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Abstract

In this paper we propose a classification model for
moving objects trajectories. We assume that the classi-
fication is based on a multi-scale map, and we simply
define a trajectory pattern as the sequence of zones an
object crosses during its travel. These patterns consti-
tute the basis of classification operators. We also define
o pattern-based query language which allows an online
and continuous classification of moving objects. Finally
a prototype which shows the validity of the approach is
briefly described.

1. Introduction

The management of moving objects is nowadays a
well-established area of research in the GIS commu-
nity [12]. The convergence of Internet, location-aware
devices, wireless communications and GIS function-
alities gives rise to new services and generates large
databases of locational and time-stamped information.
Because of the peculiar nature of the data involved,
location-based services and applications raise many
new research challenges, among which data model-
ing, indexing of continuously evolving locations, un-
certainty, notification and routing services, etc. In the
present paper we address the issue of classifying, com-
paring and aggregating moving objects trajectories,
i.e., sequences of locations. We first consider histori-
cal data and the post-acquisition operators that allow
to analyse the spatio-temporal behavior of objects be-
longing to a given population (e.g., taxis, planes, etc.)
and to perform clustering and similarity-based analy-
sis and comparisons. Next we address tracking applica-
tions which receive real-time information provided by
GPS-like devices, and describe a query language which

*  Work partially supported by the French CNRS project Mo-
TIF.

*

Philippe Rigaux
LRI
Université Paris-Sud
rigaux@Iri.fr

allows to express classification queries and to evaluate
their result continuously.

Analysis tools that allow to create spatio-temporal
“profiles” of objects are certainly of interest to many ap-
plications. In the domain of traffic analysis for instance,
this permits to better predict and understand the load
of a local road network during a typical day. Public ser-
vices can also be made more efficient when they can be
proposed in accordance with the availability of users.
The same holds for commercial marketing analysis. In
essence, we aim at taking a set of apparently erratic tra-
jectories in order to organize and to classify them ac-
cording to classes of thematically meaningful patterns.
Each pattern describes the behavior of a typical class
of objects, and the analysis process is supported by op-
erators to create new patterns, to map trajectories to
existing patterns, and to perform an on-line classifica-
tion based on a set of pattern-based queries.

Another important requirement, addressed in the
present paper, relates to the influence of resolution, or
scale, on the description of trajectories. Indeed, taking
account of a user-specified scale level leads to quite dis-
tinct interpretations. The differences are blurred at a
small scale, and trajectories will tend to be merged to-
gether during the classification process. On the con-
trary, a large scale will allow to distinguish from one
another two trajectories with slightly distinct features.
Moreover one might want to describe a trajectory with
a high resolution for some parts (e.g., the begining and
end), and a low resolution for others. Depending on his
needs, the user of the system must be able to tune the
level of scale to the appropriate value, making there-
fore the system much more powerful. Our model copes
with these requirements.

The first contribution of the present paper is a model
that allows to classify trajectories with respect to a
multi-scale representation of the domain area, each
scale level being a partition of the domain in zones.
We simply define a trajectory pattern to be a sequence
of zones, and interpret it as the set of trajectories which
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Fig. 1: Several partitionings of the same area

cross these zones in the required order. Depending on
the scale level of interest, patterns will capture more or
less similar trajectories. We formalize this intuition, ex-
hibit dependencies between patterns expressed at dis-
tinct scale levels, and give classification algorithms.

Next we describe a pattern-based query language
which allows an on-line classification of moving objects
based on their trajectories. We show that the underly-
ing partition in zones permits to handle the continuous
evaluation of these queries as a discrete process. More
specifically, we describe a simple and efficient mecha-
nism to test at any instant whether an object belongs
to the result of a query, and show how to maintain in-
crementally the query result. We also describe briefly a
prototype which constitutes a practical application of
our model to moving object tracking.

In the rest of this paper, we first (Section 2) intro-
duce the multi-scale modeling of space which is used
as a basis for pattern descriptions. The classification
model is presented in Section 3, and pattern-based
queries in Section 4. The Section 5 briefly describes the
prototype and Section 6 discusses related work. Sec-
tion 7 concludes the paper and outlines future work.
Proofs are omitted, due to space restrictions. The in-
terested reader is referred to the report [7], available at
http://www.lri.fr/ rigauz/DOC/MR04.pdf.

2. The Reference Map

As mentioned in the introduction, our goal is to de-
termine, for a given population, some representative
“patterns” of behavior with respect to the spatial orga-
nization of a specific area A C R? in zones. In the fol-
lowing, we define this spatial organization to be a multi-
scale partitioning of A and formally introduce the con-
cept of scale level which will be used latter on to sup-
port trajectory patterns. This space modeling is par-
tially borrowed from [18].

Recall that a partition of A is a finite set of zones
{z1,22,...,2,} such that |J,z = A and z; Nz; =

0,7 # j. Figure 1 shows an area (roughly the region
of Auvergne, in France) with two distinct partition-
ings. The first one (left part) corresponds to an admin-
istrative partition (in départements) whereas the sec-
ond one (right part) considers space utilization.

Clearly the considered partition is closely related to
a specific thematic interpretation of space which resorts
to the user’s choice and constitutes a quite classical
and common spatial analysis mechanism [14]. Defining
which partitions are relevant and which are not is be-
yond the scope of the present paper. For our concerns,
it suffices to note that each object moving in the parti-
tioned area will cross successively a sequence of distinct
zones: we shall build our patterns from such sequences.
Note that, since the partition constitutes the basis of
patterns definition, we will obtain quite distinct classifi-
cations of trajectories depending on the thematic focus.
A thematically “neutral” partition consists in building
patterns on a grid-like partition in equal-sized cells, as
discussed in [15].

Let us now turn our attention to the issue
of multi-scale representation. We shall here con-
sider more specifically the case where switching from
a scale level S; to a coarser one S, is done by ag-
gregating the zones in a partition p;, forming new,
larger zones in a partition p,. This is a quite nat-
ural and common situation. Consider again the
area, of Figure 1 and its two partitions. Switch-
ing from the scale level of départements to the scale
level of régions will lead to a single zone represent-
ing the whole area. The same concept holds for the
partition shown on the right part of Figure 1: we
could gather Residential areas with Industrial ar-
eas to form Built areas, and Crop areas with Rear-
ing areas to form Agricultural areas. In both cases, this
results in coarser partitions made of fewer, less dif-
ferentiated zones. We can therefore introduce the
following relation of partitions: if p;,ps are two par-
titions of A, we say that p; is finer than p», denoted
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We simply define a reference map to be the zones of
a multi-scale partitioning p; C py ... C p, of the area
of interest.
Definition 1 Let A € R? be a subset of the plane, and
{p1,--.,pn} be a set of partitions of A, with p; C pit1,
fori < n. A reference map My of A is the set of zones
mprUps...Upy.

Figure 2 (left part) shows a reference map M based
on the three partitions cities, département and région
(for simplicity the figure shows only a sample of the
cities, and gives them the pseudo-names X, Y, etc.).
This set of zones is structured by an inclusion relation-
ship. For convenience, we shall represent this structure
based on a controlled vocabulary (right part of the fig-
ure) which consists of a set of symbols ¥ together with
a partial order on symbols. Each symbol a € ¥ is used
as a unique identifier of a zone z € M.

Definition 2 A reference map M is represented by a
pair (X, <X) where ¥ is a finite and non-empty set of
symbols and < is a partial order over ¥ such that z; C

We shall consider that the graph of < is a tree Ty,
and we shall denote as root(X) the root of Tx. Here-
after, we shall often confuse the reference map and its
representation, i.e., we shall use the terms “reference
map” to mean its representation. Moreover we shall say
that a location [ belongs to a € ¥ to mean that [ be-
longs to the zone identified by a.

We are now ready to define formally the concept of
scale level.

Definition 3 (Scale level) Let (X, <) be a reference
map. The set of scale levels of 3, denoted Sx, is the
subset of 2% recursively defined as follows:

1. root(X) € Ss;

2. Let S € Sy and a € S such that sons(a) # 0, then
S —{a} Usons(a) € Ss.

This constructive definition provides an easy way to
obtain the set of scale levels, as shown by the following
example.

Example 1 The following are the scale levels of the
reference map of Figure 2:

o Sroot = {Auvergne}

® Siept = 14, C, P, H}

e S ={U, V, W, C, P, H}

Sy = {4, C, P, X, ¥, Z}

Sieaves = {U, V, W, C, P, X, Y, Z}

We shall always consider the classification of objects
with respect to a specific scale level since, intuitively,
such a level provides the necessary and sufficient set of
symbols to describe a trajectory at a specific level of
detail. Indeed, one shows easily that if [ is any location
of the map, then there exists, in each scale level S, a
unique symbol a such that [ € a. In other words, if we
choose a scale level S € Sy, and consider the location
of a moving object, there exists a function label(S,1)
that associates a unique symbol in S to [.

Example 2 Consider the location | in Figure 2, and
the scale levels of Example 1. For the scale level S;o0t,
l is mapped to the zone label(Syoot,l) =Auvergne, for
Saept and Sa, 1 is mapped to 4, finally for Si and
Sleaves, | 18 mapped to U.

A scale level S can be seen as a “slice” in the tree T
which divides ¥ in two subsets: one below S, and the
other (strictly) upon S. In the following, given a subset
o C %, we shall denote as cover(o) the minimal scale
level S which “covers” o, i.e., Va € o,3a’' € Sla < d'.

3. Trajectories and Patterns

In our model, a moving object is represented by an
identifier together with a trajectory. A trajectory is sim-
ply a sequence of locations. Formally, we assume the ex-
istence of a countably finite set Obj for identifiers. Lo-
cations are points in the Euclidean space R2.

Definition 4 (Representation of moving objects)
A moving object consists of an identifier o together
with a list o.traj =<ly,la,...,l,, > of locations.

Clearly, the description of a trajectory can be ob-
tained from a GPS device which periodically provides
the object’s location. It is important to note that in
our model the continuous aspect of trajectories is ig-
nored because it is not relevant for our purposes. Since
we map each location to a zone in a map, we just have
to assume that the GPS device will provide at least one
location for each zone crossed by an object o.

Let us now turn our attention to the classifica-
tion of objects. As mentioned earlier, this classifica-
tion relies on a reference map (X, <) which is struc-
tured in scale levels. We simply define a trajectory pat-
tern as a sequence of zone symbols from a specific scale
level. In the following definition, the composition oper-
ator P.P' denotes the operation reduce(concat(P, P'))
where concat is the string concatenation, and reduce()
is a function which removes from a string all the re-
peated symbols (i.e., reduce('aabbcecbbdd') =" abebd').

Definition 5 (Trajectory patterns) Let S be a
scale level in (X, <). Then:
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o ifa € S, then [a] is a trajectory pattern

e if Pi and Py are trajectory patterns in S, then so
8 Pl.Pg

We will denote by Ps, the set of all trajectory patterns
in (X, X).

Note that we eliminate the repeated symbols from
a pattern because such a repetition does not provide
any useful information as long as we cannot guarantee
that the events related to an object are separated by
constant time intervals.

Example 3 The following are examples of trajectory
patterns:

P =1[z.X.P.U]
P;= [H.P.U]

P,=[C.Z.P.W]
Py = [H.P.4]

Our motivations for introducing the concept of pat-
terns relate to the clustering of trajectories that present
a similar behavior. A pattern describes a class of tra-
jectories. For instance if we consider the Figure 2, the
pattern [H.P.A] represents all the trajectories that
go from Haute-Loire to Allier, crossing the Puy de
Déme. Given a scale level S, a trajectory is mapped to
a pattern in S as follows:

Definition 6 Let t =< ly,ls,...,l, > be the trajec-
tory of a moving object o, and let S be a scale level.
The pattern of t in S, denoted pattern(t,S), is:

[reduce(label(S,11).label(S,1s) - - - label (S, 1,))]

where label() and reduce() are the functions introduced
above.

A trajectory t matches a pattern P at scale S
if pattern(t,S) = P. Depending on the scale level,
patterns are matched by more or less trajectories,
and thus provide a more or less accurate classifica-
tion framework. Let us take an example, still based
on Figure 2. The pattern [U.V.P.X.Y] of the scale
level Sjeqves is matched by all the trajectories that go

from cities U, then V in Allier, to cities X then Y in
Haute-Loire, crossing the Puy de Ddéme. Clearly, any
trajectory that matches this pattern will also match
the pattern [A.P.H] at the scale level Sy.p: and, con-
versely, if a trajectory does not match [A.P.H], then it
will not match [U.V.P.X.Y]. Some patterns are there-
fore generalizations of others, and this leads to the fol-
lowing relation on Ps:

Definition 7 (Refinement relation on patterns)
The refinement relation on patterns, <, is defined by
induction as follows.

1. if P and P' are two patterns of the form P =
[b1.b2.---.by] and P' = [a], with b; < a for
i=1,...n, then P P'.

2. if P and P' are two patterns of the form P,.P, and
P|.P;, with P, A P| and P, A Pj, then P < P'.

If P < P', we will say that P is finer than P'.

Example 4 The pattern [Z.Y.P.U] is finer than
[H.P.4], because [Z.Y] < [H], [P] < [P] and [U] <
[4].

The following is easily verified:

Proposition 1 The relation < is a partial order on
Psx.

Further more, it can be shown that two tra-
jectory patterns have a unique minimal common
ancestor with respect to relation <. This ances-
tor represents the minimal level of description of
the trajectories at which they can no longer be dis-
tinguished. Consider for instance P; =[X.Y.P.A]
and P, =[H.P.U.V]. Both patterns represent a
travel from département Haute-Loire to départe-
ment Allier through the Puy-de-Ddme département.
It turns out that P; features a more detailed repre-
sentation for the part which belongs to Haute-Loire,
whereas P, is more detailed for the part that be-
longs to Allier. Neither P, < P, nor P, < Py



hold, but both are less than P3; =[H.P.A] with re-
spect to <.

Proposition 2 Let D = {Py,..,P,} be any set of tra-
jectory patterns. Let U be the set of all patterns P such
that P; A P,i = 1,2,...,n. Then U has a unique mini-
mal element, that we shall denote as lub(D, ).

The existence of a least upper bound (lub) is impor-
tant, both for our classification purposes and for opti-
mization during on-line query processing. From a clas-
sification point of view, the semi-lattice structure of
our patterns ensures that we can always obtain, for a
set of trajectories, a scale level at which these trajec-
tories are represented by a single pattern.

The optimization aspect is less common, although
important as well. Basically, we know that if a trajec-
tory does not match the lub of a set of patterns, then it
will not match any of these patterns. This property al-
lows to avoid many useless computations in large-scale
notification systems (see for instance [25, 3]), by cre-
ating clusters of pattern-based queries and by filtering
out the evaluation of these queries thanks to their lub.
We shall develop this aspect in the next section.

We need an algorithm to compute the least upper
bound of a set of patterns. Furthermore, if we take into
account the previous motivation (using a lub as a fil-
ter over a set of patterns), we need an incremental algo-
rithm because we must be able to add a new pattern in
an existing cluster without having to recompute every-
thing. The technique proposed hereafter relies on the
following observation: finding the lub of a set of pat-
terns is equivalent to finding the scale level S at which
all the patterns become similar. Once S is found, it re-
mains to find the (unique) ancestor of the patterns in
S.

The LuB algorithm takes a pair of patterns (Py, Py)
as input and delivers the lub of {P;, P>}. It relies on
the functions Ica(a,b) which returns the least common
ancestor of the pair of symbols (a, b) € £? with respect
to < and ancestor(S,a) which returns the ancestor of
the symbol a at the scale level S. Recall that cover(o)
computes the minimal scale level S which “covers” o C
3.

The LuB algorithm can be used to compute incre-
mentally the lub of a set {Pi, .., Py}, with n > 2: first
compute LUB(Py, P,), then LUB(LUB(P,, P,), P3), etc.
We end this section by working out an example illus-
trating how this algorithm works, still referring to the
reference map of Figure 2.

Example 5 Consider the patterns P, =[X.Y.P.A]
and P, =[X.Z.P.U.V]. In order to -compute
LuB({ P, P2}), we first initialize Spup with Sieqves =

{U, vV, W, ¢, P, X, Y, Z}. Each item in the fol-
lowing enumeration represents a step in the while
loop.

1. First 1 is assigned to lca(Pi[1],P2[1]) =
lea(X,X) = X. We skip the part covered by
X, both for P, and Py: i and j are set to 2. Spup
remains unchanged.

2. Next 1 is assigned to lca(P1[2],P2[2]) =
leca(Y,Z) = H. We skip the part covered by
H: both © and j are set to 3. The scale level is
Siup = cover(Spup U{H}) = {U, V, W, C, P, H}.

3. Pi[3] and P»[3] are compared. Since both are P
which belongs to Spup, we just advance one sym-
bol on each pattern: i =j =4

4. Finally 1 is assigned to lca(Pi[4],P2[4]) =

leca(U,A) = A. We skip the end of both
patterns, i.e., i = 5 and j = 6. Spp 1is
cover({U, vV, W, C, P, H} U {4}) = {4, C,
P, H}.

Next the step (b) is carried out: taking Py, one re-
places each symbol by its ancestor in Siup and one ob-
tains Py = [H.H.P.A] which, once reduced, yields
the final result lub(Py, P,) = [H.P.4]. Note that one
would obtain at this step the same result by taking Py:
Py =reduce([H.H.P.A.4]) = [H.P.4].

In summary, the computation of the least upper
bound of a set of patterns, using the LUB algorithm,
provides the finest pattern common to the trajecto-
ries of interest and, incidently, delivers the finest scale
level at which the trajectories will be considered as sim-
ilar.

4. Pattern-based queries

We now turn our attention to the application of
our pattern-based framework to mobile object track-
ing [22, 24, 10]. Using a pattern representation for tra-
jectories, as advocated in the previous section, leads to
a new approach for querying information related to the
motion of objects, based on discrete events. Indeed, the
result set of a pattern-based query changes only when
an object enters or leaves a zone, and this allows an
easy maintenance of this result, compared to the com-
plex techniques which are required when continuous
motion is considered.

4.1. Pattern-based query language

The simplest application of our classification ap-
proach is to define a query as a trajectory pattern, ex-
pressed at a given scale level, and to report all the tra-



Algorithm LUB

Input: A pair of patterns Py, P,
Output: lub({P1, P2}, <)

begin

— Step (a): one computes the scale level Sy, of the least upper bound —
// Initialize Sp,p to be the finest possible scale level, Sieqpes

Slub = Sleaves

// Scan P; and P», and determine at each step if a change of scale is required

i:=1,7:=1 // Current position in P; and P;.
while (i <length(P;) and j < length(P,)) do

// Take the least common ancestor of P;[i] and P»[j] in (Z, <)

1 := lca(Py[i], P2[j])

// Skip the part “covered” by this lca in the two patterns
while Pi[i] X1 doi:=i+ 1; while P[j] Xl doj:=j+1

// Compute the minimal scale level which contains [

Siup = cover(Spups U {1})
end while

// P1 or P» has not been entirely scanned? Then Sy, is the coarser scale level, Syqot
if (i <length(Py) or j < length(P,)) then Sy := Sroot

— Step (b): replace each symbol in P; by its ancestor in Sjup —

for each (i € [1,length(Py)]) Pus[t] := ancestor(Siup, P1[i])

— Step (c): compute the reduction of Pj,p: this is the result —

return reduce(Pjyp)
end

Fig. 3: The LuB algorithm

jectories that match this pattern. However, in an on-
line classification context, we need to extend the power
of a pattern-based query language by searching the oc-
currences of a pattern in a stream of locations.

This extension is motivated by practical consider-
ations. The goal, in a traffic monitoring application
for instance, is to observe a sequential stream of GPS
events and to detect whether a pattern is matched by
the most recent events which have been observed for a
given object. In other words we need to match query
patterns with the suffiz of the sequence of locations ob-
tained so far. If, for instance, a query is of the form
[P.C.Z], the answer will include all the objects whose
(currently known) trajectory can be mapped to a word
in the language ¥*PCZ.

The query language and its semantics are defined as
follows:

Definition 8 (Pattern-based query language)
Let M be a reference map (2,=X). A query q over M
is a pair (S, P;) where S is a scale level in M and P,
is a trajectory pattern in S.

The answer to a query ¢(S,P,) is the set of ob-
jects whose trajectory traj is such that P, is a suf-
fix of pattern(traj,S).

Definition 9 (Query answer) The answer to a
query q(S,P,;) over a set of objects O, denoted

anso(q), s the subset of O defined as follows:
o € anso(q) iff P, is o suffix of pattern(o.traj, S).

4.2. Query evaluation

The evaluation of queries relies on a simple appli-
cation of standard pattern matching techniques. The
problem is that of finding the occurrences of P, (the
pattern) in a text t € ¥* (the sequence of locations).
We need to find all the prefix of ¢ that end with P,.
This can be done with an automaton A(P;) which rec-
ognizes the language X*P,. The construction of A(FP,)
is standard and can be found in any textbook devoted
to pattern-matching algorithms (see, for instance, [5]).
Let h be the function that, given a trajectory pattern
t € S*, returns the longuest suffix of ¢ which is also a
prefix of P,. The automata A(F,) is then defined as fol-
lows:

e its states are the set of prefix of P, (including the
empty pattern);

e its initial state is the empty pattern, and its fi-
nal/accepting state is P,.

e the transitions are of the form s % h(sa)

An automaton A(F;) is illustrated in Figure 4 for
the query pattern P, = [Z.X.P.W.U]. The representa-
tion of the transition function, 4, is simplified. We show
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Fig. 4: An automaton for the query P, = [Z.X.P.W.U]

explicitly the transitions from one state to another for
each symbol in P, (black arrows). Clearly the transi-
tions explicitly shown on Figure 4 will lead to the ac-
cepting state if a matching trajectory is read.

The other transitions correspond to a failure to
match the query pattern with a trajectory, and are
summarized by the function h (arrows with dotted line)
on each state. The transitions denoted by h reduce, for
this particular automaton, to two cases:

1. on input Z, h leads to state 2 because Z is in that
case the longest suffix of the trajectory pattern
which is also a prefix of F,.

2. on any input which is not Z, h leads to state 1, be-
cause in that case there is no suffix of the trajec-
tory which is also a prefix of F,.

In general, the function h leads to the state repre-
senting the longest prefix of P, which is also a suffix of
the trajectory pattern. The computation of h was first
described in [11] and can be found in specialized text-
books [5].

An important point is that the automaton is deter-
ministic. This ensures that we can locate a query pat-
tern on an input stream by just maintaining the cur-
rent state in the automaton of the object that gener-
ates the stream. The query evaluation algorithm takes
as input the query definition, an object o, its current lo-
cation, and returns true when o belongs to the answer
of ¢, or false otherwise.

Algorithm EvAL
Input: A query ¢(S, F,), an object o, a location loc
Output: A boolean which states whether o belongs
or not to the query answer
begin
// Get the label of pos in the scale level S
a = label(S,loc)
// Check that o entered a new zone
if (a is distinct from the previous label) then
// Apply the transition function on a,
// and compute the new current state of o
0-Scur = 0¢(0-Scur, @)
endif
// Check whether o belongs to the answer of ¢
if (0.scyr is the accepting state) return true
else return false
end

The algorithm EVAL must be called each time a new
event (e.g., a GPS message) is received for an object,

and its result can be used for the maintenance of the
query result set. It is worth underlying that we do not
need to record the history of an object o during this
process. Clearly, it suffices to record the current sta-
tus of o with respect to the automaton A(P;). This
minimizes memory requirements, and avoids to back-
track on a trajectory pattern during query evaluation.

4.3. Optimization issues

Our approach offers several opportunities for opti-
mization. We consider in particular systems that aim
at classifying in real time a set of objects whose loca-
tions are periodically updated. When the system pro-
cesses a very large number of pattern queries over a
very large number of objects, we can reduce the work-
load by the following means:

1. event filtering: as mentioned in the previous sec-
tion, we can use the semi-lattice structure of a set
of patterns to filter out unnecessary computation;

2. resource sharing: we can group together the au-
tomata of a set of queries.

Both techniques can be combined. The first one is
quite specific to our multi-scale framework. It consists
in grouping queries in clusters and to filter out, for
each cluster, the GPS events which cannot affect the
result of the cluster’s queries. We know that a set of
queries {q1,92,..-,¢n} in a given cluster can be rep-
resented by its lub guup, and that a trajectory cannot
match a query ¢; if it does not match also gyp- In some
sense we can “index” the set of queries registered by
the system [10, 13] and save a lot of irrelevant com-
putations. Note that this index is explicitly based on
sequences of locations, and therefore behaves quite dif-
ferently than classical spatial indexes (e.g., R-trees).

Second we can, in each cluster, “merge” together the
automata associated to the queries in the cluster into
one global automaton shared by all the queries, thereby
saving computational resources. The technique is well-
known in the pattern-matching area (“dictionary au-
tomata”), and catches up the multiple optimization re-
search conducted for a long time in the database com-
munity [20, 3], which is nowadays intensively investi-
gated in the context of data streams management sys-
tems [1, 9].
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5. Implementation

We are currently implementing a system which ex-
tends a first prototype presented in [6]. The goal is first
to show the effective applicability of our model, second
to enable a platform for testing our optimization tech-
niques, and third to experiment visualization and an-
imation coupled with the server’s functionalities. We
present here briefly both the functionalities of the sys-
tem and our implementation choices.

Figure 5 shows the graphical interface of the sys-
tem. It consists of a few frame boxes displayed in a
web browser. The main frame displays the reference
map (here the french territory with the scale level of ré-
gions) and any other convenient geographic layer. For
this particular example, the reference map is combined
with a network of roads joining the main french cities.

The lower-left frame is used to register queries to
the system. We rely on a very simple user-friendly lan-
guage to express query patterns, based on a few intu-
itive primitives: start, move, etc. A query is assigned
to a set of specific graphical attributes which allow to
distinguish its result set from the result sets of other
queries. In the current implementation, a query result
is simply associated to a specific color, but more so-
phisticated graphical characterization should be used
if many queries are registered concurrently.

Figure 5 shows a state where two queries have been
registered by the client. These queries are listed in the
upper-left frame, together with a button to un-register
the query and the color assigned to the query result set.
The result itself is graphically represented as a set of
animated objects moving over the map, each one char-
acterized by the color of its associated query(ies).

Figure 6 sums up the whole architecture of the pro-
totype. Clients are web browsers equipped with the

SVG browser from Adobe '. A map is an SVG doc-
ument, represented at the client’s side as a DOM tree.
The document is updated by the applet thanks to DOM
functions whenever an update message is received. The
SVG browser modifies then automatically the display
(including animated objects) presented to the user.

The server is a java Servlet which gets the events
from the simulator. The server sends initially to each
new client a SVG document representing the geo-
graphic data (map and network). Then for each query a
java thread is created on the server’s side. The thread
manages the main memory structure that maintains
the query result, namely

1. the automaton associated to the query pattern;

2. a list L, with one entry per object recording its
current state.

The states of the automaton are represented as a
mask of bits. The value 1 (resp. 0) for a bit means
that o; is (resp. is not) in the associated state. This
gives a compact structure: for a pattern with 4 sym-
bols, a mask of 4 bits must be recorded for each object.
One can therefore track a database of one million ob-
jects with only 500K in main memory.

When it receives a GPS event related to an object o,
the thread calls the EVAL algorithm presented in Sec-
tion 4. Depending on the result, o will enter or leave
the result set. The server sends then a message to the
browser which updates the graphical representation at
the client’s side.

The current implementation does not include the
optimization techniques presented at the end of Sec-
tion 4. Extending the system to support a large num-
ber of queries is part of future work.

1 Adobe. The SVG Viewer. http://www.adobe.com/svg
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6. Related work

The work presented here can be related to several
areas, including multi-scale representation in GIS ap-
plications, time series, and moving objects tracking.

While several multi-scale representation frameworks
for spatial databases have been recently presented [18,
23, 27|, they do not cover the trajectories of moving ob-
jects. [27] implements multi-scale data access schemes
using scale-priority values for the vertices of the geo-
metric objects. While this model supports queries on
arbitrary scale values, it does not aim at representing
and querying trajectories.

In time-series databases several approaches ([4, 17,
26]) for shape-based retrieval have been proposed.
They define a similarity distance to compare sequences
of real numbers, along with indexing techniques and
efficient evaluation algorithms. In [26] the authors
present a new similarity measure to compare 2D-space
trajectories using the longest common subsequence
(LCSS) model. The authors focus on the noise that
results from incorrect data measurement and demon-
strate through analysis and experimental evaluation
the robustness of their technique. Although the ap-
proach of [26] relies on numerical computation and is
therefore essentially different from our thematic classi-
fication of the underlying space, the potential impact
of errors is indeed something to consider. We plan to
exploit and adapt approximate string matching tech-
niques [16] to our string-based pattern representation
in order to cope with this challenge.

In the area of spatio-temporal databases, the prob-
lem of tracking continuously moving objects is ex-
plicitely addressed in several works [2, 10, 24]. [2] for
instance describes a web-based architecture for reduc-
ing the volume and frequency of data transmissions
between the client and the server. [10] presents a sys-
tem that indexes queries in order to recompute peri-

odically the whole result of each query. This is in con-
strast with the incremental computation advocated in
the current paper.

Finally a relevant work is the aggregation and com-
parison approach proposed by Meratnia and de By
in [15]. They present an interesting method which com-
putes the similarity between trajectories, based on a
raster representation. However they ignore multi-scale
issues, and the fixed space partition can not adapt to
the thematic partition of space that we consider.

7. Conclusion

We presented in this paper a novel approach for
classifying, clustering and continuously querying mov-
ing objects. Computations are based on a thematic
multi-scale partition of the underlying space and can
be supported by simple and efficient tools (i.e., pattern
matching on strings). This is an original work which
constitutes a convenient way of managing continuous
queries over a set of objects continuously moving in
the 2D space. To our knowledge this approach has not
been explored so far in the spatio-temporal literature,
although somewhat similar ideas can be found in other
domains, e.g., sequences databases [21, 19]. The tech-
nique can augment the power of practical moving ob-
jects monitoring systems [9] and more generally of ma-
nipulation languages [8] for such applications.

We believe that this framework raises several inter-
esting research issues that we plan to investigate in a
near future: approximate similarities between trajecto-
ries represented as strings, extension of the query lan-
guage to express temporal and topological constraints
on the zones of a pattern, and finally optimization tech-
niques for the evaluation of our pattern-based queries.
The goal, in the latter case, is to meet the requirements
of very large monitoring systems that handle millions
of objects and queries. In such a context, an impor-
tant issue is the ability to share the resources between



queries [1].

We believe that combining the exploitation of the
refinement relation on patterns and the extension of
pattern-matching techniques offers fruitful opportuni-
ties. We are currently designing a clustering algorithm
that puts “close” patterns together in a same cluster,
and thereby allows to characterize each cluster by a
precise lub which can then be used for filtering pur-
poses.
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