | Equal(I,J)        | $\forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} = I^{-(j)}) \land (I^{+(i)} = I^{+(j)})$                                                                | $ \begin{array}{l} (I^{-(1)}=J^{-(1)})\wedge (I^{-(N)}=J^{-(N)}) \\ (I^{+(1)}=J^{+(1)})\wedge (I^{+(N)}=J^{+(N)}) \end{array} $ |

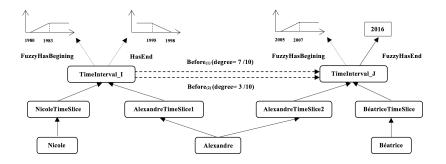
#### A SWRL Rule:

$$\label{eq:constraint} \begin{split} & \textit{TimeInterval}(I) \land \textit{TimeInterval}(J) \land \textit{HasEndFrom}(I, a) \land \textit{HasBeginningFrom}(J, b) \land \\ & \textit{Equals}(a, b) \land \textit{HasEndTo}(I, c) \land \textit{HasBeginningTo}(J, d) \land \textit{Equals}(c, d) \rightarrow \textit{Meet}(I, J) \end{split}$$

F. Hamdi (CNAM)







#### A Fuzzy-Based Approach Fuzzy gradual personalized temporal interval relations

| Relation                               | Inverse                                    | Relations between bounds                                                                                                                                                                                                    | Definition                                                                                                                                                                                                                             |
|----------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Before_{(K)}^{(\alpha,\beta)}(I,J)$   | $After^{(\alpha,\beta)}_{(K)}(I,J)$        | $\begin{array}{l} \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in J^-: (I^{+(i)} < J^{-(j)}) \end{array}$                                                                                                                    | $Precede_{(K)}^{(\alpha,\beta)}(I^{+(N)},J^{-(1)})$                                                                                                                                                                                    |
| $Meets^{(\alpha,\beta)}(I,J)$          | $MetBy^{(\alpha,\beta)}(I,J)$              | $ \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in J^-: (I^{+(i)} = J^{-(j)}) $                                                                                                                                               | $\begin{array}{l} Min(Same^{(\alpha,\beta)}(I^{+(1)},J^{-(1)}) \land \\ Same^{(\alpha,\beta)}(I^{+(N)},J^{-(N)})) \end{array}$                                                                                                         |
| $Overlaps^{(\alpha,\beta)}_{(K)}(I,J)$ | $OverlappedBy^{(\alpha,\beta)}_{(K)}(I,J)$ | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} < J^{-(j)}) \land \\ (J^{-(j)} < I^{+(i)}) \land (I^{+(i)} < J^{+(j)}) \end{array}$ | $ \begin{split} & Min(Precede^{(\alpha,\beta)}_{(K)}(I^{-(N)},J^{-(1)}) \wedge \\ & Precede_{(K)}^{(\alpha,\beta)}(I^{-(N)},I^{+(1)}) \wedge \\ & Precede^{(\alpha,\beta)}_{(K)}(I^{+(N)},J^{+(1)})) \end{split} $                     |
| $Starts^{(\alpha,\beta)}_{(K)}(I,J)$   | $StartedBy^{(\alpha,\beta)}_{(K)}(I,J)$    | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} = \\ J^{-(j)}) \land (I^{+(i)} < J^{+(j)}) \end{array}$                             | $\begin{array}{l} Min(Same^{(\alpha,\beta)}(I^{-(1)},J^{-(1)}) \land\\ Same^{(\alpha,\beta)}(I^{-(N)},J^{-(N)}) \land\\ Precede^{(\alpha,\beta)}_{(K)}(I^{+(N)},J^{+(1)})) \end{array}$                                                |
| $During_{(K)}^{(\alpha,\beta)}(I,J)$   | $Contains^{(\alpha,\beta)}_{(K)}(I,J)$     | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(i)} \in J^+: (J^{-(j)} < \\ I^{-(i)}) \land (I^{+(i)} < J^{+(i)}) \end{array}$                              | $ \begin{split} & Min(Precede_{(K)}^{(\alpha,\beta)}(J^{-(N)},I^{-(1)}) \wedge \\ & Precede_{(K)}^{(\alpha,\beta)}(I^{+(N)},J^{+(1)})) \end{split}$                                                                                    |
| $Ends^{(\alpha,\beta)}_{(K)}(I,J)$     | $Ended By_{(K)}^{(\alpha,\beta)}(I,J)$     | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} < \\ J^{-(j)}) \land (I^{+(i)} = J^{+(j)}) \end{array}$                             | $\begin{array}{c} Min(Precede_{(K)}^{(\alpha,\beta)}(J^{-(N)},I^{-(1)}) \land \\ Same^{(\alpha,\beta)}(I^{+(1)},J^{+(1)}) \land \\ Same^{(\alpha,\beta)}(I^{+(N)},J^{+(N)})) \end{array}$                                              |
| $Equal^{(\alpha,\beta)}(I,J)$          | $Equal^{(\alpha,\beta)}(I,J)$              | $\begin{array}{l} \forall I^{-(i)} \in I^-, \forall I^{+(i)} \in I^+, \forall J^{-(j)} \in \\ J^-, \forall J^{+(j)} \in J^+ : (I^{-(i)} = \\ J^{-(j)}) \wedge (I^{+(i)} = J^{+(j)}) \end{array}$                            | $\begin{array}{l} Min(Same^{(\alpha,\beta)}(I^{-(1)}, J^{-(1)}) \land \\ Same^{(\alpha,\beta)}(I^{-(N)}, J^{-(N)}) \land \\ Same^{(\alpha,\beta)}(I^{+(1)}, J^{+(1)}) \land \\ Same^{(\alpha,\beta)}(I^{+(N)}, J^{+(N)})) \end{array}$ |

#### • A Mamdani IF-THEN rule:

(define-concept Rule0 (g-and (some Precede<sub>(1/1)</sub> Fulfilled) (some Precede<sub>(1/2)</sub> Fulfilled) Fulfilled) (some Precede<sub>(1/3)</sub> Fulfilled) (some Overlaps<sub>(1)</sub> True)))

F. Hamdi (CNAM)

## Outline

## Curriculum Vitae

## 2 Context

## 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

# Quality of KGs: Completeness and Conciseness

- Completeness
- Conciseness

## **Conclusion**

## Linked Data Quality

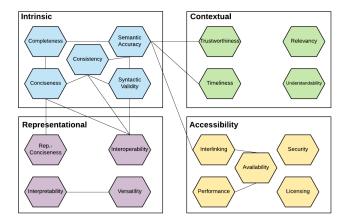
What is the meaning of Quality?

- Quality is defined as fitness for use
- The degree to which data suits requirements

Dimensions: accuracy, completeness, consistency, timeliness,...

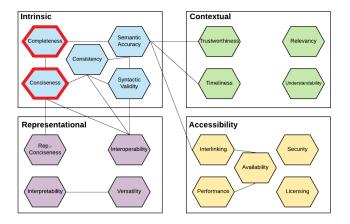
- Poor data model (relevancy, level of detail, granularity, etc.)
- Inconsistency of data values (accuracy, completeness, trustworthiness, etc.)
- Integration issues (interlinking with other data sources, applicability for federated query)
- Loss in output leading to extra charges (time, cost, etc.)

#### Linked Data Quality Dimensions



Adapted from "Quality Assessment for Linked Data: A Survey", Zaveri et al. 2014

#### Linked Data Quality Dimensions



Adapted from "Quality Assessment for Linked Data: A Survey", Zaveri et al. 2014

## Outline

## Curriculum Vitae

## 2 Context

## 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

# Quality of KGs: Completeness and Conciseness Completeness

Conciseness

## 5 Conclusion

```
SELECT ?subject WHERE {
            ?subject rdf:type dbo:Scientist .
}
For each subject do
SELECT ?property ?value WHERE {
            subject ?property ?value .
}
return Scientist schema
```

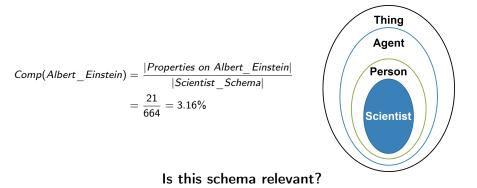
Is every scientist described by all the **properties**? First name, last name, birth date, birth place, etc.

We need a reference schema to calculate completeness

• A reference scientist schema (ontology) could be:

Scientist\_Schema = {Properties on Scientist} ∪ {Properties on Person} ∪ {Properties on Agent} ∪ {Properties on Thing}

such that: Scientist  $\sqsubseteq$  Person  $\sqsubseteq$  Agent  $\sqsubseteq$  Thing



$$Comp(Albert\_Einstein) = rac{|Properties on Albert\_Einstein|}{|Scientist\_Schema|} = rac{21}{664} = 3,16\%$$

The property **weapon** is in *Scientist\_Schema*, but it is not relevant to the instance *Albert\_Einstein* Data completeness can be achieved with a suitable schema containing **mandatory properties** 

#### The approach overview

#### Goal

Elaborate a solution for RDF data completeness assessment in the absence of a reference/gold schema

- Explore instances to get an idea how they are actually describing
- Property frequently used by several instances of a class is **more important** than less often used one

 $\implies$  Extracting properties used more frequently than others to describe instances of a given class and calculating a completeness in respect to these properties

The Mining-based Approach includes two steps:

- **Properties mining**: Applying the well known FP-growth algorithm for mining maximal frequent itemsets  $\mathcal{MFP}$
- Completeness calculation: Using the apparition frequency of items (properties) in *MFP*, to give each of them a weight and calculate the completeness of each transaction (regarding the presence or absence of properties)

#### Properties mining

#### Example

| Instance      | Transaction                        |  |
|---------------|------------------------------------|--|
| The_Godfather | {director, musicComposer}          |  |
| Goodfellas    | {director, editing}                |  |
| True_Lies     | {director, editing, musicComposer} |  |

Let  $\xi = 60\%$  and the set of frequent patterns

 $\mathcal{FP} = \{ \{ director \}, \{ musicComposer \}, \{ editing \}, \{ director, musicComposer \} \}$  $\{ director, musicComposer \} \}$ 

The  $\mathcal{MFP}$  set would be:

 $\mathcal{MFP} = \{ \{ \textit{director}, \textit{musicComposer} \}, \{ \textit{director}, \textit{editing} \} \}$ 

#### Completeness calculation

 $\bullet$  Carry out for each transaction, a comparison between its corresponding properties and the  $\mathcal{MFP}$  set

#### Definition (*Completeness* CP)

Let  $\mathcal{I}'$  a subset of instances,  $\mathcal{T}$  the set of transactions constructed from  $\mathcal{I}'$ , and  $\mathcal{MFP}$  a set of maximal frequent pattern. The completeness of  $\mathcal{I}'$  corresponds to the completeness of its transaction vector  $\mathcal{T}$  obtained by calculating the average of the completeness of  $\mathcal{T}$  regarding each pattern in  $\mathcal{MFP}$ . Therefore, we define the completeness  $\mathcal{CP}$  of a subset of instance  $\mathcal{I}'$  as follows:

$$C\mathcal{P}(\mathcal{I}') = \frac{1}{|\mathcal{T}|} \sum_{k=1}^{|\mathcal{T}|} \sum_{j=1}^{|\mathcal{MFP}|} \frac{\delta(E(t_k), \hat{P}_j)}{|\mathcal{MFP}|}$$
(1)

such that:  $\hat{P}_j \in \mathcal{MFP}$ , and  $\delta(E(t_k), \hat{P}_j) = \begin{cases} 1 & \text{if } \hat{P}_j \subset E(t_k) \\ 0 & \text{otherwise} \end{cases}$ 

### Completeness calculation

#### Example

| Instance      | Transaction                        |
|---------------|------------------------------------|
| The_Godfather | {director, musicComposer}          |
| Goodfellas    | {director, editing}                |
| True_Lies     | {director, editing, musicComposer} |

The completeness of this subset of instances regarding  $\mathcal{MFP} = \{\{director, musicComposer\}, \{director, editing\}\}, would be:$ 

 $\mathcal{CP}(\mathcal{I}') = (2*(1/2) + (2/2))/3 = 0.67$ 

#### Prototype: LOD-CM

## Welcome

A tool designed to help users of RDF knowledge graphs.

#### What is LOD-CM?

LOD-CM is a tool that produces a Conceptual Model (CM) through a UML class diagram. It mines maximal frequent patterns (also known as maximal frequent itemset) upon properties used by instances of a given OWL class to build the most appropriate CMs.

For a given dataset, you can **choose a class** among its classes, then **choose a threshold** corresponding to the minimum percentage of instances having a set of properties, and we compute CMs. For each group of properties simultaneously present above the threshold, we create a class diagram.

But why would I use that?

- · UML class diagrams are easy to read and understand.
- · CMs allow a user to explore dataset without prior knowledge.
- · A user can easily compare two CMs to choose the better suited dataset.

#### Let's try it!

| Select a dataset $\vee$ Select a class $\vee$ |  | Select a threshold ~ | Let's go! |
|-----------------------------------------------|--|----------------------|-----------|
|-----------------------------------------------|--|----------------------|-----------|

## Prototype: LOD-CM

#### Conceptual model for Film class in DBpedia

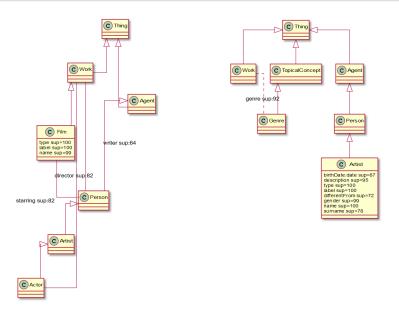
Current threshold is set to 50%, i.e. all properties of a group are present together in at least 50% of Film instances.

#### Select a group of maximal frequent itemset:

Each property group is present simultaneously in 50% of instances.

director, label, name, runtime, starring, type
 director, label, name, starring, type, writer
 label, name, runtime, type, writer

## Prototype: LOD-CM



- Experiments were performed on the well-known real-world datasets, DBpedia, publicly available on the LOD cloud
- We chose two relatively distant versions; v3.6 generated in March/April 2013, and v2015-04 generated in February/March 2015
- For each dataset we have chosen a couple of categories. C = {Film, Organisation, Scientist, PopulatedPlace}

Evaluation

61 / 87

• For the properties used in the resources descriptions, we have chosen the English datasets *mapping-based properties*, *instance types*, and *labels* 

#### Table 1: Number of resources/category

|            | Film   | Organisation | PopulatedPlace | Scientist |
|------------|--------|--------------|----------------|-----------|
| v3.6(2013) | 53,619 | 147,889      | 340,443        | 9,726     |
| v2015-04   | 90,060 | 187,731      | 455,398        | 20,301    |

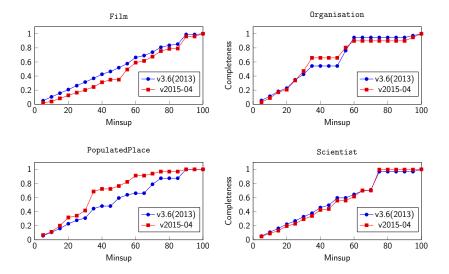


Figure 1: Completeness of DBpedia v3.6 and v2015-04 when varying the minimum support  $\xi$ 

F. Hamdi (CNAM)

Enrichment of RDF Knowledge Graphs

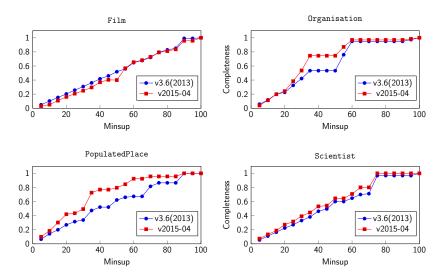


Figure 2: Completeness of equivalent resources from DBpedia v3.6 and v2015-04

F. Hamdi (CNAM)

# Outline

# Curriculum Vitae

# 2 Context

# 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

# Quality of KGs: Completeness and Conciseness Completeness

Conciseness

# 5 Conclusion

### Conciseness Dimension

**Conciseness** aims to avoid repetition through elements having the same meaning with different identifiers or names

Dataset is concise if does not contain:

- two equivalent classes/predicates with different names (Schema level)
- two equivalent objects with different names (Instance level)

### Conciseness Dimension

**Conciseness** aims to avoid repetition through elements having the same meaning with different identifiers or names

Dataset is concise if does not contain:

- two equivalent classes/predicates with different names (Schema level)
- two equivalent objects with different names (Instance level)

Our objective: Discovering **synonymously used** predicates (conciseness at schema level)

#### SELECT ?s WHERE { ?s birthPlace France }

| Subject           | Predicate   | Object     |
|-------------------|-------------|------------|
| Emma Watson       | nationality | British    |
| Emma Watson       | bornIn      | France     |
| Emma Watson       | bornOn      | 15-04-1990 |
| Antoine Griezmann | birthPlace  | France     |
| Antoine Griezmann | height      | 1,74       |
| Antoine Griezmann | type        | Footballer |

#### SELECT ?s WHERE { ?s birthPlace France }

| Subject           | Predicate   | Object     |
|-------------------|-------------|------------|
| Emma Watson       | nationality | British    |
| Emma Watson       | bornIn      | France     |
| Emma Watson       | bornOn      | 15-04-1990 |
| Antoine Griezmann | birthPlace  | France     |
| Antoine Griezmann | height      | 1,74       |
| Antoine Griezmann | type        | Footballer |

#### SELECT ?s WHERE { ?s birthPlace France }

| Subject           | Predicate   | Object     |
|-------------------|-------------|------------|
| Emma Watson       | nationality | British    |
| Emma Watson       | bornIn      | France     |
| Emma Watson       | bornOn      | 15-04-1990 |
| Antoine Griezmann | birthPlace  | France     |
| Antoine Griezmann | height      | 1,74       |
| Antoine Griezmann | type        | Footballer |

#### SELECT ?s WHERE { ?s birthPlace France }

| Subject           | Predicate   | Object     |
|-------------------|-------------|------------|
| Emma Watson       | nationality | British    |
| Emma Watson       | bornIn      | France     |
| Emma Watson       | bornOn      | 15-04-1990 |
| Antoine Griezmann | birthPlace  | France     |
| Antoine Griezmann | height      | 1,74       |
| Antoine Griezmann | type        | Footballer |

```
SELECT * WHERE {
{?s1 birthPlace France}
Union
{?s2 bornIn France}
}
```

# Data publisher ignores the ontology (schema)

# Related Work

An approach for generating and evaluating synonym candidate pairs

- Range content filtering
  - Mining **predicates** of each distinct **object**
  - Retrieving frequent candidate pairs
- O Schema analysis
  - Mining **predicates** of distinct **subject**
  - Keeping pairs with high negative correlation
- The algorithm produces too many false positives

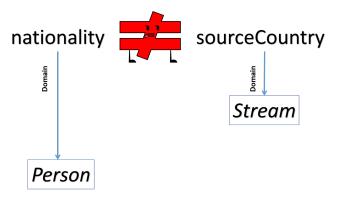
Abedjan Z, Naumann F. Synonym analysis for predicate expansion. In Extended semantic web conference. Springer, Berlin, Heidelberg, 2013.

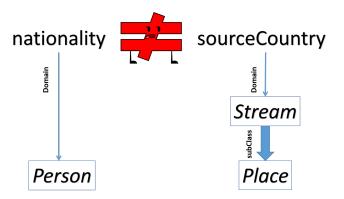
#### Conciseness Dimension

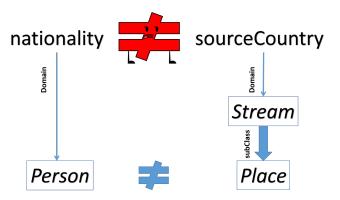
Our objective is to decrease false positive results through:

- Semantic analysis
- NLP-based analysis









- Excluding candidates having incompatible semantic features.
- Semantic features:

Domain restriction, Range restriction ,Functional properties, Transitive properties, Symmetric properties, Max cardinality

| Semantics features | Description                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain restriction | $\begin{array}{c} p_1 \& p_2 \text{ cannot be synonyms if:} \\ \exists p_1.\top \sqsubseteq C_1 \land \exists p_2.\top \sqsubseteq C_2 \land C_1 \sqcap C_2 \sqsubseteq \bot \end{array}$     |
| Range restriction  | $ \begin{array}{c} p_1 \And p_2 \text{ cannot be synonyms if:} \\ \top \sqsubseteq \forall p_1.C_1 \land \top \sqsubseteq \forall p_2.C_2 \land C_1 \sqcap C_2 \sqsubseteq \bot \end{array} $ |
| Functional proper- | $p_1 \& p_2$ cannot be synonyms if:<br>$p_1$ is a FunctionalProperty $\land p_2$ is a Non FunctionalProperty                                                                                  |

## NLP-based Analysis

Excluding predicates that are semantically similar but non-equivalent (e.g. *composer* and *artist*)

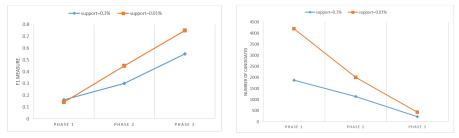
- Considers the meaning of predicates in a specific context using learning algorithms
  - *Word embedding*: using algorithms, such as *Word2vec*, to map predicates to vectors of numbers; two predicates sharing common contexts are located close to each other in the space vector
  - Applying a cosine similarity to compare pairs of vectors

$$\cos(\mathbf{t}, \mathbf{e}) = \frac{\mathbf{t}\mathbf{e}}{\|\mathbf{t}\|\|\mathbf{e}\|} = \frac{\sum_{i=1}^{n} \mathbf{t}_{i} \mathbf{e}_{i}}{\sqrt{\sum_{i=1}^{n} (\mathbf{t}_{i})^{2}} \sqrt{\sum_{i=1}^{n} (\mathbf{e}_{i})^{2}}}$$

## First Experiment

Support threshold=0.01%

- Statistical analysis: NC=4197, F1=0.14
- Semantic analysis: NC=2006, F1=0.45
- NLP-based analysis: NC=429, F1=0.76



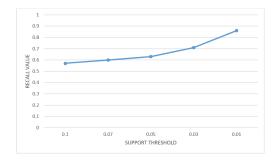
- Semantic analysis eliminates 52.2% of false positives and NLP-based analysis eliminates 78.6% of false positives
- Filters the predicates that share the same semantic features but are non-equivalents (e.g. *author* and *composer*)

# Second Experiment

- Performs tests between the predicates of different datasets (i.e. DBpedia & YAGO datasets)
- Compares with a gold standard containing mappings between the predicates of these two datasets

| Predicate 1 (YAGO) | Predicate 2 (DBpedia) |
|--------------------|-----------------------|
| diedIn             | deathPlace            |
| diedOnDate         | deathDate             |
| isCitizenOf        | nationality           |
| livesIn            | residence             |
| hasPopulation      | populationTotal       |

# Second Experiment



• Support threshold=0.01%, Recall value=0.86

#### • Our approach:

- Finds a good number of equivalent predicates (recall at roughly 86%)
- Fails to find all the equivalent predicates (e.g. *isbn* and *hasISBN*) relies on the fact that some predicate pairs share insufficient number of objects

F. Hamdi (CNAM)

# Outline

# Curriculum Vitae

# 2 Context

# 3 Enriching KGs

- Geo-Domain Identity Links
- Contextual Identity Links
- Fuzzy Temporal Data

#### Quality of KGs: Completeness and Conciseness Completeness

- Completeness
- Conciseness

# **5** Conclusion

# Conclusion and Research Perspectives Geo-Domain Identity Links

- An ontology to represent knowledge about geometry positional accuracy and capture rules
- An approach to extract XY semantics by using automatic supervised learning
- A data matching approach that relies on XY semantics to adapt the comparison of geometries

Perspectives:

- Time complexity should be improved by adding a cache system for the reasoning results
- Further tests with bigger and more heterogeneous datasets
- Consider the geometry resolution and its vagueness in both populating and interlinking approaches

# Conclusion and Research Perspectives Contextual Identity Links

- An approach to compute a set of propagable properties given a set of indiscernible properties:
  - Based on Tobler's first law and sentence embedding
  - A full framework to increase completeness of SPARQL queries

Perspectives:

- Not rely only on description of properties
- Try to use values of properties or semantic features of the property
- Challenge our work with a combination of distinct KGs

CV Context Enriching KGs KGs Quality Conclusion

### Conclusion and Research Perspectives Fuzzy Temporal Data

- A Crisp-Based Approach
  - Extend the 4D-fluents model to represent imprecise time intervals and their crisp relationships in OWL 2
  - Extend the Allen's interval algebra in a crisp way and infer interval relations via a set of SWRL rules
- A Fuzzy-Based Approach
  - Extend the 4D-fluents model to represent imprecise time intervals and their relationships in Fuzzy-OWL 2
  - Extend the Allen's interval algebra in a fuzzy gradual personalized way and Infer fuzzy interval relations using a set of Mamdani IF-THEN rules

### Perspectives:

- Define a composition table between the resulting relationships of precise and imprecise time intervals
- Extend our approach to represent and reason over time intervals that are both imprecise and uncertain

F. Hamdi (CNAM)

Enrichment of RDF Knowledge Graphs

November 5, 2020

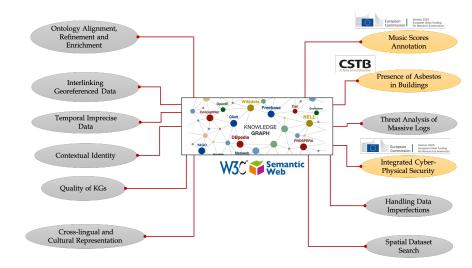
# Conclusion and Research Perspectives Linked Data Quality

- Developing an approach for Linked Data completeness assessment
- Implementing "LOD-CM" prototype to reveal conceptual schema from linked datasets
- Providing an approach for assessing the conciseness of a dataset by discovering equivalent predicates

Perspectives:

- Investigating the effectiveness of the approaches against additional Linked Open Data datasets such as Wikidata
- Allowing the user to compare conceptual schemas from different datasets
- Dealing with uncommon predicates to discover equivalent predicates

## Conclusion and Research Perspectives Future Research Projects



F. Hamdi (CNAM)

Enrichment of RDF Knowledge Graphs

# Conclusion and Research Perspectives

# Long Term Plan:

- Studying the fully automatic adaptation of the Knowledge Graph interlinking, enrichment, refinement, and reasoning to the context of use
- Exploring deep learning algorithms towards the automation of the consideration of contexts in the various processes

# Thank You! Questions?