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Abstract

We present a data model for tracking mobile objects and reporting the re-
sult of continuous queries. The model relies on a discrete view of the spatio-
temporal space, where the 2D space and the time axis are respectively parti-
tioned in a finite set of user-defined areas and in constant-size intervals. We
define a query language to retrieve objects that match mobility patterns de-
scribing a sequence of moves and discuss evaluation techniques to maintain
incrementally the result of queries.

1 Introduction

In the database community, several data models have been proposed to enable novel
querying facilities over collections of moving objects. A common feature of most
of these models is the strong focus on the geometric properties of trajectories. In-
deed, in most cases, the data representation and the query language are considered
as extensions of some existing data model previously designed for (and limited to)
2D geometric data handling. The modeling of moving objects has been therefore
strongly influenced by the existing spatial models, and relies usually on a set of
data structures providing support for geometric operations (e.g., geometric inter-
section) [21, 10, 8, 9].

An assumption commonly adopted by all the above mentioned models is to
consider a dense embedding space and to model trajectories as continuous func-
tions in this space. While this property allows several suitable computations (for
instance the position of an object can be obtained at any instant), it is not well
adapted to some common requests. Let us consider the tracking of objects with
continuous queries, i.e., queries whose result must be maintained during a given
(and possibly unbounded) period of time. When asking, for instance, for all the
objects that belong to a given rectangle R during the next 3 days, the initial re-
sult is subject to vary by considering the objects that leave of enter R. Managing
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incrementally the evolutions of the result (i.e., without recomputing periodically
the entire result) is a hard task with a geometric-based query language because
the dense-space assumption of the data model often contradicts with the discrete
nature of the observation. A trajectory for instance is obtained through sample
points provided by the GPS system, and the continuous representation has to be
inferred by interpolation between two sample points, or by extrapolation from the
last known position [21]. Moreover, depending on the geometric operations re-
quired by the query, one might have to consult the past trajectory to check whether
or not the object belongs to the result. Actually the few works that propose a so-
lution to the problem deal with a limited class of queries (e.g., window queries in
[13]).

In the present work we investigate an alternative approach, namely the man-
agement of continuous queries as a discrete process relying on events related to the
moves of objects over the underlying space. Intuitive examples of events are, for
instance, an object enters a zone, an object stays in a zone, and an object leaves
a zone. A query in such a setting is a sequence of primitive events which can be
specified either by explicitely referring to the zones of interest (“Give all the ob-
jects currently in a which arrived 5 minutes ago, coming from b”), or by more
generic patterns of mobility such as, for instance, “Give these objects that moved
from a to another zone and came back to a”.

We propose in the current paper a data model for representing trajectories as
sequences of moves in a discrete spatio-temporal space, and study the languages to
query such sequences of events. Essentially, the languages that we consider allow
to construct expressions, or mobility patterns, to express search operations. \We
focus specifically on the family of patterns that satisfy the following properties (i)
we do not need the past moves of an object o to determine whether o matches or not
a given pattern and (ii) the amount of memory required to maintain a query result is
small. These properties are essential in the context of continuous queries since they
guarantee that a large amount of queries can be evaluated efficiently with limited
resources by just considering the last event associated to an object. We define
a class of queries which provides an appropriate balance between expressiveness
and the fulfillment of these requirements.

Related wor k

Expressing sequences of moves as proposed in the present paper is close in spirit to
the area of sequence databases [20, 15, 18, 22]. The SQL-TS language of [18] and
[19] allows to express sequences of conditions and describes an efficient algorithm
for query evaluation. The idea of representing temporal sequences as strings and to
rely on pattern-matching algorithms is also present in [6] and [5]. In [17] sequences



are considered as sorted relations, and each tuple gets a number that represents its
position in the sequence. All these approaches are significantly different from ours.
In particular there is nothing similar to the concept of mobility pattern, featuring
variables, proposed in our data model.

The notion of continuous queries, described as queries that are issued once and
run continuously, is first proposed in [24]. The approach considers append-only
databases and relies on an incremental evaluation on delta relations. Availability
of massive amounts of data on the Internet has considerably increased the interest
in systems providing event notification across the network. Some representative
works are the Active Views system [1], the NiagaraCQ system [4], and the proto-
types described in [14, 7]. In the area of spatio-temporal databases, the problem
is explicitely addressed in several works [16, 3, 13, 23, 11, 25]. [3] for instance
describes a web-based architecture for reducing the volume and frequency of data
transmissions between the client and the server. [13] presents a system that indexes
queries in order to recompute periodically the whole result of each query. This is
in contrast with the incremental computation advocated in the current paper.

In the rest of this paper we first develop an informal presentation of our work
(Section 2) with examples of mobility patterns that illustrate the intuition behind
the model and its practical interest from the user’s point of view. The data model is
presented in Section 3. Finally Section 4 concludes the paper and discusses future
work. A long version is available at http://www.Iri.fr/ rigaux/DOC/MR04b.pdf.

2 Introduction to mobility patterns

Figure 1 shows a map partitioned in several zones identified with simple labels
(@, b, c, ...). Overthis map we consider a set of mobile objects, each of
them coupled with a localization device which periodically provides their position.
The minimal period between two events related to the same object defines the time
unit. For the sake of concreteness we shall assume in the following that objects are
tracked by a GPS system giving the location of an object, and that the time unit is
1 (one) minute.

Consider now a traffic monitoring application supporting tracking of the mobile
objects, and the following queries:

1. Give all the objects that traveled from a to f , stayed more than 10 minutes
inf and then traveled from f to c.

2. Give all the objects traveling from f to d or ¢ through another, third, zone
of the map.



Figure 1: Objects moving over a partitioned map

3. Give all the objects that left a given zone, went to ¢ and came back to the
first zone.

The common feature of these examples is a specification of the successive
zones an object belongs to during its travel, along with temporal constraints. We
call mobility pattern this specification. The geometric-based approach used in
most of the spatio-temporal data models so far is not really adapted for expressing
queries based on mobility patterns. Actually we do no longer need an interpolation
or extrapolation mechanism to infer the position of an object at each instant since
the discrete succession of events provided by the GPS server is naturally suitable
to serve as a support for evaluating these patterns.

Each GPS event provides the position of an object, and this suffices to com-
pute the zone where the object resides when the event is received. It is therefore
quite easy to construct a discrete representation of the trajectory of an object as
a sequence of the form [1{T} }.lo{T%}. - - - .1, {T),} featuring the list I1,ls,...,1,
of successive zone labels as well as the time spent in each zone. For instance the
trajectory of o in Figure 1, assuming that o; spent 2 minutes in f , 4 minutes in a,
3 minutes in d and 6 minutes in ¢, will be represented in our model as a sequence
[f{2}. a{4}. d{3}. c{6}] . Note that each new event either increments the time
component of the last label if the object remains in the same zone, or appends a
new label to the trajectory’s representation.

Let us now turn to mobility patterns. Basically, they constitute a specific kind
of regular expression, featuring variables which can be instantiated to any of the
labels of the map. As a first example, assume that we want to retrieve all the
objects that started from a or b, moved to e, crossing one of the zones c, d, or f
(see Figure 1), and finally went back from e to a via the same zone. This class of
trajectories is represented by the following mobility pattern:

(alb). @&x".et.&™". a

In a pattern, a zone is represented either by its label (here a, b, e) or by a vari-
able (here @) if it is left undetermined by the user. A variable is here necessary to



represent the zone where an object moved after leaving a or b, and expressing that
the object must come back to a via the same zone. Each occurrence of a variable
in a pattern must be instantiated to the same value. Labels or variables can be con-
catenated (for instance @x. a in our example) to describe a path, or grouped in sets
(for instance (‘a| b) ) to describe a union of zones. The “+” operator expresses the
fact that the object can stay an undetermined time in a given zone, but at least one
time unit. Alternatively, one can associate to each label simple temporal constraints
of the form {m n, max} where mi n and max denote respectively the minimal
and maximal number of time units spent in the zone.
Intuitively, an object o matches a pattern P if the following conditions hold:

1. one can find a word in the language £(P) which is equal to a suffix of the
trajectory of o, modulo an assignment of the variables in P.

2. the time spent in each zone complies with the temporal constraint expressed
in the pattern.

For instance an object whose trajectory is represented by the sequence [ f . d. ¢. b. a. d. e. d. a]
(we omit the temporal information for simplicity) matches the pattern above where
the value of the variable @X is set to the label d. The suffix in boldface is then a
word in the language denoted by the pattern.

The suffix represents here the most recent part of the trajectory received from
the continuous stream of GPS events. It determines whether an object belongs or
not to the result set of a query. Note also that, since the trajectory representation
evolves as new events are received, the matching must be evaluated periodically
— almost continuously. Our goal is to perform this evaluation with minimal space
and time consumption.

Patterns can easily be introduced in a SQL-like query language, as illustrated
by the following examples which will be used throughout the rest of the paper. The
syntax of regular expression is that of the Perl language [26].

e Q1. Give all the objects that traveled from a to f , stayed at least 2 minutes
inf and then traveled from f to c.

SELECT *
FROM Mob
VWHERE mat ches(traj,’a.f{2,}.¢c")

The matches function checks whether a suffix of the spatio-temporal attribute
traj matches the mobility pattern a. f . ¢. An additional temporal constraint
states that the object must spend at least 2 time units (e.g., 2 minutes) in f .



e Q2. Give all the objects that stay in a or b all the time except for one minute
when they were in another, third, zone.

SELECT *

FROM Mob

WHERE matches (traj, (a| b)+ @( (al b)+")
AND @& !'=

This example requires a variable @ which expresses a move not assigned
to a specific label but instantiated to the choice of a moving object when
it leaves a or b. It is possible to express additional constraints on the in-
stantiations allowed for a variable, using equalities or inequalities. The user
requires in this example the object to leave a or b for a third, distinct, area.

e Q3. Give all the objects that went through f to another zone then went to d
or ¢, and came back to f using the same zone.

SELECT *

FROM  Mob

VWHERE matches (traj, f.@+. (d|c)+. @&+.f")
AND @& =

Let us turn now to the query evaluation process, and in particular to the con-
tinuous evaluation which maintains a result by adding or removing objects. We
consider two essential criteria for measuring the easiness and efficiency of this
evaluation:

1. Do we need to consider the past moves of an object to evaluate a query?

2. What is the amount of memory required to maintain a query result?

Consider first the case of patterns without variable. Evaluating a pattern P is
then a standard operation which simply requires to build the Finite State Automata
(FA) that recognizes the language >~*.Lp, where Lp is the regular language de-
noted by P and X is the set of labels of the map.

In the general case, the FA associated to a regular expression is non-deterministic.
Then an object o might be associated to several states at a given time instant, and
we must record the list of current states for o. This list can be represented as a
mask of bits, one bit for each state of the FA. The value 1 (resp. 0) for a bit means
that o is (resp. is not) in the associated state. This gives a rather compact structure:
for a pattern with 8 symbols, a mask of 8 bits (one byte) must be recorded for each
object. One can track a database of one million objects with only one megabyte in
main memory.



The pseudo-code of the procedure HandleEvent(q, id, X, y) summarizes how
to actualize the result of a query ¢ when a GPS event is received, giving a new
location (x, y) for the object o. The reference map is a set of zones denoted by M.

HandleEvent (q, 0, X, y)
begin
/l Compute the current zone, z
z = PointInPolygon(M, x, y)
Il Get the label of z
[ = label(z)
/I For each bit set to 1 in the status of o,
// compute the transition [
for each bit < with value 1 in status,
Compute s; = 6(F Ay, si,1)
Set the bit 5 to 1 and the bit i to 0 in status,
end for
end

The result set of ¢ can then be updated according to the new status of object
o. Essentially, if at least one of the new states is an accepting one, o will be in the
result set, else it will be out of this result set. In this simple case we obtain a direct
answer to the two questions above:

1. Itis not required to maintain historical information on a trajectory, since, it
suffices to know the current state(s) of the FA, reached by taking account of
the events received so far.

2. The space required to maintain a query result is, in the worst case, the set
of all states in the FA (which might be non-deterministic) and is therefore
proportional to the size of the query?.

If we consider now patterns with variables, the language is much more expres-
sive, but some care is required for executing queries. Take for instance the example
Q3 above. Each time an object leaves the zone f for another one, a new label is
bound to the variable @. One must then store this value in order to check for the
consistency of any further occurrence of @x.

The next section is devoted to the data model, and focuses on the evaluation
of queries with variables. We show that we can still avoid to rely on historical
information on trajectories, and study more specifically the memory requirements
for several classes of queries.

LIt ispossible, for any regular expression E, to construct a FA whose number of statesis equal to
the number of symbolsin E.



3 Themodd

We consider an embedding space partitioned in a finite set of zones, each zone
being uniquely labeled with a symbol from a finite alphabet . The time axis is
divided in constant size units. For concreteness we still assume in the following
that the time unit is 1 minute. We also assume a set V of variables with X NV = ()
and denote as I" the union X U V. In the following, letters a, b, c, ... will denote
symbols from X, and @, @, @, ... variables. We assume the reader familiar with
the basic notions of regular expressions and regular languages, as found in [12].

3.1 Datarepresentation and query language

We adopt a standard extended relational framework for the database, with O de-
noting the relation of moving objects, and o.tra;j the trajectory of an object o. The
representation of trajectories is then defined as follows:

Definition 1 (Representation of trajectories) A trajectory is represented by an
expression of the form

Sl{Tl}.SQ{TQ}. s Sn{Tn}

where s;,7 = 1,...,n are symbols from X and T; represents the number of time
units spent in the zone s;.

Hereafter, we shall use the term “trajectory” to mean its representation. For
convenience, we shall often omit the temporal components and use a simplified
representation of a trajectory as a word [s1.52. - - - .S;,] In 2%,

A natural choice is to build mobility patterns as regular expressions on I' =
YUV, and to search for the suffix of trajectories that match the expression for some
value of the variables. Consider for example the regular expression £ =a. @+. b+. @X.
The trajectory ¢t =f . d. a. ¢c. b. ¢ matches E because we can find a word w =
a. @. b. @ in the language denoted by E (w is called a witness in the follow-
ing) and an instantiation v : {@ := ¢} such that v(w) is a suffix of ¢. However
this approach raises some ambiguities regarding the role of variables. Consider the
following examples:

1. Let F be the regular expression b. (a| @) +. c. Then the trajectory b. a. ¢
has two witnesses in the regular language denoted by E: b. @. c and
b. a. c. In the first case @x must be instantiated to a, but in the second
case any value of @ is acceptable.



2. Let F be the regular expression a. ( @| @) . b. ( @| @) . The variables
@ and @ can be used interchangeably, which makes the role of variables
undetermined.

As shown by the previous examples, if we build mobility patterns with unre-
stricted regular expressions over I, the assignment of variables is non determinis-
tic, and sometimes meaningless. For safety reasons, when reading a word w and
checking whether w matches a mobility pattern P, we require each variable in P
to be explicitely bound to one of the symbols in w. We thus adopt a more rigorous
definition of the language by considering only unambiguous regular expressions
on I" such that each variable always plays a role in the evaluation of the query. We
need first to introduce marked regular expressions.

Definition 2 (Marked expressions [2]) Let E be a regular expression over the al-
phabet I". We define the marking of E as the regular expression £’ where each sym-
bol of I is marked by a subscript over N, representing the position of the symbol
in the expression.

For instance the marking of the regular expression a*. @. ((b.a)| (c. b)).
is the expression aj. X2. ((bs. as) | (c5. bg) ) . 7. @s. ag. We can now de-
fine mobility patterns as the class of regular expressions that satisfy the following

property:

Definition 3 (Mobility patterns) A mobility pattern is a regular expression P over
I" such that each variable of P’ appears in each word of the language £(P’).

This property ensures that each variable in any pattern is always assigned to a
relevant label during query evaluation. The expression P = (a| b) +. @. (a| b)
is for instance a mobility pattern because @ appears in all the words of the lan-
guage £(P). Any successful matching of P with a trajectory t results therefore in
an assignment of @ to one of the symbols of t . It can be tested whether a regu-
lar expression matches the required condition, and thus can be used as a mobility
pattern.

Proposition 1 There exists an algorithm to check whether a regular expression is
a mobility pattern.

Proof (sketch): Let F be a regular expression. Then £(E) and L(E’) are regu-
lar languages. We define the language £,, = {I"".@.I'*.@X,..@.I"*}, where
I' stands for X UV, and @1, . . , @, are the variables of E’. L,, is regular by
construction, so £, and L(E’) N L, are also regular. Consequently the fact that

c. &* a



L(E") N L,, is empty is decidable. And if £(E') N L,, = (), then all the marked
variables appear in all the words of L(E"). O

Example 1 The following regular expressions represent the mobility patterns of
the sample queries Q1, Q2 and Q3 given in Section 2.

1. p=a.f{2,}.c
2. P,=(a|b)+. @. (a|b)+
3. Pp=f.@+.(c|d)+. @+.f

The pattern @. a. b. ¢. @ denotes the family of regular languages that con-
sists of words in X* with exactly 5 letters, the first one being equal to the last one,
separated by a. b. c. A mobility pattern P denotes a regular language £(P) C T"*.
More generally a mobility pattern P with k variables is equivalent to the union of
|X|* regular expressions enumerating the |X|* possible combinations of variables
values. Variables give an exponentially concise way of expressing such languages.

In the following we shall denote as var(P) the set of variables in a pattern P.
The query language and its semantics are now defined as follows.

Definition 4 (Syntax of queries) A query is a pair (P,C) where P is a mobility
pattern and C is a set of constraints of the form s; # sg, for s1, s9 € ¥ Uvar(P)

Let ¢ = (L,{C1,...C;}) be a query. The answer to of ¢ over O , denoted
ans(q), is a subset of O defined as follows:

Definition 5 (Semantics of queries) An object o € O belongs to ans(q) if there
exists a mapping v : ¥V — X, called a valuation, with the following properties:

1. v satisfies all the constraints C;,i =1,...,1
2. o.traj belongs to X*.L(v(P)).

The constraints in a query can be used to forbid explicitely a variable to take
a value (e.g., @ # a). The domain of a variable @ for a given query ¢, denoted
domg(@X), represents the set of possible values for @ given the constraints of g.

Example 2 The following queries correspond to the 3 examples given in Section 2.
1. g1 = (a.f{2,}.c,0)
2. g2 = ((a|b)T.Qz.(alb)", {Qz # a,Qx # b})
3. g3 = (f.Qxt.(cld)T.QzT.f, {Qx £ f})
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3.2 Query evaluation

We describe now an algorithm for evaluating a query ¢. First we show how to
obtain an automaton which, given a mobility pattern P, accepts the trajectories
that match P. This automaton also provides the valuation of variables in P. In a
second step we explain how the automaton can be used at run time, and discuss
the size of the memory used to store the relevant information. For simplicity, we
consider the automata that accept the language £(P): their extension to automata
that accept X*.£(P) is trivial and can be found in any specialized textbook.

Since a mobility pattern P is a regular expression over the alphabet I", we
can build a non-deterministic finite state automaton (NFA) M- that accepts the
language of I'* denoted by P. Starting from N we can build a new automaton,
Ny, which checks whether a trajectory ¢ of ¥* belongs to v(L(P)), and delivers
the valuation v.

Essentially, Ny, is Nr with a management of variable bindings based on the
following extensions: (i) a transition labeled with a variable @ on a symbol « sets
the value of @ to « if @ was not yet bound and (ii) with each state one maintains
the bindings of the variables met so far. Transitions from s; to s;, labeled with a
variable @x, are then interpreted as follows:

1. If @ is bound to « in s;, and the current symbol of the input word is «, then
s; can be reached and the binding of s; is identical to the binding of s;.

2. If @ is not bound in s;, and the current symbol of the input word is «, then
s; can be reached and the binding of s; is the binding of s; augmented with
Qx «— a.

The definition of N is as follows.

e The set of states of Ny, states(Ny), is states(Nt) X ylvar(P)l je. all the
possible associations of a state of N with a valuation v of the variables in
P. A state of Ny is denoted < S, v >.

e The set of accepting states of Ny, accept(Nx) is accept(Ny) x XlverP)l,

e The transition function of Ny, ds:, is drawn from the transition function of
Nr, dr, as follows:

— if o (S;, ) = S; is atransition of N with o € ¥, then dx(< S, v >
,a) =< S;,v >. In other words the transition has no effect on variable
bindings.
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— if 6r(S;, @) = S; is a transition of Ny with @z € V), then dx(<
Si, v >, a) =
< Sj,v+Qr:=a>
if v(@Qx) is undetermined and the binding
of @z with « is allowed by the constraints.
< Sjv> ify(Qz) =a.
is undefined otherwise.

Whenever an accepting state < S, > of Ny, is reached, the input trajectory
is accepted and the valuation v defines the instantiations of all the variables (recall
that, by definition, any word in a language defined by a mobility pattern contains
all the variables).

In order to check at run time whether an object o matches a mobility pattern, we
do not need to fully construct the automaton described above. Instead, we start with
a minimal representation, and build in a progressive way, according to the symbols
appended to the trajectory of o, the instantiation of the variables which potentially
leads to an accepting state. The initial representation of Ny, consists only of the
set of states of Nr, each associated with the empty valuation. By keeping all the
current states of Ny, associated with o, the following operations can be performed
whenever a new move m is appended to o.traj to test whether o enters, stays or
quits the query result:

1. If the transitions labeled with m lead o to at least one accepting state, then o
becomes part of the result of the query.

2. If the transitions labeled with m are such that o is no longer in at least one
accepting state, then it must be removed from the result of the query.

This yields a first, convenient, property for the evaluation of continuous queries:
the last move suffices to deliver the information needed to maintain a query result.
Here is an example that illustrates the process (more details can be found in the
long version).

Example 3 Consider the mobility pattern P = (a|b)*.@Qz.(a|b)™. Figure 2 shows
an NFA automaton Nt which recognizes the words of £(P), Sy being the initial
state and 54, S5 the final states.

Assume that one receives successively the following events for an object o: a,
a, b, b, c and a. Each row in the table of the figure 3 shows the states of the NFA
Ny after reading a symbol, as well as the possible valuations of variable @. The
accepting states are in bold font and mean that the trajectory belongs to the query
result set.
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Figure 2: An automaton for the mobility pattern (a] b) *. @. (a| b) *

Input | Reached states in N

a < S1,@&=1>

al 2] < S1,@&=1L>,< S3,@&=a>

a[2].b < So,@&X=1>,< S3,@&=b>, < S5,@x=a>

a[2].b[2] < Sy, @K=1L>,< S3,@&=0b >, < Ss,@Xx=a>, < S5,@x=b>
a[2].b[2].c < S3,&X=c¢>

a[2].b[2].c.a| < S4,@x=C>

Figure 3: Evaluation of a undeterministic query

Example 3 shows that we might have to maintain, during the analysis of an
input trajectory, several valuations associated to a same state. In the worst case one
might have |states(Nr)| x |2¥| simultaneous states to maintain, representing all
the possible instantiations of variables that lead to an accepting state. Consider
the following pattern:

Qx + Qy + Qz+

It is no difficult to find a word such that @z, @y and @z take all their possible
instantiations.

Depending on the application, the size of the database and the number of
queries, maintaining a large amount of informations to continuously evaluate a
query might become costly. In some cases we might therefore want to restrict the
expressive power of the language to obtain very low memory needs. Consider for
instance a web server providing a subscribe/publish mechanism over a (possibly
large) set of moving objects. In such a system, web users can register queries,
waiting for notification of the results. The performance of the system, and in par-
ticular its ability to serve a lot of queries under an intensive incoming of events,
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depends on the efficiency of the query result maintenance, and therefore on the
size of the data required to perform this maintenance. We define below a fragment
of the query language which meets the requirement of this kind of application.

3.3 Deterministic queries

The class of deterministic queries is such that, at any instant, there is only one pos-
sible instantiation for each variable of the mobility patterns. Deterministic queries
are defined by the following property:

Definition 6 (Deterministic queries) A query ¢(P,C is deterministic iff Vu,v €
UV, va&Xe V,u.@.v € L(P) = Ax € domy(@&), Aw € (XU V)", uaw €
L(P).

The intuition is that when it becomes possible to instantiate a variable during
the analysis of a trajectory, then this transition is the only possible choice. This
makes the binding of variables deterministic, and ensures that, for a given word,
there is only one (if any) possibility to instantiate a variable.

Example 4 The following examples illustrate deterministic queries.

e The query ¢(f . @. (c| d). @. f,0) is deterministic. Whenever a f sym-
bol has been read, the only possible choice is to bind @ to the symbol that
follows immediately f .

e Thequery q((alb)™.@Qz.(alb)™, 0) is non-deterministic since the words a. @. a. b
and a. b. @. b both belong to £(P). However ¢'((a|b)*.Qz.(alb)", {Qx #
a, Qz # b}) is deterministic.

Proposition 2 There exists an algorithm to check whether a query is deterministic.

Proof (sketch): Let ¢ be a query, P be a mobility pattern in ¢ and Nt a deterministic
automaton which recognizes £(P). Since Nt is deterministic, for any input string
we reach at most one state s of Nt. If one can find a state s with two transitions:
d(s,@&) = s" and d(s, ) = s”, with & € dom,(@), then it suffices to check
whether there exists two words X u and av which both permit to reach a final state
from s. If this is the case, then ¢ is not deterministic. O

We state the following properties of deterministic queries without the proofs
which can be found in the long version.

Proposition 3 Let ¢(P,C) be a deterministic query. Then, for each word w of ¥*,
there is at most one witness of w in L(P).

14



Input | Reached states in Ny, | Transitions not allowed

a < S;,@&X=1>
al 2] < S,&X=1> < S3,@=a> since a ¢ dom(Qx)
a[2].b < Sy, @&X=1> < S3,@&=b>since b & dom(Qx)
a[2].b[2] < Sy, @&X=1> < S3,@=b> since b ¢ dom(Qx)
a[2].b[2].c < S3,@&=c>
a[2].b[2].c.a| < S4,@x=Cc>

Figure 4: Evaluation of a deterministic query

Consider again the queries of Example 4. In the first example an accepted word
can only have one single witness, either f. @.d. @.f orf. @.c. @.f. In
the second example, with constraints { @ #a,@ #b}, any witness consists of two
words of {a,b}™, separated by a symbol distinct from a or b. It follows that if
q(P,C) is a deterministic query, the memory space required to check whether a
word matches ¢ is |P| + |var(P)|, where | P| represents the number of symbols
in P. Essentially, we need one FA for ¢, plus a storage for each variable, and we
can build an FA with a number of states equal to the number of symbols in the
expression.

When evaluating a continuous query, we need to maintain for each object o
the set of its current states, as well as the binding of variables and this suffices to
determine, at each GPS event, whether o enters, stays or quits the query result.

Example 5 Let us consider again the query ¢(P,C), with P = (a|b)".Qz.(a|b)™
and C = {Qz # a,@Qy # b}. The automaton remains identical (see Figure 2) but
the evaluation on input a[ 2] . b[ 2] . ¢. ais now as presented in the table of the
figure 4.

The properties of deterministic queries ensure that the required amount of
memory is independent from the size of X, and thus of the underlying partition
of space used to describe the trajectories of moving objects. This property might
be quite convenient if the space of interest is very large, or if the number of queries
to maintain is such that the memory usage becomes a problem.

4 Conclusion and further work
We described in this paper a new approach for querying a moving object database

by means of mobility patterns. Our proposal is based on a data model which allows
to retrieve objects whose trajectory matches a parameterized sequence of moves
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expressed with respect to a set of labeled zones. We investigated the applicability of
the model to continuous query evaluation, showed how to maintain incrementally
the result of a query, and identify a fragment of the query language such that the
amount of space required to maintain this result is very low.

A version of the language can easily be introduced as complement of a geometric-
based extension of SQL, as shown by the query samples proposed in Section 2. The
properties of the language make it a convenient candidate for mobile object track-
ing based on sequences patterns, and its simplicity leads to an easy implementation.

We are currently developing a prototype to assess the relevancy of this approach
in a web-based context where a lot of clients can register queries, receive an initial
result set, and wait for notification of updates to this result set.
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