
On-line Aggregation and Filtering of Pattern-based Queries

Cédric du Mouza
LAMSADE

Univ. Paris-Dauphine
Paris, France

cedric.dumouza@dauphine.fr

Philippe Rigaux
LAMSADE

Univ. Paris-Dauphine
Paris, France

philippe.rigaux@dauphine.fr

Michel Scholl
Lab. CEDRIC

CNAM
Paris, France

scholl@cnam.fr

Abstract

We consider an environment where a subscription sys-
tem continuously evaluates pattern-based requests over un-
bounded sequential data. We propose an extension of the
traditional pattern-matching techniques for efficiently han-
dling large sets of such continuous queries. This extension
relies on the introduction of variables in patterns in order to
augment their expressivity.

Based on this extended class of parameterized queries,
our main contributions are threefold. First, we define a
refinement relation based on variable relaxation. Second,
we use the semi-lattice structure of the set of parameterized
patterns for patterns aggregation and filtering. We propose
an on-line pattern aggregation algorithm so as to both re-
duce the cost of pattern-matching evaluation as well as to
filter out sequences that cannot match any of the patterns
in a subscription cluster. Finally we show, through analy-
sis and experiments, that our technique reduces quite effec-
tively the cost of the matching process.

1 Introduction

The management of continuous queries over data
streams has received much attention in the recent past [18,
11, 20]. It is motivated by the growing amount of data that
needs not to be stored in a classical, disk-based DBMS,
because it rather represents some constant evolution of
data values for some domain of interest. Most cited ar-
eas include traffic management, data feeds from sensor net-
works, emails messages or Web documents, etc. Since such
data streams can be seen as unbounded sequential strings,
queries naturally tend to take the form of patterns, and the
query evaluation process attempts to match these patterns
with the incoming sequence. We adopt the following clas-
sical assumptions: (i) queries – sometimes called subscrip-
tions – run continuously and deliver a notification as soon
as a matching occurs and (ii) the evaluation is done in one

pass, i.e., one cannot move backward on the stream. The
challenge, in this context, is to process a large number of
queries such that these constraints are satisfied. As a con-
crete example, this framework covers the continuous moni-
toring of a flows of emails coming from some Internet area,
searching for a (possibly very large) set of fragments de-
scribed by patterns.

The subscription language considered in the present pa-
per is an extension of traditional patterns with variables, as
proposed in [10]. Basically, such parameterized patterns
are sequences mixing constant symbols and variables, the
latter acting as “placeholders” which can be replaced by any
constant. During a matching attempt at a given position of
the input stream, a pattern variable is bound to the value of
its corresponding symbol on the string and keeps this con-
stant value until the attempt fails or succeeds.

The language is more expressive and concise than stan-
dard string matching. In [10] we showed that this expres-
siveness comes without an important computational over-
head by describing an extension of the classical pattern-
matching algorithm of Knuth, Moris and Pratt [14] which
runs in linear time. This extended algorithm, denoted
KMPvar, is used as a building block in what follows. The
present paper considers specifically the context of scalable
data streams monitoring, and makes the following new con-
tributions:

1. we define a refinement relation over the set of param-
eterized patterns, and provide simple algorithms for
testing whether a pattern refines another, and for com-
puting the least upper bound (lub) of a group of pat-
terns;

2. we propose a cost model and an incremental aggrega-
tion algorithm in order to maintain a structure of the set
of subscriptions that minimizes the continuous evalua-
tion cost;

3. finally we provide a set of experimental results which
show the gain of the technique.

The main idea behind our work is to exploit the refine-
ment between patterns so as to avoid useless computations.
Basically, if a pattern P2 refines a pattern P1, and a match-
ing attempt with P1 fails, there is no need to carry out the
evaluation at the same position for P2. This can be gener-
alized to a group of patterns P = {P1, P2, . . . , Pn}. If we
can find an aggregate pattern P such that any sequence that
matches some Pi also matches P , then one should always
make an initial attempt to match P against the stream. If
this initial attempt fails, this filters out any further compu-
tation for the patterns in P .

The rest of the paper presents first (Section 2) an
overview of the approach, based on informal examples. We
provide the model, including the formalization of the re-
finement relation and the decision algorithms, in Section 3.
Section 4 gives the clustering algorithm and Section 5 de-
scribes our experimental setting and results. Related work
is presented in Section 6 and Section 7 concludes the paper.
Due to space restriction, the proofs and some algorithms
are omitted and can be found in the long version available at
http://www.lamsade.dauphine.fr/∼dumouza/ssdbm06 long.pdf.

2 Approach overview

This section provides a presentation of the paper’s main
ideas. It covers successively the role of patterns, the re-
finement relation and presents the intuition behind our al-
gorithms.

2.1 Parameterized patterns

A pattern is a sequence made either of constant symbols,
denoted a, b, c, or variables denoted @x, @y, @z. For clar-
ity we separate the components of a pattern with the ’.’ con-
catenation operator. A sequence S matches a pattern P at
some position l if there exists some mapping between P and
a subsequence of S starting at l. Some examples follow:

1. a.b.c is a variable-free pattern which (as expected)
is matched by a sequence containing the substring
a.b.c;

2. a.@x.c is a pattern which is matched by any se-
quence containing a substring of size 3, beginning with
a and ending with c;

3. the pattern a.@x.b.@x is matched by any subse-
quence of four symbols such that a and b are respec-
tively in first and third position, while a third symbol,
whatever its value, can be found both in positions 2
and 4;

Clearly parameterized patterns extend the expressivity of
variable-free sequential patterns. They also allow to express
concisely some search operations which would otherwise
require long and tedious regular expressions. From a com-
putational point of view, parameterized patterns constitute a
convenient trade-off because they preserve a low space and
time complexity (this would not be the case with regular
expressions extended with variables, see [9]).

In [10], we proposed a matching algorithm which checks
each symbol of the input sequence only once and requires
a memory space proportional to the number of variables
in the pattern. Our technique, denoted KMPvar, is essen-
tially an extension of the classical pattern-matching algo-
rithm of Knuth, Morris and Pratt [14], denoted KMP. When
a KMPvar automaton runs over a sequence S, the number
of comparisons needed to find the matching subsequences
is linear in the number of symbols read. This constitutes a
quite effective tool which is used as a building block in our
following multi-patterns evaluation framework.

2.2 Patterns refinement

A pattern P2 is a refinement of a pattern P1 if any se-
quence matching P2 at position l matches also P1 at l. Syn-
tactically, refining a pattern can be seen as tighter matching
constraints. There exists three possible ways of doing so: by
simply adding some constant symbols to a pattern’s suffix,
by replacing a variable with a constant symbol, and finally
by linking the variables. Some examples follow.

P1 = b.@x.a is refined by the pattern P2 = b.@x.a.c,
since, obviously, any sequence that matches P2 at some po-
sition l also matches P1. Generally, if P1 is a prefix of P2,
then P2 is a refinement of P1. This is a trivial case which
holds for patterns with or without variables.

The presence of variables gives rise to some more sub-
tle cases. First, replacing a variable by a constant symbol
strongly restricts the possible matchings because a variable
captures the whole alphabet of symbols. For instance the
pattern P0 = @x.@y.a is refined by P1 = b.@x.a. The
repetition of variables is meaningful because all the occur-
rences of a same variable must be instantiated to the same
value during a matching attempt. Therefore P1 is also re-
fined by P3 = b.@x.a.@x, because the repeated occurrence
of @x in P3 constitutes a constraint which does not hold for
P1.

Variable names are not significant, hence patterns are
equivalent up to a renaming of variables, e.g., b.@x.a ≡
b.@y.a. Note also that adding at the end of a pattern
P a variable which does not already appear in P yields
an equivalent pattern, i.e., P1 = b.@x.a ≡ b.@x.a.@y.
Indeed, since @y can be bound to any symbol, a se-
quence that matches b.@x.a matches b.@x.a.@y as well,

and conversely1. The refinement relation holds on equiva-
lent classes of patterns, which are formally defined in the
next section.

P1 = b.@x.a

P3 = b.@x.a.@xP2 = b.@x.a.c

P4 = b.c.a.c

Figure 1. The refinement relation

Finally it is worth mentioning that a pattern can be the
refinement of several other patterns. For instance P4 =
b.c.a.c is generalized both by P2 and P3 and, by transitivity,
by P1 and P0. Figure 1 shows the graph of the refinement
relation for the set of patterns {P1, P2, P3, P4} given as ex-
ample above.

We can exploit this relation as follows: if a sequence
S does not match the pattern P1, it cannot match P2, P3

or P4. Therefore, one initially runs a KMPvar automaton
only against P1. If, and only if, the matching is successful
at a given position l of the sequence, a KMPvar evaluation
becomes active for both P2 and P3. Finally, if this latter
evaluation is successful for either P2 or P3, the matching
with P4 has to be considered. It is expected that this strat-
egy saves a lot of computations, because matching attempts
with P1 will fail for most of the positions of the sequence
S, thereby avoiding many useless comparisons with all the
patterns that refine P1.

2.3 Patterns aggregation and filtering

As suggested by the previous example, the graph of the
refinement relation is a directed acyclic graph (actually it
is easy to show that the graph is an upper semi-lattice). In
principle it would be possible to maintain the transitive re-
duction of the graph but its construction turns out to be too
costly2. Moreover this is not necessary since it is sufficient
to maintain one and only one path from the root to any node.
This guarantees that any pattern can be reached, if needed.

Our goal is thus to construct a spanning tree of the re-
finement graph such that the average evaluation cost is min-
imized. Intuitively, the minimization implies choosing the
most filtering paths. Let us look at Figure 2, assuming an al-
phabet with only four symbols a, b, c and d. The pattern set
is {@x, a.@x.b, @x.c, a.b.c.d}. The transitive reduction of

1We consider unbounded sequences, thus the length of a pattern is never
an issue.

2The computation of the transitive reduction runs in O(n) for a graph
of size n, for each node insertion [3]. Therefore one might, in the worst
case, need to update all the nodes of the graph when a new pattern is re-
ceived.

the graph is shown at the top of the figure, and there exists
two possible spanning trees, shown in the bottom part.

In order to decide which solution minimizes the evalua-
tion cost, we must consider the filtering rate of each node.
Clearly the pattern @x is matched by any sequence, and its
filtering rate is 1. One can estimate that 1

4
of the match-

ing attempts at a given position l against the pattern @x.c
will be successful, because, assuming a uniform distribu-
tion, this is the probability of finding the symbol c at posi-
tion l + 1. Similarly, the filtering rate of the pattern a.@x.b
can be estimated to be 1

4
× 1 × 1

4
.

a.@x.b

a.c.b.d

1 1

1
16

@x.c

@x

a.@x.b

1
4

11

@x.c

a.c.b.d

@x

@x.ca.@x.b

1 1

1
16

1
4

a.c.b.d

@x
First
choice Second

choice

Figure 2. Issues in patterns tree construction

We assign to each out-edge of a node N a weight equal
to the filtering rate of N . The problem is to find the mini-
mum spanning tree, i.e., the connected subgraph containing
all the nodes such that the sum of the edge weights if min-
imal [2]. From our application point of view, this means
that for each pattern P one keeps the path to P which is the
most filtering one in the graph of the refinement relation. In
the case of Figure 2, the bottom left choice is the best one.
Intuitively, only 1

16
of the matching attempts will have to

evaluate the pattern a.c.b.d, instead of 1
4

if the solution
of the right part were adopted.

As usual with publish/subscribe applications, we assume
that the subscriptions (patterns) may be added or removed
dynamically. We must therefore construct and maintain in-
crementally the structure. However, maintaining incremen-
tally the optimal solution results in a very significant cost (in
the worst case, the whole tree must be reconstructed). We
propose an algorithm which delivers an approximate solu-
tion and show through experiments that it still provides an
effective reduction of the overall evaluation cost with re-
spect to the trivial solution that evaluates separately each of
the submitted patterns.

2.4 Multi-pattern evaluation

The evaluation mechanism associates one KMPvar au-
tomaton with each pattern in the pattern tree. These au-

tomata may be active or inactive, according to the following
rules:

1. Initially the KMPvar automaton Aroot associated with
the root is active; others automata are inactive.

2. When a matching is found for an automaton AP , all
the inactive automata associated with the sons of P
become active; AP itself becomes inactive.

3. When a matching fails for some automaton AP , its
parent becomes active and AP becomes inactive.

P1 = @x

P3 = @x.cP2 = a.@x.b

P5 = a.c.b.d P6 = a.c.b.eP4 = a.@x.b.@x.e

Figure 3. Evaluation over a pattern tree

Consider the tree of Fig. 3 and the sequence
a.c.b.c.a.d.b · · · . Each pattern Pi is associated with an au-
tomaton APi

. Initially the automaton AP1
is the only one

active. Figure 4 illustrates the successive activation status.
The first symbol of the sequence matches P1. Hence

AP2
and AP3

become active in turn (Figure 4(b)). The
next symbol is c: a matching is found with P3. AP3

be-
comes inactive, while the automata of its sons become ac-
tive (Figure 4(c)). Let us now focus on the subtree rooted
at P2. When the third symbol, b, is read from the sequence,
a matching is found. AP2

becomes inactive, AP4
, AP5

and
AP6

become active (Figure 4(d)).
When the fourth symbol, c, is received, the matching at-

tempt fails for P5 and P6 (Figure 4(e)). The evaluation pro-
ceeds then as follows:

• P4 is matched by the sequence; notifications are sent
and the automaton AP4

remains active;

• AP5
and AP6

become inactive but AP2
, their common

parent, becomes active.

Finally after receiving a.d.b, AP2
reaches a successful

state and activates again AP5
and AP6

(Figure 4(f)). In that
case a mismatch occurs at once because the second symbol
is d whereas both AP5

and AP6
expect a c. Actually, when

several sibling patterns fail, their common prefix is repre-
sented by their parent. Making active the parent is a way to
“factorize” the query evaluation for this prefix, but this does
not guarantee that any of its children will succeed.

d) seq. read: a.c.b

P3

P1

P2

P1

P2 P3

f) seq. read: a.c.b.c.a.d.b

P1

P3P2

e) seq. read: a.c.b.c

c) seq. read: a.c

P2

P1

P3

a) seq. read:

P2

P1

P3

b) seq. read: a

P2

P1

P3

Figure 4. Active patterns during the evalua-
tion of a.c.b.c.a.d.b

3 The Model

We first recall some basic definitions from [10], and then
provide the semantic and syntactic characterization of the
refinement relation.

3.1 Preliminaries

We assume a finite set of constant symbols Σ and a
countable set of variables V , with Σ ∩ V = ∅. A se-
quence is a word in Σ+, a pattern is a word in (Σ ∪ V)+.
The interpretation of a pattern P without variable is triv-
ial: a sequence S matches a pattern P at position l if
P = S[l].S[l + 1]. · · · .S[l + |P | − 1].

Variables are useful to capture more general sequences
where symbols are not explicitly assigned to specific sym-
bols. The interpretation of patterns (with variables) is an ex-
tension of the subsequence matching semantics previously
given: a sequence S matches a pattern P (at position l) if
one can substitute each variable in P by a symbol from Σ,
such that the resulting pattern is a subsequence of S starting
at l. For instance the subsequence S = c.b.c.e.f matches
the pattern P = c.@x.c.@y.f at position l = 0.

Definition 1 (Valuation). A valuation ν is a finite set of

the form {x1/t1, x2/t2, . . . , xn/tn} where xi ∈ V , i =
1, . . . , n, and each ti is a symbol in Σ.

ν(P) denotes the pattern obtained from P by replacing,
for each xi/ti ∈ ν, each occurrence of xi in P by ti. If, for
instance, P = b.@x.e.@y.f and ν = {@x/c, @y/e},
then ν(P) = b.c.e.e.f. In the following var(P) de-
notes the set of variables in P . If all the variables in P are
bound by a valuation ν, then ν(P) is a word in Σ+. Hence
the definition:

Definition 2 (Interpretation of a pattern). A sequence S
matches a pattern P at position l iff there exists a valuation
ν such that ν(P) is a subsequence of S starting at l.

Two patterns may be semantically equivalent, yet syn-
tactically different. For instance the patterns P1 =
@z.a.@x.b.@y.@z and P2 = @y.a.@z.b.@x.@y are equiv-
alent up to a permutation in V . A pattern P is also equiva-
lent to P.@x, with @x ∈ V\var(P).

We define the marking of a pattern P as the pattern where
each variable of V is replaced by @x marked by a subscript
over N, representing the order of the variables in P . A pat-
tern P is normalized iff the following conditions hold: (i)
P = marking(P), and (ii) if P is of the form P ′.@x, then
@x ∈ var(P ′).

It is straightforward that for any pattern P , there exists
a unique equivalent normalized pattern. For instance the
normalized pattern of @y.c.@x.@y.@z is @x1.c.@x2.@x1.
In the following we shall limit our attention to normalized
patterns, seen as delegate of their equivalent class.

3.2 Pattern refinement

A pattern P2 refines a pattern P1 iff, for each position l
such that S matches P2, S matches P1 as well. This means
first that |P1| ≤ |P2|, and second that there exists two valu-
ations ν1 and ν2 such that both ν1(P1) and ν2(P2) are sub-
sequences of S starting at l. Hence the definition.

Definition 3 (Refinement relation on patterns). A pattern
P2 refines a pattern P1, denoted P2 � P1, iff for each val-
uation ν2, there exists a valuation ν1 such that ν1(P1) is a
prefix of ν2(P2).

For instance the pattern P1 = a.@x1.b is refined by
the pattern P2 = a.@x1.b.@x2.c, because for any valua-
tion ν2, ν2(P2) is of the form a.ν2(@x1).b.ν2(@x2).c.
Any valuation ν1 satisfying ν1(@x1) = ν2(@x1) is such
that ν1(P1) is a prefix of ν2(P2). P1 is also refined by
P3 = a.c.b because for any ν2, ν1(P1) = ν2(P2) as soon as
ν1(@x1) = c.

It follows from the definition that, if P2 � P1, as long as
one cannot find a valuation such that S matches P1, there is
no hope to find one such that S matches P2.

There is a simple syntactic characterization of the refine-
ment relation. Given two (normalized) patterns P1 and P2,
it suffices to carry out a comparison of the patterns’ sym-
bols from left to right, and to check that each symbol from
P1 is a “relaxation” of the corresponding symbol of P2, ac-
cording to the following rules:

1. a constant symbol can be relaxed to itself or to a vari-
able;

2. a variable can be relaxed to another variable whose
subscript is greater or equal.

Consider again P1 = a.@x1.b and P2 = a.c.b Then, a
can be relaxed to a, c to @x1 and b to b: P2 � P1. The
second condition ensures that no problems comes from the
multiple occurrences of a same variable. Take for instance
P1 = a.@x1.b.@x1 and P2 = a.@x1.b.@x2. The variable
@x2 in P2 cannot be relaxed to the second occurrence of
@x1 in P1, because this would break the restriction on the
subscripts monotonicity. However the second occurrence of
@x1 in P1 can be relaxed to @x2. Indeed, in that case, P1 �

P2. The algorithm CONTAIN, given in the long version,
determines whether P2 � P1 in linear time.

It is easily verified that � is a partial order on (Σ ∪ V)∗.
Furthermore, it can be shown that two patterns have a
unique minimal common ancestor with respect to relation
�.

Proposition 1. The set of patterns over (Σ∪V) ordered by
� is an upper semi-lattice.

The following algorithm computes the least upper bound
(lub) of two patterns. Function NEWVAR returns a variable
name that has not yet been used. SUBST(d1, d2, r) is a set of
substitutions. A triplet (d1, d2, r) associates a pair of sym-
bols (d1, d2) from, respectively, P1 and P2, with a symbol
r in the lub.

LUB(P1[0 . . . n1], P2[0 . . . n2])
Input: two patterns P1 and P2

Output: the lub of P1 and P2

begin
SUBST := ∅
n := min(n1, n2) // the length of the lub is ≤ to |P1| and |P2|
for (k := 0 to n) do

if (∃x, P1[k], P2[k], x) ∈ SUBST) then
lub[k] := x

else
if ((P1[k], P2[k]) ∈ Σ2 and P1[k] = P2[k]) then

x := P1[k]
else

x := NEWVAR()
endif
SUBST := SUBST ∪ {(P1[k], P2[k], x)}

endif
lub[k] := x

endfor
return NORMALIZE(lub)

end

The final normalization is necessary to remove the use-
less variables which may appear in the suffix.

4 Evaluation

We propose now an evaluation strategy that takes advan-
tage of the refinement relation when a large number of pat-
terns must be evaluated simultaneaously over an input se-
quence. Recall that we do not need to represent the whole
graph of the refinement relation. Instead our goal is to con-
struct a spanning tree that minimizes the overall evaluation
cost. Second, patterns can be added or removed dynami-
cally, from the set of subscriptions. We must therefore de-
sign an incremental algorithm to maintaining the tree.

A last issue relates to how and when we can cluster pat-
terns which are close from one another, and whether we
must materialize the lub of this clusters and put it in the
tree. Note that by doing so, we introduce some “artificial”
nodes which have not been subscribed by any user. This is
justified because a lub, if it is close enough from the patterns
that it covers, is a mean to factorize the computations that
would otherwise be carried out independentlty. The sim-
ple cost model given below shows that adding lubs in the
patterns tree it is almost always beneficial.

4.1 Cost model

In order to estimate the gain obtained when using the lub
of a set of patterns as a filter we first define the filtering rate
of a pattern. It estimates the percentage of comparisons that
lead to a successful matching during pattern evaluation. We
assume a uniform distribution of symbols from Σ in a se-
quence (our model does not depend on this assumption, but
a more precise distribution law is application-dependent).
Each constant symbol can be found with probability 1

|Σ| . As
far as variables are concerned, the first occurrence of a vari-
able has no impact on the filtering rate because any symbol
will match. All the other occurrences must be bound to the
same value in Σ. In summary the filtering rate is estimated
by the following inductive formula:

• if P = α, then τ(P) =

{

1 if α ∈ V
1
|Σ| if α ∈ Σ

• if P = P ′.α, then

τ(P) =

{

τ(P ′) × 1
|Σ| if α ∈ (V ∩ var(P)) ∪ Σ

τ(P ′) if α ∈ V\var(P ′)

If P is a pattern of length n with k distinct variables, its
filtering rate is therefore estimated to be

τ(P) =
1

|Σ|n−k

We can now measure the gain of adding the lub for a
subset of patterns in the tree. Let P1, . . . , Pm be a set of
patterns and let P = lub(P1, . . . , Pm), with n = |P |. The
number of comparisons when testing n symbols of the se-
quence can be estimated as:

Costcl = (1 − τ(P)) × n + τ(P) × (n + m × n) (1)

This cost is an upper bound: when reading n symbols from
the sequence, there is a probability τ(P) that the sequence
matches the pattern, in which case we must also scan its
children. In the worst case, all the n symbols have to be
tested for each child, hence m × n comparisons. The cost
of an independent evaluation of each pattern (without using
P as a filter), is

Costmulti = m × n (2)

The difference between the two solutions depends both
on the filtering rate (the smaller the better), and on the num-
ber of children (the higher the better). Using the lub as a
filter saves comparisons when Costcl < Costmulti, i.e.,
when

τ(P) <
m − 1

m
⇒ k < n −

log (m) − log (m − 1)

log |Σ|
(3)

where k denotes the number of free variables in P .
Let us apply the cost model to a DNA application. The

size of the vocabulary is 4. Assume we have two patterns
P1 and P2 whose lub is Plub, with |Plub| = 8. We then save
comparisons if τ(Plub) < 1/2. Given that τ(P) = 1

|Σ|n−k ,
there is a gain if the number of free variables in |Plub| is
k < 8 − log 2−log 1

log 4
= 8 − 1

2
. So the presence of only one

constant symbol is sufficient to obtain a (statistical) gain.
The formula (3) is sufficient to conclude that in practice

the evaluation cost is reduced by using the lub of two pat-
terns for any alphabet whose size is greater than 2, as soon
as the lub contains at least one constant symbol (or, equiva-
lently, a variable with two occurrences). The construction of
the patterns tree, presented below, systematically attempts
to add new lubs in the tree during the insertion of a new
pattern.

4.2 The pattern tree

The algorithm constructs incrementally a tree T of pat-
terns. The insertion of a new pattern P is performed in two
steps:

@x1

@x1.a

@x1

@x1.ab.@x1.c

b.a.a

d.a.d

b.d.c.dc.a.@x1.d b.a.a b.c.c b.@x1.c.@x1

d.a.d

c.a.@x1.d

b.d.c.d b.a.c.a

b.c.c

b.@x1.c

Figure 5. Insertion of the pattern b.c.a

• Candidate parent selection.
A node N in T is a candidate parent for P if the fol-
lowing conditions hold: (i) P � N , and (ii) for each
child N ′ of N , P 6 N ′, i.e., P is strictly contained in
N but does not contain any child of N .

The algorithm performs a depth-first search to seek for
a candidate parent. Starting from the root, one chooses
at each level the most selective child which contains
P . When such a child no longer exists the candidate
parent is found. Note that this is an heuristic which
avoids to follow an unbounded number of paths in the
tree, but does not guarantee that the “best” candidate
parent (i.e., the most selective one) is found.

• Lub selection.
Once the candidate parent N is found, the second step
inserts P as a child or grandchild of N as follows.
First, for each child N ′ of N , one computes lub(P, N ′)
and keeps only those lubs which are strictly contained
in N . Now:

1. if at least one such lub L = lub(P, N ′) has been
found, the most selective one is chosen, and a
new subtree L(P, N ′) is inserted under N ;

2. else P is inserted as a child of N .

Let us take as an example the left tree of Figure 5. The
pattern P = b.a.c.a must be inserted. First one checks P
against the root node. Since P � @x1, we consider the two
children of the root. P is strictly contained in both @x1.a
and b.@x1.c which constitute therefore two possible paths.
Since τ(@x1.a) = 1

|Σ| and τ(b.@x1.c) = 1
|Σ|2 , the second

is chosen. None of its children contain P , therefore b.@x1.c
is the candidate parent.

Next one determines the lubs of P with each child of
b.@x1.c, and keeps those which are strictly contained in
b.@x1.c. For instance lub(b.a.c.a, b.c.c) = b.@x1.c, so it
is not kept. However lub(b.a.c.a, b.d.c.d) = b.@x1.c.@x1

is a candidate lub. One finally obtains the tree of the right
part of Figure 5.

It may happen that several equivalent choices are pos-
sible. Assume for instance that the pattern P ′ = b.a.d
is inserted. The candidate parent is @x1.a, and one must

choose between L1 = lub(P ′, d.a.d) = @x1.a.d and L2 =
lub(P ′, b.a.a) = b.a. Both have the same filtering rate.
The tie-breaking procedure compares the prefixes of length
l < min(|L1|, |L2|), starting with l = 1. As soon as one of
the prefixes is found to be more selective than the other one,
the corresponding lub is chosen. The rationale is that a mis-
match will occur more quickly, and that less comparisons
are necessary. In our example, since @x1 is a less filtering
prefix than b we create the lub lub(P ′, b.a.a) = b.a.@x1.

The insertion algorithm is summarized below.

INSERT(P,T)
Input: a pattern P and a pattern tree T

Output: the new tree after the insertion
begin

// First search the candidate parent using a depth-first search
parent := CANDIDATEPARENT(P, T.root)
// Second step: computes the candidate lubs
S := ∅
for each Pj ∈ children(Ni) do

if LUB(P, Pj) � Ni then S = S ∪ {Pj}
endfor
if S = ∅ then // No candidate lub. P is a child of parent

parent.children := parent.children ∪ {P}
else // Add the lub of the two patterns

Choose a node N in S
Add the subtree LUB(N, P)(N, P) to parent;
Remove N from parent’s children;

endif
return T

end

The following special cases are not represented in the
algorithm: (i) a pattern P is already represented in T and
(ii) the lub of P and a node N is P itself. The extension is
straightforward.

The insertion algorithm follows a single path from the
root to a node in the pattern tree. At each level, a compari-
son must be carried out with each children. Its complexity
is determined by the following properties.

Proposition 2. The depth of a pattern tree T is bound by
l + 1 where l denotes the size of the longest pattern in T .
Moreover each internal node N of the tree has at most |Σ|×
(l− k) children, where k is the number of constant symbols
or variable repetitions in N .

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 100 1000 10000

nu
m

be
r o

f n
od

es

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

 0

 2

 4

 6

 8

 10

 12

 10 100 1000 10000

he
ig

ht
 o

f t
he

 tr
ee

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000

av
er

ag
e

nu
m

be
r o

f c
hi

ld
re

n

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

 m
ax

im
al

 n
um

be
r o

f c
hi

ld
re

n

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100 1000 10000

ra
tio

 tr
ee

 /
na

iv
e

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

 0

 100

 200

 300

 400

 500

 600

 10 100 1000 10000

nu
m

be
r o

f a
ct

iv
e

no
de

s

number of patterns

alphabet’s size: 4
alphabet’s size: 12
alphabet’s size: 26

Figure 6. Tree properties and evaluation w.r.t. number of patterns

Pattern removal: a subscription may have to be removed
either explicitely (users’ choice) or implicitly (timeout).
Removing a pattern P from a patterns tree is a trivial op-
eration. Two cases occur:

1. If P has more than one sibling, one just removes P
from its parent’s children, and then replaces this parent
by the lub of the siblings of P .

2. Else, if P has only one sibling P ′, P ′ replaces their
common parent.

5 Experiments

The structure has been implemented in Java on a Pentium
PIV processor (3000MHz) with 1024Mo of main memory.
We compare our solution to the naı̈ve approach which eval-
uates independently each pattern. We use synthetic data,
both for patterns and sequence. The evaluation cost, mea-
sured as the number of symbols comparisons, is investi-
gated with respect to the following parameters: (1) the num-
ber of submitted patterns, (2) the size of the alphabet, (3) the
length of the patterns.

Figure 6 summarizes some properties of the pattern tree
with respect to several alphabet sizes, for a number of pat-
terns that vary from 1 to 10,000. The top-left graph shows
that the size of the alphabet does not affect the total number
of nodes when the number of patterns is less than 1,000 be-
cause of the low probability to draw duplicate patterns. The
impact of the alphabet size on the number of nodes becomes
significant for 1,000 patterns and more, and can be directly

related to the probability of adding an already existing pat-
tern, which is of course higher for small alphabets.

As expected, with a larger alphabet, the internal nodes
have more children. The size of the alphabet has an oppo-
site effect on the height of the tree. The reason is essentially
that internal nodes contain more variables when the alpha-
bet’s size is large, and therefore capture more patterns. The
probability of having two “close” patterns tends to be low,
and prevents the generation of precise lubs. When a new
pattern is introduced, if the size of the alphabet is large,
there is a high probability to insert it as a child of an exist-
ing node, rather than creating a new internal node. These
differences grow w.r.t. the number of patterns.

Figure 6 also illustrates the benefit of an evaluation based
on our structure compared to the independent processing
of each patterns. The higher the number of patterns, the
more important the gain. The ratio between the number of
comparisons for the two solutions is 0.55 for 10 patterns,
reaches 0.35 for 100 patterns, 0.15 for 1.000 and 0.05 for
10,000. This ratio hardly depends on the size of the alpha-
bet, even if a small alphabet gives slightly better results over
a large number of patterns, for reasons presented above.

On the other hand, the number of simultaneously active
automata is strongly related to the properties of the trees,
and is therefore influenced by the alphabet size. Two of
these properties, namely the filtering rate of an internal node
and its number of children, have a divergent impact. A
shown by the cost model, the filtering rate of internal nodes
tends to be higher for large alphabets, while the number of
children grows (on average) for each node. The latter fac-

tor explains the relative importance of active automata for
large alphabets, since each time a matching is found for an
internal node, all its children must be activated.

Next we study the influence of the patterns’ length (Fig-
ure 7), the total number of patterns being fixed to 10,000
patterns. For a small alphabet, this parameter strongly im-
pacts the number of nodes, the height of the tree and the
average number of children. This is due to the low number
of possible patterns. For instance with a pattern length of
4 and a size alphabet of 4, only 44 = 256 distinct patterns
are possible, whereas this grows up to 412 = 16, 777, 216
possibilities when the length is 12.

The same figure also shows that higher patterns’ length
generate more nodes in the pattern tree. The probability of
discovering “close” patterns decreases with the length of the
patterns. Nonetheless the size of the alphabet has a diver-
gent impact since with a large alphabet, even short patterns
may differ a lot. So to sum up:

• long patterns with a small alphabet increase the proba-
bility to present the same symbol at the same position,
and therefore to obtain good lubs;

• short patterns with large alphabet quickly provide lubs
that present only one constant symbol, and so that cap-
ture more patterns.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

nu
m

be
r o

f c
om

pa
ris

on
s

size of the alphabet

size 4 size 12 size 26

length 4
length 8

length 12

Figure 8. Comparisons w.r.t. the length

Finally Figure 8 shows that for an alphabet with 12 sym-
bols, we obtain better results when the length of the patterns
is lower than 8, whereas with a larger alphabet, larger pat-
terns yield a more efficient evaluation.

6 Related work

The present work relates to data streams man-
agement [4], publish-subscribe systems [8], sequence
databases [13, 17] and approximate string searching [1, 22,
16, 23].

Several papers present algorithms for querying and min-
ing similar subsequences, as well as event detection from

time series data (i.e., sequences of real numbers). In [19]
the authors describe a fast mining algorithm for retrieving
spatio-temporal periodic patterns for objects moving on a
partitioned map. In [23], the authors present an algorithm
that supports the retrieval of sequences matching a regu-
lar expression, with possibly errors. All these approaches
are significantly different from ours. In particular none of
these algorithms handle the concept of parameterized pat-
tern, featuring variables bound to a single value during a
matching attempt. In the approximate string matching area,
the pattern-matching model which is closest to ours is pre-
sented in [1] which considers patterns with variables that
stand for substrings and proves that the problem of finding
the longest minimal pattern that subsumes a set of strings is
NP-hard. Since we assume that a variable stands for a single
symbol, we avoid this complexity. Our language, although
less general, leads to a very efficient algorithm.

Several papers deal with the problem of multi-patterns
matching [12, 5, 7, 15]. The authors of [5] propose an in-
cremental algorithm which builds a multi-pattern tree. The
relaxation does not rely on variables, but on a “wildcard”
character. We believe that our refinement relation is more
precise. Moreover their evaluation process is quite differ-
ent for ours. The multi-pattern evaluation presented in [7]
relies on two deterministic automata, one built on the pre-
fix of the set of patterns and the other on the reverse pat-
terns. They use the second automaton at a given position
until a mismatch occurs, and use the first one to determine
the “shift” on the sequence. The technique is designed for
simple patterns without variables. Finally [15] describes
an algorithm that detects system intrusion, based on multi-
patterns matching. The authors propose two filtering algo-
rithms, one based on automata and the other one based on
the comparison of the number of occurrences of the sym-
bols between patterns and sequence.

7 Conclusion

This paper proposes a framework for the continuous
evaluation of a potentially large set of patterns over un-
bounded sequences. The introduction of variables in pat-
terns gives rise to a refinement relation based on constraint
relaxation. We provide a simple formal model that shows
how this relation can be exploited to enable a multiple pat-
tern evaluation mechanism. Our analytical and experimen-
tal results confirm the gain. Further, we believe that the
ideas of the present work could be extended by applying
our variable-relaxation mechanism to the nodes of to tree-
structured documents (e.g., HTML or XML) [6, 21]. We
plan to investigate this new class of pattern-matching appli-
cation in the future.

 0

 5000

 10000

 15000

 20000

nu
m

be
r o

f n
od

es

size of the alphabet

size 4 size 12 size 26

length 4
length 8

length 12

 0

 2

 4

 6

 8

 10

 12

he
ig

ht
 o

f t
he

 tr
ee

size of the alphabet

size 4 size 12 size 26

length 4
length 8

length 12

 2

 2.5

 3

 3.5

 4

 4.5

 5

av
er

ag
e

nu
m

be
r o

f c
hi

ld
re

n

size of the alphabet

size 4 size 12 size 26

length 4
length 8

length 12

Figure 7. Tree properties w.r.t. the patterns’ length

References

[1] D. Angluin. Finding Patterns Common to a Set of Strings.
Journal of Computer and System Sciences, 21(1):46–62,
1980.

[2] M. J. Atallah and S. Fox, editors. Algorithms and Theory of
Computation Handbook. CRC Press, Inc., 1998.

[3] A.V.Aho, M.R.Garey, and J.D.Ullman. The Transitive Re-
duction of a Directed Graph. SIAM Society for Industrial
and Applied Mathematics, 1:131–137, 1972.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems. In Proc. ACM
Symp. on Principles of Database Systems (PODS), pages 1–
16, 2002.

[5] J. Cai, R. Paige, and R. E. Tarjan. More Efficient Bottom-
Up Multi-Pattern Matching in Trees. Theoretical Computer
Science, 106(1):21–60, 1992.

[6] C. Y. Chan, W. Fan, P. Felber, M. N. Garofalakis, and R. Ras-
togi. Tree Pattern Aggregation for Scalable XML Data Dis-
semination. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB), pages 826–837, 2002.

[7] M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq,
W. Plandowski, and W. Rytter. Fast Practical Multi-Pattern
Matching. Information Processing Letters, 71(3-4):107–113,
1999.

[8] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards Expressive Publish/Subscribe Systems.
In Proc. Intl. Conf. on Extending Data Base Technology
(EDBT), 2006.

[9] C. du Mouza and P. Rigaux. Mobility Patterns. GeoInfor-
matica, 9(4), 2005.

[10] C. du Mouza, P. Rigaux, and M. Scholl. Efficient evalua-
tion of parameterized pattern queries. In Proc. Intl. Conf.
on Information and Knowledge Management (CIKM), pages
728–735, 2005.

[11] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe. In Proc. ACM Symp. on the
Management of Data (SIGMOD), 2001.

[12] C. Forgy. Rete: A Fast Algorithm for the Many Pat-
terns/Many Objects Match Problem. Artif. Intell., 19(1):17–
37, 1982.

[13] V. Guralnik and J. Srivastava. Event detection from time
series data. In Proc. Intl. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 33–42, 1999.

[14] D. Knuth, J. Morris, and V. Pratt. Fast Pattern Matching in
Strings. SIAM J. Computing, 6(2):323–350, 1977.

[15] J. Kuri and G. Navarro. Fast Multipattern Search Algorithms
for Intrusion Detection. In String Processing and Informa-
tion Retrieval (SPIRE), pages 169–180, 2000.

[16] G. M. Landau and U. Vishkin. Fast String Matching with k
Differences. J. Comput. Syst. Sci., 37(1):63–78, 1988.

[17] Y.-N. Law, H. Wang, and C. Zaniolo. Query Languages and
Data Models for Database Sequences and Data Streams. In
Proc. Intl. Conf. on Very Large Data Bases (VLDB), pages
492–503, 2004.

[18] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously Adaptive Continuous Queries over Streams. In
Proc. ACM Symp. on the Management of Data (SIGMOD),
2002.

[19] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, indexing, and query-
ing historical spatiotemporal data. In Proc. Intl. Conf. on
Knowledge Discovery and Data Mining (KDD), pages 236–
245, 2004.

[20] C. Olston, J. Jiang, and J. Widom. Adaptive Filters for Con-
tinuous Queries over Distributed Data Streams. In Proc.
ACM Symp. on the Management of Data (SIGMOD), pages
563–574, 2003.

[21] D. Shasha, J. T.-L. Wang, H. Shan, and K. Zhang. ATree-
Grep: Approximate Searching in Unordered Trees. In Proc.
Intl. Conf. on Scientific and Statistical Databases (SSDBM),
pages 89–98, 2002.

[22] E. Ukkonen. Finding Approximate Patterns in Strings. J.
Algorithms, 6(1):132–137, 1985.

[23] S. Wu and U. Manber. Fast Text Searching Allowing Errors.
Commun. ACM, 35(10):83–91, 1992.

